[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR100566915B1 - Positive electrode for lithium secondary battery with enhanced electrode?s adhesion using lithium manganese oxide - Google Patents

Positive electrode for lithium secondary battery with enhanced electrode?s adhesion using lithium manganese oxide Download PDF

Info

Publication number
KR100566915B1
KR100566915B1 KR1020030097963A KR20030097963A KR100566915B1 KR 100566915 B1 KR100566915 B1 KR 100566915B1 KR 1020030097963 A KR1020030097963 A KR 1020030097963A KR 20030097963 A KR20030097963 A KR 20030097963A KR 100566915 B1 KR100566915 B1 KR 100566915B1
Authority
KR
South Korea
Prior art keywords
lithium
positive electrode
active material
secondary battery
electrode
Prior art date
Application number
KR1020030097963A
Other languages
Korean (ko)
Other versions
KR20050066653A (en
Inventor
김민수
유지상
장민철
김지현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020030097963A priority Critical patent/KR100566915B1/en
Publication of KR20050066653A publication Critical patent/KR20050066653A/en
Application granted granted Critical
Publication of KR100566915B1 publication Critical patent/KR100566915B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 양극의 전극 접착력을 향상시킨 리튬이차전지용 양극활물질 조성물, 이의 제조방법 및 이를 포함하는 양극에 관한 것으로, 보다 상세하게는 스피넬(spinel) 구조를 가지는 리튬망간산화물에 소량의 리튬전이금속 복합 산화물을 첨가한 리튬이차전지용 양극활물질 조성물은 양극활물질 및 집전체 사이의 접착력에는 영향을 미치지 않으면서 전극 내부의 양극활물질 간의 접착력을 증대시키므로, 전극의 접착력을 향상시킬 뿐만 아니라, 고온에서 전지의 수명을 연장시킬 수 있다.The present invention relates to a positive electrode active material composition for a lithium secondary battery having improved the electrode adhesion of the positive electrode, a method for manufacturing the same, and a positive electrode including the same. More specifically, a small amount of a lithium transition metal complex in a lithium manganese oxide having a spinel structure The positive electrode active material composition for the lithium secondary battery containing the oxide increases the adhesive force between the positive electrode active material inside the electrode without affecting the adhesive force between the positive electrode active material and the current collector, thereby improving the adhesion of the electrode and the life of the battery at high temperature. Can be extended.

리튬이차전지, 리튬망간산화물, 리튬전이금속 복합 산화물, 접착력Lithium secondary battery, lithium manganese oxide, lithium transition metal complex oxide, adhesion

Description

전극 접착력을 향상시킨 리튬망간산화물을 포함하는 리튬이차전지용 양극{Positive electrode for lithium secondary battery with enhanced electrode’s adhesion using lithium manganese oxide}Positive electrode for lithium secondary battery with enhanced electrode's adhesion using lithium manganese oxide}

도 1은 본 발명에 따라 제조된 양극의 전극 부러짐 정도를 실험하는 방법을나타낸 것이고, Figure 1 shows a method for testing the degree of electrode breakage of the anode prepared according to the present invention,

도 2는 본 발명에 따라 제조된 실시예 및 비교예의 고온에서 전지의 수명효과를 나타내는 것이다. Figure 2 shows the life effect of the battery at a high temperature of the Examples and Comparative Examples prepared according to the present invention.

<도면의 주요 부호에 대한 설명><Description of Major Symbols in Drawing>

1 - 집전체; 2 - 양극; 3 - 전극이 부러지지 않은 모습의 도식도;1-current collector; 2-anode; 3-schematic diagram of the appearance of the electrode not broken;

4 - 전극이 부러진 경우의 도식도4-Schematic when the electrode is broken

본 발명은 리튬이차전지용 양극활물질 조성물에 관한 것으로, 보다 상세하게는 리튬망간산화물을 양극활물질로 사용하는 리튬이차전지에 양극의 전극 접착력을 향상시키기 위해 양극활물질로 소량의 리튬전이금속 복합 산화물을 첨가한 리튬이차전지용 양극활물질 조성물에 관한 것이다.The present invention relates to a positive electrode active material composition for a lithium secondary battery, and more particularly, to a lithium secondary battery using lithium manganese oxide as a positive electrode active material, a small amount of a lithium transition metal composite oxide is added as a positive electrode active material to improve electrode adhesion of the positive electrode. One relates to a cathode active material composition for a lithium secondary battery.

최근에는 전기, 전자, 통신 및 컴퓨터 산업이 급속하게 발전함에 따라 고성능, 고안전성의 리튬이차전지에 대한 수요가 점차 증대되고 있으며, 특히 전자기기의 소형화, 박형화 및 경량화가 급속도로 확산되면서 이에 따른 전지의 소형화, 박형화의 요구가 날로 증대되고 있다.Recently, with the rapid development of the electric, electronic, communication and computer industries, the demand for high-performance, high-safety lithium secondary batteries is gradually increasing. In particular, as the miniaturization, thinning, and lightening of electronic devices are rapidly spreading, The demand for miniaturization and thinning is increasing day by day.

또한, 스피넬 구조를 가지는 리튬망간 복합 산화물은 4 V(volt) 전위의 리튬 또는 리튬이차전지의 다른 양극활물질에 비해 안전성과 가격 측면에서 장점을 지니고 있기 때문에 최근 많이 연구되고 있는 재료이고, 특히 안전성이 가장 중요한 특성으로 되어 있는 자동차용 대용량 이차전지 분야에서는 활발히 연구되고 있는 재료이다. 그러나, 이 재료는 충전·방전 싸이클(cycle)이 진행됨에 따라 그 용량의 감소가 심하게 일어나기 때문에 수명특성이 나쁜 단점을 안고 있다. 특히, 실제로 대용량의 전지를 제조하기 위하여, 전극의 극판을 두껍게 제조하는 경우에는 전극의 접착력이 상당히 떨어지게 된다.In addition, a lithium manganese composite oxide having a spinel structure is a material that has been studied a lot recently because it has advantages in terms of safety and price compared to other positive electrode active materials of lithium or lithium secondary batteries having a 4 V (volt) potential, and especially safety It is a material that is being actively researched in the field of large-capacity secondary batteries for automobiles, which are the most important characteristics. However, this material has a disadvantage in that its life characteristics are poor because its capacity decreases severely as the charge / discharge cycle proceeds. In particular, in order to actually manufacture a large capacity battery, when the electrode plate is made thick, the adhesive force of the electrode is considerably inferior.

이러한 단점을 해결하기 위해, 지금까지는 주로 물질 자체의 특성과 관련하여 수명특성의 유지에 관한 연구가 주류를 이루어 왔다. 예를들어, 한국공개특허 제 1999-0018077호에서는 리튬망간산화물을 분말의 입자가 팔면체 형태인 리튬망간산화물 미세분말로 제조하여 양극활물질로 사용하는 리튬이차전지를 개시하고 있다.In order to solve these disadvantages, until now, researches on the maintenance of lifespan characteristics have mainly been made mainly related to the properties of the materials themselves. For example, Korean Laid-Open Patent Publication No. 1999-0018077 discloses a lithium secondary battery in which lithium manganese oxide is prepared as a lithium manganese oxide fine powder in which the particles of the powder are octahedral and used as a cathode active material.

한편, 한국공개특허 제 2001-0018401호에서는 리튬니켈산화물을 양극활물질로 채용한 리튬이차전지를 개시하고 있다. 그러나, 본 발명과 같이 리튬망간산화물에 소량의 리튬전이금속 복합 산화물을 첨가하는 것에 대해서는 전혀 개시되어 있지 않고, 리튬니켈산화물을 과량 사용하게 되면 전극과 집전체 간의 접착력이 떨어지는 문제점이 야기된다.Meanwhile, Korean Laid-Open Patent Publication No. 2001-0018401 discloses a lithium secondary battery employing lithium nickel oxide as a cathode active material. However, the addition of a small amount of lithium transition metal composite oxide to lithium manganese oxide as described in the present invention is not disclosed at all, and the excessive use of lithium nickel oxide causes a problem that the adhesion between the electrode and the current collector is inferior.

그러나, 아직까지 전극의 극판 제조공정에서 리튬망간산화물에 소량의 리튬전이금속 복합 산화물을 첨가한 양극활물질에 관한 연구, 특히 전극의 접착력과 관련한 연구는 거의 전무한 상태이다.However, there is almost no research on the positive electrode active material in which a small amount of lithium transition metal complex oxide is added to lithium manganese oxide in the electrode plate manufacturing process of the electrode, in particular, regarding the adhesion of the electrode.

따라서, 본 발명자는 스피넬 구조를 가지는 리튬망간산화물을 사용한 리튬이차전지의 성능을 향상시킬 수 있는 방법에 관하여 연구하는 과정에서, 대용량 전지를 생산하기 위해 스피넬 구조를 가지는 리튬망간산화물을 극판에 많은 양으로 코팅하는 경우 전극의 접착력이 현저히 떨어지는 것을 확인하였고, 이를 해결하기 위한 방법을 찾던 중 pH가 높은 리튬전이금속 복합산화물을 소량 첨가함으로써 전극과 집전체 사이의 접착력에는 영향을 주지 않으면서 전극 내 활물질 간의 접착력이 향상되는 것을 확인하고, 이를 토대로 본 발명을 완성하게 되었다.Therefore, in the process of studying the method for improving the performance of a lithium secondary battery using a lithium manganese oxide having a spinel structure, the present inventors have a large amount of lithium manganese oxide having a spinel structure on the plate to produce a large capacity battery. It was confirmed that the coating strength of the electrode is significantly reduced when coating with, and the active material in the electrode without affecting the adhesion between the electrode and the current collector by adding a small amount of lithium transition metal complex oxide having a high pH while looking for a solution to solve this problem It was confirmed that the adhesion between the liver is improved, and based on this, the present invention was completed.

상기와 같은 문제점을 해결하기 위해, 본 발명은 스피넬 구조를 가지는 리튬망간산화물에 소량의 pH가 높은 리튬전이금속 복합산화물을 첨가함으로써 전극의 접착력 즉, 활물질 간의 접착력 및 집전체와의 접착력을 향상시켜 리튬이차전지의 수명특성을 좋게 하고자 한다.In order to solve the above problems, the present invention improves the adhesion of the electrode, that is, the adhesion between the active material and the current collector by adding a small amount of a high pH lithium transition oxide to the lithium manganese oxide having a spinel structure To improve the life characteristics of the lithium secondary battery.

상기 목적을 달성하기 위하여, 본 발명은 양극활물질, 결착제, 도전재 및 용매를 포함하는 리튬이차전지용 양극활물질 조성물에 있어서, 상기 양극활물질은 스 피넬(spinel) 구조를 가지는 리튬망간산화물 97 내지 99 중량% 및 리튬전이금속 복합 산화물 1 내지 3 중량%를 포함하는 리튬이차전지용 양극활물질 조성물을 제공한다.In order to achieve the above object, the present invention is a positive electrode active material composition for a lithium secondary battery comprising a positive electrode active material, a binder, a conductive material and a solvent, the positive electrode active material is lithium manganese oxide 97 to 99 having a spinel (spinel) structure It provides a cathode active material composition for a lithium secondary battery comprising a weight% and 1 to 3% by weight of the lithium transition metal composite oxide.

또한, 상기 양극활물질 조성물을 포함하는 리튬이차전지용 양극에 관한 것이다.The present invention also relates to a cathode for a lithium secondary battery including the cathode active material composition.

이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 리튬이차전지용 양극에 있어서, 스피넬(spinel) 구조를 가지는 리튬망간산화물에 소량의 리튬니켈산화물 또는 이에 상응하는 pH를 가진 리튬전이금속 복합 산화물을 코팅 전 믹싱 공정에서 소량 삽입하여 양극의 극판을 제조하고, 또한 본 발명은 상기 제조방법으로 제조되는 양극을 포함하는 리튬이차전지에 관한 것이다.The present invention provides a positive electrode plate of a positive electrode for a lithium secondary battery by inserting a small amount of lithium nickel oxide or a lithium transition metal composite oxide having a corresponding pH into a lithium manganese oxide having a spinel structure in a mixing process before coating To manufacture, and the present invention also relates to a lithium secondary battery comprising a positive electrode produced by the above production method.

LiMn2-xMxO4 LiMn 2-x M x O 4

상기 화학식 1에서, In Chemical Formula 1,

M은 Al, Li, Co, Cr, Sn, Ti, Ui, Si 또는 B이고,M is Al, Li, Co, Cr, Sn, Ti, Ui, Si or B,

x는 0 내지 0.1이다.x is 0 to 0.1.

본 발명에 사용되는 리튬전이금속 복합 산화물은 하기 화학식 2로 표시되는 화합물을 사용하며, 상기 리튬전이금속 복합 산화물 0.5 g을 물 50 ml에 녹여 측정한 pH는 10.8 - 12.0 인 것이 바람직하다. 또한, 상기 리튬전이금속 복합 산화물 은 스피넬 구조를 가지는 리튬망간산화물과 리튬전이금속 복합 산화물의 총함량을 100으로 할 경우, 1 내지 3 중량%의 함량으로 포함되는 것이 바람직하다. The lithium transition metal composite oxide used in the present invention uses a compound represented by the following formula (2), and the pH measured by dissolving 0.5 g of the lithium transition metal composite oxide in 50 ml of water is preferably 10.8-12.0. In addition, the lithium transition metal composite oxide is preferably included in an amount of 1 to 3% by weight when the total content of the lithium manganese oxide having a spinel structure and the lithium transition metal composite oxide is 100.

LiM1-xAxO2 LiM 1-x A x O 2

상기 화학식 2에서,In Chemical Formula 2,

M은 Ni 또는 Co 이고, M is Ni or Co,

A는 Al, Li, Co, Cr, Sn, Ti, Ui, Si 또는 B이고,A is Al, Li, Co, Cr, Sn, Ti, Ui, Si or B,

x는 0 내지 0.5이다.x is 0 to 0.5.

보다 구체적으로는, 리튬이차전지용 양극은 양극활물질로 스피넬 구조를 가지는 리튬망간산화물을 사용하고, 여기에 결착제 및 도전재를 첨가하며 이때 리튬전이금속 복합 산화물을 리튬망간산화물과 리튬전이금속 복합 산화물의 총함량 100에 대해 1 - 3 중량%로 혼합하여 제조된 슬러리를 집전체 위에 코팅한 후 압연하여 제조된다. 상기 슬러리는 집전체 위에 1.8 - 3.5 mAh/㎠의 함량으로 코팅되는 것이 바람직하다.More specifically, the positive electrode for a lithium secondary battery uses lithium manganese oxide having a spinel structure as a positive electrode active material, and a binder and a conductive material are added thereto, wherein the lithium transition metal composite oxide is a lithium manganese oxide and a lithium transition metal composite oxide. A slurry prepared by mixing 1 to 3% by weight based on a total content of 100 is prepared by coating on a current collector and rolling. The slurry is preferably coated with a content of 1.8-3.5 mAh / ㎠ on the current collector.

상기 결착제로는 폴리비닐리덴 디클로라이드(polyvinylidene dichloride, PVDF), 스티렌부타디엔고무(styrene butadiene rubber, SBR) 또는 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE) 등을 사용할 수 있으며, 상기 도전재로는 카본 블랙, 아세틸렌 블랙 또는 흑연 등을 사용할 수 있다The binder may be polyvinylidene dichloride (PVDF), styrene butadiene rubber (SBR) or polytetrafluoroethylene (PTFE), and the conductive material may be carbon black. , Acetylene black or graphite can be used.

상기 리튬전이금속 복합 산화물은 리튬망간산화물과 리튬전이금속 복합 산화 물 총함량 100에 대하여 1 내지 3 중량%로 코팅되는 것이 바람직하다. The lithium transition metal composite oxide is preferably coated with 1 to 3% by weight based on the total content of lithium manganese oxide and lithium transition metal composite oxide 100.

또한, 본 발명은 상기와 같이 제조된 리튬이차전지용 양극, 음극, 분리막 및 전해액으로 이루어진 리튬이차전지에 관한 것이다. In addition, the present invention relates to a lithium secondary battery comprising a cathode, an anode, a separator, and an electrolyte for a lithium secondary battery prepared as described above.

상기 음극은 음극활물질, 결착제 및 도전재를 혼합한 슬러리를 집전체 위에 도포 및 건조하여 제조할 수 있다. 이때, 음극활물질로는 탄소가 함유된 인조흑연, 천연흑연, 섬유(fiber)상 흑연, 결정질 카본 또는 비정질 카본 등을 사용할 수 있다.The negative electrode may be prepared by applying and drying a slurry of a negative electrode active material, a binder, and a conductive material on a current collector. In this case, as the negative electrode active material, artificial graphite containing natural carbon, natural graphite, fibrous graphite, crystalline carbon, or amorphous carbon may be used.

상기 분리막은 폴리에틸렌, 폴리프로필렌 또는 폴리에틸렌과 폴리프로필렌의 다공성 막으로 구성된 것을 사용하는 것이 바람직하다. The separator is preferably used consisting of polyethylene, polypropylene or a porous membrane of polyethylene and polypropylene.

상기 전해액은 유기용매에 리튬염을 용해한 액체 전해액을 사용하거나, 카보네이트계 전해액을 사용하는 것이 바람직하다. 상기 유기용매는 N-메틸피롤리돈(N-methylpyrrolidone, NMP), 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 감마-뷰틸로락톤(gama-butyrolacton, GBL), 디에틸 카보네이트(diethyl carbonate, DEC), 디메틸 카보네이트(dimethyl carbonate, DMC) 또는 에틸메틸 카르보네이트(ethylmethyl carbonate, EMC) 등의 혼합 용매를 사용할 수 있고, 리튬염은 LiClO4, LiAsF6, LiPF6, LiBF4 또는 CF3 SO3Li 등을 사용할 수 있다.It is preferable that the said electrolyte solution uses the liquid electrolyte which melt | dissolved lithium salt in the organic solvent, or uses a carbonate type electrolyte solution. The organic solvent is N-methylpyrrolidone (NMP), ethylene carbonate (EC), propylene carbonate (PC), gamma-butyrolacton (GBL), di Mixed solvents such as ethyl carbonate (DEC), dimethyl carbonate (DMC), or ethylmethyl carbonate (EMC) can be used. Lithium salts include LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 or CF 3 SO 3 Li and the like can be used.

본 발명에 따라 제조된 리튬전이금속 복합 산화물을 포함한 리튬망간산화물을 양극으로 하는 전지는 전극 내의 활물질 간의 접착력이 좋을 뿐 아니라, 전극과 집전체의 접착력은 유지를 하면서, 고온 수명을 향상시키는 효과를 준다.A battery having a lithium manganese oxide including a lithium transition metal composite oxide prepared according to the present invention as a positive electrode not only has good adhesion between the active materials in the electrode, but also maintains the adhesion between the electrode and the current collector, while improving the high temperature life. give.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are merely to illustrate the present invention, and the scope of the present invention is not limited to the following examples.

<실시예 1><Example 1>

양극활물질을 100으로 가정하여, 리튬망간산화물 99 중량% 및 리튬전이금속 복합 산화물로 pH가 11.8인 리튬니켈 복합산화물 1 중량%을 포함하는 양극활물질을 제조하였다. 양극판 코팅을 위해 앞서 제조된 양극활물질 85 중량%, 결합제인 폴리비닐리덴 디클로라이드(polyvinylidene dichloride, PVDF) 5 중량% 및 도전재인 흑연 10 중량%를 유기용매인 N-메틸피롤리돈(N-methylpyrrolidone, NMP) 용매와 혼합하여 슬러리를 제조하였다. 상기 슬러리를 알루미늄 극판에 2.0mAh/cm2 의 양으로 코팅한 후 건조시켰다. 건조시킨 후 압연을 하여 양극을 제조하였다. 또한 전극의 pH를 측정하기 위하여 양극활물질로 이용된 리튬망간산화물, 리튬니켈 복합산화물 및 도전재로 이용된 흑연을 상기와 동일한 비율로 혼합한 물질 0.5g을 50ml 물에 녹여 pH를 측정하였고, 그 결과는 표 1과 같다.Assuming that the cathode active material is 100, a cathode active material including 99% by weight of lithium manganese oxide and 1% by weight of lithium nickel composite oxide having a pH of 11.8 as a lithium transition metal composite oxide was prepared. 85% by weight of the positive electrode active material prepared previously for coating the positive electrode plate, 5% by weight of polyvinylidene dichloride (PVDF) as a binder, and 10% by weight of graphite as a conductive material were used as an organic solvent, N-methylpyrrolidone (N-methylpyrrolidone). , NMP) was mixed with a solvent to prepare a slurry. The slurry was coated on an aluminum electrode plate in an amount of 2.0 mAh / cm 2 and then dried. After drying, rolling was performed to prepare a positive electrode. In addition, to measure the pH of the electrode, 0.5 g of a material mixed with lithium manganese oxide, a lithium nickel composite oxide, and graphite used as a conductive material in the same ratio as above was dissolved in 50 ml of water to measure pH. The results are shown in Table 1.

<실시예 2><Example 2>

상기 실시예 1에서 리튬망간산화물 98 중량% 및 리튬니켈 복합산화물을 2 중량%로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.Except for using 98% by weight of lithium manganese oxide and 2% by weight of the lithium nickel composite oxide in Example 1 was carried out in the same manner as in Example 1.

<실시예 3><Example 3>

상기 실시예 1에서 리튬망간산화물 97 중량% 및 리튬니켈 복합산화물을 3 중량%로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.Except for using 97% by weight of lithium manganese oxide and 3% by weight of lithium nickel composite oxide in Example 1 was carried out in the same manner as in Example 1.

<비교예 1>Comparative Example 1

상기 실시예 1에서 리튬망간산화물을 100 중량%로 사용하고, 리튬니켈 복합산화물을 사용하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.Example 1 was carried out in the same manner as in Example 1 except that 100% by weight of lithium manganese oxide, and not using a lithium nickel composite oxide.

<비교예 2>Comparative Example 2

상기 실시예 1에서 리튬망간산화물 95 중량% 및 리튬니켈 복합산화물을 5 중량%로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.The same process as in Example 1 was performed except that 95 wt% of lithium manganese oxide and 5 wt% of lithium nickel composite oxide were used in Example 1.

<실험예 1> 전극 접착력 실험Experimental Example 1 Electrode Adhesion Test

상기 실시예 1 내지 3 및 비교예 1 내지 2에서 제조한 양극의 전극 접착력 실험을 수행하였다. 실험방법은 전극 표면에 강력한 양면 테이프를 붙여서 인장 측정기를 이용하여서 인장력을 보았다. 그 결과, 인장력의 정도는 표 1과 같다.Electrode adhesion experiment of the positive electrode prepared in Examples 1 to 3 and Comparative Examples 1 to 2 was performed. In the test method, a strong double-sided tape was attached to the electrode surface and the tensile force was measured using a tensile tester. As a result, the degree of tensile force is shown in Table 1.

또한, 전극 내의 활물질 간의 접착력을 검토하기 위하여, 전극을 6cm × 1cm 의 직사각형 모양으로 절단하여서, 도 1과 같이 가운데 부분이 각이 60도가 되게 접었고, 이때 전극의 부러지는 정도를 검토하여 표 1에 나타내었다.In addition, in order to examine the adhesive force between the active materials in the electrode, the electrode was cut into a rectangular shape of 6 cm x 1 cm, and the center portion was folded at an angle of 60 degrees as shown in FIG. 1, and the degree of breakage of the electrode was examined in Table 1 below. Indicated.

또한, 양극의 고온에서의 수명을 확인하기 위하여 다음과 같은 실험을 수행하였다.In addition, the following experiment was conducted to confirm the life at high temperatures of the positive electrode.

먼저, 양극으로 상기 실시예 1 내지 3 및 비교예 1 내지 2에서 제조한 양극을 사용하였고, 음극으로 리튬 금속을 사용하였으며, 전해질로 에틸렌 카보네이트(EC)와 에틸메틸카보네이트(EMC)가 1:2의 부피비로 혼합된 용매에 LiPF6가 1몰 용해된 용액을 사용하여 리튬이차전지를 제조하였다.First, the anodes prepared in Examples 1 to 3 and Comparative Examples 1 and 2 were used as the anode, lithium metal was used as the cathode, and ethylene carbonate (EC) and ethylmethyl carbonate (EMC) were 1: 2 as the electrolyte. A lithium secondary battery was prepared using a solution in which 1 mol of LiPF 6 was dissolved in a solvent mixed at a volume ratio of.

상기 리튬이차전지의 50 ℃에서의 수명특성을 측정하기 위하여, 충전 방전의 전압 범위는 3.4V∼4.3V로 하였으며, 충전율과 방전율은 동일하게 0.2 C(0.5 mAh/㎠) 속도로 하였으며, 그 결과는 도 2와 같다.In order to measure the life characteristics of the lithium secondary battery at 50 ° C., the voltage range of the charge discharge was 3.4V to 4.3V, and the charge rate and discharge rate were the same at 0.2 C (0.5 mAh / cm 2) rate. Is the same as FIG.

pHpH 전극 접착력 ( 접착력/g)Electrode Adhesion (Adhesion / g) 전극의 부러짐 정도Degree of breakage of electrode 기 타Other 실시예1Example 1 9.059.05 4.5964.596 없음none 실시예2Example 2 9.199.19 4.5824.582 없음none 실시예3Example 3 9.309.30 4.3214.321 없음none 비교예1Comparative Example 1 8.848.84 4.5454.545 부러짐fracture 압연 중 전극 탈리Electrode Desorption During Rolling 비교예2Comparative Example 2 9.649.64 2.542.54 없음none

표 1과 같이, 실시예에서 제조된 전극의 경우에는 전극의 부러짐이 전혀 관찰되지 않았지만, 비교예 1의 경우에는 전극의 부러짐이 관찰될 뿐만 아니라, 전극을 압연하였을 때, 전극이 탈리되는 현상도 나타내었고, 또한 도 2에 나타난 바와 같이, 비교예 1의 경우에는 실제 고온수명실험에서도 그 결과가 상당히 나쁨을 확인할 수 있었다. 이는 전극 내 활물질 간의 접착력이 극히 낮아서 생기는 문제점인 것이다. As shown in Table 1, no breakage of the electrode was observed in the case of the electrode manufactured in Example, but in the case of Comparative Example 1, not only the breakage of the electrode was observed, but also the phenomenon of the electrode detaching when the electrode was rolled. In addition, as shown in Figure 2, in the case of Comparative Example 1 was confirmed that the results are significantly poor in the actual high temperature life test. This is a problem caused by the extremely low adhesion between the active material in the electrode.

또, 표 1에 나타난 바와 같이 비교예 2의 경우 pH 가 높은 물질을 함유하고 있기 때문에 전극의 부러짐 현상은 관찰되지 않았지만, 과량을 첨가하였기 때문에 전극과 집전체 간의 접착력이 떨어짐을 확인할 수 있었다. 또한, 도 2에 나타난 바와 같이, 고온수명이 실시예보다 나쁨을 관찰할 수 있었다. In addition, as shown in Table 1, in the case of Comparative Example 2 contained a substance having a high pH, the breakage phenomenon of the electrode was not observed, but it was confirmed that the adhesive strength between the electrode and the current collector is poor because of the addition of excess. In addition, as shown in Figure 2, it was observed that the high temperature life is worse than the embodiment.

반면, 실시예의 경우에는 전극의 부러짐 현상도 전혀 없었으며, 고온에서의 수명도 좋음을 알 수가 있었다. 즉, 양극을 만들 때에 소량의 pH가 높은 리튬전이금속 복합 산화물을 넣을 경우 전극의 접착력을 좋게 할 뿐만 아니라, 이로 인해서 고온 수명에 향상이 있음을 확인할 수 있었다.On the other hand, in the case of Example, there was no breakage of the electrode at all, and it was found that the service life at a high temperature was also good. In other words, when the lithium transition metal composite oxide containing a small amount of high pH was added to make the positive electrode, not only the adhesion of the electrode was improved, but also the high temperature life was confirmed.

상기에서 살펴본 바와 같이, 본 발명에 따라 제조된 양극 즉, 스피넬 구조를 가지는 리튬망간산화물에 pH가 높은 리튬전이금속을 소량 첨가한 양극활물질 조성물을 포함하는 양극은 전극 내에서 활물질 간의 접착력을 높일 뿐만 아니라, 수명특성의 향상 특히, 45 ℃ 이상의 고온에서의 수명특성 향상에 우수한 효과가 있다.As described above, a positive electrode prepared according to the present invention, that is, a positive electrode including a positive electrode active material composition in which a small amount of lithium transition metal having a high pH is added to a lithium manganese oxide having a spinel structure may not only increase adhesion between active materials in the electrode. In addition, there is an excellent effect in improving the life characteristics, in particular in improving the life characteristics at a high temperature of 45 ℃ or more.

Claims (7)

양극활물질, 결착제, 도전재 및 용매를 포함하는 리튬이차전지용 양극활물질 조성물에 있어서, 상기 양극활물질은 스피넬(spinel) 구조를 가지는 리튬망간산화물 97 내지 99 중량% 및 리튬전이금속 복합 산화물 1 내지 3 중량%를 포함하는 것을 특징으로 하는 리튬이차전지용 양극활물질 조성물.In the positive electrode active material composition for a lithium secondary battery comprising a positive electrode active material, a binder, a conductive material and a solvent, the positive electrode active material is 97 to 99% by weight lithium manganese oxide having a spinel structure and the lithium transition metal composite oxide 1 to 3 A cathode active material composition for a lithium secondary battery comprising a weight%. 제 1항에 있어서,The method of claim 1, 상기 리튬망간산화물은 하기 화학식 1로 표시되는 화합물인 것을 특징으로 하는 양극활물질 조성물.The lithium manganese oxide is a cathode active material composition, characterized in that the compound represented by the formula (1). <화학식 1><Formula 1> LiMn2-xMxO4 LiMn 2-x M x O 4 상기 화학식 1에서, In Chemical Formula 1, M은 Al, Li, Co, Cr, Sn, Ti, Ui, Si 또는 B이고,M is Al, Li, Co, Cr, Sn, Ti, Ui, Si or B, x는 0 내지 0.1임x is 0 to 0.1 제 1항에 있어서,The method of claim 1, 상기 리튬전이금속 복합 산화물은 pH가 10.8- 12.0이며, 하기 화학식 2로 표시되는 화합물인 것을 특징으로 하는 양극활물질 조성물.The lithium transition metal composite oxide has a pH of 10.8-12.0, the cathode active material composition, characterized in that the compound represented by the formula (2). <화학식 2><Formula 2> LiM1-xAxO2 LiM 1-x A x O 2 상기 화학식 2의 식에서,In the formula (2), M은 Ni 또는 Co 이고, M is Ni or Co, A는 Al, Li, Co, Cr, Sn, Ti, Ui, Si, 또는 B이고,A is Al, Li, Co, Cr, Sn, Ti, Ui, Si, or B, x는 0 내지 0.5임.x is 0 to 0.5. 제 1항 내지 제 3항 중 어느 한 항의 양극활물질 조성물을 포함하는 것을 특징으로 하는 리튬이차전지용 양극.A cathode for a lithium secondary battery, comprising the cathode active material composition of any one of claims 1 to 3. 스피넬(spinel) 구조를 가지는 리튬망간산화물 97 내지 99 중량% 및 리튬전이금속 복합 산화물 1 내지 3 중량%를 혼합하는 단계(제1단계); 상기 혼합물에 결착제, 도전재 및 유기용매를 첨가하고 혼합하여 슬러리를 제조하는 단계(제2단계); 및 상기 슬러리를 집전체 위에 코팅한 후 압연하는 단계(제3단계)로 이루어지는 것을 특징으로 하는 리튬이차전지용 양극의 제조방법.Mixing 97 to 99% by weight of lithium manganese oxide having a spinel structure and 1 to 3% by weight of a lithium transition metal composite oxide (first step); Preparing a slurry by adding and mixing a binder, a conductive material, and an organic solvent to the mixture (second step); And coating the slurry on a current collector and then rolling the third slurry (third step). 제 5항에 있어서, 상기 슬러리는 집전체 위에 1.8 - 3.5 mAh/㎠의 함량으로 코팅되는 것을 특징으로 하는 제조방법.The method of claim 5, wherein the slurry is coated on a current collector in a content of 1.8 to 3.5 mAh / ㎠. 제 1항 내지 제 3항 중 어느 한 항의 양극활물질 조성물을 포함하는 것을 특징으로 하는 리튬이차전지.A lithium secondary battery comprising the positive electrode active material composition of any one of claims 1 to 3.
KR1020030097963A 2003-12-26 2003-12-26 Positive electrode for lithium secondary battery with enhanced electrode?s adhesion using lithium manganese oxide KR100566915B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030097963A KR100566915B1 (en) 2003-12-26 2003-12-26 Positive electrode for lithium secondary battery with enhanced electrode?s adhesion using lithium manganese oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030097963A KR100566915B1 (en) 2003-12-26 2003-12-26 Positive electrode for lithium secondary battery with enhanced electrode?s adhesion using lithium manganese oxide

Publications (2)

Publication Number Publication Date
KR20050066653A KR20050066653A (en) 2005-06-30
KR100566915B1 true KR100566915B1 (en) 2006-04-03

Family

ID=37257700

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030097963A KR100566915B1 (en) 2003-12-26 2003-12-26 Positive electrode for lithium secondary battery with enhanced electrode?s adhesion using lithium manganese oxide

Country Status (1)

Country Link
KR (1) KR100566915B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762351A (en) * 2005-08-16 2014-04-30 株式会社Lg化学 Cathode active material and lithium secondary battery containing the same
US8895187B2 (en) 2005-08-16 2014-11-25 Lg Chem, Ltd. Cathode active material and lithium secondary battery containing the same
CN101223658A (en) * 2005-08-16 2008-07-16 株式会社Lg化学 Cathode active material and lithium secondary battery containing the same
US8936873B2 (en) 2005-08-16 2015-01-20 Lg Chem, Ltd. Cathode active material and lithium secondary battery containing them

Also Published As

Publication number Publication date
KR20050066653A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
EP2731179B1 (en) Anode comprising silicon-based material and carbon material, and lithium secondary battery comprising same
KR101202863B1 (en) Negative electrode for battery and lithium ion battery using the same
US9012088B2 (en) Anode composition comprising acrylonitrile-acrylic acid copolymer as binder, method for preparing the anode composition and lithium secondary battery using the anode composition
US10340550B2 (en) Lithium ion secondary cell
CN105390671B (en) The manufacturing method and positive electrode active material for lithium ion battery layer of positive electrode active material for lithium ion battery layer
JP5228576B2 (en) Lithium ion secondary battery and electric vehicle power supply
EP2919304B1 (en) Positive electrode active material and hybrid ion battery
US20120258360A1 (en) Negative electrode for lithium secondary battery and lithium secondary battery
Elia et al. Nanostructured tin–carbon/LiNi0. 5Mn1. 5O4 lithium-ion battery operating at low temperature
CN101682079A (en) Non-aqueous electrolyte and lithium secondary battery having the same
KR20110035929A (en) Nonaqueous electrolytic secondary battery
KR101249349B1 (en) Negative active material for lithium secondary battery and lithium secondary battery using same
CN113851608A (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising same
CN103069623A (en) Electrode active material and non-aqueous electrolyte secondary battery provided with same
KR20150021008A (en) Lithium Cobalt Based Composite Oxide Having Improved Cycle Life Characteristics and Positive Active Material for Secondary Battery Comprising the Same
WO2020170833A1 (en) Electrolyte composition, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
KR101049465B1 (en) Manufacture of the anode material including poly(acrylonitrile-acrylic acid), and binder, manufacture of the lithium battery anode comprising the same
KR20150007805A (en) Positive active material, preparing method thereof, positive electrode for lithium secondary battery including the same, and lithium secondary battery employing the same
KR100566915B1 (en) Positive electrode for lithium secondary battery with enhanced electrode?s adhesion using lithium manganese oxide
KR102094466B1 (en) Polymer electrolyte for secondary battery and secondary battery comprising the same
US20140367609A1 (en) Active material for a lithium secondary battery, method of manufacturing the same, electrode including the active material, and lithium secondary battery including the electrode
CN100511821C (en) A lithium ion battery and preparing method thereof
CN1967915B (en) Battery anode and lithium ion battery used the same and their preparing method
JP2002298852A (en) Electrochemical cell having ionomer binder and manufacturing method relating to the same
JP2003168436A (en) Positive electrode for lithium battery and lithium battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150119

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160216

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170216

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180116

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 14