KR100604419B1 - Method for forming carbon nanotube line using metallocene compound - Google Patents
Method for forming carbon nanotube line using metallocene compound Download PDFInfo
- Publication number
- KR100604419B1 KR100604419B1 KR1020040109199A KR20040109199A KR100604419B1 KR 100604419 B1 KR100604419 B1 KR 100604419B1 KR 1020040109199 A KR1020040109199 A KR 1020040109199A KR 20040109199 A KR20040109199 A KR 20040109199A KR 100604419 B1 KR100604419 B1 KR 100604419B1
- Authority
- KR
- South Korea
- Prior art keywords
- forming
- carbon nanotubes
- wiring
- metallocene compound
- carbon nanotube
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 53
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 47
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 title claims abstract description 42
- 150000001875 compounds Chemical class 0.000 title claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 15
- 229910052751 metal Inorganic materials 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 10
- 238000000151 deposition Methods 0.000 claims abstract description 9
- 230000008569 process Effects 0.000 claims description 22
- 239000010949 copper Substances 0.000 claims description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 12
- 238000009792 diffusion process Methods 0.000 claims description 10
- 230000004888 barrier function Effects 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 239000002243 precursor Substances 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 3
- 230000009977 dual effect Effects 0.000 claims description 3
- 238000006722 reduction reaction Methods 0.000 claims description 3
- 239000012159 carrier gas Substances 0.000 claims description 2
- 239000012495 reaction gas Substances 0.000 claims description 2
- 238000013508 migration Methods 0.000 abstract description 13
- 239000004065 semiconductor Substances 0.000 abstract description 9
- 239000003054 catalyst Substances 0.000 abstract description 7
- 229910052799 carbon Inorganic materials 0.000 abstract description 5
- 230000005012 migration Effects 0.000 abstract description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 229910018106 Ni—C Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- AEUKDPKXTPNBNY-XEYRWQBLSA-N mcp 2 Chemical compound C([C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CS)NC(=O)[C@H](C)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)C1=CC=CC=C1 AEUKDPKXTPNBNY-XEYRWQBLSA-N 0.000 description 1
- VMWYVTOHEQQZHQ-UHFFFAOYSA-N methylidynenickel Chemical compound [Ni]#[C] VMWYVTOHEQQZHQ-UHFFFAOYSA-N 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
본 발명은 금속 촉매가 포함된 메탈로센 화합물을 탄소나노튜브의 성장에 필요한 탄소원으로서 공급하여 반도체 소자 기판의 콘택 홀 또는 비아 홀에 탄소나노튜브를 증착시켜서 탄소나노튜브 배선을 형성하는 방법에 관한 것이다.The present invention relates to a method for forming a carbon nanotube wiring by supplying a metallocene compound containing a metal catalyst as a carbon source for growth of carbon nanotubes and depositing carbon nanotubes in a contact hole or via hole of a semiconductor device substrate. will be.
본 발명에 의하면, 450℃ 이하의 저온에서도 비아 홀(via hole)에서 탄소나노튜브를 선택적으로 성장시킬 수 있고, 비아에서의 마이그레이션 내성을 향상시켜서 반도체 소자의 소형화에 따른 Cu 배선의 스트레스마이그레이션(stress-migration)과 일렉트로마이그레이션(electro-migration) 문제를 해결할 수 있다.According to the present invention, it is possible to selectively grow carbon nanotubes in via holes even at a low temperature of 450 ° C. or lower, improve migration resistance in vias, and stress migration of Cu wiring according to miniaturization of semiconductor devices. Solve the problems of -migration and electro-migration.
Description
도 1은 탄소나노튜브를 이용한 비아 공정의 모식도이다.1 is a schematic diagram of a via process using carbon nanotubes.
도 2는 니켈-카본(흑연)의 상평형도이다.2 is a phase diagram of nickel-carbon (graphite).
도 3a ∼ 도 3d는 본 발명의 탄소나노튜브 배선 형성 과정을 나타내는 개략적인 단면도이다.3A to 3D are schematic cross-sectional views illustrating a process of forming carbon nanotube wiring according to the present invention.
<도면의 주요부분의 부호에 대한 설명><Description of Signs of Major Parts of Drawings>
1 : 기판(하부 구리 배선 포함) 5 : 탄소나노튜브1 substrate (including lower copper wiring) 5 carbon nanotube
2 : 구리 확산 방지막 6 : 확산 방지막2: copper diffusion prevention film 6: diffusion prevention film
3 : 저유전율 절연막 7 : 구리층3: low dielectric constant insulating film 7: copper layer
4 : 비아 홀4: via hole
본 발명은 메탈로센 화합물을 이용한 탄소나노튜브 배선 형성 방법에 관한 것이고, 보다 상세하게는 본 발명에서는 금속 촉매가 포함된 메탈로센 화합물을 탄소나노튜브의 성장에 필요한 탄소원으로서 공급하여 반도체 소자 기판의 콘택 홀 또는 비아(via) 홀에 탄소나노튜브를 증착시켜서 탄소나노튜브 배선을 형성하는 방법에 관한 것이다.The present invention relates to a method for forming a carbon nanotube wiring using a metallocene compound, and more particularly, to a semiconductor device substrate by supplying a metallocene compound containing a metal catalyst as a carbon source for growth of carbon nanotubes. The present invention relates to a method for forming carbon nanotube wiring by depositing carbon nanotubes in a contact hole or a via hole of a carbon nanotube.
반도체 소자의 소형화에 따라 Cu 배선의 스트레스마이그레이션(stress-migration)과 일렉트로마이그레이션(electro-migration) 문제가 부각되었다. 특히, 콘택 홀 또는 비아 홀에서 이와 같은 문제는 더 중요해진다. 이에 대한 해결책으로 비아에 마이그레이션 내성(resistance)이 큰 탄소나노튜브가 효과적인 해결수단으로 제안되었다.With the miniaturization of semiconductor devices, stress-migration and electro-migration problems of Cu wiring have emerged. In particular, such problems become more important in contact holes or via holes. As a solution, carbon nanotubes with high migration resistance in vias have been proposed as an effective solution.
탄소나노튜브(Carbon NanoTube, CNT)는 109A/㎠ 이상의 높은 전류밀도, 다이아몬드와 같이 높은 극초열전도도(ultra-high thermal conductivity), 탄도수송(ballistic transport) 등의 전기적 특성으로 차세대 배선물질로서 제안되고 있다. 그러나 하나의 탄소나노튜브를 사용하여 LSI 배선으로 사용하기는 어렵다. 그래서 니헤이(M.Nihei) 등은 탄소나노튜브를 비아에 다발(bundle) 형태로 사용하였다(M.Nihei, Jpn. J. Appl. Phys., vol 42, 2003, pp. L721). 도 1은 탄소나노튜브 비아 공정의 모식도이다. 탄소나노튜브를 Si 기판 공정에 사용하기 위해서는 약 450℃ 이하의 저온 공정과 비아 홀(via hole)에서 탄소나노튜브의 선택적 성장이 필요하다.Carbon NanoTube (CNT) is the next generation wiring material with high current density of more than 10 9 A / ㎠, high ultra-high thermal conductivity like diamond, and ballistic transport. It is proposed. However, it is difficult to use a single carbon nanotube as an LSI wiring. Thus, M. Nihei et al. Used carbon nanotubes in bundles in vias (M. Nihei, Jpn. J. Appl. Phys., Vol 42, 2003, pp. L721). 1 is a schematic diagram of a carbon nanotube via process. In order to use carbon nanotubes in a Si substrate process, a low temperature process of about 450 ° C. or lower and selective growth of carbon nanotubes in via holes are required.
그러나, C2H2, Ar 및 H2 가스를 사용하여 탄소나노튜브를 형성하는 종래의 방법은 약 500℃ 이상의 고온 공정(M. Nihei, Proceeding of the 2004 International Interconnect Technology Conference, p.251(2004))이며, Ni이나 Co 등의 촉매가 필요한 것으로 알려져 있다.However, conventional methods for forming carbon nanotubes using C 2 H 2 , Ar, and H 2 gases are described in a high temperature process of about 500 ° C. or higher (M. Nihei, Proceeding of the 2004 International Interconnect Technology Conference, p.251 (2004). ), And it is known that a catalyst such as Ni or Co is required.
본 발명의 목적은 약 450℃ 이하의 저온에서도 콘택 홀 또는 비아 홀(via hole)에서 탄소나노튜브를 선택적으로 성장시킬 수 있고, 비아에서의 마이그레이션 내성을 향상시켜서 반도체 소자의 소형화에 따른 Cu 배선의 스트레스마이그레이션(stress-migration)과 일렉트로마이그레이션(electro-migration) 문제를 해결할 수 있는 탄소나노튜브 배선 형성방법을 제공하는 것이다.It is an object of the present invention to selectively grow carbon nanotubes in a contact hole or via hole even at a low temperature of about 450 ° C. or lower, and to improve migration resistance in vias, thereby reducing the size of Cu wirings. It is to provide a carbon nanotube wiring forming method that can solve the stress-migration (electro-migration) problem.
상기 문제점들을 해결하기 위하여 본 발명에서는 탄소나노튜브를 위(z축)로 일정하게 성장시키도록 금속 촉매가 포함된 CVD 전구체를 탄소나노튜브의 성장에 필요한 탄소원으로서 공급하여 탄소나노튜브를 성장시키고 탄소나노튜브 배선을 형성하는 방법을 제공한다. 상기 금속 촉매가 포함된 CVD 전구체는 메탈로센 화합물이 바람직하다.In order to solve the above problems, in the present invention, by supplying a CVD precursor containing a metal catalyst as a carbon source for growing the carbon nanotubes to grow the carbon nanotubes to grow the carbon nanotubes constantly (z-axis) It provides a method of forming nanotube wiring. The CVD precursor containing the metal catalyst is preferably a metallocene compound.
이하, 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the drawings.
메탈로센 화합물이란 전이금속(M)과 하나 이상의 시클로펜타디에닐(cyclopentadienyl, Cp) 리간드가 결합한 화합물로서, 일반적으로 알려져 있는 MCp2의 구조는 Cp 리간드가 대칭적으로 금속을 감싸고 있는 샌드위치 구조를 갖고 있다. 메탈로센 화합물을 수소 가스와 함께 반응시키면 메탈로센 화합물에 포함된 금속이 촉매로 작용하여 탄소나노튜브가 증착된다.A metallocene compound is a compound in which a transition metal (M) and one or more cyclopentadienyl (Cp) ligands are bound. A commonly known structure of MCp2 has a sandwich structure in which a Cp ligand symmetrically surrounds a metal. have. When the metallocene compound is reacted with hydrogen gas, the metal contained in the metallocene compound acts as a catalyst to deposit carbon nanotubes.
본 발명은,
(a) 하부 금속 배선을 포함하는 기판 상에 구리 확산 방지막 및 저유전율(low-k) 절연막을 순차적으로 형성한 후 노광 및 식각 공정을 이용하여 비아 홀(via hole)을 형성하는 단계 및The present invention,
(a) sequentially forming a copper diffusion barrier layer and a low-k dielectric layer on a substrate including a lower metal interconnection, and then forming a via hole using an exposure and etching process; and
(b) 상기 기판 온도를 250∼450℃로 조절하고, 수소 분위기에서 메탈로센 화합물의 환원 반응으로 탄소나노튜브를 상기 비아 홀에 증착하는 단계를 포함하는 것을 특징으로 하는 탄소나노튜브 배선 형성 방법을 제공한다.(b) controlling the substrate temperature to 250 to 450 ° C., and depositing carbon nanotubes in the via holes by a reduction reaction of the metallocene compound in a hydrogen atmosphere. To provide.
삭제delete
즉, 본 발명의 탄소나노튜브 배선 형성방법에서는, 도 3a에 나타낸 것처럼 종래의 방법에 의하여 하부 금속 배선을 포함하는 기판 (1) 위에 구리 확산 방지막 (2) 및 저유전율(low-k) 절연막 (3)을 순차적으로 형성한 후, 도 3b에 나타낸 것처럼 노광 및 식각 공정을 이용하여 비아 홀(via hole) (4)을 형성한다. 이어서, 수소 분위기에서 메탈로센 화합물의 환원 반응으로 탄소나노튜브 (5)를 상기 비아 홀 (4)에 증착시켜서 탄소나노튜브 배선을 형성한다.That is, in the carbon nanotube wiring forming method of the present invention, as shown in FIG. 3A, the copper
상기 (a) 단계에서, 기판 (1)은 도면 3a에 도시되지는 않았지만 종래의 공정을 이용하여 형성된 웰(well), 아이솔레이션(isolation), 트랜지스터(transistor), 커패시터(capacitor) 및 금속 배선을 포함한다. 이어서, 종래의 노광 공정 및 식각 공정을 이용하여 비아 홀을 형성한다(도 3b 참조).In the step (a), the
본 발명의 (b) 단계에서 사용할 수 있는 메탈로센 화합물은 탄소나노튜브의 성장에 촉매 역할을 하는 니켈(Ni)을 포함하는 니켈로센(nickellocene) 화합물인 것이 바람직하고, Ni(C5H5)2가 보다 바람직하다. 일반적으로 니켈로센 분자는 수소 의 존재하에 환원되어 Ni 막이 형성되는데 이 때의 반응식은 하기와 같다.The metallocene compound that can be used in step (b) of the present invention is preferably a nickellocene compound including nickel (Ni) which serves as a catalyst for the growth of carbon nanotubes, and Ni (C 5 H). 5 ) 2 is more preferable. In general, nickellocene molecules are reduced in the presence of hydrogen to form a Ni film. The reaction formula is as follows.
Ni(C5H5)2 + nH2 → Ni(s) + 2C5H5+n(g) Ni (C 5 H 5 ) 2 + nH 2 → Ni (s) + 2C 5 H 5 + n (g)
(상기 식에서 n은 1, 3 또는 5이다.)(Where n is 1, 3 or 5)
그러나 상기 반응에서 온도를 약 250∼450℃의 온도에서 형성시키면 C5H5의 분해 반응으로 탄소나노튜브가 형성된다. 니켈(Ni)-흑연(C) 상평형도를 나타내는 도 2를 보면, 250℃∼450℃의 온도에서는 Ni-C 화합물이 형성되지 않아서 탄소가 유리 탄소(free carbon) 형태로 존재하는 것을 알 수 있다.However, when the temperature is formed at a temperature of about 250 to 450 ° C., carbon nanotubes are formed by the decomposition reaction of C 5 H 5 . Referring to FIG. 2 showing a nickel (Ni) -graphite (C) phase equilibrium, it can be seen that at a temperature of 250 ° C. to 450 ° C., no Ni-C compound is formed, so that carbon exists in the form of free carbon. have.
상기 (b) 단계의 탄소나노튜브의 증착은 기판 온도 250∼450℃, 전구체 버블러(bubbler) 온도 60∼90℃, 증착 압력 10∼300Torr, 아르곤 캐리어 가스의 유량 20∼300sccm, 반응 기체 H2의 유량 30∼300sccm인 조건에서 수행되는 것이 바람직하다. 예를 들면, 비아 홀의 두께가 3,000Å이라면 1∼5분 정도 증착한다. 도 3c는 비아 홀에 탄소나노튜브가 증착된 반도체 소자의 개략적인 단면도를 나타낸다. 탄소나노튜브의 증착 과정에서, 비아 홀에 증착되는 탄소나노튜브가 저유전율 절연막 위에도 증착될 경우에는 CMP 장비로 연마할 수 있다.The carbon nanotubes of step (b) are deposited at a substrate temperature of 250-450 ° C., precursor bubbler temperature 60-90 ° C., deposition pressure 10-300 Torr, flow rate of argon carrier gas 20-300 sccm, reaction gas H 2. It is preferably carried out under conditions of a flow rate of 30 to 300 sccm. For example, if the thickness of the via hole is 3,000 kPa, it is deposited for about 1 to 5 minutes. 3C is a schematic cross-sectional view of a semiconductor device in which carbon nanotubes are deposited in via holes. In the process of depositing carbon nanotubes, when the carbon nanotubes deposited in the via holes are also deposited on the low dielectric constant insulating film, they may be polished by CMP equipment.
또한, 본 발명은 상기 (a) 단계 및 (b) 단계 후 (c) 단계로서 탄소나노튜브가 증착 완료된 반도체 소자의 기판 위에 제2의 저유전율 절연막을 형성하고 노광 및 식각 공정으로 비아 홀을 형성한 후에(도면에 도시하지는 않음) 확산 방지막 (6) 및 구리층 (7)을 형성하고 CMP 공정에 의하여 상층 배선 형성 지역을 형성하는 싱글 다마신(single damascene) 공정 단계를 더 포함하는 탄소나노튜브의 배선 형 성 방법을 제공한다.In addition, according to the present invention, after the steps (a) and (b), as a step (c), a second low dielectric constant insulating film is formed on the substrate of the semiconductor device on which carbon nanotubes are deposited, and via holes are formed by exposure and etching processes. And further comprising a single damascene process step of forming a
상기 (c) 단계에서 제2의 절연막은 디자인룰(design rule)에 의하여 소자에서 필요한 두께로 형성할 수 있다. 또한 상기 확산 방지막 (6)으로서 종래에 공지된 약 50∼300Å의 탄탈(Ta)막을 형성할 수 있고, 구리층 (7) 형성은 시드층(seed layer)의 스퍼터링 방법에 의한 전기 도금 방법으로 0.5㎛ 정도의 두께로 수행된다. 상기 구리층의 형성 후 어닐(anneal) 및 Cu CMP 공정을 거쳐서 상부 배선을 형성한다. 상부 배선 형성이 완료된 상태의 반도체 소자의 개략적인 단면도(제2의 저유전율 절연막 도시는 생략함)를 도 3d에 나타낸다.In the step (c), the second insulating film may be formed to a thickness required by the device by a design rule. As the
또한, 본 발명에서는 상기 싱글 다마신에 의한 상층 배선 형성 공정 대신에 듀얼 다마신에 의한 상층 배선 형성 공정을 적용할 수 있다. 즉, 본 발명은 상기 (a) 단계 및 (b) 단계 후 (c') 단계로서 상기 (b) 단계의 기판 위에 제 2의 저유전율 절연막을 형성하고 노광 및 식각 공정으로 비아 홀 및 트렌치를 형성한 후에 확산 방지막 및 구리층을 형성하고 CMP 공정에 의하여 비아 및 상층 배선 형성 지역을 형성하는 듀얼 다마신(dual damascene) 공정 단계를 더 포함하는 탄소나노튜브의 배선 형성 방법을 제공한다.In addition, in the present invention, the upper layer wiring forming step using dual damascene may be applied instead of the upper layer wiring forming step using single damascene. That is, the present invention forms a second low dielectric constant insulating film on the substrate of step (b) after step (a) and step (b) and forms via holes and trenches in an exposure and etching process. After the formation of the diffusion barrier layer and the copper layer, and by the CMP process, a dual damascene process step of forming a via and the upper layer wiring forming region is provided.
본 발명에 의하면 메탈로센 화합물을 이용하여 비아에 탄소나노튜브를 증착시킴으로써, 약 450℃ 이하의 저온에서도 콘택 홀 또는 비아 홀(via hole)에서 탄소나노튜브를 선택적으로 성장시킬 수 있고, 비아에서의 마이그레이션 내성을 향상시켜서 반도체 소자의 소형화에 따른 Cu 배선의 스트레스마이그레이션(stress-migration) 과 일렉트로마이그레이션(electro-migration) 문제를 해결할 수 있다.According to the present invention, by depositing carbon nanotubes in vias using a metallocene compound, carbon nanotubes can be selectively grown in a contact hole or via hole even at a low temperature of about 450 ° C. or less. It is possible to solve the stress-migration and electro-migration problems of Cu wiring due to the miniaturization of semiconductor devices by improving the migration resistance of the semiconductor device.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040109199A KR100604419B1 (en) | 2004-12-21 | 2004-12-21 | Method for forming carbon nanotube line using metallocene compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040109199A KR100604419B1 (en) | 2004-12-21 | 2004-12-21 | Method for forming carbon nanotube line using metallocene compound |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060070658A KR20060070658A (en) | 2006-06-26 |
KR100604419B1 true KR100604419B1 (en) | 2006-07-25 |
Family
ID=37164255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020040109199A KR100604419B1 (en) | 2004-12-21 | 2004-12-21 | Method for forming carbon nanotube line using metallocene compound |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100604419B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100718112B1 (en) | 2005-11-02 | 2007-05-14 | 삼성에스디아이 주식회사 | Vertical interconnection structure using carbon nanotube and method of fabricating the same |
KR100791347B1 (en) * | 2006-10-26 | 2008-01-03 | 삼성전자주식회사 | Method of fabricating semiconductor integrated circuit device and semiconductor integrated circuit device by the same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100791948B1 (en) | 2006-09-27 | 2008-01-04 | 삼성전자주식회사 | Method of forming carbon nano-tube wire and method of forming wire of semiconductor device using the same |
KR100809602B1 (en) * | 2007-01-05 | 2008-03-06 | 포항공과대학교 산학협력단 | Method for etching of insulating layers using carbon nanotubes and formation of nanostructures thereafter |
WO2009093770A1 (en) * | 2008-01-25 | 2009-07-30 | Postech Academy-Industry Foundation | Method for etching of insulating layers using carbon nanotubes and formation of nanostructures thereafter |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040008653A (en) * | 2002-07-19 | 2004-01-31 | 주식회사 하이닉스반도체 | Method for manufacturing silicide layer using CNT |
KR20040094065A (en) * | 2003-05-01 | 2004-11-09 | 삼성전자주식회사 | Method of forming conductive line of semiconductor device using carbon nanotube and semiconductor device manufactured by the method |
-
2004
- 2004-12-21 KR KR1020040109199A patent/KR100604419B1/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040008653A (en) * | 2002-07-19 | 2004-01-31 | 주식회사 하이닉스반도체 | Method for manufacturing silicide layer using CNT |
KR20040094065A (en) * | 2003-05-01 | 2004-11-09 | 삼성전자주식회사 | Method of forming conductive line of semiconductor device using carbon nanotube and semiconductor device manufactured by the method |
Non-Patent Citations (2)
Title |
---|
1020040008653 |
1020040094065 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100718112B1 (en) | 2005-11-02 | 2007-05-14 | 삼성에스디아이 주식회사 | Vertical interconnection structure using carbon nanotube and method of fabricating the same |
KR100791347B1 (en) * | 2006-10-26 | 2008-01-03 | 삼성전자주식회사 | Method of fabricating semiconductor integrated circuit device and semiconductor integrated circuit device by the same |
Also Published As
Publication number | Publication date |
---|---|
KR20060070658A (en) | 2006-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100287180B1 (en) | Method for manufacturing semiconductor device including metal interconnection formed using interface control layer | |
US10784157B2 (en) | Doped tantalum nitride for copper barrier applications | |
US20030207564A1 (en) | Copper dual damascene interconnect technology | |
JP2004525510A (en) | Copper interconnect structure with diffusion barrier | |
TW201348492A (en) | Methods for depositing manganese and manganese nitrides | |
US6716744B2 (en) | Ultra thin tungsten metal films used as adhesion promoter between barrier metals and copper | |
US6569756B1 (en) | Method for manufacturing a semiconductor device | |
KR100604419B1 (en) | Method for forming carbon nanotube line using metallocene compound | |
KR101069630B1 (en) | Method for fabricating metal line using adsorption inhibitor in semiconductor device | |
JP4804725B2 (en) | Method for forming conductive structure of semiconductor device | |
US8008774B2 (en) | Multi-layer metal wiring of semiconductor device preventing mutual metal diffusion between metal wirings and method for forming the same | |
KR100528069B1 (en) | Semiconductor Device And Method For Manufacturing The Same | |
KR100289515B1 (en) | Barrier emtal layer and method of forming the same | |
TWI495059B (en) | Semiconductor device, semiconductor apparatus and method for manufacturing the same | |
JP2007258390A (en) | Semiconductor device and manufacturing method therefor | |
US8159069B2 (en) | Metal line of semiconductor device without production of high resistance compound due to metal diffusion and method for forming the same | |
KR100283107B1 (en) | Copper wiring formation method of semiconductor device | |
KR100609049B1 (en) | Method for forming metal interconnection of semiconductor device | |
JP3176088B2 (en) | Deposition film formation method | |
US20240014071A1 (en) | Cmos-compatible graphene structures, interconnects and fabrication methods | |
KR101373338B1 (en) | Method of manufacturing a semiconductor device | |
KR101089249B1 (en) | Semiconductor device and a method of manufacturing the same | |
KR100571387B1 (en) | Copper wiring manufacturing method of semiconductor device | |
KR100640956B1 (en) | method for forming of diffusion barrier layer | |
JPH0864538A (en) | Thin film growing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130620 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20140618 Year of fee payment: 9 |
|
LAPS | Lapse due to unpaid annual fee |