[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR100561253B1 - A system for catalytic oxidation of vocs - Google Patents

A system for catalytic oxidation of vocs Download PDF

Info

Publication number
KR100561253B1
KR100561253B1 KR1020040088551A KR20040088551A KR100561253B1 KR 100561253 B1 KR100561253 B1 KR 100561253B1 KR 1020040088551 A KR1020040088551 A KR 1020040088551A KR 20040088551 A KR20040088551 A KR 20040088551A KR 100561253 B1 KR100561253 B1 KR 100561253B1
Authority
KR
South Korea
Prior art keywords
desorption
catalytic oxidation
exhaust line
adsorption
module
Prior art date
Application number
KR1020040088551A
Other languages
Korean (ko)
Inventor
한현식
김은석
안능균
Original Assignee
희성엥겔하드주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 희성엥겔하드주식회사 filed Critical 희성엥겔하드주식회사
Priority to KR1020040088551A priority Critical patent/KR100561253B1/en
Application granted granted Critical
Publication of KR100561253B1 publication Critical patent/KR100561253B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/346Controlling the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)

Abstract

본 발명은 흡기라인, 배기라인에 의해, 병렬 배치된 다수의 흡착모듈 ; 상기 다수의 흡착모듈 상하단 각각에서 연장된 탈착용 흡기라인 및 탈착용 배기라인 ; 상기 탈착용 배기라인과 연결됨과 동시에 촉매산화모듈로부터의 탈착용 배기라인에 의해 연통되는 제2 열교환수단 ; 상기 제2 열교환수단과 연결되는 촉매산화모듈 ; 상기 제2 열교환수단과 연결됨과 동시에 상기 탈착용 흡기라인에 의해 연통되는 제1 열교환수단 ; 및 상기 흡기라인, 배기라인, 탈착용 흡기라인, 및 탈착용 배기라인으로 가스 흐름이 가능 또는 차단할 수 있는 유로전환밸브를 포함하여 구성되는, 휘발성유기화합물 촉매산화분해처리 시스템에 관한 것으로 탈착모드 폐회로 시스템을 기초로 하는 효율적인 VOC 처리시스템을 제공하는 것이다.The present invention provides a plurality of adsorption modules arranged in parallel by an intake line and an exhaust line; Desorption intake line and desorption exhaust line extending from each of the upper and lower ends of the plurality of adsorption modules; Second heat exchange means connected to the desorption exhaust line and communicated with the desorption exhaust line from the catalytic oxidation module; A catalytic oxidation module connected to the second heat exchange means; First heat exchange means connected to the second heat exchange means and communicated by the removable intake line; And a flow path switching valve capable of blocking or blocking gas flow to the intake line, the exhaust line, the desorption intake line, and the desorption exhaust line, wherein the volatile organic compound catalytic oxidation decomposition treatment system is configured. It is to provide an efficient VOC processing system based on the system.

SCTO, 촉매산화, VOCSCTO, Catalytic Oxidation, VOC

Description

휘발성유기화합물 촉매산화분해처리 시스템{A system for catalytic oxidation of VOCs} Volatile Organic Compound Catalytic Oxidation Treatment System {A system for catalytic oxidation of VOCs}             

도 1은 본 발명에 따른 시스템 배관 연결 상태 구성도이다.1 is a configuration diagram of a system piping connection state according to the present invention.

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

1, 2, 3 : 흡착모듈 또는 탈착모듈, 10 : 촉매산화모듈,1, 2, 3: adsorption module or desorption module, 10: catalytic oxidation module,

20 : 제1열교환기, 21 : 제2열교환기,20: first heat exchanger, 21: second heat exchanger,

40 : 흡기라인, 60 : 탈착용흡기라인,40: intake line, 60: removable intake line,

50 : 배기라인, 70 : 탈착용배기라인, 50: exhaust line, 70: removable exhaust line,

40a~c, 50a~c : 흡착모드 유로변경밸브,40a ~ c, 50a ~ c: adsorption mode flow path change valve,

60a~c, 70a~c : 탈착모드 유로변경밸브,60a ~ c, 70a ~ c: removable mode flow path change valve,

80, 81, 82 : 농도측정장치, 90 : 외부방출구,80, 81, 82: concentration measuring device, 90: external discharge port,

62 : 탈착용외부가스 유입구, 61 : 보조 탈착용외부가스 유입구.62: desorption external gas inlet, 61: auxiliary desorption external gas inlet.

30 : 제1 송풍수단, 31 : 제2 송풍수단30: first blowing means, 31: second blowing means

본 발명은 산업공정에서 배출되는 유기용제를 포함한 휘발성유기화합물을 제거하기 위한 시스템에 관한 것으로서, 보다 상세하게는 도장공정, 코팅공정, 인쇄공정, 페인트 제조공정 등과 같은 곳에서 발생되는 휘발성유기화합물을 촉매산화방식으로 연소 처리하는 휘발성유기화합물 촉매산화분해처리 시스템에 관한 것이다. The present invention relates to a system for removing volatile organic compounds including organic solvents discharged from industrial processes, and more particularly, to volatile organic compounds generated at places such as coating, coating, printing, and paint manufacturing processes. The present invention relates to a catalytic oxidative decomposition treatment system for volatile organic compound combustion treatment by catalytic oxidation method.

통상적으로 페인트 제조, 인쇄, 자동차 도장, 일반 도장 및 금속과 플라스틱의 코팅 공장과 같이 유기용제를 사용하는 공장 또는 휘발성 석유화합물을 정제하여 저장하는 생산시설에서는 필연적으로 유기용제를 포함한 휘발성유기화합물(volatile organic compound, VOC) 등의 오염물질이 발생한다. 상기 휘발성유기화합물은 대부분 낮은 농도로 존재하기는 하지만 암 유발과 같이 인체에 상당한 피해를 주며, 태양광선을 받아 질소산화물과 반응하여 광학적 스모그를 생성하고, 지구온난화와 오존층을 파괴하여 국제적인 환경문제로 인식되고 있다. 또한, 상기 휘발성유기화합물은 대부분 비점이 낮기 때문에 대기 중에 노출되면 휘발되어 악취를 발생할 뿐만 아니라, 밀폐된 공간에서는 화재 발생의 요인이 되기도 한다. In general, a plant using an organic solvent or a production facility that purifies and stores volatile petroleum compounds, such as paint manufacturing, printing, automobile coating, general coating, and metal and plastic coating plant, inevitably includes volatile organic compounds including organic solvents. pollutants such as organic compounds (VOCs) are generated. Although most of the volatile organic compounds are present in low concentrations, they cause considerable damage to the human body, such as causing cancer, and react with nitrogen oxides under sunlight to generate optical smog, destroying global warming and the ozone layer as an international environmental problem. It is recognized. In addition, since most of the volatile organic compounds have a low boiling point, when exposed to the atmosphere, they are volatilized to cause odors, and may also cause fires in an enclosed space.

휘발성유기화합물이 공정에서 배출될 때 농도가 높으면 소각하여 열원으로 이용할 수 있지만, 대부분 공정에서는 VOC가 낮은 농도로 배출되기 때문에 이를 처리하기 위한 여러 방안이 제안되고 있다. 휘발성유기화합물을 처리하는 기술에는 산화방식에 따라 직접연소방식 (Thermal oxidizer), 촉매연소방식(Catalytic Thermal Oxidizer)로 구분되며, 이는 다시 열회수방법에 따라 축열식(Regenerative) 및 열교환기식(Recuperative)로 구분될 수 있으며, 효율적인 처리방법은 휘발성유기화합물의 농도에 의해 결정된다. 휘발성유기화합물의 농도가 6000ppm 이상으로 높은 경우에는 통상 720C이상에서 0.5초 이상 접촉시켜 VOC를 완전분해시키는 직접연소방법이 효과적이나, 휘발성유기화합물의 농도가 6000ppm 보다 낮은 경우에는 연소를 위한 보조연료를 공급해야 하기 때문에 직접연소 처리하면 경제성이 떨어지는 문제점이 발생한다. 농도가 낮아 열 소각하기 힘든 휘발성유기화합물은 촉매연소를 이용하여 처리하는데, 이 경우에도 휘발성유기화합물의 농도가 2000 ppm 이하로 너무 낮은 경우에는 촉매연소를 유지하기 위한 에너지가 많이 필요하게 되는 문제점이 발생한다. 촉매연소란 연소반응이 촉매 표면에서 일어나기 때문에 직접연소보다 낮은 온도에서도 연소반응이 일어난다. 즉, 촉매연소를 이용하면 화염이 없이 연소(무화염 연소)가 가능하다.When volatile organic compounds are discharged from the process, high concentrations can be incinerated and used as heat sources, but in most processes, VOCs are emitted at low concentrations. The technology for processing volatile organic compounds is divided into direct combustion method (Thermal oxidizer) and catalytic combustion method (Catalytic Thermal Oxidizer) according to the oxidation method, which is divided into regenerative type and heat exchanger type according to the heat recovery method. The effective treatment method is determined by the concentration of volatile organic compounds. When the concentration of volatile organic compounds is higher than 6000ppm, direct combustion method that completely decomposes VOC by contacting more than 0.5 seconds at 720C or more is effective.However, when the concentration of volatile organic compounds is lower than 6000ppm, auxiliary fuel for combustion is used. Because of the need to supply, direct combustion treatment causes a problem of low economic efficiency. Volatile organic compounds that are difficult to incinerate heat due to low concentrations are treated with catalytic combustion, but even in this case, when the concentration of volatile organic compounds is too low below 2000 ppm, a large amount of energy is required to maintain catalytic combustion. Occurs. Catalytic combustion is a combustion reaction that occurs at a lower temperature than direct combustion because combustion occurs on the surface of the catalyst. In other words, if catalytic combustion is used, combustion (flameless combustion) is possible without flame.

따라서, 종래에는 낮은 농도로 배출되는 휘발성유기화합물을 처리하기 위하여 저농도 VOC를 활성탄 흡착탑을 통과시켜, 처리가스는 대기방출하고 흡착탑에 흡착농축된 고농도 VOC가스만을 직접연소 또는 촉매연소하여 보조연료 사용량을 줄이는 방법이 고안되었다. 한국특허등록 제410893호(연속적 흡착 및 재생장치)에 의하면, 흡착탑을 병렬로 배치하고 흡착과 재생사이클이 교대로 반복적으로 진행되도록 하여 전체적인 생산공정에 영향을 주지 않는 연속식 흡착 및 재생장치를 제안하고 있으며, 상기 특허는 흡입팬을 통하여 유입되는 대기와 열교환하는 열교환기가 촉매연소장치 하류단에 연결되어, 상기 열교환기는 촉매연소장치에서 유출되는 고 온의 가스와 흡입팬을 통하여 유입되는 대기 사이의 열교환을 통하여 흡착된 VOC를 고온 탈착시키는 것과 동시에 외부로 방출되는 처리가스의 온도를 낮추는 역할을 하고 있음을 알 수 있다. 그러나, 상기 특허기술은 탈착을 위한 대기의 온도 조절이 쉽지 않아 흡착제로서 활성탄을 사용하는 경우 고온 탈착용 대기에 의해 화재위험이 있는 등의 치명적인 문제점을 가지고 있고, 탈착된 VOC 가스의 온도가 낮아 촉매연소장치에 유입되기 전, 촉매산화에 필요한 온도를 확보하기 위하여 별도의 화염공정이 요구된다는 단점이 있어, 연료비 및 전기비를 포함한 운전비 상승의 원인이 있었다. 무엇보다도, 흡착모듈의 재생시점에 대한 설정 및 촉매산화장치에 대한 별도의 조절 장치가 없어 강화되어지는 환경규제 강화에 적절히 대응할 수 없는 단점이 지적된다. Therefore, conventionally, in order to treat volatile organic compounds discharged at low concentrations, low concentrations of VOC are passed through an activated carbon adsorption tower, and the processing gas is released to the atmosphere, and only the high concentration of VOC gas adsorbed and concentrated on the adsorption tower is directly burned or catalytically burned. A method of reducing was devised. According to Korean Patent Registration No. 410893 (Continuous Adsorption and Regeneration Equipment), the adsorption and regeneration apparatus is proposed to arrange adsorption towers in parallel and to repeat the adsorption and regeneration cycles alternately so as not to affect the whole production process. The patent discloses that a heat exchanger for exchanging heat with the atmosphere introduced through the suction fan is connected to the downstream end of the catalytic combustion device, and the heat exchanger is connected between the high temperature gas discharged from the catalytic combustion device and the atmosphere introduced through the suction fan. It can be seen that it plays a role of lowering the temperature of the process gas discharged to the outside while simultaneously desorbing the VOC adsorbed through heat exchange. However, the patented technology is not easy to control the temperature of the atmosphere for desorption, and when activated carbon is used as the adsorbent, there is a fatal problem such as a fire hazard due to the high temperature desorption atmosphere, and the catalyst of the desorbed VOC gas is low. Before entering the combustion apparatus, there is a disadvantage that a separate flame process is required in order to secure the temperature required for catalytic oxidation, which causes an increase in operating costs including fuel and electricity costs. Above all, it is pointed out that it is not possible to adequately cope with the strengthening of environmental regulations that are strengthened because there is no separate control device for the setting of the regeneration time of the adsorption module and the catalytic oxidation device.

본 발명의 목적은, 휘발성유기화합물을 촉매산화분해 처리하기 위한 시스템에 있어서, 탈착모드 폐회로 시스템을 기초로 하는 효율적인 VOC 처리시스템을 제공하는 것이다.It is an object of the present invention to provide an efficient VOC treatment system based on a desorption mode closed loop system in a system for catalytic oxidation decomposition of volatile organic compounds.

본 발명의 다른 목적은 고온 정화가스의 열에너지를 이차 열교환에 의한 탈착모드에 직접 이용하는 효율적인 VOC 처리시스템을 제공하는 것이다. 따라서, 고온 정화가스 열에너지는 탈착 VOC 가스 및 탈착용 외부가스와 연속적으로 열교환되어, 본 발명은 탈착 VOC 가스가 촉매산화모듈에서 요구되는 온도에 용이하게 도달되어 탈착 VOC 가스 온도 상승을 위한 별도의 화염장치가 불필요한 시스템 및 탈착용 외부가스의 탈착모드에서의 최적온도 달성이 가능한 시스템을 제공하는 것이다. Another object of the present invention is to provide an efficient VOC treatment system that directly uses the thermal energy of a high-temperature purge gas in a desorption mode by secondary heat exchange. Therefore, the high-temperature purge gas thermal energy is continuously heat exchanged with the desorption VOC gas and the desorption external gas, the present invention is a separate flame for the desorption VOC gas temperature rise to easily reach the temperature required in the catalytic oxidation module It is to provide a system capable of achieving the optimum temperature in the desorption mode of the system and the device for the desorption external gas.                         

또한 본 발명은 흡착모듈 일단에 농도측정장치를 부착함으로써 일정농도 이상의 VOC가 대기로 배출되는 시점에서 자동으로 흡착모듈의 교체 및 탈착모드로의 전환이 가능한 시스템을 제공하는 것이다. In another aspect, the present invention is to provide a system capable of automatically switching to the adsorption module and the desorption mode when the concentration of the VOC is attached to one end of the adsorption module is automatically discharged to the atmosphere at a certain concentration.

본 발명의 마지막 목적은 흡착효율이 우수하고, 고온 노출에도 화재 우려가 없는 흡착제가 충전된 흡착모듈이 구비된 VOC 처리시스템을 제공하는 것이다.The final object of the present invention is to provide a VOC treatment system having an adsorption module filled with an adsorbent which is excellent in adsorption efficiency and has no fear of fire even at high temperature exposure.

상기한 목적을 달성하기 위한 휘발성유기화합물 촉매산화분해처리 시스템은, 촉매산화모듈로부터 유출되는 고온 정화가스의 열에너지를 외부로 방출하지 않고, 탈착 폐회로 시스템에 기초하여, 고온 정화가스를 탈착 VOC 가스 및 탈착용 외부가스와 열교환하는 시스템으로 구성된다.따라서, 본 발명에 의한 시스템은, 흡기라인, 배기라인에 의해, 병렬 배치된 다수의 흡착모듈 ; 상기 다수의 흡착모듈 상하단 각각에서 연장된 탈착용 흡기라인 및 탈착용 배기라인 ; 상기 탈착용 배기라인과 연결됨과 동시에 촉매산화모듈로부터의 탈착용 배기라인에 의해 연통되는 제2 열교환수단 ; 상기 제2 열교환수단과 연결되는 촉매산화모듈 ; 상기 제2 열교환수단과 연결됨과 동시에 상기 탈착용 흡기라인에 의해 연통되는 제1 열교환수단 ; 및 상기 흡기라인, 배기라인, 탈착용 흡기라인, 및 탈착용 배기라인으로 가스 흐름이 가능 또는 차단할 수 있는 유로전환밸브를 포함하여 구성된다.The volatile organic compound catalytic oxidation decomposition treatment system for achieving the above object is a desorbed VOC gas and desorbed hot purified gas on the basis of a desorption closed circuit system without releasing heat energy of the hot purified gas flowing out from the catalytic oxidation module to the outside. The system according to the present invention comprises: a plurality of adsorption modules arranged in parallel by an intake line and an exhaust line; Desorption intake line and desorption exhaust line extending from each of the upper and lower ends of the plurality of adsorption modules; Second heat exchange means connected to the desorption exhaust line and communicated with the desorption exhaust line from the catalytic oxidation module; A catalytic oxidation module connected to the second heat exchange means; First heat exchange means connected to the second heat exchange means and communicated by the removable intake line; And a flow path switching valve capable of blocking or blocking gas flow to the intake line, the exhaust line, the intake line for detachment, and the detachable exhaust line.

본 시스템은, VOC 포함 오염물질을 강제 송풍하는 제1 송풍수단이 상기 흡기라인선단에 연결되며, 탈착모드 폐회로 내에서의 가스흐름을 강제하기 위한 제2 송풍수단이 탈착용배기라인과 연통될 수 있으며, 상기 흡착모듈 하단에는 방출기체 농도측정수단을 더 포함하는데, 상기 농도측정수단의 측정값에 따라 상기 유로전환밸브를 조절하는 제어부가 더 구비될 수 있다. In this system, a first blowing means for forcibly blowing contaminants including VOCs is connected to the intake line end, and a second blowing means for forcing gas flow in the desorption mode closed circuit may be in communication with the desorption exhaust line. And, the lower end of the adsorption module further comprises a discharge gas concentration measuring means, the control unit for adjusting the flow path switching valve according to the measured value of the concentration measuring means may be further provided.

본 시스템은 탈착모드에서 유래되는 탈착 VOC 가스가 촉매산화모듈에서 요구되는 적정 열에너지, 및 탈착용 외부가스가 탈착모듈에서 요구되는 적정 열에너지를 촉매산화반응에서 생성되는 열에너지로서 제1 및 제2 열교환수단을 통하여 배분함으로서, 효율적인 촉매산화반응 및 탈착프로세스가 가능한 구성을 제공한다.The present system uses the first and second heat exchange means as the thermal energy generated by the catalytic oxidation reaction in which the desorption VOC gas derived from the desorption mode is required for the catalytic oxidation module, and the desorption external gas is required for the desorption module. By distributing through, an efficient catalytic oxidation reaction and a desorption process are provided.

이하, 첨부된 도면을 참조하여 본 시스템을 보다 상세하게 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in more detail the present system.

도1 은 본 시스템 배관 연결 상태 구성도이다. 흡기라인(40) 및 배기라인(50)에 의해 상하단 연결되는 다수의 흡착모듈(1, 2, 3)이 병렬 배치되며, 흡기라인 및 배기라인 적정 포인트에는 유로 개폐를 위한 다수의 흡착모드 유로전환밸브(40a, 40b, 40c, 50a, 50b, 50c)가 개재된다. 유로전환밸브는 도시되지 않은 제어부로부터의 신호에 의해 작동된다. 상기 흡기라인 선단에는 제1 송풍기(30)가 장착되어, 오염원으로부터의 VOC를 포함한 오염가스가 흡기라인으로 강제 송풍된다. 한편, 배기라인 선단에는 농도측정수단이 배치되어, 각각의 흡기모듈에서 방출되는 가스농도는 제어부로 송출되며, 소정값이 도달되는 시점에서 제어부는 유로전환밸브를 작동시켜 흡착모드를 종료하고 탈착모드로 전환된다. 배기라인 후단에는 외부로 비오염가스를 방출하기 위한 외부방출구(90)가 위치된다.1 is a configuration diagram of the present system piping connection state. A plurality of adsorption modules (1, 2, 3) connected in the upper and lower ends by the intake line 40 and the exhaust line 50 are arranged in parallel, and a plurality of adsorption mode flow paths for opening and closing the flow path at the appropriate points of the intake line and the exhaust line Valves 40a, 40b, 40c, 50a, 50b, 50c are interposed. The flow path switching valve is operated by a signal from a control unit not shown. A first blower 30 is mounted at the tip of the intake line, and contaminant gas including VOC from the source is forcedly blown to the intake line. On the other hand, a concentration measuring means is disposed at the end of the exhaust line, and the gas concentration emitted from each intake module is sent to the controller. At the time when a predetermined value is reached, the controller operates the flow path switching valve to end the adsorption mode and removes the desorption mode. Is switched to. At the rear of the exhaust line, an external discharge port 90 for discharging non-polluting gas to the outside is located.

흡기모듈(1, 2, 3)는 일정한 흡착량 한계를 가지고 있으므로, 흡기모듈내 흡착제가 흡착 한계치에 도달되면, 흡기모듈에서의 흡착모드는 종료되며, 해당 흡기 모듈에서 탈착모드가 개시된다. 탈착모드에서는 흡착모듈은 탈착모듈로 정의된다. 탈착용흡기라인(60) 및 탈착용배기라인(70)에 의해 상하단 연결된 탈착모듈(1, 2, 3)은 병렬 배치되며, 상기 탈착용흡기라인 및 탈착용배기라인 적정 포인트에서 유로 개폐를 위한 탈착용 흡기유로전환밸브(60a, 60b, 60c) 및 탈락용 배기유로전환밸브(70a, 70b, 70c)가 개재된다. 상기 유로전환밸브는 제어부에 의해 작동되나, 제어부는 도시되지 아니하였다. 탈착용배기라인(70)은 제2 열교환기(21) 및 제2 송풍기(31)를 거쳐 촉매산화모듈(10)에 연결된다. 촉매산화모듈(10)에서 정화된 고온의 정화가스는 상기 제2 열교환기(21) 및 제1 열교환기(20)를 거쳐 상당한 열에너지를 방출하고 외부방출구(90)를 통해 방출된다. 탈착용 흡기라인(60)를 통해 외부가스가 유입되는데, 상기 탈착용흡기라인은 상기 제1 열교환기(20)와 연통된다. 안정적인 촉매산화모듈의 발열온도를 제어하기 위해서는 VOC 탈착시 일정한 농도로 배출되어야 하는데, 이는 탈착모듈에 유입되는 탈착용 흡기 가스의 온도에 의해 결정되어지는데 이를 위해 보조외부가스가 요구되는 경우에는 탈착용흡기라인에 개재된 보조 탈착용 외부가스 유입구(61)를 통하여 유입될 수 있다.Since the intake modules 1, 2, 3 have a constant adsorption amount limit, when the adsorbent in the intake module reaches the adsorption limit value, the adsorption mode in the intake module is terminated, and the desorption mode is started in the intake module. In the desorption mode, the adsorption module is defined as a desorption module. Desorption modules (1, 2, 3) connected to the upper and lower ends by the desorption intake line 60 and the desorption exhaust line 70 are arranged in parallel, for opening and closing the flow path at the appropriate points of the desorption intake line and desorption exhaust line. Desorption intake flow path switching valves 60a, 60b, 60c and dropping exhaust flow path switching valves 70a, 70b, 70c are interposed. The flow path switching valve is operated by a controller, but the controller is not shown. The detachable exhaust line 70 is connected to the catalytic oxidation module 10 via the second heat exchanger 21 and the second blower 31. The high temperature purge gas purified by the catalytic oxidation module 10 emits considerable heat energy through the second heat exchanger 21 and the first heat exchanger 20 and is discharged through the external discharge port 90. An external gas flows in through the removable intake line 60, and the removable intake line communicates with the first heat exchanger 20. In order to control the exothermic temperature of the catalytic catalytic module, it should be discharged at a constant concentration during VOC desorption, which is determined by the temperature of the desorption intake gas flowing into the desorption module. It may be introduced through the auxiliary desorption external gas inlet 61 interposed in the intake line.

상기 흡착모듈(1, 2, 3) 내부에는 VOC를 포함한 오염물질이 화학적으로 또는 물리적으로 결합하여 일시적으로 저장하기 흡착수단, 예를들면 활성탄 또는 제올라이트가 단독 또는 혼합 팩킹되어 구성된다. 상기 촉매산화모듈(10)은 VOC를 산화시키기 위한 촉매층이 구비되며, 바람직하게는 Pt 및 Rh 등의 귀금속이 담지된 캐리어가 코팅된 모노리스 지지체가 내장되나, 이에 한하지 않는다. In the adsorption module (1, 2, 3), the contaminants including VOCs are chemically or physically combined to temporarily store adsorption means, for example, activated carbon or zeolite alone or mixed packing. The catalytic oxidation module 10 is provided with a catalyst layer for oxidizing the VOC, and preferably, a monolith support coated with a carrier on which precious metals such as Pt and Rh are supported, but is not limited thereto.

이하 본 시스템 작동과정을 설명하기도 한다.The following describes the operation of the system.

휘발성유기화합물을 포함한 오염물질은 제1 송풍기(30)에 의해 흡기라인(40)으로 강제 유입되며, 이때 흡기라인(40) 및 각각의 흡착모듈로 분기될 수 있도록 유로전환밸브(40a, 50a)만 열려 유입가스의 흐름이 흡착모듈(1)로 일방향 진행되도록 유로 설정된다. 흡착모듈(1)로 유입된 휘발성유기화합물은 내장흡착제인 제오라이트와 물리적 또는 화학적으로 흡착되며, 기타 무해 청정가스는 배기라인(50) 및 외부방출구(90)를 거쳐 외부 유출된다. 상기 흡착모듈(1) 하단에 장착된 농도측정수단(80)은 계속하여 흡착모듈(1)로부터 유출되는 외부 방출가스의 휘발성유기화합물 농도를 측정하며 제어부로 농도신호를 보낸다. 상기 농도측정수단에서 측정된 휘발성유기화합물 농도가 임의 설정농도에 도달될 때(이하 소정 한계점이라 함), 즉 흡착모듈(1) 내 팩킹 제오라이트가 휘발성유기화합물에 의해 포화되어 더 이상의 흡착이 불가능하여, 휘발성유기화합물의 방출이 개시될 때, 농도측정수단(80)으로부터의 농도신호는 시스템내의 유로전환밸브들을 제어하는 제어부로 전송되며, 제어부는 흡착모듈(1)로 유입 또는 유출하는 유로전환밸브(40a, 50a)를 패쇄하여, 더 이상의 휘발성유기화합물의 흡착모듈(1)로의 유입을 막고, 시스템 내의 흡착모드에서의 가스 흐름을 유로전환밸브(40b, 50b) 제어를 통하여 제2 흡착모듈(2)로 유입되도록 제어하여 흡착모듈(1)로부터의 휘발성유기화합물의 외부 방출을 방지한다. 흡착모듈(2)를 통한 흡착모드가 진행되는 한편 탈착용 흡기라인 중 탈착모드 유로전환밸브(60a, 70a)를 제어하고 제2 송풍기(31)를 작동시켜 탈착모듈(1)에서의 탈착모드를 개시한다. 따라서 흡착제 소정 한계점에서는 탈착모드가 요구되는 시스 템 내 유로는 일시적으로 탈착용 흡기라인(60), 탈착모듈(1), 탈착용 배기라인(70), 촉매산화모듈(10) 및 제1, 제2 열교환기(20, 21)로 이어지는 폐회로가 형성되는 한편, 다른 흡착모듈(2)에서는 개방회로가 구성되어 흡착공정이 개시된다. 즉 흡착모듈(1)에서 탈착모드가 개시되기 전 까지의 흡착모드가 동일하게 흡착모듈(2)에 적용된다. 제1 송풍기(30)로 부터의 오염물질은 흡착모듈(2)로 진입되며, 흡착되고, 농도측정에 따라 소정한계점에 도달할 때까지 흡착공정이 진행된다. 따라서, 본 시스템은 연속적으로 흡착 및 탈착공정이 가능한 휘발성유기화합물 연소시스템이다.Contaminants including volatile organic compounds are forced into the intake line 40 by the first blower 30, and at this time, the flow path switching valves 40a and 50a are branched to the intake line 40 and the respective adsorption modules. Only open the flow path of the inlet gas flow in one direction to the adsorption module (1). The volatile organic compound introduced into the adsorption module 1 is physically or chemically adsorbed with the zeolite, which is a built-in adsorbent, and other harmless clean gas flows out through the exhaust line 50 and the external discharge port 90. The concentration measuring means 80 mounted on the lower side of the adsorption module 1 continuously measures the volatile organic compound concentration of the external emission gas flowing out from the adsorption module 1 and sends a concentration signal to the controller. When the volatile organic compound concentration measured by the concentration measuring means reaches a predetermined set concentration (hereinafter referred to as a predetermined limit point), that is, the packing zeolite in the adsorption module 1 is saturated by the volatile organic compound, so that no further adsorption is possible. When the release of the volatile organic compound is started, the concentration signal from the concentration measuring means 80 is transmitted to the control unit for controlling the flow path switching valves in the system, and the control unit flows in or out of the suction module 1. Blocking the 40a and 50a prevents the inflow of further volatile organic compounds into the adsorption module 1 and controls the flow of gas in the adsorption mode in the system through the control of the flow path switching valves 40b and 50b. 2) to control the inflow to prevent the external release of volatile organic compounds from the adsorption module (1). While the adsorption mode is performed through the adsorption module 2, the desorption mode flow path switching valves 60a and 70a of the desorption intake lines are controlled and the second blower 31 is operated to control the desorption mode from the desorption module 1. It starts. Therefore, at a predetermined limit of the adsorbent, the flow path in the system requiring the desorption mode is temporarily removed from the suction intake line 60, the desorption module 1, the desorption exhaust line 70, the catalytic oxidation module 10, and the first and the first. The closed circuit leading to the two heat exchangers 20 and 21 is formed, while the other adsorption module 2 is configured with an open circuit to start the adsorption process. That is, the adsorption mode until the desorption mode is started in the adsorption module 1 is applied to the adsorption module 2 in the same manner. The contaminants from the first blower 30 enter the adsorption module 2, are adsorbed, and the adsorption process proceeds until the predetermined limit point is reached according to the concentration measurement. Therefore, this system is a volatile organic compound combustion system capable of continuously adsorption and desorption processes.

이하 휘발성유기화합물에 의해 포화된 흡착모듈(1)의 탈착모드를 기술하도록 한다. 이때, 상기 흡착모듈(1)은 탈착모듈로 전환된다. 탈착모듈(1) 내 팩킹된 흡착제에 결착된 휘발성유기화합물은 촉매산화모듈(10)을 통과 후 유기물 산화에 의해 발생된 고온가스가 탈착용 외부가스와 열교환되어, 탈착용 외부가스를 적정온도까지 가온함과 동시에 외부방출되는 정화가스의 온도를 낮추어 방출된다. 또한, 외부가스에 의해 탈착된 휘발성유기화합물은 배기라인(70)을 거쳐 촉매산화모듈(10)로 유입되는데, 상기 휘발성유기화합물은 촉매산화모듈(10)에서 유출되는 고온의 정화가스와 제2 열교환기(21)에서 열교환을 거친 후 적정온도로 승온되어 촉매산화모듈(10)로 유입되며, 상기 VOC는 적층된 촉매표면에서 촉매산화반응이 진행된다. 상기 촉매산화반응은 약 200-400℃ 에서 진행되어 무해한 이산화탄소와 물로 분해된다. 제2 열교환기를 통한 열에너지 교환으로 상기 촉매산화반응을 위하여, 종래 요구되었던 화염발생장치 등이 불필요할 뿐 아니라 설비가 단순하고 보조연료를 제 공하여야 하는 유지측면에서의 단점을 개선할 수 있는 것이다. 탈착모듈(1)에서의 휘발성유기화합물 탈착과정은 탈착용 외부가스의 온도 및 제2 송풍수단(31)에 의한 유량으로 조절되는데, 탈착용 외부가스의 온도는 탈착용 외부가스 유입구(61, 62)로부터의 외부가스 중 촉매산화모듈(10)에서 발생된 고온의 가스와 열교환을 거치는 외부가스유입구(62)로부터의 외부가스와 열교환을 거치지 않는 보조외부가스유입구(61)로부터의 외부가스와 적절한 혼합으로 조절된다. 탈착모드는 계속적으로 시스템 내 폐회로에서 진행되며, 한편 흡착모듈(2)에서는 연속적 흡착공정이 진행된다. 흡착모듈(2)내의 흡착정도는 흡착모듈(2) 하단에 구비된 농도측정수단(81)에 의해 모니터되어, 흡착제의 포화를 의미하는 소정한계점에 도달되면, 흡착공정을 마치고, 탈착공정이 진행된다. 즉, 시스템 전체적으로는 흡착공정과 탈착공정은 교번하여 연속적으로 진행된다. 본 시스템의 정상작동이 시작되기 전 첫 흡-탈착이 이루지는 시점에서는 열교환을 위한 충분한 열원을 찾을 수 없으므로 보조화염시설(11)이 필요하지만, 정상가동이 이루어지는 시점, 즉 촉매산화모듈(10)이 정상으로 작동하는 시점부터는 열교환기(20, 21)의 열교환을 통해 열원이 공급되므로 화염시설(11)의 작동없이 본 시스템이 작동될 수 있다. Hereinafter, the desorption mode of the adsorption module 1 saturated with volatile organic compounds will be described. At this time, the adsorption module 1 is switched to the desorption module. The volatile organic compounds bound to the packed adsorbent in the desorption module (1) pass through the catalytic oxidation module (10), and the hot gas generated by the organic material oxidation exchanges heat with the desorption external gas, and the desorption external gas is brought to an appropriate temperature. It is released by lowering the temperature of the purge gas discharged at the same time as it is warmed. In addition, the volatile organic compound desorbed by the external gas is introduced into the catalytic oxidation module 10 through the exhaust line 70, the volatile organic compound is a high-temperature purge gas and the second outflow from the catalytic oxidation module 10 After the heat exchange in the heat exchanger 21, the temperature is raised to an appropriate temperature and introduced into the catalytic oxidation module 10, the VOC is subjected to the catalytic oxidation reaction on the stacked catalyst surface. The catalytic oxidation reaction proceeds at about 200-400 ° C. to decompose into harmless carbon dioxide and water. For the catalytic oxidation reaction by the heat exchanger through the second heat exchanger, not only the flame generator, which is required in the related art, is required, but also the disadvantages in terms of maintaining the equipment, which is simple and provide auxiliary fuel, can be improved. Desorption process of the volatile organic compound in the desorption module 1 is controlled by the temperature of the desorption external gas and the flow rate by the second blowing means 31, the temperature of the desorption external gas is the desorption external gas inlet (61, 62) External gas from the external gas inlet 61 which does not undergo heat exchange with the external gas from the external gas inlet 62 which undergoes heat exchange with the hot gas generated in the catalytic oxidation module 10 among the external gas from Controlled by mixing. The desorption mode continuously proceeds in a closed circuit in the system, while in the adsorption module 2, a continuous adsorption process proceeds. The degree of adsorption in the adsorption module 2 is monitored by the concentration measuring means 81 provided at the lower end of the adsorption module 2, and when the predetermined limit point representing the saturation of the adsorbent is reached, the adsorption step is completed, and the desorption step proceeds. do. That is, as a whole, the adsorption process and the desorption process alternately and continuously proceed. At the time of the first adsorption-desorption before the normal operation of this system, a sufficient heat source for heat exchange could not be found, so an auxiliary flame facility 11 is required, but at the time of normal operation, that is, the catalytic oxidation module 10 Since the heat source is supplied through heat exchange of the heat exchangers 20 and 21 from the time of normal operation, the system can be operated without the operation of the flame facility 11.

상기 양호한 실시예에 근거하여 본 발명을 설명하였지만, 이러한 실시예는 본 발명을 제한하려는 것이 아니라 예시하려는 것이다. 본 발명이 속하는 분야의 숙련자에게는 본 발명의 기술사상을 벗어남이 없이 위 실시예에 대한 다양한 변화나 변경 또는 조절이 가능함이 자명할 것이다. 그러므로, 이 발명의 보호범위는 첨 부된 청구범위는 상기 실시예의 변화, 변경 또는 다양한 조절 모두 포함하는 것으로 해석되어야 할 것이다.Although the present invention has been described based on the above preferred embodiments, these examples are intended to illustrate, not limit, the invention. It will be apparent to those skilled in the art that various changes, modifications, or adjustments to the above embodiments can be made without departing from the spirit of the invention. Therefore, the protection scope of the present invention should be construed that the appended claims cover all changes, modifications or various adjustments of the above embodiments.

이상에서 설명한 본 발명에 따르면, 산화분해된 고온반응열을 직접 탈착모드에 적용함으로써 촉매산화반응에서의 완전연소에 요구되는 고온 유지를 위한 화염시설 등의 장비가 필요하지 않아, 예열 비용 절감 및 흡착효율이 우수하고, 고온 노출에도 화재에 대한 문제가 발생되는 않는 흡착제가 충진된 흡착모듈을 구비함으로써 화재위험으로 흡착제의 완전 탈착을 시킬 수 없었던 종래 시스템의 불안정성을 제거할 수 있으며, 농도측정장치의 부착으로 일정 농도 이상의 휘발성유기화합물이 대기로 배출되는 시점에서 자동으로 흡착모듈의 교체와 탈착-촉매산화가 이루어지도록 흡착, 탈착, 촉매산화의 단계의 완전 자동 시스템의 제공이 가능하다.According to the present invention described above, by applying the oxidized decomposition high-temperature reaction heat directly to the desorption mode, equipment such as a flame facility for maintaining the high temperature required for complete combustion in the catalytic oxidation reaction is not required, thereby reducing preheating cost and adsorption efficiency. With this excellent, adsorbent module filled with an adsorbent that does not cause fire problems even at high temperature exposure, it is possible to eliminate the instability of the conventional system that could not completely remove the adsorbent due to fire risk, and to attach the concentration measuring device. Therefore, it is possible to provide a fully automatic system of adsorption, desorption, and catalytic oxidation so that the adsorption module can be replaced and desorption-catalyzed automatically when the volatile organic compound above a certain concentration is discharged to the atmosphere.

Claims (4)

흡기라인, 배기라인에 의해, 병렬 배치된 다수의 흡착모듈 ; 상기 다수의 흡착모듈 상하단 각각에서 연장된 탈착용 흡기라인 및 탈착용 배기라인 ; 상기 탈착용 배기라인과 연결됨과 동시에 촉매산화모듈로부터의 탈착용 배기라인에 의해 연통되는 제2 열교환수단 ; 상기 제2 열교환수단과 연결되는 촉매산화모듈 ; 상기 제2 열교환수단과 연결됨과 동시에 상기 탈착용 흡기라인에 의해 연통되는 제1 열교환수단 ; 및 상기 흡기라인, 배기라인, 탈착용 흡기라인, 및 탈착용 배기라인으로 가스 흐름이 가능 또는 차단할 수 있는 유로전환밸브를 포함하여 구성되는, 휘발성유기화합물 촉매산화분해처리 시스템.A plurality of adsorption modules arranged in parallel by an intake line and an exhaust line; Desorption intake line and desorption exhaust line extending from each of the upper and lower ends of the plurality of adsorption modules; Second heat exchange means connected to the desorption exhaust line and communicated with the desorption exhaust line from the catalytic oxidation module; A catalytic oxidation module connected to the second heat exchange means; First heat exchange means connected to the second heat exchange means and communicated by the removable intake line; And a flow path switching valve capable of blocking or blocking gas flow to the intake line, the exhaust line, the desorption intake line, and the desorption exhaust line. 제 1항에 있어서, VOC 포함 오염물질을 강제 송풍하는 제1 송풍수단이 상기 흡기라인 선단에 연결되며, 제2 송풍수단이 탈착용 배기라인에 개재 장착된 것을 특징으로 하는, 휘발성유기화합물 촉매산화분해처리 시스템.2. The catalytic oxidation of volatile organic compounds according to claim 1, wherein the first blowing means for forcibly blowing the contaminants including VOCs is connected to the front end of the intake line, and the second blowing means is interposed in the desorption exhaust line. Decomposition Treatment System. 제 1항에 있어서, 상기 흡착모듈 하단에는 방출기체 농도측정수단을 더 포함하는 것을 특징으로 하는, 휘발성유기화합물 촉매산화분해처리 시스템.According to claim 1, The lower end of the adsorption module, characterized in that it further comprises a discharge gas concentration measuring means, volatile organic compound catalytic oxidation decomposition processing system. 제 1항에 있어서, 상기 탈착용 흡기라인에 보조 탈착용 외부가스 유입구가 더욱 개방된 것을 특징으로 하는, 휘발성유기화합물 촉매산화분해처리 시스템.The catalytic oxidative decomposition treatment system according to claim 1, wherein an auxiliary desorption external gas inlet is further opened to the desorption intake line.
KR1020040088551A 2004-11-03 2004-11-03 A system for catalytic oxidation of vocs KR100561253B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040088551A KR100561253B1 (en) 2004-11-03 2004-11-03 A system for catalytic oxidation of vocs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040088551A KR100561253B1 (en) 2004-11-03 2004-11-03 A system for catalytic oxidation of vocs

Publications (1)

Publication Number Publication Date
KR100561253B1 true KR100561253B1 (en) 2006-03-15

Family

ID=37179630

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040088551A KR100561253B1 (en) 2004-11-03 2004-11-03 A system for catalytic oxidation of vocs

Country Status (1)

Country Link
KR (1) KR100561253B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101356630B1 (en) * 2011-11-02 2014-02-05 한국과학기술원 Hybrid HI decomposer for Nuclear Hydrogen Production and the continuous sepatation process using the same
KR101558907B1 (en) 2014-07-14 2015-11-20 주식회사 이우이엔티 Hybrid thermo-catalyst oxidation system
CN107970740A (en) * 2016-10-21 2018-05-01 无锡云瑞环保设备有限公司 Zeolite molecular sieve adsorbent equipment
KR20190109922A (en) * 2018-03-19 2019-09-27 한국조선해양 주식회사 Apparatus for removing VOCs
KR20220135921A (en) * 2021-03-31 2022-10-07 에코케어 주식회사 Apparatus for removing air pollutants and burning them
KR102640529B1 (en) * 2022-12-26 2024-02-27 한국에너지기술연구원 Apparatus and method for continuously regenerating spent activated carbon for syngas reforming
KR102673465B1 (en) * 2023-04-03 2024-06-07 김성도 Modular adsorption tower

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101356630B1 (en) * 2011-11-02 2014-02-05 한국과학기술원 Hybrid HI decomposer for Nuclear Hydrogen Production and the continuous sepatation process using the same
KR101558907B1 (en) 2014-07-14 2015-11-20 주식회사 이우이엔티 Hybrid thermo-catalyst oxidation system
CN107970740A (en) * 2016-10-21 2018-05-01 无锡云瑞环保设备有限公司 Zeolite molecular sieve adsorbent equipment
KR20190109922A (en) * 2018-03-19 2019-09-27 한국조선해양 주식회사 Apparatus for removing VOCs
KR102518395B1 (en) 2018-03-19 2023-04-05 한국조선해양 주식회사 Apparatus for removing VOCs
KR20220135921A (en) * 2021-03-31 2022-10-07 에코케어 주식회사 Apparatus for removing air pollutants and burning them
KR102522680B1 (en) * 2021-03-31 2023-04-18 창성엔지니어링 주식회사 Apparatus for removing air pollutants and burning them
KR102640529B1 (en) * 2022-12-26 2024-02-27 한국에너지기술연구원 Apparatus and method for continuously regenerating spent activated carbon for syngas reforming
KR102673465B1 (en) * 2023-04-03 2024-06-07 김성도 Modular adsorption tower

Similar Documents

Publication Publication Date Title
CN208824192U (en) A kind of VOCs exhaust-gas efficient adsorption/desorption catalyzing burning processing system
CN108554150B (en) Preheating type catalytic combustion system for purifying volatile organic waste gas
KR101250940B1 (en) The treating system of odors and volatile organic compounds simultaneously
CN205760438U (en) A kind of activated carbon adsorption concentration for processing VOCs and the integrating device of regenerative thermal oxidizer
CN102941000A (en) Organic waste gas multifunctional integral processing device
KR100784409B1 (en) Concentrated Catalytic Oxidizing System of Volatile Organic Compounds, and Method Therefor
KR102176906B1 (en) Apparatus for removing bad smell of ascon and method the same
CN212855120U (en) Emission device for purifying volatile organic compounds
KR20080097500A (en) The treating system of odors and volatile organic compounds simultaneously
KR100561253B1 (en) A system for catalytic oxidation of vocs
CN111672265A (en) Volatile organic compounds exhaust treatment system
JP2009136841A (en) Catalyst oxidation treatment device and catalyst oxidation treatment method
JP4499375B2 (en) Exhaust gas treatment method and apparatus for gas sterilizer
KR20010045069A (en) Catalytic Incinerator with Dual-function Catalysts of Adsorption and Oxidation for VOCs Removal
KR100690441B1 (en) Concentrated Catalytic Oxidizing System of Volatile Organic Compounds, and Concentrating Bank Therefor
KR100889639B1 (en) Apparatus for destruction of volatile organic compounds
KR100665254B1 (en) Catalystic Combustion System of Concentration by Adsorption and Desorption by Counter-flow Heating Air
CN111330406A (en) VOCs for exhaust-gas treatment active carbon adsorption and catalytic combustion device
CN111467928A (en) Method and system for treating organic waste gas sprayed in automobile industry based on activated carbon adsorption concentration-catalytic combustion technology
CN212215036U (en) Active carbon adsorption and desorption catalytic combustion system
KR102244442B1 (en) Direct fire ventilation system
CN212068265U (en) VOCs for exhaust-gas treatment active carbon adsorption and catalytic combustion device
JP2005199123A (en) Exhaust gas treatment method for gas sterilizer and apparatus
KR20180040009A (en) Removal system for VOCs
KR102518395B1 (en) Apparatus for removing VOCs

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130308

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140310

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150309

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160308

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170308

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180308

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20200309

Year of fee payment: 15