KR100589511B1 - SnO2-impregnated anode material for a lithium secondary battery, its processing method, and lithium secondary batteries by using it - Google Patents
SnO2-impregnated anode material for a lithium secondary battery, its processing method, and lithium secondary batteries by using it Download PDFInfo
- Publication number
- KR100589511B1 KR100589511B1 KR1020040013518A KR20040013518A KR100589511B1 KR 100589511 B1 KR100589511 B1 KR 100589511B1 KR 1020040013518 A KR1020040013518 A KR 1020040013518A KR 20040013518 A KR20040013518 A KR 20040013518A KR 100589511 B1 KR100589511 B1 KR 100589511B1
- Authority
- KR
- South Korea
- Prior art keywords
- lithium secondary
- negative electrode
- secondary battery
- electrode material
- tin oxide
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H35/00—Delivering articles from cutting or line-perforating machines; Article or web delivery apparatus incorporating cutting or line-perforating devices, e.g. adhesive tape dispensers
- B65H35/0006—Article or web delivery apparatus incorporating cutting or line-perforating devices
- B65H35/0073—Details
- B65H35/008—Arrangements or adaptations of cutting devices
- B65H35/0086—Arrangements or adaptations of cutting devices using movable cutting elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H35/00—Delivering articles from cutting or line-perforating machines; Article or web delivery apparatus incorporating cutting or line-perforating devices, e.g. adhesive tape dispensers
- B65H35/0006—Article or web delivery apparatus incorporating cutting or line-perforating devices
- B65H35/002—Hand-held or table apparatus
- B65H35/0026—Hand-held or table apparatus for delivering pressure-sensitive adhesive tape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2301/00—Handling processes for sheets or webs
- B65H2301/50—Auxiliary process performed during handling process
- B65H2301/51—Modifying a characteristic of handled material
- B65H2301/515—Cutting handled material
- B65H2301/5151—Cutting handled material transversally to feeding direction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2301/00—Handling processes for sheets or webs
- B65H2301/50—Auxiliary process performed during handling process
- B65H2301/51—Modifying a characteristic of handled material
- B65H2301/515—Cutting handled material
- B65H2301/5153—Details of cutting means
- B65H2301/51532—Blade cutter, e.g. single blade cutter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2301/00—Handling processes for sheets or webs
- B65H2301/50—Auxiliary process performed during handling process
- B65H2301/51—Modifying a characteristic of handled material
- B65H2301/515—Cutting handled material
- B65H2301/5154—Cutting handled material from hand-held or table dispenser
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2403/00—Power transmission; Driving means
- B65H2403/90—Machine drive
- B65H2403/94—Other features of machine drive
- B65H2403/941—Manually powered handling device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2701/00—Handled material; Storage means
- B65H2701/30—Handled filamentary material
- B65H2701/37—Tapes
- B65H2701/377—Adhesive tape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
본 발명은 리튬이차전지의 음극재료, 이 음극재료의 제조방법 및 이 음극재료로 된 음극을 포함하는 리튬이차전지에 관한 것이다. 본 발명에 따른 리튬이차전지의 음극재료는 통상의 리튬이차전지의 음극재료로서 사용되고 있는 카본 분말에 제2상 첨가물로서 소량의 주석산화물(SnO2)을 전하적정법을 사용하여 균일하게 삽입시킴으로써 제조된다. 이와 같이, 주석산화물 삽입에 의해 표면개질된 카본 분말로 만들어진 음극을 포함하는 본 발명의 리튬이차전지는 기존의 카본 분말로 만들어진 음극을 포함하는 리튬이차전지에 비해 높은 초기 방전용량과 충전용량을 나타내고, 또한 높은 가역특성과 더욱 우수한 싸이클특성(cycleability)을 나타낸다.The present invention relates to a negative electrode material of a lithium secondary battery, a manufacturing method of the negative electrode material, and a lithium secondary battery comprising a negative electrode made of the negative electrode material. The negative electrode material of the lithium secondary battery according to the present invention is prepared by uniformly inserting a small amount of tin oxide (SnO 2 ) as a second phase additive into a carbon powder used as a negative electrode material of a conventional lithium secondary battery using a charge titration method. . As such, the lithium secondary battery of the present invention including a negative electrode made of carbon powder surface-modified by tin oxide insertion exhibits a higher initial discharge capacity and a charging capacity than a lithium secondary battery including a negative electrode made of conventional carbon powder. In addition, it exhibits high reversibility and better cycleability.
리튬이차전지, 음극재료, 카본전극, 주석산화물Lithium secondary battery, negative electrode material, carbon electrode, tin oxide
Description
도1은 MCMB 분말에 주석산화물을 삽입시키는 공정에 대한 공정흐름도이다. 1 is a process flow diagram for a process of inserting tin oxide into MCMB powder.
도2는 2.25×10-3mol SnCl4ㆍ5H2O 수용액을 반응시킨 MCMB 분말에 대한 EDS 분석결과이다.Figure 2 is an EDS analysis of the MCMB powder reacted with a 2.25 × 10 -3 mol SnCl 4 · 5H 2 O aqueous solution.
도3은 주석산화물이 삽입되지 않은 MCMB 분말과 주석산화물이 삽입된 MCMB 분말의 첫 번째 충ㆍ방전 곡선을 비교하여 나타낸 그래프이다. 3 is a graph showing a comparison of the first charge and discharge curves of MCMB powder without tin oxide and MCMB powder with tin oxide inserted.
도4는 주석산화물이 삽입되지 않은 MCMB 분말과 주석산화물이 삽입된 MCMB 분말의 가역용량 및 비가역용량을 비교한 그래프이다.4 is a graph comparing the reversible capacity and the irreversible capacity of MCMB powder without tin oxide and MCMB powder with tin oxide inserted.
도5는 주석산화물이 삽입되지 않은 MCMB 분말과 주석산화물이 삽입된 MCMB 분말의 충ㆍ방전 횟수에 따른 방전용량을 비교하여 나타낸 그래프이다.5 is a graph showing discharge capacities according to the number of charge / discharge cycles of MCMB powder without tin oxide and MCMB powder with tin oxide inserted.
도6은 주석산화물이 삽입되지 않은 MCMB 분말과 주석산화물이 삽입된 MCMB 분말의 충ㆍ방전 횟수에 따른 충전용량을 비교하여 나타낸 그래프이다.6 is a graph showing a comparison of the charging capacity according to the number of times of charging and discharging the MCMB powder is not inserted into the tin oxide and MCMB powder is inserted into the tin oxide.
본 발명은 리튬이차전지의 음극재료, 이 음극재료의 제조방법 및 이 음극재료로 된 음극을 포함하는 리튬이차전지에 관한 것이다. 보다 상세하게는, 본 발명은 통상의 리튬이차전지의 음극재료로서 사용되고 있는 카본 분말에 제2상 첨가물로서 소량의 주석산화물(SnO2)을 전하적정법을 사용하여 균일하게 삽입시켜 제조되는 리튬이차전지의 음극재료와, 이 음극재료의 제조방법 및 이 음극재료로 된 음극을 포함하는 리튬이차전지에 관한 것이다. The present invention relates to a negative electrode material of a lithium secondary battery, a manufacturing method of the negative electrode material, and a lithium secondary battery comprising a negative electrode made of the negative electrode material. More specifically, the present invention provides a lithium secondary battery prepared by uniformly inserting a small amount of tin oxide (SnO 2 ) as a second phase additive into a carbon powder used as a negative electrode material of a conventional lithium secondary battery using a charge titration method. The present invention relates to a lithium secondary battery comprising a negative electrode material, a method for producing the negative electrode material, and a negative electrode made of the negative electrode material.
비디오 카메라, 무선전화기, 핸드폰, 노트북 컴퓨터 등 각종 휴대용 전자기기가 일상생활에 급속히 보급되면서 전원 공급원으로 사용되는 이차전지의 수요가 크게 증가되었고, 그 중에서 리튬이차전지는 용량이 크고 에너지밀도가 높은 우수한 전지 특성 때문에 국내외적으로 활발한 연구개발이 진행되어, 현재 이차전지 중에서 가장 광범위하게 사용되고 있다. As portable electronic devices such as video cameras, cordless phones, mobile phones, and notebook computers are rapidly spreading in daily life, the demand for secondary batteries used as a power source has increased greatly. Among them, lithium secondary batteries have high capacity and high energy density. Due to the battery characteristics, active research and development has been carried out at home and abroad, and is currently the most widely used secondary battery.
리튬이차전지는 기본적으로 양극과 음극 및 전해질로 이루어지며, 따라서 리튬이차전지에 대한 연구개발은 크게 양극(cathode) 및 음극(anode)재료, 전해질(electrolyte)에 관한 연구로 나눌 수 있다. 이 중에서 리튬이차전지의 음극재료로서 사용되고 있는 카본 재료는 환원과정(충전) 동안 Li 원자가 카본층 사이로 들어가거나, 혹은 카본 표면과 마이크로포어(micropore) 등에 나노-스케일 클러스터(nano-scale cluster)들을 형성하게 되어 Li-금속에서 발생되는 수지상(dendrite)이 형성되지 않는다. 또한, 충전율(rechargeability)이 비교적 우 수하고 안전하며 고에너지 밀도를 얻을 수 있을 뿐만 아니라, 일반 대기 분위기에서도 제조 가능하다는 장점을 지니고 있다. 그러나, Li 금속의 무게 당 에너지 밀도(3.9 Ah/g)가 다소 떨어지기 때문에 용량에 대한 제한이 따른다는 문제점이 있다. A lithium secondary battery basically consists of a positive electrode, a negative electrode, and an electrolyte. Therefore, the research and development of a lithium secondary battery can be largely divided into a study on a cathode, an anode material, and an electrolyte. Among them, the carbon material used as a negative electrode material of a lithium secondary battery has Li atoms entering between the carbon layers during the reduction process (charging), or nano-scale clusters are formed on the carbon surface and the micropore. As a result, no dendrite is formed in the Li-metal. In addition, the chargeability (rechargeability) is relatively excellent, safe and high energy density can be obtained, as well as has the advantage that can be manufactured in a normal atmosphere atmosphere. However, since the energy density per weight (3.9 Ah / g) of the Li metal is somewhat lowered, there is a problem in that a limitation on the capacity follows.
카본전극의 재료는 제조하는 원료 및 전구체(organic precursor)나 열분해 공정에 따라 매우 다양한 형태의 결정 구조를 갖게 되고, 그 종류에 따라 Li-삽입(intercalation)이 상당히 달라지므로 다양한 용량과 가역특성을 나타낸다. 일반적으로 어느 한 종류의 카본재료가 음극 재료로서 우수한 특성을 지니면 상대적으로 다른 분야에서는 떨어지는 특성을 지닌 것으로 나타나고 있다. 예를 들어, 페놀수지(phenolic resin)로부터 얻어진 메소카본 마이크로비즈(mesocarbon microbeads : MCMB)와 폴리-p-페닐렌(poly-p-phenylene : PPP)같은 저온에서 처리된 탄소를 이용한 음극의 경우, LiC6 흑연(graphite)을 사용한 전지보다 2.5배 이상의 높은 용량을 나타낸 것으로 보고 되었다. 그러나, 저온에서 열처리된 탄소는 충ㆍ방 전에 따른 비가역 용량 손실이 큰 것으로 나타났다. Carbon electrode materials have a wide variety of crystal structures depending on the raw materials, organic precursors, and pyrolysis processes to be produced. Li-intercalation varies considerably according to the type, and thus shows various capacities and reversible characteristics. . In general, when one kind of carbon material has excellent characteristics as a negative electrode material, it has been shown to have a relatively inferior property in other fields. For example, in the case of a cathode using carbon treated at low temperatures such as mesocarbon microbeads (MCMB) and poly-p-phenylene (PPP) obtained from phenolic resin, It has been reported to have a capacity of 2.5 times higher than a battery using LiC 6 graphite. However, the carbon heat-treated at low temperature showed a large loss of irreversible capacity due to charging and discharging.
일반적으로, 전극재료는 전해액과 접하고 있기 때문에 일부의 전해질 분해가 전극 표면에서 일어나 충ㆍ방전 특성을 저하시킬 수 있다. 마찬가지로, 탄소전극의 경우 전해액과 부반응에 의하여 고체-전해질 계면 필름(solid-electrolyte interface (SEI) film)이 형성되고, 충ㆍ방전시 심한 부피변화로 인하여 초기 비가역용량이 크며, 사이클 수명 열화를 일으킨다. 이러한 문제는 전극재료의 표면을 개질시키는 방법에 의하여 카본표면 결정구조를 변조함으로써 비가역용량을 최소화 시키고, 사이클 수명열화 방지 등을 통해 리튬이온 전지의 성능을 향상시킬 수 있다. 최근에는 표면코팅, 열처리에 의한 표면산화 등의 표면개질 방법에 의하여 카본표면 결정구조를 변조하거나, HF, CO2와 같은 기체를 표면에 흡착시켜서 비가역용량을 최소화하려는 연구가 활발히 진행되고 있다.In general, since the electrode material is in contact with the electrolyte, some electrolyte decomposition may occur on the electrode surface to reduce the charge and discharge characteristics. Similarly, in the case of the carbon electrode, a solid-electrolyte interface (SEI) film is formed by side reaction with the electrolyte, and the initial irreversible capacity is large due to the severe volume change during charging and discharging, and causes cycle life deterioration. . This problem is to minimize the irreversible capacity by modulating the carbon surface crystal structure by the method of modifying the surface of the electrode material, it is possible to improve the performance of the lithium ion battery through the prevention of cycle life degradation. Recently, studies have been actively conducted to minimize the irreversible capacity by modulating the carbon surface crystal structure by surface modification methods such as surface coating and surface oxidation by heat treatment, or by adsorbing gases such as HF and CO 2 on the surface.
본 발명의 목적은 리튬이차전지의 음극재료로서 사용되고 있는 카본 분말에 제2상 첨가물로서 소량의 주석산화물을 삽입시킴으로써, 카본 분말의 표면을 개질시켜, 우수한 충ㆍ방전 용량 및 싸이클특성을 나타내는 리튬이차전지의 음극재료를 제공하는 것이다. An object of the present invention is to insert a small amount of tin oxide as a second phase additive into a carbon powder used as a negative electrode material of a lithium secondary battery, thereby modifying the surface of the carbon powder to exhibit excellent charge / discharge capacity and cycle characteristics. It is to provide a negative electrode material of the battery.
본 발명의 다른 목적은 리튬이차전지의 음극재료로서 사용되고 있는 카본 분말에 제2상 첨가물로서 소량의 주석산화물을 전하적정법으로 균일하게 삽입시키는 것을 특징으로 하는 리튬이차전지의 음극재료의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a negative electrode material of a lithium secondary battery, characterized in that a small amount of tin oxide as a second phase additive is uniformly inserted into the carbon powder used as a negative electrode material of the lithium secondary battery. It is.
본 발명의 또 다른 목적은 상기의 음극재료로 된 음극을 포함하는 리튬이차전지를 제공하는 것이다.Still another object of the present invention is to provide a lithium secondary battery including a negative electrode of the negative electrode material.
본 발명에 따른 리튬이차전지의 음극재료는 통상의 리튬이차전지의 음극재료로서 사용되고 있는 카본 분말에 제2상 첨가물로서 3~13중량%의 주석산화물을 삽입시켜 이루어진 것을 특징으로 한다.The negative electrode material of the lithium secondary battery according to the present invention is characterized in that it is made by inserting 3 to 13% by weight of tin oxide as a second phase additive to the carbon powder used as a negative electrode material of a conventional lithium secondary battery.
본 발명에서 사용되는 카본 분말은 리튬이차전지에 통상적으로 사용되는 것을 제한없이 사용할 수 있으며, 예를 들어 흑연, 메소카본 마이크로비즈(mesocarbon microbeads : MCMB) 등의 여러 종류의 인조카본 재료의 분말을 사용할 수 있다.Carbon powder used in the present invention can be used without limitation conventionally used in lithium secondary batteries, for example, it is possible to use a powder of various kinds of artificial carbon materials such as graphite, mesocarbon microbeads (MCMB) Can be.
본 발명에서 카본 분말에 삽입되는 주석산화물의 함량은 3~13중량%가 바람직한데, 주석산화물의 삽입량이 3중량% 미만일 경우, 주석산화물이 삽입되지 않은 카본 분말보다 충방전 용량의 증가량이 미미하고, 13중량%를 초과할 경우에는 비가역용량 증가율이 크게 높아져서 바람직하지 못하다.In the present invention, the content of tin oxide to be inserted into the carbon powder is preferably 3 to 13% by weight. When the amount of tin oxide is less than 3% by weight, the increase in charge and discharge capacity is less than that of the carbon powder to which tin oxide is not inserted. If the content exceeds 13% by weight, the irreversible capacity increase rate is greatly increased, which is undesirable.
본 발명에 따른 리튬이차전지의 음극재료의 제조방법은 통상의 리튬이차전지의 음극재료로서 사용되고 있는 카본 분말에 제2상 첨가물로서 3~13중량%의 주석산화물을 전하적정법으로 삽입시키는 것을 특징으로 한다.The method for manufacturing a negative electrode material of a lithium secondary battery according to the present invention is characterized in that 3 to 13% by weight of tin oxide is inserted into the carbon powder used as a negative electrode material of a conventional lithium secondary battery as a charge titration method. do.
구체적으로는, 염화주석 수용액과 카본 분말을 혼합한 후, NaOH 수용액을 첨가하여 pH7~12로 조정하여, 주석이 삽입된 카본 분말을 침전시키고, 이 침전물을 여과하여 건조시킨 다음, 열처리를 하여 삽입된 주석을 산화시켜, 주석산화물이 삽입된 카본 분말을 수득한다.Specifically, the tin chloride aqueous solution and the carbon powder were mixed, and then NaOH aqueous solution was added to adjust the pH to 7-12 to precipitate the carbon powder containing tin, and the precipitate was filtered and dried, followed by heat treatment. The oxidized tin is oxidized to obtain a carbon powder containing tin oxide.
본 발명의 방법에서 염화주석 수용액과 카본 분말의 혼합중량비는 30:1 ~ 80:1의 범위가 바람직하며, 상기 혼합중량비가 30:1 미만일 경우, 삽입되는 주석의 량이 목표치보다 낮아질 수 있고, 80:1을 초과할 경우에는 주석의 삽입량이 목표치보다 높아질 우려가 있으므로 바람지하지 않다.In the method of the present invention, the mixed weight ratio of the tin chloride aqueous solution and the carbon powder is preferably in the range of 30: 1 to 80: 1. When the mixed weight ratio is less than 30: 1, the amount of tin to be inserted may be lower than the target value, 80 If: 1 is exceeded, the insertion amount of tin may be higher than the target value.
본 발명의 방법에서 염화주석 수용액과 카본 분말의 혼합액에 NaOH 수용액을 첨가하여 pH를 7~12로 조정하는 것은 주석의 침적을 일으키기 위한 것이다.In the method of the present invention, the pH is adjusted to 7 to 12 by adding an NaOH aqueous solution to the mixed solution of the tin chloride aqueous solution and the carbon powder to cause deposition of tin.
본 발명의 방법에서, 주석이 삽입된 카본 분말 침전물을 건조 및 열처리하는 방법에는 제한이 없으며, 건조온도는 100~120℃가 적절하고, 열처리는 230~300℃에서 30분~2시간이 적절하다. 상기 건조온도는 물의 증발을 위해 설정된 온도이며, 상기 열처리 온도 및 시간은 주석의 산화속도 및 산화량을 충분히 확보하면서, 카본의 버닝(burning)현상이 부분적으로 일어나는 것을 방지하여, SnO2상이 안정하게 형성될 수 있도록 하기 위한 범위이다.In the method of the present invention, the method of drying and heat-treating the carbon powder precipitate in which tin is inserted is not limited, and the drying temperature is appropriately 100-120 ° C., and the heat treatment is suitably 30 minutes-2 hours at 230-300 ° C. . The drying temperature is a temperature set for the evaporation of water, the heat treatment temperature and time to ensure the oxidation rate and the oxidation amount of the tin, while preventing the burning phenomenon of carbon partially occurs, the SnO 2 phase is stable It is a range to be formed.
본 발명의 리튬이차전지는 상기와 같이 제조된 리튬이차전지의 음극재료, 즉 주석산화물이 삽입된 카본 분말로 된 음극을 포함하는 것을 특징으로 한다.The lithium secondary battery of the present invention is characterized in that it comprises a negative electrode material of the lithium secondary battery prepared as described above, that is, a negative electrode made of carbon powder in which tin oxide is inserted.
이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명하나, 본 발명이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
[실시예]EXAMPLE
비교예Comparative example
전기화학적 특성 실험을 위해 사용된 음극재료는 Osaka Gas Ltd.로부터 공급받은 MCMB 분말을 사용하였다. 전극제조를 위해 MCMB 분말에 전도제로서 Vulcan XC-72R을 3중량% 정도 첨가한 다음, 폴리비닐리덴플루오라이드(PVDF)를 N-메틸피롤리돈(NMP)에 용해시켜서 만든 결합제 용액과 잘 혼합시켜서 점성이 큰 슬러리(viscous slurry)를 만들었다. 그리고, 슬러리를 구리박판에 약 0.2~0.3 ㎜정도의 두께로 도포한 후, 항온 진공건조기로 100℃에서 6시간 정도 건조시켜서 카본전극을 제조하였다.MCMB powder supplied from Osaka Gas Ltd. was used as the negative electrode material used for the electrochemical characteristic experiment. Add about 3% by weight of Vulcan XC-72R as conductive agent to MCMB powder for electrode preparation, and then mix well with binder solution made by dissolving polyvinylidene fluoride (PVDF) in N-methylpyrrolidone (NMP). To make a viscous slurry. Then, the slurry was applied to the copper foil in a thickness of about 0.2 to 0.3 mm, and then dried at 100 ° C. for about 6 hours with a constant temperature vacuum dryer to prepare a carbon electrode.
실시예Example
Osaka Gas Ltd.로부터 공급받은 MCMB 분말 표면에 Sn을 삽입(impregnation)시키기 위해 습식공정법인 전하적정법을 사용하였다. A charge titration method, which is a wet process, was used to impregnate Sn on the surface of MCMB powder supplied from Osaka Gas Ltd.
각각 8.55 ×10-4 mol, 2.25 ×10-3 mol, 2.97 ×10-3 mol, 7.13 ×10 -3 mol의 몰비를 달리한 4종류의 SnCl4ㆍ5H2O 용액에 MCMB 분말을 각각 혼합시킨 후, 60℃의 온도에서 pH가 9가 될 때까지 침전제로서 0.1mol의 NaOH 수용액을 첨가하면서 교반시켰다. 침전된 MCMB 분말을 에탄올로 수회 세척하고 거름종이로 거른 후, 110℃에서 24시간 동안 건조시켰다. Sn이 삽입된 MCMB 분말을 대기 분위기의 250℃에서 1시간 동안 열처리시켜 삽입(impregnation)된 Sn을 주석산화물(SnO2이 주된 상임)로 산화시켰다. 주석산화물 삽입에 의한 MCMB 분말의 표면개질 과정을 도1에 도식적으로 나타내었다.MCMB powder was mixed with four kinds of SnCl 4 ㆍ 5H 2 O solutions having different molar ratios of 8.55 × 10 -4 mol, 2.25 × 10 -3 mol, 2.97 × 10 -3 mol, and 7.13 × 10 -3 mol, respectively. Thereafter, the mixture was stirred while adding 0.1 mol of an aqueous NaOH solution as a precipitant at a temperature of 60 ° C. until the pH reached 9. The precipitated MCMB powder was washed several times with ethanol, filtered through a filter paper, and dried at 110 ° C. for 24 hours. Sn-inserted MCMB powder was heat-treated at 250 ° C. for 1 hour to oxidize the impregnated Sn to tin oxide (SnO 2 is the main phase). The surface modification process of MCMB powder by tin oxide insertion is shown schematically in FIG. 1.
상기에서와 같이 각각 8.55 ×10-4 mol, 2.25 ×10-3 mol, 2.97 ×10-3 mol, 7.13 ×10-3 mol의 SnCl4ㆍ5H2O 수용액에 MCMB 분말을 혼합하여 반응시켜 제조된, 주석산화물이 삽입된 MCMB 분말에 있어서, 삽입된(impregnated) Sn의 양을 알아보기 위해 EDS(energy dispersive x-ray spectroscopy) 분석을 통한 정량 분석을 실시하였다. 도2는 2.25 ×10-3 mol의 SnCl4ㆍ5H2O를 용해시킨 수용액에 반응된 MCMB 분말에 대한 EDS 분석 결과이다. 이와 같이 EDS에 의해서 Sn 성분을 분석한 결과를 이용하여 250℃에서 산화열처리된 Sn-삽입 MCMB 분말의 경우, 모든 Sn이 SnO2로 산화된 것으로 가정하여 주석산화물 조성비를 계산한 결과, 각각 3.5중량%, 7.5중량%, 9.3중량%, 그리고 12.8중량%의 SnO2가 MCMB 분말에 삽입된 것으로 나타났 다.Prepared by mixing MCMB powder with 8.55 × 10 -4 mol, 2.25 × 10 -3 mol, 2.97 × 10 -3 mol, and 7.13 × 10 -3 mol of SnCl 4 ㆍ 5H 2 O aqueous solution, respectively, as described above. In the MCMB powder containing tin oxide, quantitative analysis was performed through energy dispersive x-ray spectroscopy (EDS) analysis to determine the amount of impregnated Sn. FIG. 2 is an EDS analysis result of MCMB powder reacted in an aqueous solution in which 2.25 × 10 −3 mol of SnCl 4 · 5H 2 O was dissolved. FIG. As described above, in the case of Sn-inserted MCMB powder oxidized and heat-treated at 250 ° C using the results of analyzing the Sn component by EDS, the tin oxide composition ratio was calculated by assuming that all Sn was oxidized to SnO 2 . It was found that%, 7.5%, 9.3%, and 12.8% by weight SnO 2 was incorporated into the MCMB powder.
이와 같이 제조된, 주석산화물이 삽입된 MCMB 분말 4종류를 이용하여, 상기 비교예에서와 동일하게 하여 각각의 카본전극들을 제조하였다.Each carbon electrode was manufactured in the same manner as in the comparative example by using four kinds of MCMB powders in which tin oxide was inserted as described above.
전지 셀테스트(cell test)Battery cell test
전지 셀테스트(cell test)를 하기 위하여 반쪽전지를 구성하였으며, 작업전극(working electrode)은 상기 비교예 및 실시예에서 제조된 각각의 카본전극을 사용하고, 상대전극(counter electrode)은 리튬금속을, 그리고 기준전극(reference electrode)은 Li/Li+를 사용하였다. 전극간의 접촉을 방지하기 위한 분리막(separator)으로는 Celgard 2400 microporous sheet(Hoechst Celanese Co.)를 사용하였다. 전해질은 에틸렌카보네이트(EC)와 디에틸렌카보네이트(DEC)가 50:50으로 혼합된 용액에 1.1M LiPF6를 용해시켜서 사용하였다. 충ㆍ방전 시험은 Potentiostat/Galvanostat(EG&G 263)을 이용하였으며, 충ㆍ방전 전위는 2.0 V~0.0 ㎷(vs. Li/Li+)에서 수행하였다. A half cell was configured to perform a cell test, and the working electrode used each carbon electrode manufactured in Comparative Examples and Examples, and the counter electrode used lithium metal. Li and Li + were used as reference electrodes. Celgard 2400 microporous sheet (Hoechst Celanese Co.) was used as a separator to prevent contact between electrodes. The electrolyte was used by dissolving 1.1 M LiPF 6 in a 50:50 mixture of ethylene carbonate (EC) and diethylene carbonate (DEC). The charge / discharge test was performed using Potentiostat / Galvanostat (EG & G 263), and the charge / discharge potential was performed at 2.0 V to 0.0 mA (vs. Li / Li + ).
도3은 주석산화물이 삽입되지 않은 MCMB 분말(이하, "raw MCMB"라 한다)을 사용하여 제조된 비교예의 카본전극을 음극으로 한 전지와, SnO2-삽입 MCMB 분말을 사용하여 제조된 실시예의 카본전극을 음극으로 한 전지의 첫 번째 충ㆍ방전 곡선을 비교하여 나타낸 그래프이다. 삽입된 주석산화물의 양이 많아질수록 초기 방전용량이 점점 증가하여 12.8중량% SnO2-삽입 MCMB의 경우 raw MCMB에 비해 약 59%의 방전용 량 증가를 보였다. 충전용량의 경우, 역시 삽입된 주석산화물의 양이 많아질수록 점점 증가하였고, 12.8중량% SnO2-삽입 MCMB의 경우 raw MCMB에 비해 약 35%의 충전용량 증가를 보였다. 그러나 삽입된 주석산화물의 양이 많아질수록 초기 충ㆍ방전 용량의 손실(비가역용량)이 증가함을 알 수 있다. Figure 3 shows a cell prepared using a carbon electrode as a negative electrode of Comparative Example prepared using MCMB powder (hereinafter referred to as "raw MCMB") without tin oxide, and Example prepared using SnO 2 -inserted MCMB powder. The graph shows a comparison of the first charge / discharge curve of a battery using a carbon electrode as a negative electrode. As the amount of inserted tin oxide increased, the initial discharge capacity gradually increased, resulting in an increase of about 59% of the discharge capacity of the 12.8% by weight SnO 2 -inserted MCMB compared to the raw MCMB. In the case of the filling capacity, the amount of tin oxide also increased, and the increase of 12.8% by weight SnO 2 -inserted MCMB showed an increase of about 35% compared to the raw MCMB. However, it can be seen that as the amount of inserted tin oxide increases, the loss of initial charge / discharge capacity (non-reversible capacity) increases.
첫 번째 방전곡선을 비교하여 보면, raw MCMB는 약 0.7V 부근에서 리튬이온이 MCMB 내부로 삽입(intercalation)되는 과정에서 전극표면에서 전해질과 반응하여 얇은 부동태 막(passivation film)이 전극표면에 형성되는 엑스트라 플라토(extra plateau)가 나타남을 볼 수 있는 반면, SnO2-삽입 MCMB의 경우에는 이러한 엑스트라 플라토가 좀더 높은 전위인 약 1.2V 부근에서 나타나는 것이 관찰되었다. 일반적으로 리튬과 카본 재료를 사용한 음극의 전극표면에서 생기는 부동태 막은 주로 리튬 알킬카보네이트와 리튬 카보네이트가 생성되는 것으로 알려져 있고, 리튬을 기준으로 하여 0.9V 보다 약간 낮은 전위에서 생성되는 것으로 알려져 있다. 그에 비해 리튬과 주석산화물을 사용한 음극의 전극표면에서 발생하는 부동태 막은 리튬 옥사이드가 생성되며, 0.9 V 보다 약간 높은 전위에서 생성되는 것으로 알려져 있다. 본 실험에서는 약 1.2V 부근에서 이러한 엑스트라 플라토가 나타나는 것이 관찰되었다. Comparing the first discharge curve, the raw MCMB reacts with the electrolyte at the electrode surface in the process of intercalation of lithium ions into the MCMB around 0.7V, and a thin passivation film is formed on the electrode surface. An extra plateau can be seen, whereas for SnO 2 -inserted MCMB it was observed that this extra plateo appeared near the higher potential of about 1.2V. In general, the passivation film formed on the electrode surface of the cathode using lithium and carbon materials is known to mainly produce lithium alkyl carbonate and lithium carbonate, and is known to be produced at a potential lower than 0.9V based on lithium. In contrast, the passivation film generated on the electrode surface of the cathode using lithium and tin oxide is known to produce lithium oxide, which is generated at a potential slightly higher than 0.9V. In this experiment, it was observed that such extra plato appeared around 1.2V.
도4는 raw MCMB와 SnO2-삽입 MCMB의 가역용량(reversible specific charge capacity)과 비가역용량(irreversible specific charge capacity)을 비교한 그래프이다. 여기서, 가역용량은 첫 번째 싸이클(cycle)의 방전용량과 두 번째 싸이클의 방전용량의 평균값으로 나타내고, 비가역용량은 첫 번째 싸이클의 방전용량과 충전용량의 차이로 나타낸다. Raw MCMB의 가역용량은 214mAh/g이었고, SnO2-삽입 MCMB의 경우는 주석산화물의 양이 증가할수록 가역용량은 점점 증가하여 12.8중량% SnO2-삽입 MCMB의 경우, 282 mAh/g으로 raw MCMB에 비해 약 32% 높은 가역용량을 보였다. 삽입된 주석산화물의 양이 증가할수록 비가역용량 역시 점점 증가하여 12.8중량% SnO2-삽입 MCMB의 비가역 용량은 194 mAh/g으로, 87 mAh/g인 raw MCMB에 비해 약 120% 정도의 매우 높은 비가역 용량을 보였다.4 is a graph comparing reversible specific charge capacity and irreversible specific charge capacity of raw MCMB and SnO 2 -inserted MCMB. Here, the reversible capacity is represented by the average value of the discharge capacity of the first cycle (cycle) and the discharge capacity of the second cycle, the irreversible capacity is represented by the difference between the discharge capacity and the charging capacity of the first cycle. The reversible capacity of the raw MCMB was 214 mAh / g, and in the case of SnO 2 -inserted MCMB, the reversible capacity gradually increased as the amount of tin oxide was increased. In the case of 12.8 wt% SnO 2 -inserted MCMB, the raw MCMB was 282 mAh / g. The reversible capacity was about 32% higher. As the amount of inserted tin oxide increases, the irreversible capacity also increases gradually. The irreversible capacity of the 12.8 wt% SnO 2 -inserted MCMB is 194 mAh / g, which is about 120% higher than the raw MCMB of 87 mAh / g. Showed capacity.
도5와 도6에 raw MCMB와 SnO2-삽입 MCMB의 충ㆍ방전 횟수에 따른 방전용량과 충전용량을 각각 비교하였다. 삽입된 주석산화물의 양이 증가할수록 전체적인 충ㆍ방전 용량이 증가함을 알 수 있다.5 and 6, the discharge capacity and the charge capacity of the raw MCMB and the SnO 2 -inserted MCMB according to the number of charge and discharge cycles were compared, respectively. It can be seen that as the amount of inserted tin oxide increases, the overall charge / discharge capacity increases.
일반적으로 주석산화물을 음극으로 사용한 리튬 이온 이차전지는 카본 전극에 비해 초기 방전용량이 매우 높게 나오는 반면, 초기 방전용량의 손실 역시 매우 크고 가역특성이 떨어져 싸이클 성능이 낮은 것으로 알려져 있다. 본 실험에서는 첫 번째 충ㆍ방전 특성이 높은 충전용량과 높은 용량손실을 보여 주석산화물 음극과 유사한 충ㆍ방전 특성을 보였으나, 두 번째 싸이클 이후부터는 높은 가역특성과 뛰어난 싸이클특성을 보여, 주석산화물을 삽입시켜 표면개질시킨 MCMB의 충ㆍ방전 특성과 가역특성이 우수함을 알 수 있었다. In general, a lithium ion secondary battery using tin oxide as a negative electrode has a very high initial discharge capacity compared to a carbon electrode, while the loss of initial discharge capacity is also very large and the reversible characteristics are low, and the cycle performance is known to be low. In this experiment, the first charge and discharge characteristics showed high charge capacity and high capacity loss, and showed similar charge and discharge characteristics as the tin oxide anode, but after the second cycle, the high reversibility and excellent cycle characteristics were observed. It was found that the charge and discharge characteristics and reversible characteristics of the inserted and surface modified MCMB were excellent.
본 발명에 따른 리튬이차전지의 음극재료인, 주석산화물 삽입에 의해 표면개질된 MCMB 분말은 기존의 MCMB 분말에 비해 높은 초기 방전용량과 높은 초기 충전용량을 나타내었다. 그리고, 삽입된 주석산화물의 양이 많아질수록 높은 가역용량을 나타내었고, 비가역용량 역시 높은 값을 나타내었다. 이러한 본 발명의 리튬이차전지의 음극재료로 만들어진 음극을 포함하는 리튬이차전지는 기존의 리튬이차전지에 비해 높은 충ㆍ방전 용량을 나타내며, 높은 가역특성과 우수한 싸이클특성을 보였다.The MCMB powder surface-modified by tin oxide insertion, which is a negative electrode material of the lithium secondary battery according to the present invention, exhibited higher initial discharge capacity and higher initial charge capacity than conventional MCMB powder. And, as the amount of the tin oxide inserted increased, the reversible capacity was high, and the irreversible capacity was also high. The lithium secondary battery including the negative electrode made of the negative electrode material of the lithium secondary battery of the present invention exhibits a higher charge and discharge capacity than the conventional lithium secondary battery, and exhibits high reversible characteristics and excellent cycle characteristics.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040013518A KR100589511B1 (en) | 2004-02-27 | 2004-02-27 | SnO2-impregnated anode material for a lithium secondary battery, its processing method, and lithium secondary batteries by using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040013518A KR100589511B1 (en) | 2004-02-27 | 2004-02-27 | SnO2-impregnated anode material for a lithium secondary battery, its processing method, and lithium secondary batteries by using it |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20050087609A KR20050087609A (en) | 2005-08-31 |
KR100589511B1 true KR100589511B1 (en) | 2006-06-14 |
Family
ID=37270859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020040013518A KR100589511B1 (en) | 2004-02-27 | 2004-02-27 | SnO2-impregnated anode material for a lithium secondary battery, its processing method, and lithium secondary batteries by using it |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100589511B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103035897A (en) * | 2012-12-20 | 2013-04-10 | 中国东方电气集团有限公司 | Tin-based composite spherical hard charcoal microsphere negative electrode material of lithium battery, and preparation method for negative electrode material |
CN104183823A (en) * | 2014-08-29 | 2014-12-03 | 华中师范大学 | SnO2, MnO or Mn3O4-based composite material based on three-dimensional carbon sphere framework structure and preparation method of material |
CN105140488A (en) * | 2015-09-21 | 2015-12-09 | 江苏津谊新能源科技有限公司 | Anode material for lithium batteries |
CN106025287A (en) * | 2016-06-30 | 2016-10-12 | 中天储能科技有限公司 | Method for preparing lithium ion cathode sizing agent |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100982048B1 (en) * | 2006-12-20 | 2010-09-13 | 재단법인 포항산업과학연구원 | Negative active material for lithium secondary battery, and lithium secondary battery comprising same |
CN101969113B (en) * | 2010-09-21 | 2012-11-07 | 上海大学 | Preparation method of graphene-base tin dioxide composite anode material for lithium ion batteries |
KR102455689B1 (en) * | 2015-06-23 | 2022-10-18 | 한국전기연구원 | Cathode for energy storage device including metal oxide/twon-dimenstional nanostructure material-core/shell hybride particels and method of manufacturing the same |
CN114927648B (en) * | 2022-05-06 | 2023-06-09 | 广东凯金新能源科技股份有限公司 | SnO-based 2 Artificial electrolyte interface film modified hard carbon negative electrode and preparation method thereof |
-
2004
- 2004-02-27 KR KR1020040013518A patent/KR100589511B1/en not_active IP Right Cessation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103035897A (en) * | 2012-12-20 | 2013-04-10 | 中国东方电气集团有限公司 | Tin-based composite spherical hard charcoal microsphere negative electrode material of lithium battery, and preparation method for negative electrode material |
CN104183823A (en) * | 2014-08-29 | 2014-12-03 | 华中师范大学 | SnO2, MnO or Mn3O4-based composite material based on three-dimensional carbon sphere framework structure and preparation method of material |
CN105140488A (en) * | 2015-09-21 | 2015-12-09 | 江苏津谊新能源科技有限公司 | Anode material for lithium batteries |
CN106025287A (en) * | 2016-06-30 | 2016-10-12 | 中天储能科技有限公司 | Method for preparing lithium ion cathode sizing agent |
Also Published As
Publication number | Publication date |
---|---|
KR20050087609A (en) | 2005-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4861120B2 (en) | Negative electrode active material, production method thereof, and negative electrode and lithium battery employing the same | |
JP5219387B2 (en) | Nonaqueous electrolyte secondary battery | |
US8026003B2 (en) | Negative active material for a non-aqueous electrolyte battery, and a non-aqueous electrolyte battery comprising the same | |
JP5972513B2 (en) | Cathode and lithium battery using the same | |
KR100389052B1 (en) | Positive electrode active material, preparation method thereof and nonaqueous solvent secondary battery using the same | |
KR101045416B1 (en) | Lithium titanate powder, preparation method thereof, electrode and secondary battery comprising the same | |
KR101463114B1 (en) | Anode active material, method of preparing the same, and anode and lithium battery containing the material | |
US20150340694A1 (en) | Anode and secondary battery | |
KR20170030518A (en) | Cathode for lithium batteries | |
KR20180014955A (en) | Lithium cobalt composite oxide for lithium secondary battery and lithium secondary battery including positive electrode comprising the same | |
KR20040005673A (en) | Battery | |
CN112313820A (en) | Lithium composite anode active material, anode including the same, and method of manufacturing the same | |
KR20140032229A (en) | Positive active material composition for rechargeable lithium battery, and positive electrode and rechargeable lithium battery including the same | |
KR20080064778A (en) | Anode active material, method of preparing the same, anode and lithium battery containing the material | |
KR101746188B1 (en) | Electrode mixture additives for secondary battery, method for manufacturing the same, elelctrode including the same for secondary battery, and secondary battery | |
KR101666796B1 (en) | Positive electrode active material for rechargable lithium battery, method for synthesis the same, and rechargable lithium battery including the same | |
KR100589511B1 (en) | SnO2-impregnated anode material for a lithium secondary battery, its processing method, and lithium secondary batteries by using it | |
KR102220491B1 (en) | Positive active materials for rechargable lithium battery, method of preparing the same and rechargable lithium battery using the same | |
KR100824931B1 (en) | Active material, manufacturing method thereof and lithium secondary battery comprising the same | |
KR20160018613A (en) | Positive active material for rechargeable lithium battery, method of manufacturing the same and rechargeable lithium battery including same | |
CN110620221B (en) | Sulfur-doped lithium titanate/graphene oxide composite material, and preparation method and application thereof | |
KR20190085569A (en) | Method for coating a lithium secondary battery electrode, and lithium secondary battery comprising a electrode using the same | |
KR20140141861A (en) | Negative electrode active material for rechargeable lithium battery, method for preparing the same, negative electrode including the same, and rechargeable lithium battery including the negative electrode | |
KR101553389B1 (en) | Positive active material for rechargeable lithium battery, coating material for positive active material, method of manufacturing the same and rechargeable lithium battery including same | |
JP2002117830A (en) | Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
N231 | Notification of change of applicant | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120607 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20130610 Year of fee payment: 8 |
|
LAPS | Lapse due to unpaid annual fee |