KR100555400B1 - The Preparation of Barium Titanate based powder with dielective composition by oxalate snythesis - Google Patents
The Preparation of Barium Titanate based powder with dielective composition by oxalate snythesis Download PDFInfo
- Publication number
- KR100555400B1 KR100555400B1 KR1020030094658A KR20030094658A KR100555400B1 KR 100555400 B1 KR100555400 B1 KR 100555400B1 KR 1020030094658 A KR1020030094658 A KR 1020030094658A KR 20030094658 A KR20030094658 A KR 20030094658A KR 100555400 B1 KR100555400 B1 KR 100555400B1
- Authority
- KR
- South Korea
- Prior art keywords
- powder
- barium
- barium titanate
- composite
- titanyl oxalate
- Prior art date
Links
- 239000000843 powder Substances 0.000 title claims abstract description 71
- 229910002113 barium titanate Inorganic materials 0.000 title claims abstract description 42
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 title claims abstract description 39
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 239000000203 mixture Substances 0.000 title abstract description 10
- 238000002360 preparation method Methods 0.000 title abstract description 7
- 239000002131 composite material Substances 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 25
- QKKWJYSVXDGOOJ-UHFFFAOYSA-N oxalic acid;oxotitanium Chemical compound [Ti]=O.OC(=O)C(O)=O QKKWJYSVXDGOOJ-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052788 barium Inorganic materials 0.000 claims abstract description 23
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052751 metal Inorganic materials 0.000 claims abstract description 22
- 239000002184 metal Substances 0.000 claims abstract description 22
- 239000000654 additive Substances 0.000 claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 claims abstract description 20
- 230000000996 additive effect Effects 0.000 claims abstract description 16
- 239000007864 aqueous solution Substances 0.000 claims abstract description 15
- 235000006408 oxalic acid Nutrition 0.000 claims abstract description 11
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 claims abstract description 10
- 229910001626 barium chloride Inorganic materials 0.000 claims abstract description 10
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 claims abstract description 10
- 239000003985 ceramic capacitor Substances 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- 239000010936 titanium Substances 0.000 claims abstract description 8
- 239000011572 manganese Substances 0.000 claims description 21
- 239000002002 slurry Substances 0.000 claims description 10
- 238000002156 mixing Methods 0.000 claims description 9
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 239000010955 niobium Substances 0.000 claims description 8
- 238000001238 wet grinding Methods 0.000 claims description 6
- 229910052727 yttrium Inorganic materials 0.000 claims description 6
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 6
- 229910052689 Holmium Inorganic materials 0.000 claims description 5
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 claims description 5
- 229910052691 Erbium Inorganic materials 0.000 claims description 4
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 4
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 4
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 claims description 4
- 150000001805 chlorine compounds Chemical class 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 2
- 238000000197 pyrolysis Methods 0.000 claims description 2
- 239000002245 particle Substances 0.000 abstract description 21
- 238000009826 distribution Methods 0.000 abstract description 13
- 239000000243 solution Substances 0.000 abstract description 9
- 230000003068 static effect Effects 0.000 abstract description 4
- 150000001875 compounds Chemical class 0.000 abstract description 3
- 239000002244 precipitate Substances 0.000 abstract description 2
- WCMHZFHLWGFVCQ-UHFFFAOYSA-N [Ba].[Mn] Chemical compound [Ba].[Mn] WCMHZFHLWGFVCQ-UHFFFAOYSA-N 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 10
- 239000011575 calcium Substances 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 239000011777 magnesium Substances 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 238000010532 solid phase synthesis reaction Methods 0.000 description 5
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 238000003836 solid-state method Methods 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- JBDFJDOQDLLTEY-UHFFFAOYSA-N [Ti][Mn][Ba] Chemical compound [Ti][Mn][Ba] JBDFJDOQDLLTEY-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 1
- XBYNNYGGLWJASC-UHFFFAOYSA-N barium titanium Chemical compound [Ti].[Ba] XBYNNYGGLWJASC-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- PHGMGTWRSNXLDV-UHFFFAOYSA-N diethyl furan-2,5-dicarboxylate Chemical compound CCOC(=O)C1=CC=C(C(=O)OCC)O1 PHGMGTWRSNXLDV-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/003—Titanates
- C01G23/006—Alkaline earth titanates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/30—Three-dimensional structures
- C01P2002/34—Three-dimensional structures perovskite-type (ABO3)
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/10—Metal-oxide dielectrics
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Capacitors (AREA)
Abstract
본 발명은 옥살레이트법에 의한 복합티탄산바륨계 파우더의 제조방법에 관한 것으로서, 더욱 상세하게는 염화바륨(BaCl2ㆍ2H2O)과 사염화티탄(TiCl4)의 혼합수용액을 옥살산(H2C2O4)수용액에 침전시켜 얻어진 바륨티타닐옥살레이트[BaTiO(C2O4)2ㆍ4H2O]와 특정의 금속함유 첨가제를 일정비로 혼합분쇄한 후 열처리하여, 종래에 비해 입도분포가 균일함과 동시에 파우더의 화학양론적 조성(Ba/M/Ti의 몰비)을 일정하게 유지시킬 수 있고, 내환원성이 우수한 복합티탄산바륨계 파우더를 간단하고 생산성이 높게 제조할 수 있어서 소형, 고용량용 X7R 적층세라믹콘덴서(MLCC), 정특성써미스터(PTC) 및 압전체 등의 제조에 광범위하게 활용될 수 있는 복합티탄산바륨계 파우더의 제조방법에 관한 것이다.The present invention relates to a process for the preparation of a compound of barium titanate-based powder by the oxalate method, and more particularly of oxalic acid to a mixed aqueous solution of barium chloride (BaCl 2 and 2H 2 O) and titanium tetrachloride (TiCl 4) (H 2 C 2 O 4) to barium titanyl oxalate obtained precipitate in an aqueous solution [C (BaTiO 2 O 4) 2 and 4H 2 O] and then a solution ground to a specific metal-containing additive predetermined ratio by the heat treatment, the particle size distribution as compared with the conventional It is possible to maintain uniform and at the same time the stoichiometric composition of the powder (molar ratio of Ba / M / Ti), and it is possible to manufacture complex barium titanate powder with excellent reduction resistance, so that it is simple and high in productivity. The present invention relates to a method for producing a composite barium titanate-based powder that can be widely used in the manufacture of X7R laminated ceramic capacitors (MLCC), static characteristic thermistors (PTC) and piezoelectric elements.
바륨티타닐옥살레이트, 금속함유 첨가제, 복합티탄산바륨계 파우더Barium titanyl oxalate, metal-containing additive, composite barium titanate powder
Description
도 1의 a)는 본 발명에 따라 실시예 1에서 제조된 티탄산망간바륨의 SEM 사진을 나타낸 것이고, b)는 비교예 1에서 종래의 고상법으로 제조한 티탄산망간바륨의 SEM 사진을 나타낸 것이다.Figure 1 a) shows a SEM picture of barium manganese titanate prepared in Example 1 according to the present invention, b) shows a SEM picture of barium manganese titanate prepared by a conventional solid phase method in Comparative Example 1.
도 2의 a)는 본 발명에 따라 실시예 1에서 제조된 티탄산망간바륨의 입자크기분포도를 나타낸 것이고, b)는 비교예 1에서 종래의 고상법으로 제조한 티탄산망간바륨의 입자크기분포도를 나타낸 것이다.Figure 2 a) shows a particle size distribution of the barium manganese titanate prepared in Example 1 according to the present invention, b) shows a particle size distribution of the manganese barium titanate prepared by a conventional solid-phase method in Comparative Example 1 will be.
도 3은 a)는 본 발명에 따라 실시예 1에서 제조된 티탄산망간바륨의 XRD 데이터를 나타낸 것이고, b)는 비교예 1에서 종래의 고상법으로 제조한 티탄산망간바륨의 XRD 데이터를 나타낸 것이다.Figure 3 a) shows the XRD data of barium manganese titanate prepared in Example 1 according to the present invention, b) shows the XRD data of manganese barium titanate prepared by a conventional solid phase method in Comparative Example 1.
도 4는 본 발명의 제조공정도를 도식화하여 나타낸 것이다.4 is a schematic view showing a manufacturing process diagram of the present invention.
본 발명은 옥살레이트법에 의한 복합티탄산바륨계 파우더의 제조방법에 관한 것으로서, 더욱 상세하게는 염화바륨(BaCl2ㆍ2H2O)과 사염화티탄(TiCl4)의 혼합수용액을 옥살산(H2C2O4)수용액에 침전시켜 얻어진 바륨티타닐옥살레이트[BaTiO(C2O4)2ㆍ4H2O]와 특정의 금속함유 첨가제를 일정비로 혼합분쇄한 후 열처리하여, 종래에 비해 입도분포가 균일함과 동시에 파우더의 화학양론적 조성(Ba/M/Ti의 몰비)을 일정하게 유지시킬 수 있고, 내환원성이 우수한 복합티탄산바륨계 파우더를 간단하고 생산성이 높게 제조할 수 있어서 소형, 고용량용 X7R 적층세라믹콘덴서(MLCC), 정특성써미스터(PTC) 및 압전체 등의 제조에 광범위하게 활용될 수 있는 복합티탄산바륨계 파우더의 제조방법에 관한 것이다.The present invention relates to a process for the preparation of a compound of barium titanate-based powder by the oxalate method, and more particularly of oxalic acid to a mixed aqueous solution of barium chloride (BaCl 2 and 2H 2 O) and titanium tetrachloride (TiCl 4) (H 2 C 2 O 4) to barium titanyl oxalate obtained precipitate in an
티탄산바륨 파우더는 X7R용 적층세라믹콘덴서(MLCC), 정특성세라믹콘덴서(PCT) 및 압전체 등의 원료로 광범위하게 사용되고 있다. 이러한 티탄산바륨 파우더는 종래에는 이산화티탄(TiO2)과 탄산바륨(BaCO3)을 고상반응에 의해 고온에서 신터링하여 제조하였지만, 최근 MLCC의 소형 대용량화(고유전율조성, 유전체 박층화 및 고적층화), 저온소성화, 고주파 및 고성능화 등에 따라 고순도/조성균일성, 미립/입도균일성, 비응집성/고분산성 등이 요구되고 있다. 특히, 고적층화가 되면서 내부전극을 고가원료인 Ag-Pd계에서 Ni계로 전환하게 되고 이에 따라 Ni전극의 산화를 방지하기 위해 환원성분위기에서 소결이 필요하고, 고용량의 MLCC를 제조하기 위하여 시트두께가 박층화되어, 1 ㎛ 이하의 균일한 분 말을 요구하게 되었다. Barium titanate powder has been widely used as a raw material for multilayer ceramic capacitors (MLCC), static ceramic capacitors (PCT), and piezoelectric materials for X7R. Such barium titanate powder was conventionally manufactured by sintering titanium dioxide (TiO 2 ) and barium carbonate (BaCO 3 ) at a high temperature by a solid phase reaction, but recently miniaturization of MLCC (high dielectric constant composition, dielectric thinning and high lamination). Due to low temperature plasticization, high frequency and high performance, high purity / composition uniformity, fine grain / particle uniformity, non-aggregation / high dispersion, etc. are required. In particular, as the lamination is performed, the internal electrode is converted from Ag-Pd, which is a high-cost raw material, to Ni-based. Therefore, sintering is required in the reducing component to prevent oxidation of the Ni electrode, and the sheet thickness is increased in order to manufacture a high capacity MLCC. It became thin and required the uniform powder of 1 micrometer or less.
그러나, 종래의 고상법에 의해 제조된 BaTiO3는 사용하는 출발원료의 한계로 인해 환원성분위기에 치명적으로 작용하는 불순물인 알칼리금속(K, Na 등) 및 철(Fe)에 대한 제어가 어려울 뿐만 아니라, 입도가 불균일하여 박층화된 고용량 MLCC에 사용할 수가 없다. 이러한 특성을 만족할 수 있는 파우더의 제조방법으로 최근에는 액상합성법의 수요가 증가하고 있다. 액상법으로는 예를 들면 공침법(옥살레이트법), 수열합성법, 알콕사이드법 등이 개발되어 그 사용이 급증하고 있다.However, BaTiO 3 prepared by the conventional solid-state method is difficult to control the alkali metal (K, Na, etc.) and iron (Fe), which are fatal impurities acting in the reducing component crisis due to the limitation of the starting material used. However, it cannot be used for thinned high capacity MLCCs due to uneven particle size. Recently, the demand for liquid synthesis has increased as a method for preparing powders that can satisfy these characteristics. As the liquid phase method, for example, the coprecipitation method (oxalate method), hydrothermal synthesis method, alkoxide method and the like have been developed, and the use thereof is rapidly increasing.
한편, 환원성분위기에서 소결이 이루어지기 때문에 주원료로 사용되고 있는티탄산바륨(BaTiO3)의 산소결함에 의하여 MLCC의 퇴화(degradation) 및 비저항감소 현상이 발생한다. 이를 방지하기 위하여 망간(Mn), 이트륨(Y), 칼슘(Ca), 지르코늄(Zr), 홀뮴(Ho), 마그네슘(Mg) 등의 산화물을 첨가제로 사용하고 있지만, 근본적인 BaTiO3의 산소결함은 제거는 되지 않는다. On the other hand, since the sintering is performed in the reducing component crisis, the degradation of the MLCC and the reduction of the resistivity occur due to the oxygen deficiency of barium titanate (BaTiO 3 ), which is used as the main raw material. To prevent this, oxides such as manganese (Mn), yttrium (Y), calcium (Ca), zirconium (Zr), holmium (Ho) and magnesium (Mg) are used as additives, but the fundamental oxygen defect of BaTiO 3 It is not removed.
이런 이유로 MLCC의 주원료로 BaTiO3를 사용하는 대신에 BaMTiO3를 적용하는 방법이 시도되고 있다. 이때, 금속(M)은 망간(Mn), 마그네슘(Mg), 칼슘(Ca), 지르코늄(Zr), 이트륨(Y), 홀뮴(Ho), 디스프로슘(Dy), 에르븀(Er), 이테르븀(Yb), 하프늄(Hf), 납(Pb), 스트론튬(Sr), 니오브(Nb), 탄탈(Ta) 등을 나타낸다. BaMTiO3를 적용한 문헌을 살펴보면, 일본 특개평 2003-165768호에서는 (Ba1- xCax)mTiO3을 적용하여 신뢰성이 높은 유전체 조성물 제시하였으며, 최근에 제안된 대한민국 특허출원 제2002-0079433호에서는 Ba(TixZr1-x)O3를 사용하여 MLCC의 유전수명을 향상시키는 방안을 제시하였다. For this reason, instead of using BaTiO 3 as the main raw material of MLCC, a method of applying BaMTiO 3 has been attempted. At this time, the metal (M) is manganese (Mn), magnesium (Mg), calcium (Ca), zirconium (Zr), yttrium (Y), holmium (Ho), dysprosium (Dy), erbium (Er), ytterbium (Yb) ), Hafnium (Hf), lead (Pb), strontium (Sr), niobium (Nb), tantalum (Ta) and the like. Looking at the literature applying BaMTiO 3 , Japanese Patent Laid-Open No. 2003-165768 proposed a highly reliable dielectric composition by applying (Ba 1-x Ca x ) m TiO 3 , and recently proposed Korean Patent Application No. 2002-0079433 In this paper, Ba (Ti x Zr 1-x ) O 3 is used to improve the dielectric life of MLCC.
그러나, 이들 모두 입도가 크고 불균일하며 불순물제어가 용이하지 않은 고상법에 의해 제조된 BaMTiO3를 사용하기 때문에 실제 산업현장에서 Ni전극 MLCC에 적용하기 힘든 상황이다. 또한, 종래에 일반적으로 사용되고 있는 BaMTiO3 등의 3 성분계 이상의 액상제조법은 원료가격이 고가이고, 대량 생산시 일정 몰비를 재현성 있게 구현하기가 힘들고, 결정성이 낮아지는 문제가 있어 특성구현이 어려우므로 특수한 제품에만 소량 적용할 뿐 보편적으로 사용되지 않고 있다. However, since all of them use BaMTiO 3 manufactured by a solid-state method that is large in size, non-uniform, and not easy to control impurities, it is difficult to apply them to a Ni electrode MLCC in an actual industrial field. In addition, the liquid crystal manufacturing method of three-component or more, such as BaMTiO 3 that is commonly used in the past, the raw material price is high, it is difficult to implement a certain molar ratio reproducibly in mass production, and the crystallinity is low, so it is difficult to implement characteristics Only small quantities are applied to special products and are not commonly used.
이에 본 발명자들은 입도분포도가 균일하고 특성구현이 손쉬운 3 성분계 이상의 복합티탄산바륨계 파우더를 제조하기 위하여 연구 노력하였고, 그 결과 염화바륨(BaCl2ㆍ2H2O)과 사염화티탄(TiCl4)의 수용액을 옥살산(H2C 2O4)수용액에 침전시켜 얻어진 바륨티타닐옥살레이트[BaTiO(C2O4)2ㆍ4H2O]와 특정의 금속함유 첨가제를 일정비로 혼합분쇄한 후 열처리하는 옥살레이트법을 사용하게되면, 화학양론적 조성(Ba/M/Ti의 몰비) 및 입도가 균일함과 동시에 내환원성이 우수한 복합티탄산바륨계 파우더를 얻을 수 있음을 알게되어 본 발명을 완성하게 되었다. Accordingly, the present inventors have tried to prepare a three-component or more complex barium titanate powder having a uniform particle size distribution and easy to implement characteristics, and as a result, an aqueous solution of barium chloride (BaCl 2 ㆍ 2H 2 O) and titanium tetrachloride (TiCl 4 ) Oxal which is heat-treated after mixing and grinding a barium titanyl oxalate [BaTiO (C 2 O 4 ) 2 ㆍ 4H 2 O] obtained by precipitation in an aqueous solution of oxalic acid (H 2 C 2 O 4 ) at a predetermined ratio. When the rate method is used, the present inventors have found that a composite barium titanate-based powder having excellent stoichiometry (molar ratio of Ba / M / Ti) and particle size and excellent reduction resistance can be obtained.
따라서, 본 발명은 최적의 물성을 가질 뿐만 아니라 생산성 및 공정자유도 측면에서도 매우 우수한 복합티탄산바륨계 파우더를 제공하는데 그 특징이 있다.
Accordingly, the present invention is characterized by providing a composite barium titanate-based powder having not only optimum physical properties but also excellent productivity and process freedom.
본 발명은 염화바륨(BaCl2)과 사염화티탄(TiCl4)의 혼합수용액을 옥살산(H2C2O4) 수용액에 적가하여 바륨티타닐옥살레이트(BaTiO(C2O4)2·4H2O) 슬러리를 제조하는 단계;
상기 제조된 바륨티타닐옥살레이트 슬러리에, 망간(Mn), 이트륨(Y), 홀뮴(Ho), 디그프로슘(Dy), 에르븀(Er), 이테르븀(Yb), 니오브(Nb) 및 탄탈(Ta) 중에서 선택된 1종 또는 2종 이상의 금속을 함유하는 산화물, 염화물 및 질화물 형태의 금속함유 첨가제와 혼합 습식분쇄한 후 건조하여 복합티타닐옥살레이트 파우더를 제조하는 단계;
상기 제조된 복합티타닐옥살레이트 파우더를 열분해하여 복합티탄산바륨계(BaMTiO3) 파우더를 제조하는 단계; 및
상기 복합티탄산바륨계 파우더를 재분쇄시키는 단계
를 포함하는 것을 특징으로 하는 다음 화학식으로 표시되는 X7R 적층세라믹 콘덴서용 복합티탄산바륨계 파우더의 제조방법.
[화학식]
(Ba1-xMx)m(Ti1-yMy)nO3
상기 화학식에 있어서, 0.005 < x + y < 0.05이고 m/n 〉0.98 이다.In the present invention, a mixed solution of barium chloride (BaCl 2 ) and titanium tetrachloride (TiCl 4 ) is added dropwise to an aqueous solution of oxalic acid (H 2 C 2 O 4 ) to add barium titanyl oxalate (BaTiO (C 2 O 4 ) 2 · 4H 2 O) preparing a slurry;
In the prepared barium titanyl oxalate slurry, manganese (Mn), yttrium (Y), holmium (Ho), digprosium (Dy), erbium (Er), ytterbium (Yb), niobium (Nb) and tantalum ( Preparing a composite titanyl oxalate powder by wet-milling and then mixing with a metal-containing additive in the form of oxides, chlorides and nitrides containing one or more metals selected from Ta);
Pyrolyzing the prepared composite titanyl oxalate powder to prepare a composite barium titanate-based (BaMTiO3) powder; And
Regrinding the composite barium titanate-based powder
Method for producing a composite barium titanate-based powder for X7R laminated ceramic capacitor represented by the following formula comprising a.
[Formula]
(Ba 1-x M x ) m (Ti 1-y M y ) n O 3
In the above formula, 0.005 <x + y <0.05 and m / n> 0.98.
삭제delete
삭제delete
삭제delete
삭제delete
삭제delete
삭제delete
이와 같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.
본 발명은 옥살레이트법을 이용한 3 성분계 이상의 복합티탄산바륨계 파우더 의 제조방법에 관한 것으로, 염화바륨(BaCl2ㆍ2H2O)과 사염화티탄(TiCl4)의 수용액을 옥살산(H2C2O4)수용액에 침전시켜 얻어진 바륨티타닐옥살레이트[BaTiO(C 2O4)2ㆍ4H2O]와 특정의 금속함유 첨가제를 일정비로 첨가하여 혼합·분쇄한 후 열처리하는 공정으로, 종래에 비하여 화학양론적 조성(Ba/M/Ti의 몰비) 및 입도의 균일성이 향상되고 이와 동시에 내환원성이 우수한 복합티탄산바륨계 파우더를 얻을 수 있는 것을 가장 큰 특징으로 한다.The present invention relates to a method for producing a three-component or more complex barium titanate-based powder using the oxalate method, wherein an aqueous solution of barium chloride (BaCl 2 ㆍ 2H 2 O) and titanium tetrachloride (TiCl 4 ) is used for oxalic acid (H 2 C 2 O). 4 ) A process in which barium titanyl oxalate [BaTiO (C 2 O 4 ) 2 ㆍ 4H 2 O] obtained by precipitation in an aqueous solution and a specific metal-containing additive are added at a predetermined ratio, mixed and pulverized, followed by heat treatment. It is the biggest feature that it is possible to obtain a composite barium titanate-based powder having excellent stoichiometric composition (molar ratio of Ba / M / Ti) and uniformity of particles and at the same time having excellent reduction resistance.
본 발명에 따른 복합티탄산바륨계 파우더의 제조방법을 더욱 구체적으로 상세하게 설명하면 다음과 같다.Referring to the method for producing a composite barium titanate-based powder according to the present invention in more detail as follows.
먼저, 염화바륨(BaCl2)과 사염화티탄(TiCl4)의 혼합수용액을 옥살산(H2C 2O4) 수용액에 적가하여 바륨티타닐옥살레이트(BaTiO(C2O4)2ㆍ4H2O)를 침전시킨 후, 숙성하고 물로 세척하고 여과하여 바륨티타닐옥살레이트(BaTiO(C2O4)2ㆍ4H2 O) 슬러리를 제조한다. First, a mixed solution of barium chloride (BaCl 2 ) and titanium tetrachloride (TiCl 4 ) is added dropwise to an aqueous solution of oxalic acid (H 2 C 2 O 4 ) to add barium titanyl oxalate (BaTiO (C 2 O 4 ) 2 ㆍ 4H 2 O ) Is precipitated, aged, washed with water and filtered to prepare a slurry of barium titanyl oxalate (BaTiO (C 2 O 4 ) 2 .4H 2 O).
상기 염화바륨 수용액은 BaCl2ㆍ2H2O를 물에 녹여 사용하는데, 바람직한 농도 범위는 0.2 ∼ 2.0 mol/ℓ이다. 상기 사염화티탄 수용액은 보통 TiCl4 용액을 희석하여 사용하는데, 바람직한 농도범위는 0.2 ∼ 2.0 mol/ℓ이다. 그리고 상기 염화바륨 수용액과 상기 사염화티탄 수용액은 바륨 : 티탄 원소가 1 : 1 ∼ 1.5의 몰비를 유지하도록 잘 혼합하는 것이 좋으며, 보다 바람직하기로는 1 : 1 ∼ 1.1이 되도록 조절하여 반응하는 것이 경제적으로 유리하다. 상기 옥살산 수용 액은 0.2 ∼ 5.0 mol/ℓ의 농도를 갖는 것을 사용하는 것이 바람직하다. 반응시 옥살산의 반응온도는 바람직하게 50 ∼ 90 ℃로 유지함이 좋다.The aqueous barium chloride solution is used by dissolving BaCl 2 · 2H 2 O in water, the preferred concentration range is 0.2 to 2.0 mol / l. The titanium tetrachloride aqueous solution is usually used by diluting the TiCl 4 solution, the preferred concentration range is 0.2 to 2.0 mol / L. The barium chloride solution and the titanium tetrachloride solution are preferably mixed well so that the barium: titanium element maintains a molar ratio of 1: 1 to 1.5, and more preferably, it is controlled to react to be 1: 1 to 1.1. It is advantageous. It is preferable to use the said oxalic acid aqueous solution which has a density | concentration of 0.2-5.0 mol / L. The reaction temperature of oxalic acid during the reaction is preferably maintained at 50 ~ 90 ℃.
상기 숙성 시간은 0.5 ∼ 2시간 정도 행하는 것이 생산시 단위공정 생산성 측면에서 유리하며, 이후 세척액의 pH가 중성이 될 때까지 과량의 물로 세척하여 바륨티타닐옥살레이트(BaTiO(C2O4)2ㆍ4H2O, BTO) 슬러리를 얻는다. The aging time of 0.5 to 2 hours is advantageous in terms of production unit production during production, and then washed with excess water until the pH of the washing solution is neutral to the barium titanyl oxalate (BaTiO (C 2 O 4 ) 2 4H 2 O, BTO) slurry is obtained.
다음으로 상기 제조된 바륨티타닐옥살레이트 슬러리를 1차 분쇄하고, 금속함유 첨가제를 투입하여 혼합 습식분쇄한 후 건조하여 복합티타닐옥살레이트 파우더를 제조한다.Next, the prepared barium titanyl oxalate slurry is first pulverized, a mixed wet pulverization is performed by adding a metal-containing additive, and then dried to prepare a composite titanyl oxalate powder.
상기 BTO 슬러리는 혼합분쇄기를 통하여 1차 분쇄하여 입도를 D50이 1 ㎛ 이하로 되도록 충분히 감소시킨 후, 금속함유 첨가제를 투입하여 습식분쇄하는 것이 효율적이다.The BTO slurry is first pulverized through a mixing grinder to sufficiently reduce the particle size so that the D 50 is 1 µm or less, and then wet grinding is performed by adding a metal-containing additive.
상기 금속함유 첨가제는 산화물, 염화물 및 질화물 중에서 선택된 형태의 화합물 1종 또는 2종 이상이 사용될 수 있으며, 상기 바륨 : 금속 원소가 1 : 0.005 ∼ 0.05 몰비를 유지하도록 혼합하는 것이 바람직하며 경제적으로도 유리하다. The metal-containing additive may be used one or two or more compounds in the form selected from oxides, chlorides and nitrides, it is preferable to mix the barium: metal element to maintain a molar ratio of 1: 0.005 to 0.05 and economically advantageous Do.
상기 혼합시 첨가하는 금속함유 첨가제의 몰비가 0.05를 초과하는 경우에는 이후 진행할 열분해공정에서 부분적인 거대입성장을 제어할 수 없게 되어 균일한 입도분포를 얻지 못하며, 또한 MLCC제조시 첨가제 과량으로 인해 평탄화된 온도특성을 얻기 어렵다. 몰비가 0.005 미만인 경우에는 첨가성분의 확산이 어려워 원하는 내환원성의 분체를 얻기 어렵다.When the molar ratio of the metal-containing additive added during the mixing exceeds 0.05, the partial large grain growth cannot be controlled in a subsequent pyrolysis process, thereby obtaining a uniform particle size distribution and flattening due to excessive additives during the MLCC manufacturing. Difficult to obtain temperature characteristics. When the molar ratio is less than 0.005, it is difficult to diffuse the additive components, and thus it is difficult to obtain desired reduction resistant powder.
상기 금속은 예를 들면 망간(Mn), 마그네슘(Mg), 칼슘(Ca), 지르코늄(Zr), 이트륨(Y), 홀뮴(Ho), 디그프로슘(Dy), 에르븀(Er), 이테르븀(Yb), 하프늄(Hf), 납(Pb), 스트론튬(Sr), 니오브(Nb) 및 탄탈(Ta) 중에서 선택된 1종 또는 2종 이상이 사용될 수 있다.The metal is, for example, manganese (Mn), magnesium (Mg), calcium (Ca), zirconium (Zr), yttrium (Y), holmium (Ho), digprosium (Dy), erbium (Er), ytterbium ( One or two or more selected from Yb), hafnium (Hf), lead (Pb), strontium (Sr), niobium (Nb), and tantalum (Ta) may be used.
상기 혼합 시 플레니터리 밀(planetary mill), 볼 밀(Ball mill) 및 비즈 밀(Beads mill) 등과 같은 습식분쇄기를 이용하며, 습식분쇄시 용매는 탈이온수를 사용할 수 있고, 그 사용량은 BTO 1 중량부에 대하여 1 ∼ 10 중량부가 바람직하다. 습식분쇄시간은 혼합량에 따라 달라지며, 10 ∼ 300분 정도 하는 것이 좋다. 분쇄 후 바륨티타닐옥살레이트 평균입경은 0.1 ∼ 5 ㎛으로 제한하는 것이 화학양론조성이 일정하게 하는 면에서 바람직하다. In the mixing, a wet mill such as a planetary mill, a ball mill, a beads mill, or the like is used. In the wet milling, the solvent may be deionized water, and the amount of BTO 1 is used. 1-10 weight part is preferable with respect to weight part. The wet grinding time depends on the mixing amount, preferably 10 to 300 minutes. It is preferable to limit the average particle diameter of barium titanyl oxalate after pulverization to 0.1 to 5 탆 in terms of keeping the stoichiometric composition constant.
상기 건조는 통상의 조건으로 오븐, 유동층 건조기, 스프레이-드라이(Spray-Dry) 등을 이용하는 것이 좋다.The drying may be carried out using an oven, a fluidized bed dryer, a spray-dry, or the like under normal conditions.
다음으로 상기 제조된 복합티타닐옥살레이트 파우더를 열분해하여 복합티탄산바륨계(BaMTiO3) 파우더를 제조한다. 이때 열분해시 그 가열속도는 0.5 ∼ 10 ℃/min 정도로 하는 것이 바람직하고, 유지온도는 700 ∼ 1200 ℃로 하는 것이 바람직하다. 상기 가열속도와 유지온도를 한정하는 이유는 과대입성장을 방지하여 균일한 입도분포를 갖게 하기 위함이다.Next, the composite titanyl oxalate powder is thermally decomposed to prepare a composite barium titanate-based (BaMTiO 3 ) powder. At this time, it is preferable to make the heating rate about 0.5-10 degreeC / min at the time of thermal decomposition, and to set the holding temperature as 700-1200 degreeC. The reason for limiting the heating rate and the holding temperature is to prevent the excessive growth and to have a uniform particle size distribution.
마지막으로, 상기에서 얻어진 복합티탄산바륨계 파우더를 분쇄기를 통하여 재분쇄하는 공정을 거친다. 이때 분쇄기로는 플레니터리 밀(planetary mill), 볼밀(Ball mill) 및 비즈밀(Beads mill) 등과 같은 습식분쇄기 뿐만 아니라 분무기, 제트밀 등과 같은 건식분쇄기도 이용될 수 있다. 다만, 습식분쇄기를 사용한 경우에는 오븐, 유동층 건조기, 스프레이-드라이(Spray-Dry) 등에서 건조를 요한다.Finally, the composite barium titanate-based powder obtained above is subjected to a process for regrinding through a grinder. In this case, as a grinder, a dry grinder such as a sprayer, a jet mill, etc., as well as a wet grinder such as a planetary mill, a ball mill, and a beads mill may be used. However, when a wet grinder is used, drying is required in an oven, a fluid bed dryer, a spray-dry, or the like.
이하, 본 발명을 실시예에 의거하여 더욱 상세하게 설명하겠는바, 본 발명이 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by Examples.
실시예 1 : 티탄산망간바륨 파우더의 제조Example 1 Preparation of Manganese Barium Titanium Powder
순도 99.9 % 이상의 TiCl4 용액과 BaCl2를 준비하여 측량한 후에, 옥살산(H2C2O4) 수용액에 적가하여 바륨티타닐옥살레이트(BaTiO(C2 O4)2·4H2O, 이하 'BTO'라 함)를 침전시켜 슬러리를 제조하였다. 상기에서 제조된 BTO 슬러리를 숙성, 여과, 세척하여 혼합 습식분쇄기로 1차 혼합분쇄하여 입도를 줄인 후, 금속함유 첨가제로서 망간(Mn)을 바륨에 대하여 0.03 몰비로 첨가하여 혼합습식분쇄기로 30분 동안 균일하게 혼합하고 이를 건조하여 복합티타닐옥살레이트 파우더를 제조하였다. 상기 제조된 복합티타닐옥살레이트 파우더를 가열속도 0.5 ℃/min, 유지온도 1000 ℃, 유지시간 3시간으로 열분해한 후 재분쇄하여 티탄산망간바륨 파우더를 제조하였다. After preparing and measuring TiCl 4 solution and BaCl 2 having a purity of 99.9% or more, it was added dropwise to an aqueous solution of oxalic acid (H 2 C 2 O 4 ) and barium titanyl oxalate (BaTiO (C 2 O 4 ) 2 · 4H 2 O, below A slurry was prepared by precipitating 'BTO'. The BTO slurry prepared above was aged, filtered and washed to reduce the particle size by first mixing and grinding with a mixed wet mill, and then added with manganese (Mn) in a 0.03 molar ratio to barium as a metal-containing additive for 30 minutes with a mixed wet mill. While uniformly mixed and dried to prepare a composite titanyl oxalate powder. The prepared titanium titanyl oxalate powder was pyrolyzed at a heating rate of 0.5 ° C./min, a holding temperature of 1000 ° C., and a holding time of 3 hours, and then pulverized to prepare manganese barium titanate powder.
상기에서 얻어진 티탄산망간바륨 파우더의 분체특성을 측정하여 그 결과를 다음 표 1에 나타내었고, 도 1에는 상기 티탄산망간바륨 파우더의 SEM 사진, 도 2 에는 티탄산망간바륨 파우더의 입자크기 분포도 및 도 3에는 티탄산망간바륨 파우더의 XRD 분석데이터를 나타내었다. The powder characteristics of the obtained barium manganese titanate powder were measured, and the results are shown in Table 1 below. FIG. 1 is an SEM image of the barium manganese titanate powder, FIG. 2 is a particle size distribution diagram of barium manganese titanate powder, and FIG. XRD analysis data of manganese barium titanate powder is shown.
실시예 2 : 티탄산이트리아바륨 파우더의 제조Example 2 Preparation of Yttria Barium Titanium Powder
상기 실시예 1과 동일하게 실시하되, 금속함유 첨가제로 이트륨(Y)을 사용하여 반응을 수행하여 티탄산이트리아바륨 파우더를 제조하였다. Example 1, but the reaction was carried out using yttrium (Y) as a metal-containing additive to prepare a yttria barium titanate powder.
상기에서 얻어진 티탄산이트리아바륨 파우더의 분체특성을 측정하여 그 결과를 다음 표 1에 나타내었다. The powder characteristics of the yttria barium titanate powder obtained above were measured, and the results are shown in Table 1 below.
실시예 3 : 티탄산망간바륨 파우더의 제조Example 3 Preparation of Manganese Barium Titanium Powder
상기 실시예 1과 동일하게 실시하되, 금속함유 첨가제로 망간(Mn)을 바륨에 대하여 0.015 몰비 사용으로 반응을 수행하여 티탄산이트리아바륨 파우더를 제조하였다. In the same manner as in Example 1, but the reaction of manganese (Mn) with a metal-containing additive using a 0.015 molar ratio to barium to prepare a yttria barium titanate powder.
상기에서 얻어진 티탄산이트리아바륨 파우더의 분체특성을 측정하여 그 결과를 다음 표 1에 나타내었다. The powder characteristics of the yttria barium titanate powder obtained above were measured, and the results are shown in Table 1 below.
비교예 1 : 고상법으로 티탄산망간바륨 파우더의 제조Comparative Example 1: Preparation of manganese barium titanate powder by solid phase method
순도 99.9 % 이상의 TiO2와 BaCO3를 준비하고 측량한 후에 첨가제로 바륨에 대하여 0.03 몰비 농도의 Mn을 산화물 형태로 첨가하여 혼합분쇄기로 혼합 및 습식 분쇄하였다. 이때 분쇄시간은 60분으로 하였다. 상기 분쇄된 파우더를 건조하고 이를 가열속도 0.5℃/min, 유지온도 1000℃, 유지시간 3시간으로 열분해한 후 재분쇄하여 티탄산망간바륨 파우더를 제조하였다. After preparing and measuring TiO 2 and BaCO 3 having a purity of 99.9% or more, 0.03 molar ratio of Mn was added in the form of oxide to barium as an additive, and mixed and wet pulverized with a mixing grinder. At this time, the grinding time was 60 minutes. The pulverized powder was dried and thermally decomposed at a heating rate of 0.5 ° C./min, a holding temperature of 1000 ° C., and a holding time of 3 hours, and then pulverized to prepare manganese barium titanate powder.
상기에서 얻어진 티탄산망간바륨 파우더의 분체특성을 측정하여 그 결과를 다음 표 1에 나타내었고, 도 1에는 상기 티탄산망간바륨 파우더의 SEM 사진, 도 2에는 티탄산망간바륨 파우더의 입자크기 분포도 및 도 3에는 티탄산망간바륨 파우더의 XRD 분석데이터를 나타내었다. The powder characteristics of the obtained barium manganese titanate powder were measured, and the results are shown in Table 1 below. FIG. 1 is a SEM photograph of the barium manganese titanate powder, FIG. 2 is a particle size distribution diagram of barium manganese titanate powder, and XRD analysis data of manganese barium titanate powder is shown.
비교예 2Comparative Example 2
상기 비교예 1과 동일하게 실시하되, 금속함유 첨가제로 망간(Mn)을 바륨에 대하여 0.015 몰비 사용으로 반응을 수행하여 티탄산망간바륨 파우더를 제조하였다. 상기에서 얻어진 티탄산망간바륨 파우더의 분체특성을 측정하여 그 결과를 다음 표 1에 나타내었다.Manganese titanate powder was prepared in the same manner as in Comparative Example 1 except that manganese (Mn) was used as a metal-containing additive in a molar ratio of 0.015 to barium. The powder characteristics of the barium manganese titanate powder obtained above were measured, and the results are shown in Table 1 below.
상기 표 1에 나타낸 바와 같이, 본 발명에 따른 실시예 1 ∼ 3은 입자분포도가 미세하고 균일한 반면에, 고상법을 사용한 비교예 1 ∼ 2는 약 8배 정도로 큰 입자 크기를 가지는 경향을 나타내었다. 또한, 흡착량을 나타내는 BET도 상기한 사실을 입증함을 알 수 있다. As shown in Table 1, Examples 1 to 3 according to the present invention have a fine and uniform particle distribution, whereas Comparative Examples 1 to 2 using the solid phase method tend to have a particle size as large as about 8 times. It was. It can also be seen that the BET indicating the adsorption amount also proves the above fact.
본 발명에 따른 실시예 1(a)과 종래 고상법으로 수행된 비교예 1(b)의 각 데이터를 비교한 도 1의 SEM 사진과 도 2의 입도분포도 및 도 3의 XRD 데이터를 비교해 보면, 본 발명으로 수행된 복합티탄산바륨 파우더가 입도분포가 매우 균일하며 구형의 미분이 거의 없는 우수한 파우더임을 보여준다. Comparing the SEM photograph of FIG. 1, the particle size distribution diagram of FIG. 2, and the XRD data of FIG. 3 comparing each data of Example 1 (a) according to the present invention and Comparative Example 1 (b) performed by the conventional solid-state method, The composite barium titanate powder carried out by the present invention shows that the particle size distribution is very uniform and excellent powder with little spherical fine powder.
따라서, 본 발명은 상기에서 보여지는 바와 같이, 입도분포가 균일할 뿐 아니라 스케일-업(Scale-up)시에도 화학양론적 조성의 유지가 용이하므로, 상업화에 유리한 합성방법이다. 또한, 기존의 액상 3 성분계(BaMTiO3) 이상의 액상법보다 원료 및 공정측면에서 생산성이 훨씬 향상된 경제적인 합성방법이다.Accordingly, the present invention, as shown above, is not only uniform in particle size distribution but also easy to maintain the stoichiometric composition even during scale-up, and thus is an advantageous method for commercialization. In addition, it is an economical synthesis method with much higher productivity in terms of raw materials and processes than the conventional liquid phase method of BaMTiO 3 or higher.
상술한 바와 같이, 본 발명에 따른 복합티탄산바륨계 파우더의 제조방법은 옥살레이트법에 의해 염화바륨 및 사염화티탄 수용액을 옥살산 수용액에 침전시켜 얻어진 바륨티타닐옥살레이트[BaTiO(C2O4)2ㆍ4H2O]와 특정의 금속함유 첨가제를 혼합분쇄한 후 열처리하여 고순도 및 조성균일성이 우수하며, 미림의 입도균일성을 가진 복합티탄산바륨계 파우더를 제조할 수 있을 뿐만 아니라, 기존에 비해 생산성이 향상된 방법으로, 소형·고용량용 X7R 적층세라믹콘덴서(MLCC), 정특성써미스터(PTC) 및 압전체 등의 원료로 널리 활용될 수 있는 효과가 있다.As described above, the method for producing a composite barium titanate-based powder according to the present invention includes barium titanyl oxalate [BaTiO (C 2 O 4 ) 2 obtained by precipitating an aqueous solution of barium chloride and titanium tetrachloride in an oxalic acid solution by an oxalate method. ㆍ 4H 2 O] and specific metal-containing additives are mixed and pulverized and then heat treated to produce composite barium titanate-based powders with high purity and composition uniformity. By this improved method, there is an effect that can be widely used as a raw material such as small size and high capacity X7R multilayer ceramic capacitor (MLCC), static characteristic thermistor (PTC) and piezoelectric material.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030094658A KR100555400B1 (en) | 2003-12-22 | 2003-12-22 | The Preparation of Barium Titanate based powder with dielective composition by oxalate snythesis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030094658A KR100555400B1 (en) | 2003-12-22 | 2003-12-22 | The Preparation of Barium Titanate based powder with dielective composition by oxalate snythesis |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20050063273A KR20050063273A (en) | 2005-06-28 |
KR100555400B1 true KR100555400B1 (en) | 2006-03-03 |
Family
ID=37255143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030094658A KR100555400B1 (en) | 2003-12-22 | 2003-12-22 | The Preparation of Barium Titanate based powder with dielective composition by oxalate snythesis |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100555400B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015046691A1 (en) * | 2013-09-25 | 2015-04-02 | 한국에너지기술연구원 | Shape-adjusted iron oxalate hydrate particles and production method therefor, and iron oxide/carbon composite produced by using iron oxalate hydrate particles and production method therefor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100955802B1 (en) * | 2009-07-21 | 2010-05-06 | 한화케미칼 주식회사 | Process for preparing fine barium titanate based composite oxide |
-
2003
- 2003-12-22 KR KR1020030094658A patent/KR100555400B1/en active IP Right Grant
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015046691A1 (en) * | 2013-09-25 | 2015-04-02 | 한국에너지기술연구원 | Shape-adjusted iron oxalate hydrate particles and production method therefor, and iron oxide/carbon composite produced by using iron oxalate hydrate particles and production method therefor |
US10358457B2 (en) | 2013-09-25 | 2019-07-23 | Korea Institute Of Energy Research | Metal oxalate hydrate body having a certain shape, preparation method thereof, and metal oxide/carbon composite body prepared from the same |
Also Published As
Publication number | Publication date |
---|---|
KR20050063273A (en) | 2005-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4310318B2 (en) | Method for producing dielectric ceramic powder, and multilayer ceramic capacitor produced using the ceramic powder | |
EP1441985B1 (en) | Method for preparing barium-titanate based powder | |
US20080145292A1 (en) | Barium Titanate, Production Process Thereof and Capacitor | |
JP5372181B2 (en) | Fine barium titanate powder | |
KR100692282B1 (en) | Barium titanate and electronic parts using the material | |
JP2002053320A (en) | Method for manufacturing barium titanate powder in oxalate process | |
KR20090023180A (en) | Complex oxide powder, method for preparing the same, ceramic composition using the complex oxide powder and ceramic electronic parts using the ceramic composition | |
US20070253145A1 (en) | Barium Calcium Titanate, Production Process Thereof and Capacitor | |
RU2415083C2 (en) | Finely dispersed lead-zirconium titanates, zirconium titanate hydrates and zirconium titanates and production method thereof | |
JP2010120850A (en) | Method for producing composition | |
JP4556398B2 (en) | Method for producing the composition | |
JP3751304B2 (en) | Barium titanate and electronic components using the same | |
KR100360118B1 (en) | A Method for Preparing Barium Titanate Powder by Oxalate Synthesis | |
KR100555400B1 (en) | The Preparation of Barium Titanate based powder with dielective composition by oxalate snythesis | |
US8431109B2 (en) | Process for production of composition | |
JP4643443B2 (en) | Method for producing barium titanate powder | |
KR100743413B1 (en) | Method for producing complex metal oxide powder | |
KR20200096530A (en) | Method for producing perovskite type barium titanate powder | |
JPH0210089B2 (en) | ||
KR100771796B1 (en) | Method for manufacturing dielectric ceramic powder | |
KR100290247B1 (en) | Method for manufacturing barium titanate and perovskite type composite oxide | |
KR100555399B1 (en) | A method for preparation of barium titanate powder with sol-gel reaction | |
JP2011073947A (en) | Multiple oxide and method for producing the same | |
JPH0210090B2 (en) | ||
JPS6328844B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130118 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20131217 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20150202 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20160111 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20170102 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20180102 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20190103 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20200102 Year of fee payment: 15 |