[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR100622604B1 - Gas engine heat pump with an enhanced accumulator - Google Patents

Gas engine heat pump with an enhanced accumulator Download PDF

Info

Publication number
KR100622604B1
KR100622604B1 KR1020050018302A KR20050018302A KR100622604B1 KR 100622604 B1 KR100622604 B1 KR 100622604B1 KR 1020050018302 A KR1020050018302 A KR 1020050018302A KR 20050018302 A KR20050018302 A KR 20050018302A KR 100622604 B1 KR100622604 B1 KR 100622604B1
Authority
KR
South Korea
Prior art keywords
heat exchanger
refrigerant
cooling
accumulator
gas engine
Prior art date
Application number
KR1020050018302A
Other languages
Korean (ko)
Other versions
KR20060097226A (en
Inventor
차우호
김병기
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Priority to KR1020050018302A priority Critical patent/KR100622604B1/en
Application granted granted Critical
Publication of KR100622604B1 publication Critical patent/KR100622604B1/en
Publication of KR20060097226A publication Critical patent/KR20060097226A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2327/00Refrigeration system using an engine for driving a compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

본 발명은 열교환기 일체형 어큐뮬레이터를 구비한 가스엔진 냉난방장치에 관한 것으로서, 가스엔진의 구동력에 의해 작동하여 냉매를 압축하는 압축기와, 압축기에서 나온 냉매의 흐름 방향을 절환하기 위한 사방밸브와, 냉방시는 압축기에서 공급된 냉매를 열교환을 통해 액화시키고 난방시는 실내기 열교환기에서 온 냉매를 증발시키는 실외기 열교환기와, 엔진을 냉각하기 위한 엔진 냉각수 순환계통상에 냉매를 가열할 수 있도록 설치된 보조증발기와, 어큐뮬레이터를 포함한 실외기와; 실내열교환기와 팽창밸브를 포함하여, 냉방시 증발기로 작용하고 난방시 응축기로 작용하는 실내기를 구비하여 이루어지며, 난방 운전시 실외기 열교환기와 보조열교환기를 이용하여 순차적으로 냉매를 증발시키도록 구성된 가스엔진 냉난방장치에 있어서, 냉매 계통에 존재하는 압력 강하를 배제하고 열교환 성능을 향상시키기 위하여 보조 열교환기를 어큐뮬레이터의 내부에 장착시킨 것을 특징으로 하는 가스엔진 냉난방장치를 구성한다. 한편, 본 발명에서 보조 열교환기의 튜브는 어큐뮬레이터의 토출부를 감싸도록 나선형으로 형성되는 것이 바람직하며, 보조 열교환기의 튜브에는 다수의 상하 방향으로 연장하는 냉각핀이 부착되는 것이 바람직하다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas engine cooling and heating apparatus including an accumulator integrated with a heat exchanger, comprising: a compressor operating by a driving force of a gas engine to compress a refrigerant, a four-way valve for switching the flow direction of the refrigerant from the compressor, and Is an outdoor unit heat exchanger that liquefies the refrigerant supplied from the compressor through heat exchange and evaporates the refrigerant from the indoor unit heat exchanger during heating, an auxiliary evaporator installed to heat the refrigerant on the engine coolant circulation system for cooling the engine, and an accumulator. Outdoor unit including; Including an indoor heat exchanger and an expansion valve, an indoor unit that acts as an evaporator for cooling and a condenser for heating, and is configured to evaporate refrigerant sequentially by using an outdoor unit heat exchanger and an auxiliary heat exchanger during heating operation. In the apparatus, a gas engine cooling and heating apparatus is constructed, in which an auxiliary heat exchanger is mounted inside the accumulator in order to eliminate pressure drop existing in the refrigerant system and to improve heat exchange performance. On the other hand, in the present invention, the tube of the auxiliary heat exchanger is preferably formed spirally to surround the discharge portion of the accumulator, it is preferable that a plurality of cooling fins extending in the vertical direction is attached to the tube of the auxiliary heat exchanger.

가스엔진, 보조 열교환기, 어큐뮬레이터, 냉각핀, 열교환튜브  Gas Engine, Auxiliary Heat Exchanger, Accumulator, Cooling Fin, Heat Exchanger Tube

Description

열교환기 일체형 어큐뮬레이터를 구비한 가스엔진 냉난방장치{Gas Engine Heat Pump with an Enhanced Accumulator} Gas engine heating and cooling unit with accumulator integrated with heat exchanger

도 1은 종래의 가스엔진 히트펌프의 냉매계통 및 엔진냉각수 계통1 is a refrigerant system and an engine coolant system of a conventional gas engine heat pump

도 2는 본 발명이 제안하는 가스엔진 히트펌프의 냉매계통2 is a refrigerant system of the gas engine heat pump proposed by the present invention

도 3은 본 발명의 제 1실시예3 is a first embodiment of the present invention.

도 4는 본 발명의 제 2실시예4 is a second embodiment of the present invention.

도 5는 본 발명의 제 3실시예5 is a third embodiment of the present invention.

<도면의 주요부분에 대한 부호설명><Code Description of Main Parts of Drawing>

1:냉매순환계통 2:냉각수순환계통1: refrigerant circulation system 2: cooling water circulation system

10:가스엔진 14:압축기10: gas engine 14: compressor

15:사방밸브 16:실외기 열교환기15: Four-way valve 16: Outdoor air exchanger

17, 18:팽창밸브 19:실내기 열교환기17, 18: expansion valve 19: indoor heat exchanger

20:어큐뮬레이터 21:엔진냉각수 삼방밸브20: accumulator 21: engine coolant three-way valve

22:라디에이터 23:순환펌프 22: radiator 23: circulation pump

24:배기가스 열교환기 25:보조 열교환기 24: exhaust gas heat exchanger 25: auxiliary heat exchanger

본 발명은 냉매 압축기를 가스엔진에 의해 구동하며, 난방 운전시에는 엔진의 배열을 회수하여 냉매의 증발에 이용하는 가스엔진 냉난방장치에 관한 것으로서, 특히 어큐뮬레이터와 보조 열교환기의 병합으로 압축기의 액냉매 유입의 방지와 운전시 성적계수를 향상시킨 열교환기 일체형 어큐뮬레이터를 구비한 가스엔진 냉난방장치에 대한 것이다.The present invention relates to a gas engine air-conditioning apparatus which drives a refrigerant compressor by a gas engine, and recovers the arrangement of the engine during heating operation and uses it for evaporation of the refrigerant. Particularly, the refrigerant refrigerant is introduced into the compressor by merging the accumulator and the auxiliary heat exchanger. The present invention relates to a gas engine heating and cooling unit having an accumulator integrated with a heat exchanger which prevents the operation and improves the coefficient of performance during operation.

가스냉방은 최근 생활 수준의 향상으로 쾌적한 생활 수준을 추구하는 욕구가 증대하면서 여름철 냉방수요가 급격히 증가함에 따라 여름철 전력 수급의 불안정을 초래하는 문제가 발생함에 따라 이를 해결하기 위하여 여름철에 전기를 사용하지 않고도 냉방 설비를 가동할 수 있는 방법을 모색하던 중에 대안으로 착안된 냉방 시스템으로, 가스 냉방 기술은 전기를 사용하지 않고 가스를 사용하여 냉방하는 방법으로 주로 흡수식과 GHP(Gas engine Heat Pump) 방식이 대부분이다.Gas cooling is not used in summer to solve this problem, as the demand for pursuing a pleasant living standard has increased due to the recent increase in living standards and the demand for summer cooling has increased rapidly. An alternative cooling system was devised while searching for a way to operate the cooling system without gas. Gas cooling technology uses gas instead of electricity to cool the gas, which is mainly absorbed and gas engine heat pump (GHP). Mostly.

그 중에서 GHP 방식은 가스터빈을 이용하는 방식과 엔진을 이용하는 방식이 주류를 이루고 있는데, 상기 시스템은 가스터빈이나 가스엔진의 구동력에 의해 압축기를 운전하여 냉방(난방)하는 방식으로, 일반 전기식 히트펌프(EHP;Electric Heat Pump)와 비교할 때 히트펌프 시스템인 점에서는 큰 차이는 없으나 GHP는 1차 에너지인 가스로 구동된다는 점에 있어서 큰 차이점이 존재하며, 상기 GHP는 1차 에너지 연소시 나오는 배열을 난방에 이용할 수 있어서 난방 효율이 EHP 보다 높다는 장점이 있으며 하절기 냉방용 전력 수요의 억제 효과가 있어 국가 에너지 시책 에 부합하는 방식으로 장래 사용 전망이 크게 부각되는 현실이다.Among them, the GHP method uses a gas turbine and a method using an engine. The system uses a gas turbine or a gas engine to drive a compressor to cool (heat) the air. Compared with EHP (Electric Heat Pump), there is no big difference in terms of heat pump system, but there is a big difference in that GHP is driven by gas which is primary energy. It has the advantage that heating efficiency is higher than EHP, and it has the effect of suppressing cooling power demand in summer, so the prospect of future use is highlighted in a manner consistent with national energy policy.

가스엔진 히트펌프는 도 1 도시와 같이, 크게 냉매순환 계통(1)과 엔진 냉각수 순환 계통(2)으로 구성된다. 냉매순환 계통은 실내측을 냉방 또는 난방하기 위하여 냉동사이클 또는 열펌프 사이클을 형성하며, 가스엔진(10)에 의해서 구동되는 냉매용 압축기(14), 사방밸브(15), 실외기 열교환기(16), 난방 팽창밸브(17), 실내기 팽창밸브(18), 실내기 열교환기(19), 어큐뮬레이터(20) 등으로 구성된다.As shown in FIG. 1, the gas engine heat pump is largely composed of a refrigerant circulation system 1 and an engine cooling water circulation system 2. The refrigerant circulation system forms a refrigeration cycle or a heat pump cycle for cooling or heating the indoor side, and a refrigerant compressor 14, a four-way valve 15, and an outdoor unit heat exchanger 16 driven by a gas engine 10. And a heating expansion valve 17, an indoor unit expansion valve 18, an indoor unit heat exchanger 19, an accumulator 20, and the like.

엔진 냉각수순환 계통(2)은 엔진(10)을 냉각하기 위하여 엔진 냉각수를 순환시키며, 엔진냉각수 감방밸브(21), 라디에이터(22), 엔진냉각수 순환 펌프(23), 배기가스 열교환기(24) 등으로 구성된다.The engine coolant circulation system (2) circulates the engine coolant to cool the engine (10), the engine coolant relief valve (21), the radiator (22), the engine coolant circulation pump (23), and the exhaust gas heat exchanger (24). And the like.

또한, 냉매순환 계통(1)과 엔진 냉각수순환 계통(2) 간에는 보조 열교환기(25)를 설치하여 냉매와 엔진 냉각수 간의 열교환이 이루어짐으로써 냉매를 증발시키도록 구성되어 있다.  In addition, an auxiliary heat exchanger (25) is provided between the refrigerant circulation system (1) and the engine cooling water circulation system (2) so that the refrigerant is evaporated by heat exchange between the refrigerant and the engine cooling water.

이와 같은 종래기술의 가스엔진 냉난방장치의 냉방 운전시에는 사방밸브(15)는 도 1의 실선 화살표와 같이 절환되며, 이에 따라 가스엔진(10)에 의하여 구동되는 압축기(14)에 의하여 압축되어 고온 고압의 상태가 된 냉매는 냉방 운전모드로 절환된 사방밸브(15)를 거쳐, 응축기로 기능하는 실외기 열교환기(16)에서 응축되며 응축열을 외기로 방출한다. 응축된 액체 상태의 냉매는 실내기 팽창밸브(18)에서 감압된 후, 저온 저압의 상태로 증발기로 기능하는 실내기 열교환기(19)로 유입되어 증발하게 된다. 이와 같이, 냉방은 증발 과정에서 요구되는 잠열을 실내의 공기로부터 흡열함으로써 이루어진다.During the cooling operation of the conventional gas engine heating and cooling device, the four-way valve 15 is switched as shown by the solid arrows in FIG. 1, and is compressed by the compressor 14 driven by the gas engine 10 to thereby produce a high temperature. The refrigerant, which has been in a high pressure state, is condensed by the outdoor unit heat exchanger 16 functioning as a condenser via the four-way valve 15 switched to the cooling operation mode and discharges the condensation heat to the outside air. The refrigerant in the condensed liquid state is decompressed by the indoor unit expansion valve 18, and then flows into the indoor unit heat exchanger 19 which functions as an evaporator at a low temperature and low pressure to evaporate. As such, cooling is achieved by absorbing latent heat required in the evaporation process from the air in the room.

한편, 실내기 열교환기(19)를 거친 냉매는 어큐뮬레이터(20)를 거쳐 기체 상태의 냉매만이 압축기에 흡입됨으로써 냉동 사이클이 연속적으로 형성된다. On the other hand, the refrigerant having passed through the indoor unit heat exchanger 19 passes through the accumulator 20, and only a refrigerant in a gaseous state is sucked into the compressor, thereby forming a refrigeration cycle continuously.

또한, 냉방 운전시, 가스엔진(10)을 냉각한 엔진 냉각수는 엔진 냉각수 삼방밸브(21)에 의하여 라디에이터(22)측으로 유도되고 라디에이터(22)에서 외기에 방열한 후, 엔진냉각수 순환펌프(23)에 의하여 배기가스 열교환기(24)를 거쳐, 다시 가스엔진(10)으로 되돌려진다. In addition, during the cooling operation, the engine coolant that has cooled the gas engine 10 is led to the radiator 22 side by the engine coolant three-way valve 21 and radiated to the outside air in the radiator 22, and then the engine coolant circulation pump 23. ) Is returned to the gas engine 10 via the exhaust gas heat exchanger 24.

그러나, 난방 운전시에는 사방밸브(15)가 도 1의 점선 화살표와 같이 절환되며, 이에 따라 압축기(14)에 의하여 압축된 고온 고압의 냉매는 실내기(36) 측으로 유입되어, 응축기로 기능하는 실내기 열교환기(19)에서 응축되며, 실내공기로 방출된 응축열에 의하여 난방이 이루어진다. 응축된 액체 상태의 냉매는 난방 팽창밸브(17)를 통과하면서 저온 저압의 상태로 감압된 후, 증발기로 기능하는 실외기 열교환기(16)로 유입되어 증발하기 시작한다.However, in the heating operation, the four-way valve 15 is switched as shown by the dotted arrow in FIG. 1, whereby the high temperature and high pressure refrigerant compressed by the compressor 14 flows into the indoor unit 36 and functions as a condenser. Condensed in the heat exchanger (19), heating is achieved by the heat of condensation discharged into the room air. The refrigerant in the condensed liquid state is reduced in the state of low temperature and low pressure while passing through the heating expansion valve 17, and then flows into the outdoor unit heat exchanger 16 which functions as an evaporator and starts to evaporate.

한편, 난방 운전이 이루어지는 동절기에는 통상 외기의 온도가 낮으므로, 이에 따라 증발온도를 낮추려면 압축기 소요동력이 증가하여 열펌프 사이클의 성능저하를 초래하며, 이를 방지하기 위하여 엔진 배열의 일부를 회수하여 냉매의 증발열원으로 이용한다. 즉, 난방 운전시에는 가스엔진(10)을 냉각한 엔진 냉각수가 엔진냉각수 삼방밸브(21)에 의하여 보조 열교환기(25) 측으로 유도되어, 실외기 열교환기(16)를 지나 보조 열교환기(25)로 유입된 냉매를 가열하여 증발시킨다.On the other hand, since the temperature of the outside air is usually low in the winter during the heating operation, accordingly, to lower the evaporation temperature, the power required for the compressor increases, resulting in a decrease in the performance of the heat pump cycle. It is used as a heat source of evaporation of refrigerant. That is, in the heating operation, the engine coolant cooling the gas engine 10 is led to the auxiliary heat exchanger 25 by the engine coolant three-way valve 21, and passes through the outdoor unit heat exchanger 16 to the auxiliary heat exchanger 25. The refrigerant flowed in is heated and evaporated.

이와 같이 실외기 열교환기(16)와 보조 열교환기(25)를 차례로 거치면서 증발된 냉매는 어큐뮬레이터(20)를 거쳐 기체 상태의 냉매만이 압축기(14)로 흡입되 어 열펌프 사이클이 연속적으로 형성된다.As such, the refrigerant evaporated while passing through the outdoor unit heat exchanger 16 and the auxiliary heat exchanger 25 in turn passes through the accumulator 20, and only the refrigerant in the gaseous state is sucked into the compressor 14 to form a heat pump cycle continuously. do.

도 1에 나타낸 종래의 냉매순환 계통(1)은 난방 운전시는 물론, 보조 열교환기(25)에서 냉매를 가열할 필요가 없는 냉방 운전시에도 냉매가 반드시 보조 열교환기(25)를 통과하여 압축기(14)로 흡입되도록 구성되어 있다. 냉매가 보조 열교환기(25)와 같은 열교환기를 통과하면 불가피하게 압력 손실이 발생하기 때문에, 흡입 압력이 낮아져 압축기(14)로 흡입되는 냉매의 비체적이 커지며, 비체적이 커지면, 용적식 압축기와 같이 동일한 회전수에서 체적 유량이 일정한 경우, 냉매 순환량이 감소하여 냉방 능력이 감소하게 되므로, 냉방 능력을 유지하기 위해서는 압축기의 회전수를 상승시켜 냉매 순환량을 확보해주어야 한다. 따라서, 압축기의 회전수의 상승은 압축기 동력의 증가를 의미하므로 성적계수가 저하하는 문제점이 발생하였다.In the conventional refrigerant circulation system 1 shown in FIG. 1, the refrigerant must pass through the auxiliary heat exchanger 25 at the time of cooling operation and also in the cooling operation in which the refrigerant is not required to be heated in the auxiliary heat exchanger 25. 14, it is comprised so that it may be inhaled. When the refrigerant passes through a heat exchanger such as the auxiliary heat exchanger 25, a pressure loss inevitably occurs, so that the suction pressure is lowered and the specific volume of the refrigerant sucked into the compressor 14 becomes larger, and when the specific volume becomes larger, the same as the volumetric compressor When the volume flow rate is constant at the rotational speed, the amount of refrigerant circulation decreases to decrease the cooling capacity. Therefore, in order to maintain the cooling capacity, the amount of refrigerant circulation must be secured by increasing the rotational speed of the compressor. Therefore, the increase in the rotational speed of the compressor means an increase in the power of the compressor has caused a problem that the performance coefficient is lowered.

또한, 압축기로 흡입되는 냉매는 압축기의 신뢰성 증대를 위해 기체상태로 흡입되어야 하므로 어큐뮬레이터를 설치하여 기체상태의 냉매만이 압축기로 흡입되어야하나 실내 부하의 급격한 변화등의 이상 현상으로 액상의 냉매가 어큐뮬레이터에 유입되는 양이 증대하게 되면서 압축기로 액냉매가 유입될 위험이 높아진다는 문제점이 있었다.In addition, since the refrigerant sucked into the compressor must be sucked in the gas state to increase the reliability of the compressor, only the refrigerant in the gas state should be sucked into the compressor by installing an accumulator, but the liquid refrigerant is accumulator due to an abnormal phenomenon such as a sudden change in the indoor load. There is a problem that the risk of the liquid refrigerant is introduced into the compressor is increased as the amount introduced to the.

상기와 같은 종래기술의 문제점을 해결하기 위하여 이루어진 본 발명은 냉매의 흡입 압력 저하를 피할 수 있도록 냉매 계통을 구성하여 냉방시 성적계수를 향 상시킬 수 있는 열교환기 일체형 어큐뮬레이터를 구비한 가스엔진 냉난방장치를 제공함에 그 목적이 있다.The present invention made to solve the problems of the prior art as described above is a gas engine cooling and heating device having a heat exchanger integrated accumulator that can improve the grade coefficient during cooling by configuring the refrigerant system to avoid a decrease in suction pressure of the refrigerant The purpose is to provide.

또한, 본 발명은 압축기의 액 냉매 유입을 방지하는 열교환기 일체형 어큐뮬레이터를 구비한 가스엔진 냉난방장치를 제공함을 또 다른 목적으로 한다.In addition, another object of the present invention is to provide a gas engine heating and cooling device having an accumulator integrated with a heat exchanger which prevents liquid refrigerant from flowing into the compressor.

상기 목적들을 달성하기 위하여 본 발명에서는, 가스엔진의 구동력에 의해 작동하여 냉매를 압축하는 압축기와, 압축기에서 나온 냉매의 흐름 방향을 절환하기 위한 사방밸브와, 냉방시는 압축기에서 공급된 냉매를 열교환을 통해 액화시키고 난방시는 실내기 열교환기에서 온 냉매를 증발시키는 실외기 열교환기와, 엔진을 냉각하기 위한 엔진 냉각수 순환 계통상에 냉매를 가열할 수 있도록 설치된 보조증발기와, 어큐뮬레이터를 포함한 실외기와; 실내 열교환기와 팽창밸브를 포함하여, 냉방시 증발기로 작용하고 난방시 응축기로 작용하는 실내기를 구비하여 이루어지며, 난방 운전시 실외기 열교환기와 보조증발기를 이용하여 순차적으로 냉매를 증발시키도록 구성된 가스엔진 냉난방장치에 있어서, In order to achieve the above objects, in the present invention, the compressor operating by the driving force of the gas engine to compress the refrigerant, the four-way valve for switching the flow direction of the refrigerant from the compressor, and during the heat exchange the refrigerant supplied from the compressor An outdoor unit heat exchanger for liquefying and heating during evaporation of the refrigerant from the indoor unit heat exchanger, an auxiliary evaporator installed to heat the refrigerant on an engine coolant circulation system for cooling the engine, and an outdoor unit including an accumulator; Including an indoor heat exchanger and an expansion valve, an indoor unit that acts as an evaporator for cooling and a condenser for heating, and is configured to evaporate refrigerant sequentially by using an outdoor unit heat exchanger and an auxiliary evaporator during heating operation. In the apparatus,

냉매 계통에 존재하는 압력 강하를 배제하고 열교환 성능을 향상시키기 위하여 보조 열교환기를 어큐뮬레이터의 내부에 장착시킨 것을 특징으로 하는 열교환기 일체형 어큐뮬레이터를 구비한 가스엔진 냉난방장치를 제공한다.The present invention provides a gas engine heating and cooling device having a heat exchanger-integrated accumulator, in which an auxiliary heat exchanger is mounted inside an accumulator in order to exclude a pressure drop existing in a refrigerant system and to improve heat exchange performance.

한편, 본 발명에서 보조 열교환기의 튜브는 어큐뮬레이터의 토출부를 감싸도록 나선형으로 형성되는 것이 바람직하며, 보조 열교환기의 튜브에는 다수의 상하 방향으로 연장하는 냉각핀이 부착되는 것이 바람직하다.On the other hand, in the present invention, the tube of the auxiliary heat exchanger is preferably formed spirally to surround the discharge portion of the accumulator, it is preferable that a plurality of cooling fins extending in the vertical direction is attached to the tube of the auxiliary heat exchanger.

또한, 본 발명에서 보조 열교환기의 튜브는 사각형 단면으로 형성되어 어큐 뮬레이터의 토출부를 감싸도록 형성되며, 이 열교환기 튜브에는 상하 방향으로 연장하는 다수의 냉각핀이 장착되는 것이 바람직하다.In addition, in the present invention, the tube of the auxiliary heat exchanger is formed in a rectangular cross section to surround the discharge part of the accumulator, and it is preferable that a plurality of cooling fins are installed in the heat exchanger tube extending in the vertical direction.

상기 목적 및 다른 목적들과 본 발명의 특징은 바람직한 실시예들을 도시한 첨부도면과 관련한 이하의 설명에 의해 더욱 명확해질 것이다. The above and other objects and features of the present invention will become more apparent from the following description taken in conjunction with the accompanying drawings showing preferred embodiments.

이하에서는 바람직한 실시예를 도시한 첨부도면과 관련하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings showing preferred embodiments.

도 2는 본 발명의 바람직한 실시예에 따른 열교환기 일체형 어큐뮬레이터를 구비한 가스엔진 냉난방장치의 유체순환 계통을 도시한 도면이다.2 is a view illustrating a fluid circulation system of a gas engine heating and cooling apparatus including a heat exchanger integrated accumulator according to a preferred embodiment of the present invention.

종래기술의 문제점을 해결하기 위해 본 발명이 제안하는 냉매 순환 계통(1)은 보조 열교환기(25)를 어큐뮬레이터(20)의 내부에 장착해서 냉매 순환계통(1)에 존재하는 압력강하 요소를 배제할 수 있도록 구성하였다. 즉, 도 3 도시와 같이, 엔진 냉각수가 흐르는 보조 열교환기의 튜브(25a)를 어큐뮬레이터(20)의 토출부(20a)를 감싸는 형태의 나선형 구조로 형성하여 열교환기의 나선형 튜브(25a) 내부를 흐르는 냉각수와 어큐뮬레이터(20)의 내부에서 유동하는 냉매 사이에 열교환이 이루어지도록 구성한 것이다.In order to solve the problems of the prior art, the refrigerant circulation system 1 proposed by the present invention is equipped with an auxiliary heat exchanger 25 inside the accumulator 20 to eliminate the pressure drop element present in the refrigerant circulation system 1. It was configured to be. That is, as shown in FIG. 3, the tube 25a of the auxiliary heat exchanger through which the engine coolant flows is formed in a spiral structure surrounding the discharge portion 20a of the accumulator 20 to form an inside of the spiral tube 25a of the heat exchanger. The heat exchange is performed between the flowing cooling water and the refrigerant flowing in the accumulator 20.

따라서, 보조 열교환기(25)를 흐르는 엔진 냉각수와 어큐뮬레이터(20)의 내부에 유동하는 냉매 사이의 열교환 성능을 증대시켰다.Therefore, the heat exchange performance between the engine cooling water flowing through the auxiliary heat exchanger 25 and the refrigerant flowing in the accumulator 20 is increased.

이로써, 난방 운전시에는 냉매가 종래와 동일한 방식으로 어큐뮬레이터(20)로 흡입되어서, 보조 열교환기(25)에서 엔진 냉각수에 의하여 열교환되어 증발이 이루어지고, 냉방 운전시에도 난방과 같은 방식으로 어큐뮬레이터(20) 측으로 유도된다.Thus, during the heating operation, the refrigerant is sucked into the accumulator 20 in the same manner as in the related art, and the heat exchanger is heat-exchanged by the engine cooling water in the auxiliary heat exchanger 25 to evaporate, and even during the cooling operation, the accumulator ( 20) is directed to the side.

이와 같은 본 발명의 바람직한 실시예에 따른 가스엔진 냉난방장치의 작용을 도 2를 참조해서 이하에서 설명한다.The operation of the gas engine heating and cooling apparatus according to the preferred embodiment of the present invention will be described below with reference to FIG.

난방 운전시에는 사방밸브(15)가 점선 화살표와 같이 절환되면, 이에 따라 가스엔진(10)에 의해 구동되는 압축기(14)로부터 토출된 고온 고압의 냉매는 점선화살표의 경로를 따라 실내기(36) 측으로 보내지며, 응축기인 실내기 열교환기(19)에서 냉매가 응축되면서 응축열을 실내의 공기에 방출함으로써 난방이 이루어진다.During the heating operation, when the four-way valve 15 is switched as shown by the dashed arrow, the high temperature and high pressure refrigerant discharged from the compressor 14 driven by the gas engine 10 accordingly passes the indoor unit 36 along the path of the dotted arrow. It is sent to the side, while the refrigerant is condensed in the indoor unit heat exchanger (19), which is a condenser, by heating the condensation heat to the indoor air.

이어서, 액체 상태로 다시 실외기(37) 측으로 보내진 냉매는 난방 팽창밸브(17)에서 감압된 후 저온 저압의 상태로 증발기인 실외기 열교환기(16)로 유입되며, 실외기 열교환기(16)에서 외기로부터 흡열한 냉매는 사방밸브(15)를 거쳐 점선화살표로 표시된 경로를 따라 냉매가 보조 열교환기(25)가 장착된 어큐뮬레이터(20) 측으로 유도된다. Subsequently, the refrigerant sent back to the outdoor unit 37 in a liquid state is decompressed by the heating expansion valve 17 and then flows into the outdoor unit heat exchanger 16, which is an evaporator, at a low temperature and low pressure, and from the outdoor unit in the outdoor unit heat exchanger 16. The endothermic refrigerant is led to the accumulator 20 on which the auxiliary heat exchanger 25 is mounted along the path indicated by the dotted arrow via the four-way valve 15.

한편, 엔진 냉각수순환 계통(2)에서는 가스엔진(10)을 냉각하여 온도가 상승한 엔진 냉각수가 엔진 냉각수 삼방밸브(21)에 의하여 보조열교환기(25) 측으로 유도된다. 따라서, 보조 열교환기(25)에서 고온의 엔진 냉각수에 의하여 냉매가 가열되어 증발된 후, 어큐뮬레이터(20)로 유입된다. 어큐뮬레이터(20)로부터 기체 상태의 냉매만이 압축기(14) 측으로 흡입되어 압축됨으로써 열펌프 사이클을 형성하고 연속적으로 난방이 이루어진다. On the other hand, in the engine coolant circulation system 2, the engine coolant whose temperature is raised by cooling the gas engine 10 is led to the auxiliary heat exchanger 25 by the engine coolant three-way valve 21. Therefore, after the refrigerant is heated and evaporated by the high temperature engine cooling water in the auxiliary heat exchanger 25, the refrigerant is introduced into the accumulator 20. Only the gaseous refrigerant from the accumulator 20 is sucked into the compressor 14 and compressed to form a heat pump cycle, and heating is continuously performed.

또한, 냉방 운전시에는 사방밸브(15)가 실선 화살표와 같이 절환되고, 이에 따라 압축기(14)로부터 토출된 냉매는 실선 화살표의 경로를 따라 실외기 열교환기(16) 측으로 보내지고, 응축기인 실외기 열교환기(16)에서 응축되면서 외기에 응축열을 방출한다. 응축된 냉매는 실내기(36) 측으로 보내져, 실내기 팽창밸브(18)에서 감압된 후, 증발기인 실내기 열교환기(19)로 유입되어 저온 저압 상태의 냉매가 실내기 열교환기(19)에서 실내 공기로부터 흡열하여 증발하면서 냉방이 이루어진다. 증발 과정이 끝난 후 실외기(37) 측으로 다시 돌아온 냉매는 사방밸브(15)를 거쳐 실선 화살표로 표시된 경로를 따라 보조 열교환기(25)를 장착한 어큐뮬레이터(20)로 보내진다. In addition, during the cooling operation, the four-way valve 15 is switched like a solid arrow, and thus the refrigerant discharged from the compressor 14 is sent to the outdoor unit heat exchanger 16 along the path of the solid arrow, and the outdoor unit heat exchanger, which is a condenser, is transferred. Condensation in the air (16) to release the heat of condensation to the outside air. The condensed refrigerant is sent to the indoor unit 36, depressurized by the indoor unit expansion valve 18, and then flowed into the indoor unit heat exchanger 19, which is an evaporator, so that the refrigerant having a low temperature and low pressure is absorbed from the indoor air in the indoor unit heat exchanger 19. Cooling is achieved while evaporating. After the evaporation process is completed, the refrigerant returned to the outdoor unit 37 is sent to the accumulator 20 equipped with the auxiliary heat exchanger 25 along the path indicated by the solid arrow through the four-way valve 15.

이와 같이 냉방 운전시에는 냉매가 어큐뮬레이터(20)만 통과하기만 하면 되므로, 통상의 보조 열교환기를 통과하면서 발생하는 압력 저하를 피하는 것이 가능하다. 어큐뮬레이터를 통과한 기체 상태의 냉매는 압축기에 흡입되어 압축됨으로써 냉동 사이클을 형성하고 연속적인 냉방이 이루어진다.In this way, since the refrigerant only needs to pass through the accumulator 20 during the cooling operation, it is possible to avoid the pressure drop generated while passing through the normal auxiliary heat exchanger. The gaseous refrigerant passing through the accumulator is sucked into the compressor and compressed to form a refrigeration cycle and provide continuous cooling.

다음에는 본 발명의 가스엔진 냉난방장치의 변형된 실시예를 도시 설명한다.Next, a modified embodiment of the gas engine heating and cooling apparatus of the present invention will be described.

도 4는 본 발명의 제 2실시예에 의한 개선된 어큐뮬레이터(20)를 도시하는데, 보조 열교환기의 튜브(25a)를 어큐뮬레이터(20)의 바닥 부분에서 엔진 냉각수가 유입되어 하부에서 상부로 나가며 열교환 면적을 증대하기 위해 원형의 굴곡 구조로 어큐뮬레이터(20)의 토출부(20a)를 감싸는 형태로 구성함과 동시에, 열교환 성능을 증대하기 위해서 원형의 굴곡부 모양의 튜브(25a) 주위로 다수의 냉각핀(25b)을 부착하여 냉각핀(25b)의 내주면과 보조 열교환기(25)의 튜브(25a) 외주면이 접촉하도록 구성하고, 냉각수는 하부에서 상부로 순환하도록 해서 제 1실시예 와 동일한 기능으로 작동하도록 한다.4 shows an improved accumulator 20 according to a second embodiment of the present invention, in which an engine coolant flows from the bottom portion of the accumulator 20 into the tube 25a of the auxiliary heat exchanger and goes from bottom to top. A plurality of cooling fins are formed around the tube 25a of the circular curved portion to increase the heat exchange performance, while forming a shape that surrounds the discharge portion 20a of the accumulator 20 in a circular curved structure to increase the area. The inner peripheral surface of the cooling fin 25b and the outer peripheral surface of the tube 25a of the auxiliary heat exchanger 25 are attached to each other so that the cooling water is circulated from the lower part to the upper part, thereby operating in the same function as the first embodiment. Do it.

한편, 도 5는 본 발명의 제 3실시예에 의한 개선된 어큐뮬레이터(20)를 도시하였다. 보조 열교환기(25)의 열교환 성능의 증대와 제작상의 편의를 위해서 보조 열교환기(25)의 튜브(25a)를 벤딩처리해서 사각형 모양으로 구성하고, 열교환 튜브(25a)의 외주면에 접촉하도록 다수의 냉각핀(25b)을 부착하여 구성하여, 어큐뮬레이터(20)의 토출부(20a) 주위에 배치시키고, 냉각수는 하부에서 상부로 순환하도록 해서 제 1실시예와 동일한 기능으로 작동하도록 한다. 이러한 구성에 의해 열교환 성능을 향상시킬 수 있다.5 shows an improved accumulator 20 according to a third embodiment of the present invention. In order to increase the heat exchange performance of the subsidiary heat exchanger 25 and to facilitate manufacturing, the tube 25a of the subsidiary heat exchanger 25 may be bent to form a rectangular shape, and a plurality of tubes may be in contact with the outer circumferential surface of the heat exchange tube 25a. The cooling fins 25b are attached and arranged around the discharge portion 20a of the accumulator 20, and the cooling water is circulated from the bottom to the top to operate in the same function as the first embodiment. Such a structure can improve heat exchange performance.

위에서 설명한 바와 같이, 본 발명에 따른 가스엔진 냉난방장치에 따르면, 난방운전시에는 보조 열교환기에서 냉각수로부터 냉매측으로 엔진의 배열을 회수하여 성능저하없이 난방 능력을 확보하면서, 냉매 순환유로의 압력 강하 요소를 감소시켜 공조기의 효율을 증대시키고, 냉방운전시에는 냉매가 어큐뮬레이터만 통과하면 되므로 보조 열교환기를 불필요하게 통과하면서 발생하는 압력저하를 회피할 수 있어서 압축기 흡입 압력의 저하로 인해 발생하는 압축기 동력의 증가가 없으므로 냉방운전시 종래와 비교해서 성적계수가 향상되는 등 유용한 효과가 얻어진다.As described above, according to the gas engine air-conditioning apparatus according to the present invention, during the heating operation, the pressure drop element of the refrigerant circulation passage while recovering the arrangement of the engine from the cooling water to the refrigerant side in the auxiliary heat exchanger to secure heating capability without degrading performance. Increase the efficiency of the air conditioner by increasing the efficiency of the air conditioner, and during the cooling operation, only the accumulator passes through the accumulator, thereby avoiding the pressure drop caused by passing the auxiliary heat exchanger unnecessarily. As a result, the cooling coefficient improves the coefficient of performance compared to the conventional method.

이와같이, 본 발명의 가스엔진 냉난방장치에 의하면, 압축기로의 액냉매 유입을 효과적으로 방지할 수 있다.Thus, according to the gas engine air-conditioning apparatus of this invention, the liquid refrigerant inflow into a compressor can be prevented effectively.

또한, 어큐뮬레이터에 같이 구비된 열교환 튜브의 냉각핀에 의해 열교환 성 능이 향상되므로 장치 전체로서의 운전 성능이 향상될 수 있다. In addition, since the heat exchange performance is improved by the cooling fins of the heat exchange tube provided in the accumulator, the operating performance of the entire apparatus can be improved.

Claims (4)

가스엔진의 구동력에 의해 작동하여 냉매를 압축하는 압축기와, 상기 압축기에서 나온 냉매의 흐름 방향을 절환하기 위한 사방밸브와, 냉방시는 상기 압축기에서 공급된 냉매를 열교환을 통해 액화시키고 난방시는 실내기 열교환기에서 온 냉매를 증발시키는 실외기 열교환기와, 엔진을 냉각하기 위한 엔진 냉각수 순환 계통상에 냉매를 가열할 수 있도록 설치된 보조 열교환기와, 어큐뮬레이터를 포함한 실외기와; A compressor operating by the driving force of the gas engine to compress the refrigerant, a four-way valve for switching the flow direction of the refrigerant from the compressor, liquefying the refrigerant supplied from the compressor through heat exchange when cooling, and an indoor unit when heating. An outdoor unit heat exchanger for evaporating the refrigerant from the heat exchanger, an auxiliary heat exchanger installed to heat the refrigerant on an engine cooling water circulation system for cooling the engine, and an outdoor unit including an accumulator; 실내 열교환기와 팽창밸브를 포함하여, 냉방시 증발기로 작용하고 난방시 응축기로 작용하는 실내기를 구비하여 이루어지며, Including an indoor heat exchanger and an expansion valve, and comprises an indoor unit that acts as an evaporator during cooling and a condenser when heating, 난방 운전시 상기 실외기 열교환기와 보조 열교환기를 이용하여 순차적으로 냉매를 증발시키도록 구성된 가스엔진 냉난방장치에 있어서,In the gas engine cooling and heating device configured to evaporate the refrigerant sequentially by using the outdoor unit heat exchanger and the auxiliary heat exchanger during heating operation, 냉매 계통에 존재하는 압력 강하를 배제하고 열교환 성능을 향상시키기 위하여 보조 열교환기를 어큐뮬레이터의 내부에 장착시키고, 그리고A secondary heat exchanger is mounted inside the accumulator to eliminate the pressure drop present in the refrigerant system and to improve heat exchange performance. 상기 보조 열교환기의 튜브가 상기 어큐뮬레이터의 토출부를 감싸도록 나선형으로 형성되는 것을 특징으로 하는 열교환기 일체형 어큐뮬레이터를 구비한 가스엔진 냉난방장치.And a tube of the auxiliary heat exchanger is spirally formed to surround the discharge part of the accumulator. 삭제delete 제 1 항에 있어서, 상기 보조 열교환기의 튜브에는 다수의 상하 방향으로 연장하는 냉각핀이 부착되는 것을 특징으로 하는 열교환기 일체형 어큐뮬레이터를 구비한 가스엔진 냉난방장치. The gas engine heating and heating device according to claim 1, wherein a plurality of cooling fins extending in the vertical direction are attached to the tubes of the auxiliary heat exchanger. 제 1 항에 있어서, 상기 보조 열교환기의 튜브는 사각형 단면으로 형성되며, 상기 보조 열교환기 튜브에는 상하 방향으로 연장하는 다수의 냉각핀이 장착되는 것을 특징으로 하는 열교환기 일체형 어큐뮬레이터를 구비한 가스엔진 냉난방장치.The gas engine having a heat exchanger integrated accumulator according to claim 1, wherein the tube of the auxiliary heat exchanger is formed in a rectangular cross section, and the plurality of cooling fins extending in the vertical direction are mounted on the auxiliary heat exchanger tube. Air conditioning unit.
KR1020050018302A 2005-03-04 2005-03-04 Gas engine heat pump with an enhanced accumulator KR100622604B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050018302A KR100622604B1 (en) 2005-03-04 2005-03-04 Gas engine heat pump with an enhanced accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050018302A KR100622604B1 (en) 2005-03-04 2005-03-04 Gas engine heat pump with an enhanced accumulator

Publications (2)

Publication Number Publication Date
KR100622604B1 true KR100622604B1 (en) 2006-09-13
KR20060097226A KR20060097226A (en) 2006-09-14

Family

ID=37624668

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050018302A KR100622604B1 (en) 2005-03-04 2005-03-04 Gas engine heat pump with an enhanced accumulator

Country Status (1)

Country Link
KR (1) KR100622604B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101008519B1 (en) 2008-11-14 2011-01-14 현우산기주식회사 Heat pump apparatus
KR101082193B1 (en) 2010-03-24 2011-11-09 엘지전자 주식회사 Gas Heat Pump System Using Geothermal Source
CN108375252A (en) * 2018-01-02 2018-08-07 珠海格力电器股份有限公司 Liquid storage device assembly, control method thereof and air conditioning system
KR20200062873A (en) * 2018-11-27 2020-06-04 엘지전자 주식회사 Gas Engine Heat Pump

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100952518B1 (en) * 2009-06-26 2010-04-12 (주)해팍이엔지 All-season auxiliary heat exchanger of heating and cooling equipment
CN103453701B (en) * 2013-08-29 2015-06-24 合肥天鹅制冷科技有限公司 Liquid cooler with heat tube function and overcooling function

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133059U (en) 1975-04-18 1976-10-26
JPH10148407A (en) * 1996-11-20 1998-06-02 Yamaha Motor Co Ltd Air-conditioning apparatus
JP2000205706A (en) 1999-01-12 2000-07-28 Zexel Corp Refrigerating device
JP2001324227A (en) 2000-05-18 2001-11-22 Sanyo Electric Co Ltd Receiver tank and air conditioning equipment
JP2004340525A (en) 2003-05-19 2004-12-02 Daikin Ind Ltd Receiver-cum-water-cooled condenser, and freezer provided therewith

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133059U (en) 1975-04-18 1976-10-26
JPH10148407A (en) * 1996-11-20 1998-06-02 Yamaha Motor Co Ltd Air-conditioning apparatus
JP2000205706A (en) 1999-01-12 2000-07-28 Zexel Corp Refrigerating device
JP2001324227A (en) 2000-05-18 2001-11-22 Sanyo Electric Co Ltd Receiver tank and air conditioning equipment
JP2004340525A (en) 2003-05-19 2004-12-02 Daikin Ind Ltd Receiver-cum-water-cooled condenser, and freezer provided therewith

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
10148407 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101008519B1 (en) 2008-11-14 2011-01-14 현우산기주식회사 Heat pump apparatus
KR101082193B1 (en) 2010-03-24 2011-11-09 엘지전자 주식회사 Gas Heat Pump System Using Geothermal Source
CN108375252A (en) * 2018-01-02 2018-08-07 珠海格力电器股份有限公司 Liquid storage device assembly, control method thereof and air conditioning system
KR20200062873A (en) * 2018-11-27 2020-06-04 엘지전자 주식회사 Gas Engine Heat Pump
KR102550364B1 (en) * 2018-11-27 2023-06-30 엘지전자 주식회사 Gas Engine Heat Pump

Also Published As

Publication number Publication date
KR20060097226A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP2006292310A (en) Geothermal heat pump device, geothermal unit having it, and control method of geothermal heat pump device
CN102401519A (en) Outdoor unit of air conditioner
JP2010501826A (en) Air conditioner for communication equipment
CN105937788B (en) Package AC plant and its control method
CN113007831B (en) Three-pipe multi-online hot water system and control method thereof
JP6420677B2 (en) Air conditioner
KR100622604B1 (en) Gas engine heat pump with an enhanced accumulator
JP4428341B2 (en) Refrigeration cycle equipment
JP6298992B2 (en) Air conditioner
KR100930762B1 (en) air conditioner
JP2012229897A (en) Heat exchanger and air conditioner equipped with the heat exchanger
CN215073552U (en) Compact power device cooling system
CN215336763U (en) Frequency conversion air conditioner
KR101082193B1 (en) Gas Heat Pump System Using Geothermal Source
CN220524386U (en) Double-cooling combined heat pump unit
KR20050102479A (en) Structure for improving superheat degree of refrigerant in heatpump
CN113137775B (en) Auxiliary heat recovery system for refrigeration system and refrigeration system with auxiliary heat recovery system
JP2007210376A (en) Vehicle air conditioner
CN219934133U (en) Window type air conditioner
CN112954969B (en) Working method of compact power device heat dissipation system
JP7210609B2 (en) air conditioner
KR100559784B1 (en) High efficiency air conditioning with constant temperature
JP2002022307A (en) Air conditioner
KR200264555Y1 (en) The structure for improving efficiency by using auxiliary heat exchanger at air-conditioner
JP4265034B2 (en) Refrigeration apparatus, control method therefor, and air conditioner

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120827

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130823

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140822

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150824

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160824

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170814

Year of fee payment: 12