[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR100549167B1 - Production of biologically active interleukin-12 protein using plant cell suspension culture - Google Patents

Production of biologically active interleukin-12 protein using plant cell suspension culture Download PDF

Info

Publication number
KR100549167B1
KR100549167B1 KR1020030029910A KR20030029910A KR100549167B1 KR 100549167 B1 KR100549167 B1 KR 100549167B1 KR 1020030029910 A KR1020030029910 A KR 1020030029910A KR 20030029910 A KR20030029910 A KR 20030029910A KR 100549167 B1 KR100549167 B1 KR 100549167B1
Authority
KR
South Korea
Prior art keywords
plant
plant cell
culture
cells
hil
Prior art date
Application number
KR1020030029910A
Other languages
Korean (ko)
Other versions
KR20040097575A (en
Inventor
양문식
권태호
Original Assignee
양문식
권태호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 양문식, 권태호 filed Critical 양문식
Priority to KR1020030029910A priority Critical patent/KR100549167B1/en
Publication of KR20040097575A publication Critical patent/KR20040097575A/en
Application granted granted Critical
Publication of KR100549167B1 publication Critical patent/KR100549167B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/5434IL-12
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/998Proteins not provided for elsewhere

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 식물세포 현탁배양을 이용한 생물학적 활성이 재조합 단백질, 및 그의 생산방법, 더욱 구체적으로 식물세포 현탁배양에서 사람 인터루킨-12를 생산하는 방법, 사람 인터루킨-12의 재조합 단백질에 관한 것이다. 본 발명은 식물세포 배양시스템에서 사람 인터루킨-12를 생물학적 활성이 높은 형태로 생산하고 분비하는 식물발현시스템의 확립으로 저가의 비용으로 생물학적 활성이 높은 사람 인터루킨-12를 대량으로 생산할 수 있다. The present invention relates to a recombinant protein for biological activity using plant cell suspension culture, and a method for producing the same, more specifically, a method for producing human interleukin-12 in plant cell suspension culture, and a recombinant protein for human interleukin-12. The present invention can produce a large amount of high biological activity human interleukin-12 at a low cost by establishing a plant expression system that produces and secretes human interleukin-12 in a biologically active form in a plant cell culture system.

사람 인터루킨-12, 식물세포배양, 분비, 담배Human Interleukin-12, Plant Cell Culture, Secretion, Tobacco

Description

식물세포 현탁배양을 이용한 생물학적으로 활성인 인터루킨-12의 생산 {PRODUCTION OF BIOLOGICALLY ACTIVE INTERLEUKIN-12 PROTEIN USING PLANT CELL SUSPENSION CULTURE}Production of biologically active interleukin-12 using plant cell suspension culture {PRODUCTION OF BIOLOGICALLY ACTIVE INTERLEUKIN-12 PROTEIN USING PLANT CELL SUSPENSION CULTURE}

도 1은 IL-12의 서브유니트 p35 유전자와 p40의 유전자를 각각 PCR을 이용하여 증폭한 결과를 나타내는 사진이다.1 is a photograph showing the results of amplifying a subunit p35 gene and a gene of p40 of IL-12 using PCR, respectively.

도 2는 본 발명의 pMYL27(도 2a)과 pMYL28(도 2b) 벡터의 제작 모식도를 도시한 것이다.Figure 2 shows the schematic diagram of the production of the pMYL27 (Fig. 2a) and pMYL28 (Fig. 2b) of the present invention.

도 3a는 5종의 형질전환된 니코티아 나타바쿰에 포함된 IL-12의 서브유니트 p35 유전자를 PCR하여 증폭한 결과와 상기 증폭된 산물을 서든블릇한 결과이며, 도 3b는 5종의 형질전환된 니코티아 나타바쿰에 포함된 IL-12의 서브유니트 p40 유전자를 PCR하여 증폭한 결과와 상기 증폭된 산물을 서든블릇한 결과이다.Figure 3a is a result of PCR amplification of the subunit p35 gene of IL-12 contained in the five transformed Nicothia Natacum and a sudden result of the amplified product, Figure 3b is five kinds of transformation The result of PCR amplification of the subunit p40 gene of IL-12 included in Nicothia natabacum was suddenly a result of the amplified product.

도 4a 및 4b는 IL-12의 서브유니트 p35(도 2a)와 p40(도 2b) 유전자로 각각 형질전환된 니코티아 나타바쿰의 노던 블랏 분석 결과를 나타내는 사진이다.4A and 4B are photographs showing the results of Northern blot analysis of Nicothia natabacum transformed with the subunits p35 (FIG. 2A) and p40 (FIG. 2B) genes of IL-12, respectively.

도 5는 IL-12의 서브유니트 p35 및 p40 유전자로 각각 형질전환된 니코티아 나타바쿰을 교배하여 IL-12의 두 가지 서브유니트를 모두 발현하는 4종의 형질전환된 니코티아 나타바쿰 라인의 노던 블랏 분석 결과를 나타내는 사진이다.5 shows Northern of four transformed Nicothia Natacum lines expressing both subunits of IL-12 by crossing Nicotia Natacum, transformed with subunits p35 and p40 genes of IL-12, respectively. It is a photograph showing the result of blot analysis.

도 6은 IL-12의 서브유니트 p35 및 p40 유전자로 각각 형질전환된 니코티아 나타바쿰을 교배하여 IL-12의 두가지 서브유니트를 모두 발현하는 4종의 형질전환된 니코티아 나타바쿰 라인의 노던 블랏 분석 결과를 나타내는 사진이다.FIG. 6 shows Northern blots of four transformed Nicothia Natacum lines expressing both subunits of IL-12 by crossing Nicotia Natacum, transformed with subunits p35 and p40 genes of IL-12, respectively. It is a photograph showing the analysis result.

도 7은 상기 도 5의 4종의 L2728 형질전환식물체로부터 유기된 캘러스 라인 중에서 높은 유전자 발현을 보인 L2728-1 및 L2728-3 계통 현탁세포 배양배지의 웨스턴 블랏 분석 결과를 나타내는 사진이다.7 is a photograph showing the results of Western blot analysis of L2728-1 and L2728-3 lineage suspension cell culture medium showing high gene expression in callus lines derived from the four L2728 transgenic plants of FIG. 5.

도 8은 실시예 3에 따른 형질전환 담배세포주인 L2728-3 계통의 현탁배양에 의한 현탁세포의 성장(흰색 동그라미)을 나타내는 그래프이고, 상기 세포로부터 분비된 재조합 사람 IL-12의 정량분석 결과(검은색 동그라미)를 나타내는 그래프이다. Figure 8 is a graph showing the growth of the suspension cells (white circles) by suspension culture of the L2728-3 strain, a transformed tobacco cell line according to Example 3, quantitative analysis of recombinant human IL-12 secreted from the cells ( Black circle).

도 9는 실시예 4에 따른 형질전환 담배세포주인 L2728-3 계통의 현탁세포배양을 통하여 생산된 사람 IL-12의 생리활성을 나타내는 그래프이다. Figure 9 is a graph showing the physiological activity of human IL-12 produced through suspension cell culture of the transformed tobacco cell line L2728-3 line according to Example 4.

도 10은 실시예 5에 따라 식물세포 배양시에 젤라틴의 첨가에 의하여 사람 IL-12의 생산이 증가함을 나타내는 그래프이다. 10 is a graph showing the increase in production of human IL-12 by the addition of gelatin in plant cell culture according to Example 5. FIG.

본 발명은 생물학적으로 활성인 인터루킨-12를 발현하는 형질전환된 식물세포, 이를 이용한 식물세포 현탁배양 방법으로 생물학적으로 활성인 인터루킨-12를 생산하는 방법, 및 재조합 인터루킨-12 단백질에 관한 것이다.The present invention relates to transformed plant cells expressing biologically active interleukin-12, a method for producing biologically active interleukin-12 by a plant cell suspension culture method using the same, and a recombinant interleukin-12 protein.

외래 단백질을 대량으로 생산하기 위한 방법으로 미생물 및 동물세포 배양 시스템을 많이 이용하고 있다. 그러나, 미생물 배양에 의한 외래 단백질 생산은 번역후 수식(post-translational modification)에 의해서 활성이 좌우되는 단백질의 경우에는, 미생물의 수식 시스템이 진핵세포와 다르기 때문에 생리활성을 지닌 단백질 생산이 불가능한 경우가 많다. 이러한 경우에는 동물세포 배양에 의하여 단백질을 생산하여야 하는 바 이러한 시스템은 배지에 혈청을 첨가하기 때문에 배지가격이 매우 높으며, 숙주세포의 동물바이러스 감염에 의하여 의료용 단백질이 감염될 우려가 있으며, 배지에 여러 종류의 단백질이 다량 존재하기 때문에 생산, 분비된 의료용 단백질의 분리 정제가 매우 어렵고 비용이 많이 든다는 문제점이 있다. As a method for producing a large amount of foreign protein, microbial and animal cell culture systems are widely used. However, foreign protein production by microbial culture is not possible in the case of a protein whose activity depends on post-translational modification, because it is impossible to produce physiologically active protein because microbial modification system is different from eukaryotic cells. many. In this case, the protein must be produced by animal cell culture. Since such a system adds serum to the medium, the price of the medium is very high, and there is a concern that the medical protein may be infected by the animal virus infection of the host cell. Since a large amount of protein is present, it is very difficult and expensive to separate and purify the produced and secreted medical protein.

최근에 개발된 식물세포배양 시스템은 전문화, 고가, 및 고순도 단백질을 중, 소규모로 생산하는데 가장 적합한 시스템으로 제안되고 있다. 단일 폴리펩타이드 단백질은 박테리아, 또는 효모와 같은 다른 하등 진핵시스템을 이용하는 경우에 상대적으로 단시간에 좋은 수율로 생산될 수 있지만, 이들 시스템은 생물학적 활성을 위해서 정확한 번역후 수식, 또는 다중 서브유니트의 조합이 필요한 단백질에는 적용할 수 없다. 따라서, 식물 세포 배양은 목적 단백질이 다량체(mulimeric)인 경우, 및 정확한 번역 후 변형이 필요한 경우에는 매우 유리하다.Recently developed plant cell culture systems have been proposed as the most suitable system for the production of small, medium and small quantities of specialized, expensive, and high purity proteins. Single polypeptide proteins can be produced with good yields in a relatively short time when using other lower eukaryotic systems such as bacteria or yeast, but these systems may require the correct post-translational modifications or combinations of multiple subunits for biological activity. Not applicable to the protein required. Thus, plant cell culture is very advantageous when the protein of interest is multimeric and when accurate post-translational modification is required.

최근에, 항체 및 항체 단편(Van Engelenet, F. et al, Plant Mol. Biol. vol 26, pp.1701-1710, 1994); LaCount, W. et al., Biotechnol. Lett. vol.19, pp.93-96, 1997; Wongsamuth, R. et al., Biotechnol. Bioeng. vol. 54, pp.401-415, 1997; Fischer, R. et al. Eur. J. Biochem. vol.262, pp.810-816 ,1999; Fischer, R. et al., Biotechnol. Appl. Biochem. vol.30, pp.109-112 , 1999; Liu, F. et al., Biotechnol. Bioprocess Eng. vol.4, pp.259-263, 1999; Shrap, J. et al., Biotechnol. Prog. vol.17, pp.979-992, 2001), 효소(Verdelhan, M. et al., J. Biosci. Bioeng. vol.87, pp.302-306, 1999), 및 치료가치가 있는 단백질(Kwon, et al. Biotechnology and Bioengneering. vol.81, pp.870-875, 2003; Magnuson, N. et al. Protein Expr. Purif. vol.13, pp.45-52 , 1998; Francisco, J. et al. Bioconjugate. Chem. vol.8, pp.708-713, 1997; Lee, J. et al. Mol. Cells vol.7, pp.783-787, 1997; Terashima, M. et al. Appl. Microb. Biotech. vol.52, pp.516-523, 1999; Terashima, M.et al., Biochem. Eng. J. vol.4, pp.31-36, 1999; James, E. et al. Protein Expr. Purif. vol.19, pp.131-138, 2000)을 포함하는 여러 가지 생물학적으로 활성인 단백질을 생산하는데 식물세포 배양 시스템을 이용하고 있다. 단백질 생산을 위한 식물세포배양의 사용에 대한 잠재적인 관심사로는 식물 단백질 글리칸 및 다른 식물 항원에 대한 알레르기 반응, 및 미코톡신, 제조제, 및 살충제가 오염된 산물 등을 포함한다(Doran, P., Curr. Opinion Biotechnol. vol.11, pp.199-204, 2000). Recently, antibodies and antibody fragments (Van Engelenet, F. et al, Plant Mol . Biol . Vol 26, pp. 1701-1710, 1994); LaCount, W. et al., Biotechnol . Lett . vol. 19, pp. 93-96, 1997; Wongsamuth, R. et al., Biotechnol . Bioeng . vol. 54, pp. 401-415, 1997; Fischer, R. et al . Eur . J. Biochem . vol. 262, pp. 810-816, 1999; Fischer, R. et al., Biotechnol . Appl . Biochem . vol. 30, pp. 109-112, 1999; Liu, F. et al., Biotechnol . Bioprocess Eng . vol. 4, pp. 259-263, 1999; Shrap, J. et al., Biotechnol . Prog . vol. 17 , pp. 979-992 , 2001), enzymes (Verdelhan, M. et al., J. Biosci . Bioeng . vol . 87, pp . 302-306, 1999), and therapeutically valuable proteins (Kwon , et al. Biotechnology and Bioengneering.vol . 81, pp . 870-875, 2003; Magnuson, N. et al . Protein Expr . Purif . vol . 13, pp . 45-52, 1998; Francisco, J. et al ... Bioconjugate Chem vol.8, pp.708-713 , 1997; Lee, J. et al Mol Cells vol.7, pp.783-787, 1997;.... Terashima, M. et al Appl Microb. Biotech . Vol. 52, pp. 516-523, 1999; Terashima, M. et al., Biochem . Eng . J. vol. 4, pp. 31-36, 1999; James, E. et al . Protein Expr . Plant cell culture systems are used to produce a variety of biologically active proteins, including Purif . Vol. 19, pp. 131-138, 2000). Potential concerns for the use of plant cell cultures for protein production include allergic reactions to plant protein glycans and other plant antigens, and products contaminated with mycotoxins, preparations, and pesticides (Doran, P , Curr . Opinion Biotechnol . Vol. 11, pp. 199-204, 2000).

식물세포배양 시스템은 기존의 미생물 또는 동물세포 배양시스템과 비교하여 몇 가지 장점을 제공한다. 첫째, 곰팡이 및 바이러스와 같은 식물 병원체를 쉽게 모니터할 수 있고 이들은 통상 사람에게 병원성이 없기 때문에, 형질전환된 식물세포에 의해 생산된 외래 단백질은 더욱 안정하다(Doran, P.M. 상기문헌). 둘째로, 다수의 외래유전자를 교배(sexual crossing)에 의하여 쉽게 하나의 식물세포로 도입할 수 있다. 셋째로, 배양배지가 주로 수크로스와 몇 종류의 염으로 이루어져 있 고 거대분자를 포함하고 있지 않기 때문에, 배양 및 배양 이후 정제단계가 간단하고 경제적이다. 넷째, 식물세포는 저가의 비용으로 대량 배양할 수 있고, 식물세포에서 해독후 수식(post-transitional modification)이 원핵세포에 비해 동물세포와 매우 유사하다. 식물발현시스템은 유용한 외래 단백질의 발현에 있어서, 원핵세포 발현시스템에 비해 장점을 가진다(Miele, L. et al., Trends Biotechnol. vol.15, pp.45-50, 1997; Herbers, K. et al., Curr Opin Biotechnol. vol.10, pp.163-168, 1999; Doran, P.M. 상기 문헌). 또한 식물발현시스템은 다른 발현시스템에 비하여 매우 경제적이고 간편하다.Plant cell culture system It offers several advantages over existing microbial or animal cell culture systems. First, foreign protein produced by transformed plant cells is more stable since plant pathogens such as fungi and viruses can be easily monitored and they are usually not pathogenic to humans (Doran, PM supra). Second, many foreign genes can be easily introduced into one plant cell by sexual crossing. Third, since the culture medium is mainly composed of sucrose and some kinds of salts and does not contain macromolecules, the purification step is simple and economical after incubation. Fourth, plant cells can be mass cultured at low cost, and post-transitional modifications in plant cells are very similar to animal cells compared to prokaryotic cells. Plant expression systems have advantages over prokaryotic expression systems in the expression of useful foreign proteins (Miele, L. et al., Trends Biotechnol . Vol. 15, pp. 45-50, 1997; Herbers, K. et. al., Curr Opin Biotechnol.vol . 10, pp. 163-168, 1999; Doran, PM supra. Plant expression systems are also very economical and simple compared to other expression systems.

현재 산업화가 이루어진 식물세포배양을 이용한 유용물질 생산을 대부분 식물자체가 지니고 있는 탁솔, 알칼로이드, 천연색소 등과 같은 식물의 2차 대사산물 등을 중심으로 산업화가 이루어져 있을 뿐이다. Currently, industrialization is mainly focused on secondary metabolites of plants such as Taxol, alkaloids, and natural pigments, which are mostly used for producing useful substances using industrialized plant cell cultures.

많은 관심이 집중되고 있는 단백질로는 경제적 효용성이 높은 항원단백질, 사이토카인(cytokine), 또는 단클론항체 등이 있으며, 항원단백질을 생산하는 식물체는 백신에 사용할 재조합 항원단백질 추출의 재료로 사용이 가능할 뿐만 아니라, 이 식물체를 식용으로 사용할 경우에는 경구백신의 효과를 발휘할 수도 있다. E. coli의 열 민감성 엔테로톡신에 대한 합성 LT-B유전자를 발현시킨 감자를 경구로 투여받은 쥐가 E. coli의 엔테로톡신으로부터 보호됨을 확인하여 항원을 형질전환 식물체에서 발현시킨 후 경구 투여를 통하여 면역이 유도됨을 확인하였다(Haq et al., Science. vol.268, pp.714-716, 1995). 또한 동일한 감자를 인간에게 투여했을 때에도 면역효과를 확인함으로써 인간에 대한 최초의 경구면역에 대한 보고가 있었다(Tacket et al., Nature Med. vol. 4, pp. 607-609, 1998).Proteins that are attracting much attention include antigenic proteins, cytokines, or monoclonal antibodies, which are highly economical, and plants that produce antigenic proteins can be used as a material for extracting recombinant antigenic proteins for use in vaccines. However, when the plant is used for food, it may exert the effects of oral vaccines. After the rats were treated with the synthetic LT-B gene expression for the heat-sensitive enterotoxin of E. coli expressed in potato orally conversion plant transformed the antigen to confirm that the protection against enterotoxin of E. coli via the oral administration It was confirmed that immunity was induced (Haq et al ., Science . Vol.268, pp. 714-716, 1995). There was also a report of the first oral immunity in humans by confirming the immune effect when the same potato was administered to humans (Tacket et al ., Nature Med. Vol. 4, pp. 607-609, 1998).

식물에서 생리활성을 지닌 단백질의 발현은 De Zoeten 등(Virology. vol. 172, pp.213-222, 1989)이 인간 인터페론 유전자의 식물세포에서의 발현을 보고 한 후 엔케팔린(enkephalin)(Takamatsu et al., FEBS Lett. vol.269, pp.73-76, 1990), 안지오텐신-I-전환효소 저해제(angiotensin-I-converting enzyme inhibitor, ACEI) (Hamamoto et al., Bio/Technology vol. 11, pp.930-932, 1993), 및 α-트리코산틴(trichosanthin)(Kumagai et al., Proc. Natl. Acad. Sci. USA vol. 90. pp427-430, 1993) 등과 같은 작은 크기의 펩타이드 발현이 보고되었으며, 에리쓰로포이에틴(Matsumoto et al., Plant Mol Biol. vol.27, pp.1163-1172, 1995) 등과 같은 성장 인자의 발현도 보고되었다. 지금까지 보고된 사이토카인 및 관련 단백질들은 부분적으로 활성을 가진 생리활성물질로 발현되었으나 발현량과 같은 경제적인 문제는 검토되지 않고 있다. 특히 에리쓰로포이에틴의 실험(Matsumoto et al., 1995)에서 보듯이 식물현탁세포 배양을 이용한 단백질의 생산은 in vitro에서는 활성이 있으나 in vivo에서는 활성이 없는 등의 매우 제한적인 성공을 거두고 있다.The expression of physiologically active proteins in plants was reported by De Zoeten et al. ( Virology. Vol. 172, pp. 213-222, 1989) after reporting the expression of human interferon genes in plant cells (enkephalin) (Takamatsu et al. , FEBS Lett . Vol. 269, pp. 73-76, 1990), angiotensin-I-converting enzyme inhibitor (ACEI) (Hamamoto et al., Bio / Technology vol. 11, pp 930-932, 1993), and small-sized peptide expression such as α-trichosanthin (Kumagai et a l., Proc. Natl. Acad. Sci. USA vol. 90. pp427-430, 1993), and the like. And expression of growth factors such as erythropoietin (Matsumoto et al ., Plant Mol Biol . Vol. 27, pp.1163-1172, 1995). The cytokines and related proteins reported so far have been expressed as partially active bioactive substances, but economic problems such as the amount of expression have not been examined. In particular, as shown in the experiments of erythropoietin (Matsumoto et al ., 1995), the production of protein using plant suspension cell culture has been very limited success, such as active in vitro but not in vivo . .

단클론항체는 단백질 자체가 이종사량체(heterotetramer)로 구성되어 있기 때문에 대장균이나 효모를 이용한 생산이 불가능하며, 오로지 동물 또는 동물세포 배양을 통해서만 그 생산이 가능하기 때문에 고가의 특성을 가지며, 아울러 생산 시스템에서 오는 2차 감염의 위험성이 아주 많은 단백질 중의 하나이다. 이러한 문제점을 감안할 때 식물세포 배양을 통한 유용단백질 생산의 가장 적절한 대상 중 하나로 단클론 항체가 고려되고 있다. Fisher등(Fischer, R., et al., J. Immunolog. Methods vol.226, pp.1-10, 1999)은 담배 현탁 배양에서 얻는 재조합 155-kDa 항체가 식물세포벽에 의해 분비되지 못하고 세포내에 남아 있고, 배양배지에서는 발견되지 않음을 보여주고 있다. Since monoclonal antibodies are composed of heterotetramers, they cannot be produced using E. coli or yeast, and they can be produced only through animal or animal cell culture. The risk of secondary infections coming from is one of the many proteins. Given these problems, monoclonal antibodies have been considered as one of the most suitable targets for the production of useful proteins through plant cell culture. Fisher, etc. (Fischer, R., et al. , J. Immunolog. Methods vol.226, pp.1-10, 1999) are within the recombinant 155-kDa antibody obtained from tobacco suspension culture cells not being secreted by the plant cell wall Remaining and not found in culture media.

지금까지 식물에 외래 유전자의 도입을 통하여 외래단백질을 생산하고자 하는 시도는 많이 있으나, 식물세포 배양시스템은 느린 성장, 및 낮은 발현율 등의 문제점이 있어, 효율적인 발현시스템 개발을 위한 식물세포배양방법 확립이 필요하다.(Su, W.W., Appl. Biochem. Biotech. vol.50, pp.189-230, 1995; Yeoman, M.M.et al., New Phytol. vol.134, pp.553-569, 1996). 또한, 대부분이 식물의 세포 내에 외래단백질을 축적시키는데 지나지 않았고, 외래 단백질의 축적비율도 대부분 1%를 넘기지 못하고 있다. 특히, 상기 항원, 사이토카인 등과 같은 단백질은 세포 내에 많은 양이 축적되어 있어도 이후의 정제단계가 복잡한 단점이 있으므로, 최근에는 식물 현탁세포 배양을 이용하여 배지로 분비되도록 유도한 후 분리 정제를 시도하고 있다.Although many attempts have been made to produce foreign proteins through the introduction of foreign genes into plants, plant cell culture systems have problems such as slow growth and low expression rate, and thus, plant cell culture methods for efficient expression system development have not been established. (Su, WW, Appl. Biochem. Biotech . Vol. 50, pp. 189-230, 1995; Yeoman, MM et al., New Phyto l. Vol. 134, pp. 553-569, 1996). In addition, most of them accumulate foreign proteins in plant cells, and the accumulation rate of foreign proteins does not exceed 1%. In particular, the protein, such as the antigen, cytokines, etc., since the subsequent purification step is complicated even if a large amount is accumulated in the cell, recently, to try to separate and purify by inducing to be secreted into the medium using the culture of plant suspension cells have.

본 기술에서 생산하고자 하는 사람 인터루킨-12(hIL-12)는 35-kDa 크기의 서브유니트(p35) 및 40-kDa 크기의 서브유니트(p40)가 서로 이황화결합으로 구성된 이종이량체 사이토킨이다 (Stern, A. et al. Proc. Natl. Acad. Sci. USA vol.87, pp.6808-12, 1990). IL-12는 원래 세포독성 림프구 성숙 인자(Gately, M.et al., J. Immunol. vol.136, pp.1274-82, 1986), 또는 다른 그룹에 의해서는 천연 사멸세포 자극인자로 확인되었다(Kobayashi, M. et al. J. Exp. Med. vol.170, pp.827- 45, 1989). IL-12는 Th1-유형의 사이토킨 반응의 촉진, 세포성 림프구 반응의 증진, NK세포로부터 IFN 분비의 유도(Chan, S. et al. J. Exp. Med. vol.173, pp.869-79, 1991), 및 활성화된 T 세포 및 NK세포의 증식 자극을 포함하는 다면적인(Pleiotropic) 생물학적 활성을 갖는다. Human interleukin-12 (hIL-12) to be produced in the present technology is a heterodimer cytokine in which 35-kDa subunit (p35) and 40-kDa subunit (p40) are disulfide bonds with each other (Stern). , A. et al . Proc . Natl . Acad . Sci . USA vol. 87, pp.6808-12, 1990). IL-12 was originally identified as a natural killer cell stimulator by cytotoxic lymphocyte maturation factor (Gately, M. et al., J. Immunol . Vol. 136, pp. 1274-82, 1986), or other groups. (Kobayashi, M. et al . J. Exp . Med . Vol. 170, pp. 827-45, 1989). IL-12 promotes Th1-type cytokine responses, enhances cellular lymphocyte responses, and induces IFN secretion from NK cells (Chan, S. et al . J. Exp . Med . Vol. 173, pp. 869-79). , 1991), and Pleiotropic biological activity including proliferation stimulation of activated T cells and NK cells.

두 개의 다른 유전자가 서브유니트를 코딩하며, 생물학적으로 활성인 IL-12을 생산하기 위해서는 동일한 세포에서 각 유전자의 동시발현 및 올바른 이종이량체 조합(assembly)이 필요하다. Two different genes encode subunits and co-expression of each gene in the same cell and the correct assembly of heterodimers are required to produce biologically active IL-12.

현재 모든 IL-12의 생산은 아데노바이러스(Adenovirus)(Chen, L. et al. J. Immunol. vol. 159, pp.351-159, 1997), Semliki Forest virus(Zhang, J. et al. Gene Ther. vol. 4, pp.367-374, 1997) 및 retrovirus(Zitvogel, L. et al. Hum Gene Ther. vol.5, 1493-1506, 1994)를 발현 vector로 하여 동물세포에서 생산을 하고있으며, 일부는 곤충세포에서(Shen, H. et al. Chin. J. Biotechnol. vol. 14, pp.205-212, 1998) 생산이 가능 할 뿐이다. 그러나 동물세포 배양에 의하여 IL-12를 생산하는 경우에는 숙주세포의 동물바이러스 감염에 의하여 의료용 단백질이 감염될 우려가 있으며, 배지에 여러 종류의 단백질이 다량 존재하기 때문에 생산, 분비된 의료용 단백질의 분리 정제가 매우 어렵고 비용이 많이 든다는 문제점이 있다.The production of all IL-12 is currently adenovirus (Chen, L. et al . J. Immunol. Vol. 159, pp. 351-159, 1997), Semliki Forest virus (Zhang, J. et al . Gene Ther. Vol. 4, pp. 367-374, 1997) and retroviruses (Zitvogel, L. et al. Hum Gene Ther. Vol. 5, 1493-1506, 1994) are produced in animal cells. Some are only available for production in insect cells (Shen, H. et al. Chin. J. Biotechnol. Vol. 14, pp. 205-212, 1998). However, in the case of IL-12 production by animal cell culture, there is a possibility that the medical protein is infected by the animal virus infection of the host cell, and the isolation of the produced and secreted medical protein due to the large amount of various proteins in the medium. There is a problem that purification is very difficult and expensive.

지금까지 식물의 세포에서 서로 다른 유전자의 동시발현과 이로 인하여 형성된 각각의 단백질이 올바른 이종이량체 조합(assembly)을 형성하고 생물학적으로 활성인 이종이량체 단백질 상태로 식물세포 밖으로 분비를 유도하여 생산하는 기술 개발은 본 기술이 세계최초이며, 상기의 기술은 본 특허청구자들에 의하여 특허청구와 함께 학회에 보고하였다 (Kwon, et al. Biotechnology and Bioengneering. vol.81, pp.870-875, 2003).Up to now, the co-expression of different genes in plant cells and the resulting proteins form the correct heterodimer and induce secretion out of the plant cell in a biologically active heterodimeric protein state. The technology development is the first in the world, and the above technology has been reported to the society by the claimants with the claims (Kwon, et al. Biotechnology and Bioengneering . Vol. 81, pp . 870-875, 2003). .

상기와 같은 종래 기술의 문제점을 해결하고자, 본 발명은 식물세포의 현탁배양방법으로 생물학적으로 활성인 사람 IL-12를 생산하는 방법을 제공하는 것을 목적으로 한다. In order to solve the problems of the prior art as described above, an object of the present invention is to provide a method for producing a biologically active human IL-12 as a suspension culture method of plant cells.

본 발명의 또 다른 목적은 생물학적으로 활성인 사람 IL-12를 발현 및 분비하는 식물세포, 및 식물체를 제공하는 것이다. It is another object of the present invention to provide plant cells and plants that express and secrete biologically active human IL-12.

본 발명의 또 다른 목적은 생물학적 활성이 높고 안정하며 배양배지로 분비되는 식물세포 현탁배양법으로 생산된 재조합 사람 IL-12 단백질을 제공하는 것을 목적으로 한다. Another object of the present invention is to provide a recombinant human IL-12 protein produced by a plant cell suspension culture method of high biological activity, stable and secreted into the culture medium.

본 발명의 또 다른 목적은 식물세포 현탁배양법으로 사람 IL-12 단백질을 생산 할 때 단백질 안정제인 젤라틴을 사용함으로서 사람 IL-12 단백질의 생산을 높일 수 있는 기술을 제공하는 것을 목적으로 한다. It is another object of the present invention to provide a technique for enhancing the production of human IL-12 protein by using gelatin, which is a protein stabilizer, when producing human IL-12 protein by plant cell suspension culture.

상기와 같은 기술적 과제를 달성하고자, 본 발명은 인터루킨-12의 p35 서브유니트와 p40 서브유니트를 모두 발현하는 형질전환 식물세포주를 포함하는 식물현탁배양 시스템을 이용한 인터루킨-12의 생산방법을 제공한다. In order to achieve the above technical problem, the present invention provides a method for producing interleukin-12 using a plant suspension culture system comprising a transgenic plant cell line expressing both p35 subunit and p40 subunit of interleukin-12.

또한, 본 발명은 인터루킨-12(interleukin-12, IL-12)의 p35 서브유니트와 p40 서브유니트를 모두 발현하는 형질전환 식물체에 관한 것이다. The present invention also relates to a transgenic plant expressing both the p35 subunit and p40 subunit of interleukin-12 (IL-12).

또한, 본 발명은 인터루킨-12(interleukin-12, IL-12)의 p35 서브유니트와 p40 서브유니트를 모두 발현하는 형질전환 식물세포에 관한 것이다. The present invention also relates to a transgenic plant cell expressing both the p35 subunit and p40 subunit of interleukin-12 (IL-12).

또한, 본 발명은 상기 방법에 따라 제조된 식물세포 현탁배양방법에 의해 생산된 생물학적으로 활성인 재조합 인터루킨-12 단백질에 관한 것이다. The present invention also relates to a biologically active recombinant interleukin-12 protein produced by a plant cell suspension culture method prepared according to the above method.

본 발명자들은 기존의 동물세포를 이용한 IL-12의 제조방법상의 문제점을 고려하여, 식물세포배양시스템을 이용하여 이종이량체 단백질인 사람의 인터루킨-12이 생물학적으로 활성인 형태로 발현시키고 배양배지로 분비됨에 기초하여, hIL-12의 각 서브유니트를 각각 발현하는 형질전환식물을 교배(Sexual crossing)하여 완전한 hIL-12를 발현하는 형질전환식물을 제조하고, 상기 형질전환식물로부터 캘러스를 유도하고 식물세포 현탁배양계를 수립하였다. 상기 배양배지로 분비되는 hIL-12의 생물학적 활성, 생산량을 확인 한 결과 단백질 본래의 시그널 펩타이드에 의하여 활성인 상태로 배양 배지로 분비됨을 확인하여 본 발명을 완성하게 되었다. The present inventors consider the problems of the conventional production method of IL-12 using animal cells, using a plant cell culture system to express the interleukin-12 of a heterodimeric protein in a biologically active form and to culture medium. Based on the secretion, the transgenic plants expressing each subunit of hIL-12, respectively, are crossed to prepare transgenic plants expressing complete hIL-12, inducing callus from the transgenic plants, and A cell suspension culture system was established. As a result of confirming the biological activity and production of hIL-12 secreted into the culture medium, it was confirmed that the protein is secreted into the culture medium in an active state by the original signal peptide, thereby completing the present invention.

이하에서, 본 발명을 더욱 자세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail.

본 발명은 인터루킨-12의 35 kDa 크기의 서브유니트를 발현하는 형질전환 식물체를 제조하고, 인터루킨-12의 40 kDa 크기의 서브유니트를 발현하는 형질전환 식물체를 분화시키고, 각각의 서브 유니트를 발현하는 형질전환 식물체를 교배하여 두 서브유니트를 모두 발현하는 형질전환 식물체를 제조함으로써 IL-12가 식물세포 배양배지로 분비되어 분리, 정제가 용이하고, 생물학적으로 활성이 있는 형태로 발현 및 분비되어 별도의 각 서브유니트의 조합(assembly) 단계가 불필요하여, 생산 비용이 저렴하고 제조공정이 간단하다. 생물활성 단백질을 생산하는 경우에 높은 수준의 단일 단백질 상태로 정제하는 것이 비용이 과다하게 소요되거나 불가능할 수 있기 때문에, 이러한 단계가 통상 제한적인 단계이다. 식물 세포 배양 시스템은 배양 배지가 수크로스 및 몇몇의 염으로 구성되고 어떠한 고분자량의 거대분자를 포함하지 않기 때문에 정제에 유용하다. The present invention provides a transgenic plant expressing a 35 kDa subunit of interleukin-12, differentiates a transgenic plant expressing a 40 kDa subunit of interleukin-12, and expresses each subunit. By producing transgenic plants expressing both subunits by crossing the transgenic plants, IL-12 is secreted into plant cell culture media for easy separation and purification, and is expressed and secreted in a biologically active form to separate them. No assembly steps are required for each subunit, resulting in low production costs and simple manufacturing processes. This step is usually a limiting step because in the case of producing bioactive proteins, purification to a high level of single protein state may be excessively costly or impossible. Plant cell culture systems are useful for purification because the culture medium consists of sucrose and some salts and does not contain any high molecular weight macromolecules.

(a) 인터루킨-12(interleukin-12, IL-12)의 p35 서브유니트를 코딩하는 유전자가 도입된 형질전환 식물체와, p40 서브유니트를 코딩하는 유전자가 도입된 형질전환 식물체를 제공하고, (a) providing a transgenic plant into which a gene encoding a p35 subunit of interleukin-12 (IL-12) is introduced, and a transgenic plant into which a gene encoding a p40 sub unit is introduced,

(b) 상기 두 형질전환 식물체들을 교배하여 IL-12의 두가지 서브유니트를 모두 발현하는 형질전환 식물체를 제조하고, (b) cross-transforming the two transgenic plants to produce a transgenic plant expressing both subunits of IL-12,

(c) 상기 b)의 형질전환 식물체로부터 캘러스를 유기하여 식물세포주를 제조하고, (c) preparing a plant cell line by inducing callus from the transformed plant of b),

(d) 상기 식물세포주를 현탁배양하여 IL-12를 발현시키는 단계를 포함하는 생물학적으로 활성인 IL-12의 생산방법에 관한 것이다.(d) suspending the plant cell line to express IL-12.

본 발명에서 사용 가능한 IL-12는 사람(Genebank No. M65290(p40), M65291(p35)), mouse(Genebank No. M86671(p40), M86672(p35)) 또는 porcine (Genebank No. AB025723(p35), AB025724(p40))의 IL-12 외에 IL-12로 분류되는 모든 IL-12를 포함한다. 본 발명의 IL-12 유전자는 구조유전자만으로 발현될 수 있으나, 바람직하게는 구조유전자와 시그널 서열을 포함하여 식물세포외로 분비시킬 수 있다. 본 발명에서 사용 가능한 시그널 서열은 IL-12 자체의 시그널 유전자뿐만 아 니라, IL-12의 생산, 분비 및 활성에 유해한 영향을 미치지 않는 어떠한 시그널 유전자도 포함하는 의도이다.IL-12 usable in the present invention is human (Genebank No. M65290 (p40), M65291 (p35)), mouse (Genebank No. M86671 (p40), M86672 (p35)) or porcine (Genebank No. AB025723 (p35) , AB025724 (p40)), in addition to IL-12, includes all IL-12 classified as IL-12. IL-12 gene of the present invention can be expressed only by the structural gene, but preferably can be secreted outside the plant cell, including the structural gene and the signal sequence. The signal sequence usable in the present invention is intended to include not only the signal gene of IL-12 itself, but also any signal gene which does not adversely affect the production, secretion and activity of IL-12.

본 발명은 사람 인터루킨-12의 서브유니트인 p35를 발현하는 재조합벡터 pMYL27을 제공한다. 상기 pMYL27 벡터중 식물에 도입되는 영역을 표 1에 나타내고 있으며, 여기에는 인터루킨-12의 p35 서브유니트의 발현부위 및 선별 마커인 네오마이신 발현 부위를 포함하며, 이에 대한 예시적인 염기서열을 서열번호 1에 나타냈다. 또한 pMYL27은 도 2a에 도시한 바와 같은 방법으로 제조되고 식물에 직접 도입되는 T-DNA 영역(Right Bord에서 Left Bord까지)은 하기 표 1의 구조를 포함한다.The present invention provides a recombinant vector pMYL27 expressing p35, a subunit of human interleukin-12. The region introduced into the plant of the pMYL27 vector is shown in Table 1, which includes an expression site of the p35 subunit of interleukin-12 and a neomycin expression site that is a selection marker, and an exemplary nucleotide sequence thereof is shown in SEQ ID NO: 1 Indicated. In addition, pMYL27 is prepared by the method as shown in FIG. 2A and the T-DNA region (Right Bord to Left Bord) which is directly introduced into a plant includes the structure of Table 1 below.

유전자gene 위치location Right BordRight bord 1-241-24 노팔린 합성효소 프로모터Nopalin synthase promoter 72-38472-384 네오마이신 포스포트랜스퍼레이즈IINeomycin Force Transporters II 385-1179385-1179 노팔린 합성효소의 전사종결신호Transcription Termination Signal of Nopaline Synthetase 1568-18211568-1821 CaMV35S 프로모터CaMV35S promoter 2515-32942515-3294 hIL-12 p35 서브유니트 유전자hIL-12 p35 subunit gene 3302-40783302-4078 노팔린 합성효소의 전사종결신호Transcription Termination Signal of Nopaline Synthetase 4093-43464093-4346 Left BordLeft bord 4989-50134989-5013

또한, 본 발명은 사람 인터루킨-12의 서브유니트인 p40을 발현하는 재조합벡터 pMYL28을 제공한다. 상기 pMYL28 벡터중 식물에 도입되는 영역을 표 2에 나타내고 있으며, 여기에는 인터루킨-12의 p40 서브유니트의 발현부위 및 선별 마커인 하이그로마이신 발현 부위를 포함하며, 이에 대한 예시적인 염기서열을 서열번호 2에 나타냈다. 또한 pMYL28은 도 2b에 도시한 바와 같은 방법으로 제조되었고 식물에 직접 도입되는 T-DNA 영역(Right Bord에서 Left Bord까지)은 하기 표 2의 구조를 포함한다.The present invention also provides a recombinant vector pMYL28 expressing p40 which is a subunit of human interleukin-12. The region introduced into the plant of the pMYL28 vector is shown in Table 2, which includes an expression site of the p40 subunit of interleukin-12 and a hygromycin expression site that is a selection marker, and an exemplary nucleotide sequence thereof is shown in SEQ ID NO: 2 is shown. In addition, pMYL28 was prepared by the method as shown in Figure 2b and the T-DNA region (Right Bord to Left Bord) introduced directly to the plant includes the structure of Table 2 below.

유전자gene 위치location Right BordRight bord 1-241-24 CaMV35S 프로모터CaMV35S promoter 265-1046265-1046 hIL-12 p40 서브유니트 유전자hIL-12 p40 subunit gene 1058-20441058-2044 노팔린 합성효소의 전사종결신호Transcription Termination Signal of Nopaline Synthetase 2056-23212056-2321 CaMV35S 프로모터CaMV35S promoter 2570-33502570-3350 하이그로마이신 포스포트랜스퍼레이즈Hygromycin Force Transporterase 3386-35363386-3536 CaMV35S 전사종결신호CaMV35S transcription termination signal 4248-45754248-4575 Left BordLeft bord 4703-47274703-4727

상기 (d) 단계에서, 젤라틴을 배양 배지에 첨가하는 단계를 추가하는 것이 바람직하다. 추가하는 젤라틴의 양은 바람직하게 0.5% ~1.0% 이고, 젤라틴은 식물세포의 계대배양시 첨가하는 것이 바람직하다.In the step (d), it is preferable to add the step of adding gelatin to the culture medium. The amount of gelatin to be added is preferably 0.5% to 1.0%, and gelatin is preferably added during passage of plant cells.

본 발명에서 사용가능한 식물의 형질전환방법으로는 아그로박테리움-매개 형질전환법, 원형질의 직접적 형질전환법, 외래 DNA의 미량주입(microinjection), 및 미세발사체로 전달하는 방법 등을 사용할 수 있으며, 바람직하게는 아그로박테리움 형질전환방법이다. 식물 조직을 형질전환시키는 방법이 다양한 것처럼 식물 조직으로부터 식물을 재생시키는 방법은 사용한 식물의 종류에 따라 적절히 선택할 수 있으며, 바람직하게는 식물 외식체로부터 유도된 캘러스 조직으로 재생할 수 있으며, 에이. 튜메파시엔스로 형질전환된 조직으로부터 식물을 재생시키는 것은 여러 식물종에서 매우 잘 알려져 있다. As a method for transforming plants usable in the present invention, Agrobacterium-mediated transformation, direct transformation of protoplasts, microinjection of foreign DNA, and delivery to microprojectiles can be used. Preferably, the Agrobacterium transformation method. As a variety of methods for transforming the plant tissue, the method for regenerating the plant from the plant tissue can be appropriately selected according to the type of plant used, preferably regenerated with callus tissue derived from plant explants. Regeneration of plants from tissues transformed with tumefaciens is very well known in many plant species.

본 발명은 또한, IL-12의 p35 서브유니트와 p40 서브유니트를 모두 발현하는 형질전환 식물체 또는 식물세포, 바람직하게는 생물학적으로 활성인 IL-12을 생산하는 식물체 또는 식물세포에 관한 것이다.The invention also relates to a transgenic plant or plant cell expressing both the p35 subunit and p40 subunit of IL-12, preferably the plant or plant cell producing biologically active IL-12.

본 발명에서 형질전환 식물 또는 식물세포는 니코티아나 타바쿰(Nicotiana tabacum), 애기장대, 벼 등을 포함한 형질전환이 가능한 모든 식물을 포함하며, 바람직하게는 담배식물이다. 본 발명에 따른 바람직한 식물세포주로는 hIL-12를 생산하는 니코티아나 타바쿰 세포주 L2728-3(pMYL27 X pMYL28)이며, 이는 2001년 6월 7일 유전자은행에 KCTC 1021BP로 기탁하였다. In the present invention, the transformed plant or plant cell includes all plants capable of transformation, including Nicotiana tabacum , Arabidopsis, rice, and the like, and preferably tobacco plants. Preferred plant cell line according to the present invention is nicotiana tabacum cell line L2728-3 (pMYL27 X pMYL28) producing hIL-12, which was deposited as KCTC 1021BP in the Gene Bank on June 7, 2001.

하기 예시적인 실시예를 들어 본 발명을 더욱 자세히 설명할 것이나, 본 발명의 보호범위가 하기 실시예로 한정되는 의도는 아니다.The present invention will be described in more detail with reference to the following illustrative examples, but the protection scope of the present invention is not intended to be limited to the following examples.

[실시예]EXAMPLE

실시예 1: 형질전환 식물의 제조 및 분석Example 1 Preparation and Analysis of Transgenic Plants

1-1: 유전자의 클로닝1-1: Cloning of Genes

인터루킨-12의 p35와 p40 단편의 유전자를 PCR을 이용하여 분리하여 확인하였으며 이의 결과를 도1에 나타내었다.Genes of p35 and p40 fragments of interleukin-12 were isolated and identified by PCR, and the results are shown in FIG. 1.

인터루킨-12의 p35와 p40 단편의 유전자는 인간의 혈액에 15㎍/ml의 PHA (phytohemagglutinin)를 처리하여 인터루킨-12의 발현을 유도한 후에 peripheral blood mononuclear cell을 분리하였으며 이 세포로부터 전체 폴리-(A)+ mRNA를 분리하였다. 인터루킨-12의 p35 단편의 cDNA(시그널 펩타이드 포함)는 상기의 전체 RNA를 하기의 p35-F와 p35-R을 프라이머로 하여 RT-PCR을 수행하여 합성하였다. The genes of p35 and p40 fragments of interleukin-12 were treated with 15μg / ml PHA (phytohemagglutinin) in human blood to induce the expression of interleukin-12, and then peripheral blood mononuclear cells were isolated from the cells. A) + mRNA was isolated. The cDNA (including signal peptide) of the p35 fragment of interleukin-12 was synthesized by performing RT-PCR using the above-described total RNA as a primer of p35-F and p35-R.

p35-F : 5'-AAG GTA CCA ATT ATA AAA ATG TGG-3'(서열번호 3)p35-F: 5'-AAG GTA CCA ATT ATA AAA ATG TGG-3 '(SEQ ID NO: 3)

p35-R : 5'-AAG AGC TCT TTA GGA AGC ATT CA-3' (서열번호 4)p35-R: 5'-AAG AGC TCT TTA GGA AGC ATT CA-3 '(SEQ ID NO: 4)

PCR은 94 ℃, 3분간 전변성단계(pre-denaturation) 1회, 94 ℃ 30초간 변성(denaturation), 55 ℃ 30초간 프라이머 부착(annealing) 및 72 ℃ 1분간 신장(extension)으로 이루어진 반응을 30회 수행하였다. 증폭된 PCR 산물은 인간인터루킨-12의 p35단편 유전자의 ORF(open reading frame, Genebank M65291)을 포함하는 761 bp의 절편이다. 상기 PCR 산물은 pGEM-T 벡터(Promega, WI, USA)에 삽입하여 pMYL25 벡터를 제조하고, 디디옥시뉴클레오티드 연쇄 종결방법 (dideoxynucleotide chain termination method)으로 분석하여 인간인터루킨-12의 p35단편 유전자임을 확인하였다. PCR was performed at 94 ° C for 3 min pre-denaturation, 94 ° C for 30 seconds denaturation, 55 ° C for 30 seconds primer annealing, and 72 ° C for 1 minute extension. Was performed twice. The amplified PCR product is a 761 bp fragment containing an open reading frame (ORF, Genebank M65291) of the p35 fragment gene of human interleukin-12. The PCR product was inserted into a pGEM-T vector (Promega, WI, USA) to prepare a pMYL25 vector and analyzed by the didioxynucleotide chain termination method to confirm that it is the p35 fragment gene of human interleukin-12. .

인터루킨-12의 p40 단편의 cDNA(시그널 펩타이드 포함)는 상기의 전체 RNA를 하기 p40-F와 p40-R 을 프라이머로하여 RT-PCR을 수행하여 합성하였다.The cDNA (including signal peptide) of the p40 fragment of interleukin-12 was synthesized by performing RT-PCR using the above pRNA-p and p40-R as primers.

p40-F : 5'-GCG GAT CCA TGT GTC ACC AGC AGT TGG TCA TCT-3'(서열번호 5)p40-F: 5'-GCG GAT CCA TGT GTC ACC AGC AGT TGG TCA TCT-3 '(SEQ ID NO: 5)

p40-R : 5'-TTG GTA CCC TAA CTG CAG GGC ACA GAT GCC CAT-3' (서열번호 6)p40-R: 5'-TTG GTA CCC TAA CTG CAG GGC ACA GAT GCC CAT-3 '(SEQ ID NO: 6)

PCR은 94 ℃, 3분간 전변성단계(pre-denaturation) 1회, 94 ℃ 30초간 변성(denaturation), 55 ℃ 30초간 프라이머 부착(annealing) 및 72 ℃ 1분간 신장(extension)으로 이루어진 반응을 30회 수행하였다. 증폭된 PCR 산물은 인간인터루킨-12의 p40단편 유전자의 ORF(open reading frame, Genebank M65290)을 포함하는 986 bp의 절편이다. 상기 PCR 산물은 pGEM-T 벡터(Promega, WI, USA)에 삽입하여 pMYL26 벡터를 제조하고, 디디옥시뉴클레오티드 연쇄 종결방법 (dideoxynucleotide chain termination method)으로 분석하여 인간인터루킨-12의 p40단편 유전자임을 확인하였다.  PCR was performed at 94 ° C for 3 min pre-denaturation, 94 ° C for 30 seconds denaturation, 55 ° C for 30 seconds primer annealing, and 72 ° C for 1 minute extension. Was performed twice. The amplified PCR product is a 986 bp fragment containing the open reading frame (ORF, Genebank M65290) of the p40 fragment gene of human interleukin-12. The PCR product was inserted into a pGEM-T vector (Promega, WI, USA) to prepare a pMYL26 vector, and analyzed by the didioxynucleotide chain termination method (dideoxynucleotide chain termination method) to confirm that the p40 fragment gene of human interleukin-12. .

1-2: 식물발현 재조합벡터의 제조1-2: Preparation of Plant Expression Recombinant Vector

pMYL25 벡터상의 인간 인터루킨-12의 P35 단편 cDNA를 제한효소 KpnI/SacI으로 절단하여 동일 제한효소를 포함하는 식물이중벡터인 pMY27의 담배 모자이크 바이러스의 CaMV35S 프로모터와 전사종결시그널 사이에 존재하는 동일 제한효소자리에 삽입하여 식물형질전환을 위한 식물발현 재조합벡터인 pMYL27 벡터를 제조하였다(도 2a). pMYL26 벡터상의 인간 인터루킨-12의 P40 단편 cDNA를 제한효소 BamHI/KpnI으로 절단하여 동일 제한효소를 포함하는 식물이중벡터인 pMY27의 담배 모자이크 바이러스의 CaMV35S 프로모터와 전사종결시그널 사이에 존재하는 동일 제한효소자리에 삽입하여 식물형질전환을 위한 식물발현 재조합벡터인 pMYL28 벡터를 제조하였다(도 2b). P35 fragment cDNA of human interleukin-12 on pMYL25 vector was digested with restriction enzyme Kpn I / Sac I and the same restriction exists between CaMV35S promoter and transcription termination signal of tobacco mosaic virus of pMY27, a plant double vector containing the same restriction enzyme Inserted into the enzyme site to prepare a plant expression recombinant vector pMYL27 vector for plant transformation (Fig. 2a). P40 fragment cDNA of human interleukin-12 on pMYL26 vector was cleaved with restriction enzyme Bam HI / Kpn I and the same restriction between CaMV35S promoter and transcription termination signal of the tobacco mosaic virus of pMY27, a plant double vector containing the same restriction enzyme Inserted into the enzyme site to prepare a plant expression recombinant vector pMYL28 vector for plant transformation (Fig. 2b).

1-3: 형질전환1-3: Transformation

인터루킨-12의 p35와 p40 단편의 유전자를 각각 포함하는 pMYL27 및 pMYL28을 아그로박테리움에 의한 형질전환방법(An, G., Watson, B.D. and Chiang, C.C. (1986) Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system. Plant Physiol. 81, 301-305)을 이용하여 식물에 형질전환 하고자 헬퍼로 pRK2013을 포함하는 E. coli HB101를 이용한 트리페렌탈 접합 (triparental mating)으로 E. coli HB101에서 아그로박테리아 투메팍시엔스(A. tumefaciens) LBA4404로 이동시켰다 (Figurski, J.J. and Helinski, D.R. (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. USA 76, 1648-1652). 담배(Nicotiana tabacum L. cv. Havana SR)에 인간 인터루킨-12의 p35와 p40단편 유전자는 상기에서 트리페렌탈 접합 (triparental mating)을 통하여 p35와 p40단편 유전자를 포함하는 아그로박테리아 투메팍시엔스(A. tumefaciens) LBA4404을 이용한 형질전환방법(Agrobacterium mediated transformation method)을 사용하였다(An, G. et al., Plant Physiol. vol. 81, pp. 301-305, 1986). pMYL27과 pMYL28을 포함하는 A. tumefaciens 이용하여 p35와 p40단편 유전자를 담배에 도입하기 위하여 먼저 담배 (Nicotiana tabaccum cv Havana)잎을 1% chlrolax와 0.01% triton X-100 용액에 넣어 살균한 다음 멸균된 증류수로 세 번 씻은 후에 멸균된 잎을 가로 세로 0.5cm 정도의 크기로 자른 다음 각각의 절편을 pMYL27과 pMYL28을 각각 포함하고 있는 A. tumefaciens LBA4404를 희석한 MS (Murashige, T. and Skoog, F., Physiol. Plant. vol. 15, pp. 473-497, 1962) 액체 배지에 30분간 접종시켰다. 접종한 절편을 1.0㎎/ℓ NAA와 0.1㎎/ℓ BAP를 함유한 MS 재분화 배지 (MS104)에 치상 한 후에 25℃ growth chamber에서 배양하였으며 3일 후에 1.0㎎/ℓ NAA, 0.1㎎/ℓ BAP, 300㎎/ℓ kanamycin, 500㎎/ℓcefotaxime이 들어있는 MS 선발배지에 옮겨 배양하였다. 3개월 후에 항생제를 포함하는 선발배지에서 재분화된 식물체가 2-3cm 정도 자랐을 때 잘라 생장조절제를 포함하지 않는 MS 발근배지로 옮겨주었다. MS발근 배지에서 뿌리가 형성되고 줄기가 8cm 정도 생육이 되었을 때 화분에 이식하여 온실에서 순화시켰다. PMYL27 and pMYL28 containing genes of p35 and p40 fragments of interleukin-12, respectively, by Agrobacterium (An, G., Watson, BD and Chiang, CC (1986) Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system.Plant Physiol. 81, 301-305). E. coli HB101 with pRK2013 as a helper to transform plants into plants by E. coli H. coli HB101 was transferred to A. tumefaciens LBA4404 (Figurski, JJ and Helinski, DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans.Proc.Natl Acad.Sci. USA 76, 1648-1652). Tobacco (Nicotiana tabacum L. cv. Havana SR ) human interleukin -12 fragment of the p35 and p40 genes are Agrobacterium bacteria Tome paksi Enschede (A comprising the p35 fragment and the p40 gene through the page tree rental junction (triparental mating) in the in tumefaciens ) An Agrobacterium mediated transformation method using LBA4404 was used (An, G. et al., Plant Physiol . vol. 81, pp. 301-305, 1986). A. tumefaciens containing pMYL27 and pMYL28 To introduce p35 and p40 fragment genes into tobacco, the leaves of Nicotiana tabaccum cv Havana were first sterilized in 1% chlrolax and 0.01% triton X-100 solution, washed three times with sterile distilled water, and then sterilized. Cut to size about 0.5 cm and then each section was diluted with A. tumefaciens LBA4404 containing pMYL27 and pMYL28, respectively (Murashige, T. and Skoog, F., Physiol.Pl . 15, pp. 473-497, 1962) was inoculated in liquid medium for 30 minutes. Inoculated sections were inoculated in MS regeneration medium (MS104) containing 1.0 mg / l NAA and 0.1 mg / l BAP, and then cultured in a 25 ° C. growth chamber. Three days later, 1.0 mg / l NAA, 0.1 mg / l BAP, Cultures were transferred to MS selection medium containing 300mg / l kanamycin and 500mg / lcefotaxime. Three months later, when the re-differentiated plants grew 2-3 cm in antibiotic selection medium, they were cut and transferred to MS rooting medium containing no growth regulator. When roots were formed in MS rooting medium and stems were grown to about 8 cm, they were transplanted into pots and purified in the greenhouse.

1-4: 형질전환체 분석1-4: Transformant Analysis

항생제를 포함하는 MS배지에서 재분화된 식물체를 배양하여 약 10 cm 정도 성장한 식물의 잎으로부터 DNA를 Qiagen사의 DNeasy plant mini kit를 이용하여 전 체 DNA를 추출하였다. 이 DNA를 주형으로 하여 정상적으로 p35와 p40의 유전자가 각각 염색체 안으로 도입되었는지의 여부를 실시예 1-1유전자의 클로닝에서 사용한 p35, p40의 유전자에 특이적 프라이머인 p40-F (5'-GCG GAT CCA TGT GTC ACC AGC AGT TGG TCA TCT-3')와 p40-R (5'-TTG GTA CCC TAA CTG CAG GGC ACA GAT GCC CAT-3')을 이용하여 PCR을 수행하였다. PCR에 의해 증폭된 DNA를 Sambrook 등(Sambrook, J., et al., Molecular cloning: A Laboratory Manual. NY, Cold Spring Harbor Laboratory Press, 1989)의 방법에 따라서 1.2 %의 agarose gel에 전기영동 한 후에 Hybond N+ 막에 전이하였으며, p35와 p40의 cDNA를 [α-32P] dCTP를 이용하여 동위원소로 표식화 한 후에 이를 프로브로하여 PCR-서던 블랏 분석을 수행하였다. 그 결과, IL-12 p35 서브유니트에 사응하는 cDNA가 식물 핵의 게놈에 병합되었음을 확인하였으며(도 3a), IL-12 p40 서브유니트에 사응하는 cDNA가 식물 핵의 게놈에 병합되었음을 확인하였다(도 3b).The whole DNA was extracted from Qiagen's DNeasy plant mini kit from the leaves of plants grown about 10 cm after culturing the re-differentiated plants in MS medium containing antibiotics. P40-F (5'-GCG GAT), which is a primer specific for the genes of p35 and p40 used in the cloning of the gene, was used to determine whether the genes of p35 and p40 were normally introduced into the chromosome using the DNA as a template. PCR was performed using CCA TGT GTC ACC AGC AGT TGG TCA TCT-3 ') and p40-R (5'-TTG GTA CCC TAA CTG CAG GGC ACA GAT GCC CAT-3'). DNA amplified by PCR was subjected to electrophoresis on 1.2% agarose gel according to the method of Sambrook et al. (Sambrook, J., et al., Molecular cloning: A Laboratory Manual. NY, Cold Spring Harbor Laboratory Press, 1989). Hybond N + membranes were transferred, and cDNAs of p35 and p40 were labeled with isotopes using [α- 32 P] dCTP, followed by PCR- Southern blot analysis. As a result, it was confirmed that the cDNA corresponding to the IL-12 p35 subunit was merged into the genome of the plant nucleus (FIG. 3A), and the cDNA corresponding to the IL-12 p40 subunit was merged into the genome of the plant nucleus (FIG. 3A). 3b).

각 cDNA 클론에서 RNA로 전사를 확인하기 위해서, Sambrook 등(Sambrook, J., et al., Molecular cloning: A Laboratory Manual. NY, Cold Spring Harbor Laboratory Press, 1989)의 방법에 따라서 p35와 p40의 cDNA를 [α-32P] dCTP를 이용하여 동위원소로 표식화 한 후에 이를 프로브로하여 재생 담배 식물의 노던 블랏 분석을 수행하였고 그 결과를 도 4a 및 도 4b에 나타냈다.To identify transcription from each cDNA clone into RNA, cDNA of p35 and p40 according to the method of Sambrook et al. (Sambrook, J., et al., Molecular cloning: A Laboratory Manual. NY, Cold Spring Harbor Laboratory Press, 1989). Was labeled with [α- 32 P] dCTP using an isotope followed by Northern blot analysis of regenerated tobacco plants using the probe and the results are shown in FIGS. 4A and 4B.

도 4a 및 4b는 서브유니트 p35(도 4a) 및 p40(도 4b)로 형질전환된 재생 담배 식물의 노덧 블랏 분석 결과로서, 도 4a 및 도 4b의 레인 C는 식물이중벡터인 pMY27만으로 형질전환된 음성대조구이며, rRNA는 내부 대조구이다. 도 4a의 레인 1에서 5까지는 p35 서브유니트 유전자를 포함하는 pMYL27이 도입된 형질전환 식물체이며, 도 4b의 레인 1에서 6까지는 p40 서브유니트 유전자를 포함하는 pMYL28이 도입된 형질전환 식물체이다. 노덧블랏 분석 결과 식물 핵의 게놈에 병합된 p35와 p40 서브유니트 유전자는 각각 mRNA로 전사되었음을 알 수 있었다(도 4a 및 도 4b). 도 4a 및 도 4b에서 확인한 바와 같이 각각의 유전자의 발현수준은 매우 차이를 보였으며, p35 서브유니트가 도입된 식물 중에서는 L27-3번 계통(도 4a), p40 서브유니트가 도입된 식물 중에서 L28-3번 계통(도 4b)에서 최고의 유전자 발현을 확인하였으며 이를 식물들을 교배 수분용으로 선택하였다.Figures 4a and 4b shows the results of the blunt blot analysis of regenerated tobacco plants transformed with subunits p35 (Fig. 4a) and p40 (Fig. 4b), lane C of Figs. 4a and 4b is transformed with only the plant double vector pMY27 Negative control; rRNA is an internal control. Lanes 1 to 5 of FIG. 4A are transgenic plants having pMYL27 introduced therein including the p35 subunit gene, and lanes 1 to 6 of FIG. 4B are transgenic plants having introduced pMYL28 including the p40 subunit gene present. As a result of the Nobleblot analysis, it was found that the p35 and p40 subunit genes merged into the genome of the plant nucleus were transcribed into mRNA, respectively (FIGS. 4A and 4B). As shown in FIGS. 4A and 4B, expression levels of the genes were very different. Among the plants into which the p35 subunit was introduced, the L27-3 strain (FIG. 4A) and the L28 among the plants into which the p40 subunit was introduced. The best gene expression was identified in the -3 line (FIG. 4B) and the plants were selected for cross pollination.

실시예 2: 인공교배에 의한 p35 및 p40 유전자 동시발현 식물의 선발Example 2: Selection of p35 and p40 Gene Coexpressing Plants by Artificial Crossing

IL-12 서브유니트인 p35와 p40의 유전자가 도입된 형질전환체 중에서 유전자의 발현수준이 가장 높았던 L27-3과 L28-3 계통을 교배(Wernsman and Matzinger DF. 1980. Artificial Hybridization and self-pollination pp.661-664)에 사용하였다. 개화된 L27-3의 식물로부터 화분을 채취하여 L28-3의 암술에 인공수분을 실시한 후에 다른 식물과의 수분을 방지하기 위하여 각각의 인공수분된 식물체는 인공배양실에서 격리하여 생육시켰으며 정상적으로 종자가 형성된 식물에서 종자를 채취하였다. 교배를 통하여 L27-3의 p35유전자가 L28-3의 식물에 도입되었는지를 확인하기 위하여 인공교배를 통하여 정상적으로 확보한 종자를 카나마이신(300mg/L)과 하이그로마이신(50ml/L)을 포함하는 배지에서 발아시켰으며, 카나마이신과 하이그로마이신을 포함하는 배지에서 정상적으로 성장하는 식물 을 p35와 p40 유전자를 동시에 포함하는 식물로서 선발하였다 (도 5).Among the transformants in which the genes of p35 and p40, the IL-12 subunits, were introduced, the L27-3 and L28-3 strains, which had the highest expression levels, were crossed (Wernsman and Matzinger DF. 1980. Artificial Hybridization and self-pollination pp). 661-664). In order to prevent pollination with other plants after pollen was collected from flowering L27-3 plants, each artificially polluted plant was isolated and grown in artificial culture room. Seeds were harvested from the formed plants. In order to confirm whether p27 gene of L27-3 was introduced into the plant of L28-3 through breeding, a medium containing kanamycin (300mg / L) and hygromycin (50ml / L) normally obtained by artificial breeding Germinated at, the plants growing normally in a medium containing kanamycin and hygromycin were selected as plants containing both p35 and p40 genes (FIG. 5).

실시예 3: 교배식물로부터 현탁세포의 유도 및 유전자의 발현 확인Example 3: Induction of suspension cells and expression of genes from mating plants

3-1: 현탁세포의 유도 및 현탁세포배양3-1: Induction of Suspension Cells and Suspension Cell Culture

캘러스는 카나마이신(300mg/L)과 하이그로마이신(50ml/L)을 포함하는 MS배지 위에서 발아 10주 후에 정상적으로 생육하는 식물의 잎을 약 1센티미터 X 1센티미터의 크기로 절단 한 후에 1 mg/L의 2,4-디클로로페녹시아세트산, 0.05mg/L 키네틴, 3% 수크로스 및 0.8% 아가를 포함하는 Murashige-Skoog(MS) 배지에 치상하여 캘러스를 유도하였으며 캘러스 유도 8주 후에 1 mg/L의 2,4-디클로로페녹시아세트산, 0.05mg/L 키네틴, 3% 수크로스를 포함하는 Murashige-Skoog(MS) 액체배지에 치상하여 현탁세포를 유도하였다. 식물세포의 현탁배양은 캘러스 약 1g(생체중)을 250 mL 쉐이커 플라스크안에 최종 배양액 부피가 50 mL이 되도록 하여 오비탈 쉐이커에서 100rpm으로 25℃에서 배양하였다. 현탁세포는 7일 간격으로 현탁세포를 포함하는 세포배양액 10mL을 40mL의 동일 액체배지에 첨가하면서 계대배양을 하였다.Callus is 1 mg / L after cutting leaves of plants normally growing after 10 weeks of germination on MS medium containing kanamycin (300 mg / L) and hygromycin (50 ml / L) to a size of about 1 centimeter by 1 centimeter. Callus was induced on Murashige-Skoog (MS) medium containing 2,4-dichlorophenoxyacetic acid, 0.05 mg / L kinetin, 3% sucrose and 0.8% agar, and 1 mg / L 8 weeks after callus induction. Suspension cells were induced by being suspended in Murashige-Skoog (MS) liquid medium containing 2,4-dichlorophenoxyacetic acid, 0.05mg / L kinetin, and 3% sucrose. Suspension culture of plant cells was incubated at 25 ° C. at 100 rpm in an orbital shaker with approximately 1 g of callus (live weight) at a final volume of 50 mL in a 250 mL shaker flask. Suspension cells were subcultured by adding 10 mL of the cell culture solution containing the suspension cells to 40 mL of the same liquid medium at intervals of 7 days.

3-2: 노던 블랏 분석3-2: Northern Blot Analysis

도 6은 카나마이신과 하이그로마이신을 포함하는 배지에서 p35와 p40 유전자를 동시에 포함하는 식물로부터 유도된 캘러스의 p35와 p40 유전자의 발현양상을 확인 한 노던블랏 결과이며, 노던블랏은 실시예 1-4의 방법으로 실시하였다. 여기서 C는 식물이중벡터인 pMY27만으로 형질전환된 음성대조구이며 rRNA는 내부 대조구이다. 레인 1 에서 4는 각각의 교배된 식물을 나타내며 도 2에서 확인 한 바와 같이 라인 p35와 p40 유전자를 동시에 가장 높은 수준으로 발현하는 L2728-1(도 6 의 레인 3)과 L2728-3(도 6의 레인 4)계통의 캘러스를 선발하여 이후의 실험을 수행하였다.Figure 6 is a northern blot result confirming the expression patterns of p35 and p40 genes of callus derived from plants containing both p35 and p40 genes in a medium containing kanamycin and hygromycin. It was carried out by the method. Where C is a negative control transformed with only the plant double vector pMY27 and rRNA is an internal control. Lanes 1 to 4 represent the respective crossed plants and L2728-1 (lane 3 in FIG. 6) and L2728-3 (FIG. 6) which simultaneously express the highest levels of lines p35 and p40 genes as seen in FIG. Lane 4) The callus of the system was selected to perform the following experiment.

3-3: 웨스턴 블랏 분석3-3: Western blot analysis

상기의 노던블랏분석을 통하여 선발된 L2728-1과 L2728-3 계통의 현탁세포로부터 hIL-12의 생산를 웨스턴 블랏 분석으로 확인하였으며 실험결과를 도 7에 나타내었다.Production of hIL-12 from the suspension cells of the L2728-1 and L2728-3 strains selected through Northern blot analysis was confirmed by Western blot analysis, and the experimental results are shown in FIG. 7.

식물발현벡터만으로 형질전환된 담배의 현탁세포와 L2728-1과 L2728-3 계통을 현탁세포 약 2.5g(생체중)을 1 mg/L의 2,4-디클로로페녹시아세트산, 0.05mg/L 키네틴, 3% 수크로스를 포함하는 50mL의 Murashige-Skoog(MS) 액체배지에 치상하여 100rpm으로 25℃에서 현탁배양을 하였으며 배양 5일 후에 현탁세포배양액만을 4 ℃에서 13,000 rpm으로 20분간 원심분리하여 상청액을 취하고 이를 동결건조기를 이용하여 동결건조 한 후에 1ml의 PBS 용액에 녹여 현탁세포배양액을 50배 농축하였다. 상기의 농축액 30㎕와 곤충세포에서 생산된 재조합 사람 IL-12(PharMingen) 200ng을 Towbin 등(Towbin et al., Biotechnology. vol. 24, pp.145-149, 1979)의 방법에 따라서 10%의 폴리아크릴아마이드 젤에서 SDS-PAGE를 수행한 후에 웨스턴 블랏 분석을 수행하였다. 본 웨스턴 블랏 분석에 사용한 항체는 마우스유래의 p35와 p40에 특이적인 단클론 항체(Pharmingen)를 1:5,000배 희석하여 사용하였다. Suspension cells of tobacco transformed with plant expression vectors alone, and L2728-1 and L2728-3 strains were suspended in about 2.5 g (live) of 1 mg / L of 2,4-dichlorophenoxyacetic acid, 0.05 mg / L kinetin, The cells were suspended in 50 mL of Murashige-Skoog (MS) liquid medium containing 3% sucrose and suspended at 25 ° C. at 100 rpm. After 5 days of culture, only the suspension cell culture solution was centrifuged at 4 ° C. at 13,000 rpm for 20 minutes. After lyophilization using a lyophilizer, it was dissolved in 1 ml of PBS solution, and the suspension cell culture solution was concentrated 50 times. 30 μl of the concentrate and 200 ng of recombinant human IL-12 (PharMingen) produced from insect cells were treated with 10% of Towbin et al. (Towbin et al., Biotechnology. Vol. 24, pp. 145-149, 1979). Western blot analysis was performed after SDS-PAGE on polyacrylamide gel. The antibody used for this Western blot analysis was used by diluting 1: 5,000 fold of monoclonal antibody (Pharmingen) specific for mouse-derived p35 and p40.

도 7에서 PC는 곤충세포에서 생산된 재조합 사람 IL-12(PharMingen)이고, NC는 식물발현벡터만으로 형질전환된 담배의 현탁세포를 배양한 배지이며, L2728-1과 L2728-3은 L2728-1과 L2728-3 계통의 현탁세포를 배양한 배지를 나타낸다. 웨스턴 블랏법으로 분석한 결과 hIL-12의 서브유니트인 p35와 p40의 유전자가 모두 도입된 담배인 L2728-1 및 L2728-3의 현탁세포는 정상적으로 hIL-12를 생산하여 세포밖으로 분비함을 확인하였으며, L2728-3의 현탁세포가 L2728-1 현탁세포보다 hIL-12의 생산이 높음을 확인하였고 L2728-3의 현탁세포주를 hIL-12의 생산을 위한 세포주로서 최종 선발하였으며, 본 발명의 hIL-12를 생산하는 니코티아나 타바쿰 세포주 L2728-3(pMYL27 X pMYL28)은 2001년 6월 7일 유전자은행에 KCTC 1021BP로 기탁하였다. 이후의 실험은 모두 L2728-3의 현탁세포주를 이용하여 진행하였다.In Figure 7, PC is recombinant human IL-12 produced by insect cells (PharMingen), NC is a culture medium cultured suspension cells of tobacco transformed only with plant expression vectors, L2728-1 and L2728-3 is L2728-1 And cultured suspension cells of L2728-3 strain. As a result of Western blot analysis, it was confirmed that suspension cells of L2728-1 and L2728-3, tobaccos to which both p35 and p40 genes of hIL-12 were introduced, normally produced hIL-12 and secreted out of cells. , L2728-3 suspension cells were found to produce higher hIL-12 than L2728-1 suspension cells, L2728-3 suspension cell line was finally selected as a cell line for the production of hIL-12, the hIL-12 of the present invention Nicotiana tabacum cell line L2728-3 (pMYL27 X pMYL28) producing KCTC 1021BP was deposited in the Gene Bank on June 7, 2001. All subsequent experiments were performed using the L2728-3 suspension cell line.

3-4: 식물 세포 생장 분석3-4: Plant Cell Growth Analysis

L2728-3의 현탁세포주의 배양시간에 따른 세포의 생장정도를 확인하고자 계대배양 5일 후의 현탁배양세포를 진공여과기를 이용하여 액체배지를 제거 한 후에 현탁세포만 약 2.5g(생체중)을 1 mg/L의 2,4-디클로로페녹시아세트산, 0.05mg/L 키네틴, 3% 수크로스를 포함하는 50 mL Murashige-Skoog(MS) 액체배지에 치상하여 100rpm으로 25℃에서 배양하였다. 배양 시간에 따른 식물현탁세포의 생장은 현탁배양액을 진공여과하여 액체배지를 완전히 제거하여 생체중(fresh cell weight, FCW)을 확인하였으며, 생체중을 확인한 세포를 60 ℃에서 72시간동안 건조시켜 건조세포중량(dry cell weight, DCW)을 확인하여 세포의 생육정도를 확인하였다.To check the growth of cells according to the culture time of L2728-3 suspension cell, suspension culture cells after 5 days of subculture were removed by using a vacuum filter, and then the suspension cells were only about 2.5 g (live weight) of 1 mg. / L of 2,4-dichlorophenoxyacetic acid, 0.05mg / L kinetin, 50mL Murashige-Skoog (MS) liquid medium containing 3% sucrose was incubated at 25 ℃ at 100rpm. The growth of plant suspension cells according to the culture time was confirmed by removing the liquid medium by vacuum filtration of the suspension culture liquid to confirm the fresh cell weight (FCW), and drying the cell weight after drying the cells at 60 ° C. for 72 hours. (dry cell weight, DCW) was confirmed to check the growth of the cells.

현탁배양된 형질전환 담배세포의 생장을 현탁세포의 건조중량에 기초하여 나타내었다. hIL-12를 생산하는 L2728-3의 현탁세포는 일반적인 배양곡선인 S자 형태의 성장곡선을 보였으며, 3일간의 유도기를 지나 3일 이후부터 7일까지 급속한 생장을 보인 후(대수기)에 현탁세포의 생장이 둔하여지는 정지기를 나타냈다(도 8).The growth of suspended cultured transgenic tobacco cells is shown based on the dry weight of the suspended cells. Suspension cells of L2728-3 producing hIL-12 showed a growth curve of S-shape, which is a general culture curve, and after 3 days of induction, showed rapid growth from 3 days to 7 days (logistic period). The suspension showed slow growth of suspension cells (FIG. 8).

실시예 4: hIL-12의 정량분석 및 생물학적 활성의 확인Example 4: Quantitative Analysis of hIL-12 and Confirmation of Biological Activity

4-1: ELISA를 이용한 hIL-12의 정량분석4-1: Quantitative Analysis of hIL-12 Using ELISA

L2728-3 현탁세포의 배양배지로 분비되는 hIL-12의 생산량은 Abrams 등(Abrams J.S., et al., Current protocols in immunology, New York, Wiley, 1995)에 기술된 샌드위치형 ELISA 방법으로 정량분석을 하였다.The production of hIL-12 secreted into the culture medium of L2728-3 suspension cells was quantitatively analyzed by the sandwich ELISA method described in Abrams et al . (Abrams JS, et al ., Current protocols in immunology, New York, Wiley, 1995). It was.

요약하면 L2728-3 현탁세포 약 2.5g(생체중)을 1 mg/L의 2,4-디클로로페녹시아세트산, 0.05mg/L 키네틴, 3% 수크로스를 포함하는 50mL의 Murashige-Skoog(MS) 액체배지에 치상하여 100rpm으로 25℃에서 현탁배양을 하였으며, 배양 시작 1, 3, 5, 7, 9, 11일 후에 현탁세포배양액만을 4 ℃에서 13,000 rpm으로 20분간 원심분리 한 후 상청액 1mL을 하룻밤동안 포스페이트-완충액 식염수(PBS)로 단백질 샘플을 투석한 후에 40㎕를 분석에 사용하였다. 또한, 양을 알고 있는 곤충세포배양을 통하여 생산된 표준 hIL-12(PharMingen)를 표준물질로 이용하였다. 샌드위치형 ELISA 분석을 위하여 사용한 캡쳐항체(Capture Antibody)는 p35와 p40이 결합된 활성형 hIL-12인 p70만을 특이적으로 인식하는 마우스유래의 hIL-12 (p70) 항체(clone 20C2, BD PharMingen, San Diego, CA)를 사용하였으며, 발색을 위한 항체로서는 마우스유래 hIL-12(p40/p70) 특이적 항체(clone C8.6, BD PharMingen, San Diego, CA)를 사용하였으며 이의 결과를 도 8에 나타내었다.In summary, approximately 2.5 g (weight) of L2728-3 suspension cells were weighed in 50 mL of Murashige-Skoog (MS) liquid containing 1 mg / L of 2,4-dichlorophenoxyacetic acid, 0.05 mg / L kinetin, and 3% sucrose. Suspension culture was carried out at 25 ° C. at 100 rpm on the medium. After 1, 3, 5, 7, 9 and 11 days from the start of the culture, only the suspension cell culture solution was centrifuged at 13,000 rpm for 20 minutes at 4 ° C., and the supernatant 1 mL was overnight. 40 μl was used for analysis after dialysis of the protein sample with phosphate-buffer saline (PBS). In addition, the standard hIL-12 (PharMingen) produced through the known insect cell culture was used as a standard. The capture antibody used for sandwich ELISA analysis was derived from mouse-specific hIL-12 (p70) antibody (clone 20C2, BD PharMingen, San Diego, CA), and a mouse-derived hIL-12 (p40 / p70) specific antibody (clone C8.6, BD PharMingen, San Diego, CA) was used as an antibody for color development. Indicated.

L2728-3 현탁세포의 배양배지로 분비되는 hIL-12의 생산량을 샌드위치형 ELISA 방법으로 정량분석을 한 결과 배양 1일 후에 약 45 ㎍/L 수준의 hIL-12의 생산을 확인 할 수 있었으며, hIL-12의 생산은 배양 3일 후부터 급격하게 증가하다가 배양 5일 후에는 약 180 ㎍/L로 최대의 hIL-12의 생산을 보였다. 그러나 배양 5일 이후부터 hIL-12의 생산은 급격하게 감소하기 시작하여 배양 9일째는 약 53㎍/L까지 감소하였고 배양 11일 째에는 약 25㎍/L의 hIL-12의 생산량을 보였다. 이러한 hIL-12의 급속한 감소는 현탁배양세포가 분비하는 단백질분해효소에 의한 분해에 의한 것으로 추정된다.As a result of quantitative analysis of the production of hIL-12 secreted into the culture medium of L2728-3 suspension cells, the production of hIL-12 of about 45 ㎍ / L level was confirmed after 1 day of culture. The production of -12 increased sharply after 3 days of culture and after 5 days of culture, the maximum production of hIL-12 was about 180 μg / L. However, after 5 days of cultivation, the production of hIL-12 began to decrease rapidly, and on day 9 of cultivation, the production of hIL-12 decreased to about 53 μg / L and on day 11 of culturing, the production of hIL-12 was about 25 μg / L. This rapid decrease in hIL-12 is presumed to be due to degradation by protease secreted by suspension cultured cells.

4-2: L2728-3 현탁세포 유래의 hIL-12의 생리활성 분석 4-2: Analysis of Biological Activity of hIL-12 from L2728-3 Suspension Cells

L2728-3 현탁세포의 배양배지로 분비된 단백질의 생물학적 활성은 Stern's method(Stern, A.S. et al., 1990. Proc. Natl. Acad. Sci. USA. 87 : 6808-6812)로 측정하였다. Biological activity of proteins secreted into culture media of L2728-3 suspension cells was measured by Stern's method (Stern, AS et al ., 1990. Proc. Natl. Acad. Sci. USA. 87: 6808-6812).

요약하면 L2728-3 현탁세포 약 2.5g(생체중)을 1 mg/L의 2,4-디클로로페녹시아세트산, 0.05mg/L 키네틴, 3% 수크로스를 포함하는 50mL의 Murashige-Skoog(MS) 액체배지에 치상하여 100rpm으로 25℃에서 현탁배양을 하였으며, 배양 5일 후에 현탁세포배양액만을 4 ℃에서 13,000 rpm으로 20분간 원심분리 한 후 상청액 1mL을 하룻밤동안 포스페이트-완충액 식염수(PBS)로 단백질 샘플을 투석한 후에 생리활성을 측정하였다. 식물성 혈구응집소(PHA) 을 처리하여 활성화된 말초혈액 단핵세포(PBMC) 5 x 105를 15㎍/mL의 PHA(phytohemagglutinin)을 포함하는 100 ㎕의 RPMI 배지에 현탁시키고, 검사시료가 있는 마이크로타이터 플레이트의 웰에 분주하였다. 상기 PMBC를 72시간 배양후 PMBC만을 원심분리로 회수하여 다시 10 % FBS(HyClone Laboratories Inc., Logan, UT, U.S.A)를 포함하는 100 ㎕의 RPMI 배 지에 현탁을 시킨 후에 표준 hIL-12와 L2728-3 현탁세포배양 유래의 hIL-12 및 1 μCi의 [메틸-3H]티미딘(Amersham Lifescience, NJ, USA)을 각 웰에 첨가하고 24시간 더욱 배양하였다. 세포는 세포추출기(cell harvester, Inotech, Awitzerland)로 수득하고 3중수소의 함량을 LSC(liquid scintillation counter; Packard, U.S.A)에서 측정하였다. 양을 알고 있는 곤충세포배양을 통하여 생산된 표준 hIL-12(PharMingen)를 양성대조구로, 식물발현벡터인 pMY27로 형질전환된 담배의 현탁세포 배양배지를 음성대조구로 하여 실험하였다. In summary, approximately 2.5 g (weight) of L2728-3 suspension cells were weighed in 50 mL of Murashige-Skoog (MS) liquid containing 1 mg / L of 2,4-dichlorophenoxyacetic acid, 0.05 mg / L kinetin, and 3% sucrose. The suspension was cultured at 25 ° C. at 100 rpm after being incubated in the medium. After 5 days of culture, only the suspension cell culture medium was centrifuged at 13,000 rpm for 20 minutes at 4 ° C., and then the protein samples were diluted with phosphate-buffer saline (PBS) for 1 mL of the supernatant overnight. After dialysis, physiological activity was measured. Treatment of plant hemagglutinin (PHA) to suspend activated peripheral blood mononuclear cells (PBMC) 5 × 10 5 in 100 μl RPMI medium containing 15 μg / mL PHA (phytohemagglutinin) and microtied with test sample The wells of the ter plate were aliquoted. After 72 hours of incubation, only PMBC was recovered by centrifugation, and then suspended in 100 μl of RPMI medium containing 10% FBS (HyClone Laboratories Inc., Logan, UT, USA), followed by standard hIL-12 and L2728-. HIL-12 and 1 μCi [methyl-3H] thymidine (Amersham Lifescience, NJ, USA) from 3 suspension cell cultures were added to each well and further incubated for 24 hours. Cells were obtained with a cell harvester (Inotech, Awitzerland) and the content of tritium was measured in a liquid scintillation counter (Packard, USA). The standard hIL-12 (PharMingen) produced through the culture of insect cells of known quantity was tested as a positive control and suspension cell culture medium of tobacco transformed with the plant expression vector pMY27 as a negative control.

도 9는 상기의 실시예 4-2에서 명시한 방법에 따라서 측정한 곤충세포유래의 hIL-12의 활성에 대하여 형질전환 식물인 L2728-3 현탁세포 유래의 hIL-12의 생리적 활성을 상대적인 비율로 나타낸 것이다. 도 9에서 흰색 막대는 양성 대조구로서 곤충세포에서 생산된 재조합 사람 IL-12(PharMingen)이고, 검은색 막대는 음성 대조구로서 식물발현벡터인 pMY27로 형질전환된 현탁배양 담배세포의 배양배지이며, 회색막대는 hIL-12의 p35와 p40의 유전자를 모두 포함하는 형질전환된 식물인 L2728-3 현탁세포배양액을 나타낸다. 그 결과, 본 발명에서 이룩한 L2728-3 현탁세포 유래의 prhIL-12 단백질의 생리활성이 기존의 판매되는 곤충세포유래의 hIL-12에 비하여 생리활성이 약 2.0배 높았다. 즉, 본 발명의 hIL-12 단백질의 활성이 기존의 곤충세포발현시스템에서 생산한 것에 비해 탁월하고, 니코티아나 타바쿰 L2728-3(KCTC 0670BP)이 우수한 생산주임을 입증하는 것이다.Figure 9 shows the physiological activity of hIL-12 derived from the transformed plant L2728-3 suspension cells relative to the activity of hIL-12 derived from insect cells measured according to the method specified in Example 4-2 above. will be. In Figure 9, the white bar is a recombinant human IL-12 (PharMingen) produced from insect cells as a positive control, the black bar is a culture medium of suspension cultured tobacco cells transformed with the plant expression vector pMY27 as a negative control, gray Bars represent L2728-3 suspension cell cultures, which are transformed plants containing both the p35 and p40 genes of hIL-12. As a result, the physiological activity of prhIL-12 protein derived from L2728-3 suspension cells achieved in the present invention was about 2.0 times higher than that of hIL-12 derived from insect cells. That is, the activity of the hIL-12 protein of the present invention is superior to that produced in the existing insect cell expression system, and proves that Nicotiana Tabacum L2728-3 (KCTC 0670BP) is an excellent producer.

실시예 5: 젤라틴이 hIL-12의 생산에 미치는 효과Example 5 Effect of Gelatin on the Production of hIL-12

실시예 4-1에서 확인 한 것과 같이 hIL-12의 서브유니트인 p35와 p40 유전자 가 동시에 도입된 담배인 L2728-3 현탁세포 배양을 통하여 생리활성을 갖는 hIL-12가 생산 가능함을 확인하였다. 그러나 배양 5일 이후부터 hIL-12의 생산은 급격하게 감소하기 시작하였으며 이러한 hIL-12의 급격한 감소는 현탁배양세포가 분비하는 단백질분해효소에 의한 분해로 판단되었다.As confirmed in Example 4-1, it was confirmed that physiologically active hIL-12 could be produced through culture of L2728-3 suspension cell, a tobacco in which p35 and p40 genes, which were subunits of hIL-12, were simultaneously introduced. However, after 5 days of culture, the production of hIL-12 began to decrease rapidly. This rapid decrease of hIL-12 was determined by the degradation of protease secreted by suspension cultured cells.

본 실시예 5에서는 단백질 안정제가 hIL-12의 생산에 미치는 영향을 확인하고자 실시하였다. 1 mg/L의 2,4-디클로로페녹시아세트산, 0.05mg/L 키네틴, 3% 수크로스를 포함하는 50mL의 Murashige-Skoog (MS) 액체배지에 젤라틴의 최종농도가 0.5%, 1.0%, 2.0%가 되도록 첨가 한 후에 L2728-3 현탁세포 약 2.5g(생체중)을 첨종하여 100rpm으로 25℃에서 현탁배양을 하였으며, 배양 시작 1, 3, 5, 7, 9, 11일 후에 현탁세포배양액만을 4 ℃에서 13,000 rpm으로 20분간 원심분리 한 후 상청액 1mL을 하룻밤동안 포스페이트-완충액 식염수(PBS)로 단백질 샘플을 투석한 후에 실시예 4에 밝힌 방법으로 ELISA분석을 실시하여 hIL-12를 정량하였다.In Example 5 was performed to confirm the effect of the protein stabilizer on the production of hIL-12. The final concentration of gelatin in 50 mL Murashige-Skoog (MS) liquid medium containing 1 mg / L 2,4-dichlorophenoxyacetic acid, 0.05 mg / L kinetin, 3% sucrose, 0.5%, 1.0%, 2.0 After adding to about 2.5g of L2728-3 suspension cells (live weight) and suspending culture at 25 ℃ at 100rpm, the suspension cell culture solution 4, 1, 3, 5, 7, 9, 11 days after the start of culture After centrifugation at 13,000 rpm for 20 minutes at 20 ℃ 1mL of the supernatant was dialyzed protein samples with phosphate-buffered saline (PBS) overnight, ELISA analysis was performed by the method shown in Example 4 to quantify hIL-12.

도 10은 실시예 5에 따라 여러 가지 농도의 젤라틴을 첨가한 경우에 배양배지로 분비된 hIL-12의 양을 나타내는 그래프이다. 젤라틴을 0.5%, 1.0%, 2.0% 농도별로 첨가한 각각의 처리구에서 모두 hIL-12의 증가를 보였으며, 젤라틴을 0.5% 첨가하였을 경우에는 배양 5일 후에 약 580㎍/L의 hIL-12의 생산량을 보여 젤라틴 무첨가의 경우 배양 5일 후의 약 180 ㎍/L의 생산량과 비교하여 약 3.2배의 생산량이 증가하였으며, 젤라틴을 1.0% 첨가하였을 경우에는 배양 5일 후에 약 710㎍/L의 hIL-12의 생산량을 보여 젤라틴 무첨가의 경우 배양 5일 후의 약 180 ㎍/L의 생산량과 비교하여 약 4배의 생산량의 증가를 확인하였다. 한편 젤라틴을 1.0%와 2.0% 를 처리한 처리구간의 생산량의 차이는 매우 근소하여 유의적인 차이를 보이지 않았다. 따라서 hIL-12의 서브유니트인 p35와 p40의 유전자가 도입된 식물세포배양을 통하여 hIL-12를 생산하고자 할 때에 젤라틴 0.5%를 첨가에 의하여 생산량의 증가가 가능함을 확인하였다. 실시예 4-1과 5에서 확인한 바와 같이 hIL-12 생산량의 급격한 감소는 현탁세포에서 분비한 단백질분해효소에 의한 hIL-12의 분해 때문일 것으로 판단하였으며, 젤라틴은 단백질 식물세포밖으로 분비되는 분비성 단백질분해효소에 매우 적합한 기질로 작용하고있으며, 식물세포에서 분비 생산된 hIL-12보다 고농도로 존재하여 hIL-12와 단백질 분해효소와의 접촉빈도를 낮춤으로서 hIL-12의 생산량이 증가 한 것으로 판단된다.FIG. 10 is a graph showing the amount of hIL-12 secreted into the culture medium when various concentrations of gelatin were added according to Example 5. FIG. All treatments with 0.5%, 1.0%, and 2.0% gelatin added showed an increase in hIL-12. When 0.5% gelatin was added, 580 µg / L of hIL-12 was increased after 5 days of culture. In the case of no addition of gelatin, the yield increased by 3.2 times compared to the production of about 180 ㎍ / L after 5 days of culture, and about 710 µg / L of hIL- after 5 days of culture when 1.0% of gelatin was added. The production of 12 showed no increase in the production of gelatin, compared with the production of about 180 μg / L after 5 days of culture. On the other hand, the difference in yield between treatments treated with 1.0% and 2.0% of gelatin was very small and did not show a significant difference. Therefore, when producing hIL-12 through plant cell cultures in which the p35 and p40 genes of hIL-12 were introduced, it was confirmed that 0.5% of gelatin was added to increase production. As shown in Examples 4-1 and 5, it was determined that the rapid decrease in the production of hIL-12 was due to the degradation of hIL-12 by protease secreted from suspension cells, and gelatin secreted protein secreted out of protein plant cells. It acts as a suitable substrate for degrading enzymes and is present at a higher concentration than hIL-12 produced by plant cells, thus reducing the contact frequency of hIL-12 with proteolytic enzymes. .

본 발명은 생물학적으로 활성인 인터루킨-12를 발현하는 형질전환된 식물세포, 및 이를 이용한 식물세포 현탁배양방법을 제공하여, 생물학적으로 활성인 이종이량체인 인터루킨-12를 식물세포외로 분비하여 대량으로 생산하는 방법을 제공하고, 저가의 비용으로 안전하고 생물학적으로 활성이 높은 IL-12를 대량으로 생산할 수 있다.The present invention provides a transformed plant cell expressing a biologically active interleukin-12, and a plant cell suspension culture method using the same, thereby secreting a biologically active heterodimer, interleukin-12, out of plant cells in large quantities. It provides a method of production and can produce a large amount of safe and biologically active IL-12 at low cost.

<110> YANG, MOON-SIK KWON, TAE-HO <120> PRODUCTION OF BIOLOGICALLY ACTIVE INTERLEUKIN-12 PROTEIN USING PLANT CELL SUSPENSION CULTURE <130> DPP20020907KR <160> 6 <170> KopatentIn 1.71 <210> 1 <211> 5013 <212> DNA <213> Artificial Sequence <220> <223> T-DNA region of pMYL27 <400> 1 gtttacccgc caatatatcc tgtcaaacac tgatagttta aactgaaggc gggaaacgac 60 aatctgatca tgagcggaga attaagggag tcacgttatg acccccgccg atgacgcggg 120 acaagccgtt ttacgtttgg aactgacaga accgcaacgt tgaaggagcc actcagccgc 180 gggtttctgg agtttaatga gctaagcaca tacgtcagaa accattattg cgcgttcaaa 240 agtcgcctaa ggtcactatc agctagcaaa tatttcttgt caaaaatgct ccactgacgt 300 tccataaatt cccctcggta tccaattaga gtctcatatt cactctcaat ccaaataatc 360 tgcaccggat ctggatcgtt tcgcatgatt gaacaagatg gattgcacgc aggttctccg 420 gccgcttggg tggagaggct attcggctat gactgggcac aacagacaat cggctgctct 480 gatgccgccg tgttccggct gtcagcgcag gggcgcccgg ttctttttgt caagaccgac 540 ctgtccggtg ccctgaatga actgcaggac gaggcagcgc ggctatcgtg gctggccacg 600 acgggcgttc cttgcgcagc tgtgctcgac gttgtcactg aagcgggaag ggactggctg 660 ctattgggcg aagtgccggg gcaggatctc ctgtcatctc accttgctcc tgccgagaaa 720 gtatccatca tggctgatgc aatgcggcgg ctgcatacgc ttgatccggc tacctgccca 780 ttcgaccacc aagcgaaaca tcgcatcgag cgagcacgta ctcggatgga agccggtctt 840 gtcgatcagg atgatctgga cgaagagcat caggggctcg cgccagccga actgttcgcc 900 aggctcaagg cgcgcatgcc cgacggcgat gatctcgtcg tgacccatgg cgatgcctgc 960 ttgccgaata tcatggtgga aaatggccgc ttttctggat tcatcgactg tggccggctg 1020 ggtgtggcgg accgctatca ggacatagcg ttggctaccc gtgatattgc tgaagagctt 1080 ggcggcgaat gggctgaccg cttcctcgtg ctttacggta tcgccgctcc cgattcgcag 1140 cgcatcgcct tctatcgcct tcttgacgag ttcttctgag cgggactctg gggttcgaaa 1200 tgaccgacca agcgacgccc aacctgccat cacgagattt cgattccacc gccgccttct 1260 atgaaaggtt gggcttcgga atcgttttcc gggacgccgg ctggatgatc ctccagcgcg 1320 gggatctcat gctggagttc ttcgcccacg ggatctctgc ggaacaggcg gtcgaaggtg 1380 ccgatatcat tacgacagca acggccgaca agcacaacgc cacgatcctg agcgacaata 1440 tgatcgggcc cggcgtccac atcaacggcg tcggcggcga ctgcccaggc aagaccgaga 1500 tgcaccgcga tatcttgctg cgttcggata ttttcgtgga gttcccgcca cagacccgga 1560 tgatccccga tcgttcaaac atttggcaat aaagtttctt aagattgaat cctgttgccg 1620 gtcttgcgat gattatcata taatttctgt tgaattacgt taagcatgta ataattaaca 1680 tgtaatgcat gacgttattt atgagatggg tttttatgat tagagtcccg caattataca 1740 tttaatacgc gatagaaaac aaaatatagc gcgcaaacta ggataaatta tcgcgcgcgg 1800 tgtcatctat gttactagat cgggcctcct gtcaatgctg gcggcggctc tggtggtggt 1860 tctggtggcg gctctgaggg tggtggctct gagggtggcg gttctgaggg tggcggctct 1920 gagggaggcg gttccggtgg tggctctggt tccggtgatt ttgattatga aaagatggca 1980 aacgctaata agggggctat gaccgaaaat gccgatgaaa acgcgctaca gtctgacgct 2040 aaaggcaaac ttgattctgt cgctactgat tacggtgctg ctatcgatgg tttcattggt 2100 gacgtttccg gccttgctaa tggtaatggt gctactggtg attttgctgg ctctaattcc 2160 caaatggctc aagtcggtga cggtgataat tcacctttaa tgaataattt ccgtcaatat 2220 ttaccttccc tccctcaatc ggttgaatgt cgcccttttg tctttggccc aatacgcaaa 2280 ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag gtttcccgac 2340 tggaaagcgg gcagtgagcg caacgcaatt aatgtgagtt agctcactca ttaggcaccc 2400 caggctttac actttatgct tccggctcgt atgttgtgtg gaattgtgag cggataacaa 2460 tttcacacag gaaacagcta tgaccatgat tacgccaagc ttgcatgcct gcagagagat 2520 agatttgtag agagagactg gtgatttcag cgtgtcctct ccaaatgaaa tgaacttcct 2580 tatatagagg aaggtcttgc gaaggatagt gggattgtgc gtcatccctt acgtcagtgg 2640 agatatcaca tcaatccact tgctttgaag acgtggttgg aacgtcttct ttttccacga 2700 tgctcctcgt gggtgggggt ccatctttgg gaccactgtc ggcagaggca tcttgaacga 2760 tagcctttcc tttatcgcaa tgatggcatt tgtaggtgcc accttccttt tctactgtcc 2820 ttttgatgaa gtgacagata gctgggcaat ggaatccgag gaggtttccc gatattaccc 2880 tttgttgaaa agtctcaata gccctttggt cttctgagac tgtatctttg atattcttgg 2940 agtagacgag agtgtcgtgc tccaccatgt tatcacatca atccacttgc tttgaagacg 3000 tggttggaac gtcttctttt tccacgatgc tcctcgtggg tgggggtcca tctttgggac 3060 cactgtcggc agaggcatct tgaacgatag cctttccttt atcgcaatga tggcatttgt 3120 aggtgccacc ttccttttct actgtccttt tgatgaagtg acagatagct gggcaatgga 3180 atccgaggag gtttcccgat attacccttt gttgaaaagt ctcaatagcc ctttggtctt 3240 ctgagactgt atctttgata ttcttggagt agacgagagt gtcgtgctcc accattctag 3300 aggatcccgg gtaccatgtg gccccctggg tcagcctccc agccaccgcc ctcacctgcc 3360 gcggccacag gtctgcatcc agcggctcgc cctgtgtccc tgcagtgccg gctcagcatg 3420 tgtccagcgc gcagcctcct ccttgtcgct accctggtcc tcctggacca cctcagtttg 3480 gccagaaacc tccccgtggc cactccagac ccaggaatgt tcccatgcct tcaccactcc 3540 caaaacctgc tgagggccgt cagcaacatg ctccagaagg ccagacaaac tctagaattt 3600 tacccttgca cttctgaaga gattgatcat gaagatatca caaaagataa aaccagcaca 3660 gtggaggcct gtttaccatt ggaattaacc aagaatgaga gttgcctaaa ttccagagag 3720 acctctttca taactaatgg gagttgcctg gcctccagaa agacctcttt tatgatggcc 3780 ctgtgcctta gtagtattta tgaagacttg aagatgtacc aggtggagtt caagaccatg 3840 aatgcaaagc ttctgatgga tcctaagagg cagatctttc tagatcaaaa catgctggca 3900 gttattgatg agctgatgca ggccctgaat ttcaacagtg agactgtgcc acaaaaatcc 3960 tcccttgaag aaccggattt ttataaaact aaaatcaagc tctgcatact tcttcatgct 4020 ttcagaattc gggcagtgac tattgataga gtgatgagct atctgaatgc ttcctaagag 4080 ctcgaatttc cccgatcgtt caaacatttg gcaataaagt ttcttaagat tgaatcctgt 4140 tgccggtctt gcgatgatta tcatataatt tctgttgaat tacgttaagc atgtaataat 4200 taacatgtaa tgcatgacgt tatttatgag atgggttttt atgattagag tcccgcaatt 4260 atacatttaa tacgcgatag aaaacaaaat atagcgcgca aactaggata aattatcgcg 4320 cgcggtgtca tctatgttac tagatcggga attcactggc cgtcgtttta caacgtcgtg 4380 actgggaaaa ccctggcgtt acccaactta atcgccttgc agcacatccc cctttcgcca 4440 gctggcgtaa tagcgaagag gcccgcaccg atcgcccttc ccaacagttg cgcagcctga 4500 atggcgcccg ctcctttcgc tttcttccct tcctttctcg ccacgttcgc cggctttccc 4560 cgtcaagctc taaatcgggg gctcccttta gggttccgat ttagtgcttt acggcacctc 4620 gaccccaaaa aacttgattt gggtgatggt tcacgtagtg ggccatcgcc ctgatagacg 4680 gtttttcgcc ctttgacgtt ggagtccacg ttctttaata gtggactctt gttccaaact 4740 ggaacaacac tcaaccctat ctcgggctat tcttttgatt tataagggat tttgccgatt 4800 tcggaaccac catcaaacag gattttcgcc tgctggggca aaccagcgtg gaccgcttgc 4860 tgcaactctc tcagggccag gcggtgaagg gcaatcagct gttgcccgtc tcactggtga 4920 aaagaaaaac caccccagta cattaaaaac gtccgcaatg tgttattaag ttgtctaagc 4980 gtcaatttgt ttacaccaca atatatcctg cca 5013 <210> 2 <211> 4727 <212> DNA <213> Artificial Sequence <220> <223> T-DNA region of pMYL28 <400> 2 gtttacccgc caatatatcc tgtcaaacac tgatagttta aactgaaggc gggaaacgac 60 aatctgatcc aagctcaagc tgctctagca ttcgccattc aggctgcgca actgttggga 120 agggcgatcg gtgcgggcct cttcgctatt acgccagctg gcgaaagggg gatgtgctgc 180 aaggcgatta agttgggtaa cgccagggtt ttcccagtca cgacgttgta aaacgacggc 240 cagtgccaag cttctgcagc atgcagagat agatttgtag agagagactg gtgatttcag 300 cgtgtcctct ccaaatgaaa tgaacttcct tatatagagg aaggtcttgc gaaggatagt 360 gggattgtgc gtcatccctt acgtcagtgg agatatcaca tcaatccact tgctttgaag 420 acgtggttgg aacgtcttct ttttccacga tgctcctcgt gggtgggggt ccatctttgg 480 gaccactgtc ggcagaggca tcttgaacga tagcctttcc tttatcgcaa tgatggcatt 540 tgtaggtgcc accttccttt tctactgtcc ttttgatgaa gtgacagata gctgggcaat 600 ggaatccgag gaggtttccc gatattaccc tttgttgaaa agtctcaata gccctttggt 660 cttctgagac tgtatctttg atattcttgg agtagacgag agtgtcgtgc tccaccatgt 720 tatcacatca atccacttgc tttgaagacg tggttggaac gtcttctttt tccacgatgc 780 tcctcgtggg tgggggtcca tctttgggac cactgtcggc agaggcatct tgaacgatag 840 cctttccttt atcgcaatga tggcatttgt aggtgccacc ttccttttct actgtccttt 900 tgatgaagtg acagatagct gggcaatgga atccgaggag gtttcccgat attacccttt 960 gttgaaaagt ctcaatagcc ctttggtctt ctgagactgt atctttgata ttcttggagt 1020 agacgagagt gtcgtgctcc accattctag aggatccatg tgtcaccagc agttggtcat 1080 ctcttggttt tccctggttt ttctggcatc tcccctcgtg gccatatggg aactgaagaa 1140 agatgtttat gtcgtagaat tggattggta tccggatgcc cctggagaaa tggtggtcct 1200 cacctgtgac acccctgaag aagatggtat cacctggacc ttggaccaga gcagtgaggt 1260 cttaggctct ggcaaaaccc tgaccatcca agtcaaagag tttggagatg ctggccagta 1320 cacctgtcac aaaggaggcg aggttctaag ccattcgctc ctgctgcttc acaaaaagga 1380 agatggaatt tggtccactg atattttaaa ggaccagaaa gaacccaaaa ataagacctt 1440 tctaagatgc gaggccaaga attattctgg acgtttcacc tgctggtggc tgacgacaat 1500 cagtactgat ttgacattca gtgtcaaaag cagcagaggc tcttctgacc cccaaggggt 1560 gacgtgcgga gctgctacac tctctgcaga gagagtcaga ggggacaaca aggagtatga 1620 gtactcagtg gagtgccagg aggacagtgc ctgcccagct gctgaggaga gtctgcccat 1680 tgaggtcatg gtggatgccg ttcacaagct caagtatgaa aactacacca gcagcttctt 1740 catcagggac atcatcaaac ctgacccacc caacaacttg cagctgaagc cattaaagaa 1800 ttctcggcag gtggaggtca gctgggagta ccctgacacc tggagtactc cacattccta 1860 cttctccctg acattctgcg ttcaggtcca gggcaagagc aagagagaaa agaaagatag 1920 agtcttcacc gacaagacct cagccacggt catctgccgc aaaaatgcca gcattagcgt 1980 gcgggcccag gaccgctact atagctcatc ttggagcgaa tgggcatctg tgccctgcag 2040 ttaggtaccg agctcgaatt tccccgatcg ttcaaacatt tggcaataaa gtttcttaag 2100 attgaatcct gttgccggtc ttgcgatgat tatcatataa tttctgttga attacgttaa 2160 gcatgtaata attaacatgt aatgcatgac gttatttatg agatgggttt ttatgattag 2220 agtcccgcaa ttatacattt aatacgcgat agaaaacaaa atatagcgcg caaactagga 2280 taaattatcg cgcgcggtgt catctatgtt actagatcgg gaattcgtaa tcatggtcat 2340 agctgtttcc tgtgtgaaat tgttatccgc tcacaattcc acacaacata cgagccggaa 2400 gcataaagtg taaagcctgg ggtgcctaat gagtgagcta actcacatta attgcgttgc 2460 gctcactgcc cgctttccag tcgggaaacc tgtcgtgcca gctgcattaa tgaatcggcc 2520 aacgcgcggg gagaggcggt ttgcgtattg gctagagcag cttgccaaca tggtggagca 2580 cgacactctc gtctactcca agaatatcaa agatacagtc tcagaagacc aaagggctat 2640 tgagactttt caacaaaggg taatatcggg aaacctcctc ggattccatt gcccagctat 2700 ctgtcacttc atcaaaagga cagtagaaaa ggaaggtggc acctacaaat gccatcattg 2760 cgataaagga aaggctatcg ttcaagatgc ctctgccgac agtggtccca aagatggacc 2820 cccacccacg aggagcatcg tggaaaaaga agacgttcca accacgtctt caaagcaagt 2880 ggattgatgt gataacatgg tggagcacga cactctcgtc tactccaaga atatcaaaga 2940 tacagtctca gaagaccaaa gggctattga gacttttcaa caaagggtaa tatcgggaaa 3000 cctcctcgga ttccattgcc cagctatctg tcacttcatc aaaaggacag tagaaaagga 3060 aggtggcacc tacaaatgcc atcattgcga taaaggaaag gctatcgttc aagatgcctc 3120 tgccgacagt ggtcccaaag atggaccccc acccacgagg agcatcgtgg aaaaagaaga 3180 cgttccaacc acgtcttcaa agcaagtgga ttgatgtgat atctccactg acgtaaggga 3240 tgacgcacaa tcccactatc cttcgcaaga ccttcctcta tataaggaag ttcatttcat 3300 ttggagagga cacgctgaaa tcaccagtct ctctctacaa atctatctct ctcgagcttt 3360 cgcagatccc ggggggcaat gagatatgaa aaagcctgaa ctcaccgcga cgtctgtcga 3420 gaagtttctg atcgaaaagt tcgacagcgt ctccgacctg atgcagctct cggagggcga 3480 agaatctcgt gctttcagct tcgatgtagg agggcgtgga tatgtcctgc gggtaaatag 3540 ctgcgccgat ggtttctaca aagatcgtta tgtttatcgg cactttgcat cggccgcgct 3600 cccgattccg gaagtgcttg acattgggga gtttagcgag agcctgacct attgcatctc 3660 ccgccgtgca cagggtgtca cgttgcaaga cctgcctgaa accgaactgc ccgctgttct 3720 acaaccggtc gcggaggcta tggatgcgat cgctgcggcc gatcttagcc agacgagcgg 3780 gttcggccca ttcggaccgc aaggaatcgg tcaatacact acatggcgtg atttcatatg 3840 cgcgattgct gatccccatg tgtatcactg gcaaactgtg atggacgaca ccgtcagtgc 3900 gtccgtcgcg caggctctcg atgagctgat gctttgggcc gaggactgcc ccgaagtccg 3960 gcacctcgtg cacgcggatt tcggctccaa caatgtcctg acggacaatg gccgcataac 4020 agcggtcatt gactggagcg aggcgatgtt cggggattcc caatacgagg tcgccaacat 4080 cttcttctgg aggccgtggt tggcttgtat ggagcagcag acgcgctact tcgagcggag 4140 gcatccggag cttgcaggat cgccacgact ccgggcgtat atgctccgca ttggtcttga 4200 ccaactctat cagagcttgg ttgacggcaa tttcgatgat gcagcttggg cgcagggtcg 4260 atgcgacgca atcgtccgat ccggagccgg gactgtcggg cgtacacaaa tcgcccgcag 4320 aagcgcggcc gtctggaccg atggctgtgt agaagtactc gccgatagtg gaaaccgacg 4380 ccccagcact cgtccgaggg caaagaaata gagtagatgc cgaccggatc tgtcgatcga 4440 caagctcgag tttctccata ataatgtgtg agtagttccc agataaggga attagggttc 4500 ctatagggtt tcgctcatgt gttgagcata taagaaaccc ttagtatgta tttgtatttg 4560 taaaatactt ctatcaataa aatttctaat tcctaaaacc aaaatccagt actaaaatcc 4620 agatcccccg aattaattcg gcgttaattc agtacattaa aaacgtccgc aatgtgttat 4680 taagttgtct aagcgtcaat ttgtttacac cacaatatat cctgcca 4727 <210> 3 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer of p35-F <400> 3 aaggtaccaa ttataaaaat gtgg 24 <210> 4 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer of p35-R <400> 4 aagagctctt taggaagcat tca 23 <210> 5 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer of p40-F <400> 5 gcggatccat gtgtcaccag cagttggtca tct 33 <210> 6 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer of p40-R <400> 6 ttggtaccct aactgcaggg cacagatgcc cat 33 <110> YANG, MOON-SIK          KWON, TAE-HO <120> PRODUCTION OF BIOLOGICALLY ACTIVE INTERLEUKIN-12 PROTEIN USING          PLANT CELL SUSPENSION CULTURE <130> DPP20020907KR <160> 6 <170> KopatentIn 1.71 <210> 1 <211> 5013 <212> DNA <213> Artificial Sequence <220> <223> T-DNA region of pMYL27 <400> 1 gtttacccgc caatatatcc tgtcaaacac tgatagttta aactgaaggc gggaaacgac 60 aatctgatca tgagcggaga attaagggag tcacgttatg acccccgccg atgacgcggg 120 acaagccgtt ttacgtttgg aactgacaga accgcaacgt tgaaggagcc actcagccgc 180 gggtttctgg agtttaatga gctaagcaca tacgtcagaa accattattg cgcgttcaaa 240 agtcgcctaa ggtcactatc agctagcaaa tatttcttgt caaaaatgct ccactgacgt 300 tccataaatt cccctcggta tccaattaga gtctcatatt cactctcaat ccaaataatc 360 tgcaccggat ctggatcgtt tcgcatgatt gaacaagatg gattgcacgc aggttctccg 420 gccgcttggg tggagaggct attcggctat gactgggcac aacagacaat cggctgctct 480 gatgccgccg tgttccggct gtcagcgcag gggcgcccgg ttctttttgt caagaccgac 540 ctgtccggtg ccctgaatga actgcaggac gaggcagcgc ggctatcgtg gctggccacg 600 acgggcgttc cttgcgcagc tgtgctcgac gttgtcactg aagcgggaag ggactggctg 660 ctattgggcg aagtgccggg gcaggatctc ctgtcatctc accttgctcc tgccgagaaa 720 gtatccatca tggctgatgc aatgcggcgg ctgcatacgc ttgatccggc tacctgccca 780 ttcgaccacc aagcgaaaca tcgcatcgag cgagcacgta ctcggatgga agccggtctt 840 gtcgatcagg atgatctgga cgaagagcat caggggctcg cgccagccga actgttcgcc 900 aggctcaagg cgcgcatgcc cgacggcgat gatctcgtcg tgacccatgg cgatgcctgc 960 ttgccgaata tcatggtgga aaatggccgc ttttctggat tcatcgactg tggccggctg 1020 ggtgtggcgg accgctatca ggacatagcg ttggctaccc gtgatattgc tgaagagctt 1080 ggcggcgaat gggctgaccg cttcctcgtg ctttacggta tcgccgctcc cgattcgcag 1140 cgcatcgcct tctatcgcct tcttgacgag ttcttctgag cgggactctg gggttcgaaa 1200 tgaccgacca agcgacgccc aacctgccat cacgagattt cgattccacc gccgccttct 1260 atgaaaggtt gggcttcgga atcgttttcc gggacgccgg ctggatgatc ctccagcgcg 1320 gggatctcat gctggagttc ttcgcccacg ggatctctgc ggaacaggcg gtcgaaggtg 1380 ccgatatcat tacgacagca acggccgaca agcacaacgc cacgatcctg agcgacaata 1440 tgatcgggcc cggcgtccac atcaacggcg tcggcggcga ctgcccaggc aagaccgaga 1500 tgcaccgcga tatcttgctg cgttcggata ttttcgtgga gttcccgcca cagacccgga 1560 tgatccccga tcgttcaaac atttggcaat aaagtttctt aagattgaat cctgttgccg 1620 gtcttgcgat gattatcata taatttctgt tgaattacgt taagcatgta ataattaaca 1680 tgtaatgcat gacgttattt atgagatggg tttttatgat tagagtcccg caattataca 1740 tttaatacgc gatagaaaac aaaatatagc gcgcaaacta ggataaatta tcgcgcgcgg 1800 tgtcatctat gttactagat cgggcctcct gtcaatgctg gcggcggctc tggtggtggt 1860 tctggtggcg gctctgaggg tggtggctct gagggtggcg gttctgaggg tggcggctct 1920 gagggaggcg gttccggtgg tggctctggt tccggtgatt ttgattatga aaagatggca 1980 aacgctaata agggggctat gaccgaaaat gccgatgaaa acgcgctaca gtctgacgct 2040 aaaggcaaac ttgattctgt cgctactgat tacggtgctg ctatcgatgg tttcattggt 2100 gacgtttccg gccttgctaa tggtaatggt gctactggtg attttgctgg ctctaattcc 2160 caaatggctc aagtcggtga cggtgataat tcacctttaa tgaataattt ccgtcaatat 2220 ttaccttccc tccctcaatc ggttgaatgt cgcccttttg tctttggccc aatacgcaaa 2280 ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag gtttcccgac 2340 tggaaagcgg gcagtgagcg caacgcaatt aatgtgagtt agctcactca ttaggcaccc 2400 caggctttac actttatgct tccggctcgt atgttgtgtg gaattgtgag cggataacaa 2460 tttcacacag gaaacagcta tgaccatgat tacgccaagc ttgcatgcct gcagagagat 2520 agatttgtag agagagactg gtgatttcag cgtgtcctct ccaaatgaaa tgaacttcct 2580 tatatagagg aaggtcttgc gaaggatagt gggattgtgc gtcatccctt acgtcagtgg 2640 agatatcaca tcaatccact tgctttgaag acgtggttgg aacgtcttct ttttccacga 2700 tgctcctcgt gggtgggggt ccatctttgg gaccactgtc ggcagaggca tcttgaacga 2760 tagcctttcc tttatcgcaa tgatggcatt tgtaggtgcc accttccttt tctactgtcc 2820 ttttgatgaa gtgacagata gctgggcaat ggaatccgag gaggtttccc gatattaccc 2880 tttgttgaaa agtctcaata gccctttggt cttctgagac tgtatctttg atattcttgg 2940 agtagacgag agtgtcgtgc tccaccatgt tatcacatca atccacttgc tttgaagacg 3000 tggttggaac gtcttctttt tccacgatgc tcctcgtggg tgggggtcca tctttgggac 3060 cactgtcggc agaggcatct tgaacgatag cctttccttt atcgcaatga tggcatttgt 3120 aggtgccacc ttccttttct actgtccttt tgatgaagtg acagatagct gggcaatgga 3180 atccgaggag gtttcccgat attacccttt gttgaaaagt ctcaatagcc ctttggtctt 3240 ctgagactgt atctttgata ttcttggagt agacgagagt gtcgtgctcc accattctag 3300 aggatcccgg gtaccatgtg gccccctggg tcagcctccc agccaccgcc ctcacctgcc 3360 gcggccacag gtctgcatcc agcggctcgc cctgtgtccc tgcagtgccg gctcagcatg 3420 tgtccagcgc gcagcctcct ccttgtcgct accctggtcc tcctggacca cctcagtttg 3480 gccagaaacc tccccgtggc cactccagac ccaggaatgt tcccatgcct tcaccactcc 3540 caaaacctgc tgagggccgt cagcaacatg ctccagaagg ccagacaaac tctagaattt 3600 tacccttgca cttctgaaga gattgatcat gaagatatca caaaagataa aaccagcaca 3660 gtggaggcct gtttaccatt ggaattaacc aagaatgaga gttgcctaaa ttccagagag 3720 acctctttca taactaatgg gagttgcctg gcctccagaa agacctcttt tatgatggcc 3780 ctgtgcctta gtagtattta tgaagacttg aagatgtacc aggtggagtt caagaccatg 3840 aatgcaaagc ttctgatgga tcctaagagg cagatctttc tagatcaaaa catgctggca 3900 gttattgatg agctgatgca ggccctgaat ttcaacagtg agactgtgcc acaaaaatcc 3960 tcccttgaag aaccggattt ttataaaact aaaatcaagc tctgcatact tcttcatgct 4020 ttcagaattc gggcagtgac tattgataga gtgatgagct atctgaatgc ttcctaagag 4080 ctcgaatttc cccgatcgtt caaacatttg gcaataaagt ttcttaagat tgaatcctgt 4140 tgccggtctt gcgatgatta tcatataatt tctgttgaat tacgttaagc atgtaataat 4200 taacatgtaa tgcatgacgt tatttatgag atgggttttt atgattagag tcccgcaatt 4260 atacatttaa tacgcgatag aaaacaaaat atagcgcgca aactaggata aattatcgcg 4320 cgcggtgtca tctatgttac tagatcggga attcactggc cgtcgtttta caacgtcgtg 4380 actgggaaaa ccctggcgtt acccaactta atcgccttgc agcacatccc cctttcgcca 4440 gctggcgtaa tagcgaagag gcccgcaccg atcgcccttc ccaacagttg cgcagcctga 4500 atggcgcccg ctcctttcgc tttcttccct tcctttctcg ccacgttcgc cggctttccc 4560 cgtcaagctc taaatcgggg gctcccttta gggttccgat ttagtgcttt acggcacctc 4620 gaccccaaaa aacttgattt gggtgatggt tcacgtagtg ggccatcgcc ctgatagacg 4680 gtttttcgcc ctttgacgtt ggagtccacg ttctttaata gtggactctt gttccaaact 4740 ggaacaacac tcaaccctat ctcgggctat tcttttgatt tataagggat tttgccgatt 4800 tcggaaccac catcaaacag gattttcgcc tgctggggca aaccagcgtg gaccgcttgc 4860 tgcaactctc tcagggccag gcggtgaagg gcaatcagct gttgcccgtc tcactggtga 4920 aaagaaaaac caccccagta cattaaaaac gtccgcaatg tgttattaag ttgtctaagc 4980 gtcaatttgt ttacaccaca atatatcctg cca 5013 <210> 2 <211> 4727 <212> DNA <213> Artificial Sequence <220> <223> T-DNA region of pMYL28 <400> 2 gtttacccgc caatatatcc tgtcaaacac tgatagttta aactgaaggc gggaaacgac 60 aatctgatcc aagctcaagc tgctctagca ttcgccattc aggctgcgca actgttggga 120 agggcgatcg gtgcgggcct cttcgctatt acgccagctg gcgaaagggg gatgtgctgc 180 aaggcgatta agttgggtaa cgccagggtt ttcccagtca cgacgttgta aaacgacggc 240 cagtgccaag cttctgcagc atgcagagat agatttgtag agagagactg gtgatttcag 300 cgtgtcctct ccaaatgaaa tgaacttcct tatatagagg aaggtcttgc gaaggatagt 360 gggattgtgc gtcatccctt acgtcagtgg agatatcaca tcaatccact tgctttgaag 420 acgtggttgg aacgtcttct ttttccacga tgctcctcgt gggtgggggt ccatctttgg 480 gaccactgtc ggcagaggca tcttgaacga tagcctttcc tttatcgcaa tgatggcatt 540 tgtaggtgcc accttccttt tctactgtcc ttttgatgaa gtgacagata gctgggcaat 600 ggaatccgag gaggtttccc gatattaccc tttgttgaaa agtctcaata gccctttggt 660 cttctgagac tgtatctttg atattcttgg agtagacgag agtgtcgtgc tccaccatgt 720 tatcacatca atccacttgc tttgaagacg tggttggaac gtcttctttt tccacgatgc 780 tcctcgtggg tgggggtcca tctttgggac cactgtcggc agaggcatct tgaacgatag 840 cctttccttt atcgcaatga tggcatttgt aggtgccacc ttccttttct actgtccttt 900 tgatgaagtg acagatagct gggcaatgga atccgaggag gtttcccgat attacccttt 960 gttgaaaagt ctcaatagcc ctttggtctt ctgagactgt atctttgata ttcttggagt 1020 agacgagagt gtcgtgctcc accattctag aggatccatg tgtcaccagc agttggtcat 1080 ctcttggttt tccctggttt ttctggcatc tcccctcgtg gccatatggg aactgaagaa 1140 agatgtttat gtcgtagaat tggattggta tccggatgcc cctggagaaa tggtggtcct 1200 cacctgtgac acccctgaag aagatggtat cacctggacc ttggaccaga gcagtgaggt 1260 cttaggctct ggcaaaaccc tgaccatcca agtcaaagag tttggagatg ctggccagta 1320 cacctgtcac aaaggaggcg aggttctaag ccattcgctc ctgctgcttc acaaaaagga 1380 agatggaatt tggtccactg atattttaaa ggaccagaaa gaacccaaaa ataagacctt 1440 tctaagatgc gaggccaaga attattctgg acgtttcacc tgctggtggc tgacgacaat 1500 cagtactgat ttgacattca gtgtcaaaag cagcagaggc tcttctgacc cccaaggggt 1560 gacgtgcgga gctgctacac tctctgcaga gagagtcaga ggggacaaca aggagtatga 1620 gtactcagtg gagtgccagg aggacagtgc ctgcccagct gctgaggaga gtctgcccat 1680 tgaggtcatg gtggatgccg ttcacaagct caagtatgaa aactacacca gcagcttctt 1740 catcagggac atcatcaaac ctgacccacc caacaacttg cagctgaagc cattaaagaa 1800 ttctcggcag gtggaggtca gctgggagta ccctgacacc tggagtactc cacattccta 1860 cttctccctg acattctgcg ttcaggtcca gggcaagagc aagagagaaa agaaagatag 1920 agtcttcacc gacaagacct cagccacggt catctgccgc aaaaatgcca gcattagcgt 1980 gcgggcccag gaccgctact atagctcatc ttggagcgaa tgggcatctg tgccctgcag 2040 ttaggtaccg agctcgaatt tccccgatcg ttcaaacatt tggcaataaa gtttcttaag 2100 attgaatcct gttgccggtc ttgcgatgat tatcatataa tttctgttga attacgttaa 2160 gcatgtaata attaacatgt aatgcatgac gttatttatg agatgggttt ttatgattag 2220 agtcccgcaa ttatacattt aatacgcgat agaaaacaaa atatagcgcg caaactagga 2280 taaattatcg cgcgcggtgt catctatgtt actagatcgg gaattcgtaa tcatggtcat 2340 agctgtttcc tgtgtgaaat tgttatccgc tcacaattcc acacaacata cgagccggaa 2400 gcataaagtg taaagcctgg ggtgcctaat gagtgagcta actcacatta attgcgttgc 2460 gctcactgcc cgctttccag tcgggaaacc tgtcgtgcca gctgcattaa tgaatcggcc 2520 aacgcgcggg gagaggcggt ttgcgtattg gctagagcag cttgccaaca tggtggagca 2580 cgacactctc gtctactcca agaatatcaa agatacagtc tcagaagacc aaagggctat 2640 tgagactttt caacaaaggg taatatcggg aaacctcctc ggattccatt gcccagctat 2700 ctgtcacttc atcaaaagga cagtagaaaa ggaaggtggc acctacaaat gccatcattg 2760 cgataaagga aaggctatcg ttcaagatgc ctctgccgac agtggtccca aagatggacc 2820 cccacccacg aggagcatcg tggaaaaaga agacgttcca accacgtctt caaagcaagt 2880 ggattgatgt gataacatgg tggagcacga cactctcgtc tactccaaga atatcaaaga 2940 tacagtctca gaagaccaaa gggctattga gacttttcaa caaagggtaa tatcgggaaa 3000 cctcctcgga ttccattgcc cagctatctg tcacttcatc aaaaggacag tagaaaagga 3060 aggtggcacc tacaaatgcc atcattgcga taaaggaaag gctatcgttc aagatgcctc 3120 tgccgacagt ggtcccaaag atggaccccc acccacgagg agcatcgtgg aaaaagaaga 3180 cgttccaacc acgtcttcaa agcaagtgga ttgatgtgat atctccactg acgtaaggga 3240 tgacgcacaa tcccactatc cttcgcaaga ccttcctcta tataaggaag ttcatttcat 3300 ttggagagga cacgctgaaa tcaccagtct ctctctacaa atctatctct ctcgagcttt 3360 cgcagatccc ggggggcaat gagatatgaa aaagcctgaa ctcaccgcga cgtctgtcga 3420 gaagtttctg atcgaaaagt tcgacagcgt ctccgacctg atgcagctct cggagggcga 3480 agaatctcgt gctttcagct tcgatgtagg agggcgtgga tatgtcctgc gggtaaatag 3540 ctgcgccgat ggtttctaca aagatcgtta tgtttatcgg cactttgcat cggccgcgct 3600 cccgattccg gaagtgcttg acattgggga gtttagcgag agcctgacct attgcatctc 3660 ccgccgtgca cagggtgtca cgttgcaaga cctgcctgaa accgaactgc ccgctgttct 3720 acaaccggtc gcggaggcta tggatgcgat cgctgcggcc gatcttagcc agacgagcgg 3780 gttcggccca ttcggaccgc aaggaatcgg tcaatacact acatggcgtg atttcatatg 3840 cgcgattgct gatccccatg tgtatcactg gcaaactgtg atggacgaca ccgtcagtgc 3900 gtccgtcgcg caggctctcg atgagctgat gctttgggcc gaggactgcc ccgaagtccg 3960 gcacctcgtg cacgcggatt tcggctccaa caatgtcctg acggacaatg gccgcataac 4020 agcggtcatt gactggagcg aggcgatgtt cggggattcc caatacgagg tcgccaacat 4080 cttcttctgg aggccgtggt tggcttgtat ggagcagcag acgcgctact tcgagcggag 4140 gcatccggag cttgcaggat cgccacgact ccgggcgtat atgctccgca ttggtcttga 4200 ccaactctat cagagcttgg ttgacggcaa tttcgatgat gcagcttggg cgcagggtcg 4260 atgcgacgca atcgtccgat ccggagccgg gactgtcggg cgtacacaaa tcgcccgcag 4320 aagcgcggcc gtctggaccg atggctgtgt agaagtactc gccgatagtg gaaaccgacg 4380 ccccagcact cgtccgaggg caaagaaata gagtagatgc cgaccggatc tgtcgatcga 4440 caagctcgag tttctccata ataatgtgtg agtagttccc agataaggga attagggttc 4500 ctatagggtt tcgctcatgt gttgagcata taagaaaccc ttagtatgta tttgtatttg 4560 taaaatactt ctatcaataa aatttctaat tcctaaaacc aaaatccagt actaaaatcc 4620 agatcccccg aattaattcg gcgttaattc agtacattaa aaacgtccgc aatgtgttat 4680 taagttgtct aagcgtcaat ttgtttacac cacaatatat cctgcca 4727 <210> 3 <211> 24 <212> DNA <213> Artificial Sequence <220> Primer of p35-F <400> 3 aaggtaccaa ttataaaaat gtgg 24 <210> 4 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer of p35-R <400> 4 aagagctctt taggaagcat tca 23 <210> 5 <211> 33 <212> DNA <213> Artificial Sequence <220> Primer of p40-F <400> 5 gcggatccat gtgtcaccag cagttggtca tct 33 <210> 6 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer of p40-R <400> 6 ttggtaccct aactgcaggg cacagatgcc cat 33

Claims (9)

(a) 인터루킨-12(interleukin-12, IL-12)의 p35 서브유니트를 코딩하는 유전자가 도입된 형질전환 식물체와, p40 서브유니트를 코딩하는 유전자가 도입된 형질전환 식물체를 제공하고, (a) providing a transgenic plant into which a gene encoding a p35 subunit of interleukin-12 (IL-12) is introduced, and a transgenic plant into which a gene encoding a p40 sub unit is introduced, (b) 상기 두 형질전환 식물체들을 교배하여 IL-12의 두가지 서브유니트를 모두 발현하는 형질전환 식물체를 제조하고, (b) cross-transforming the two transgenic plants to produce a transgenic plant expressing both subunits of IL-12, (c) 상기 (b)의 형질전환 식물체로부터 캘러스를 유기하여 식물세포주를 제조하고, (c) preparing a plant cell line by inducing callus from the transformed plant of (b), (d) 상기 식물세포주를 현탁배양하여 IL-12를 발현시키는 단계를 포함하는 생물학적으로 활성인 IL-12의 생산방법.(d) suspending culture of said plant cell line to express IL-12. 제 1 항에 있어서, 상기 식물은 니코티아나 타바쿰(Nicotiana tabacum)인 IL-12의 생산방법.The method of claim 1, wherein the plant is Nicotiana tabacum. 제 1 항에 있어서, 상기 식물세포주는 KCTC 1021BP인 IL-12의 제조방법.The method of claim 1, wherein the plant cell line is KCTC 1021BP. 제 1 항에 있어서, 상기 (d) 단계에서, IL-12의 생산을 증가시키기 위해 젤라틴을 배양 배지에 첨가하는 IL-12의 생산방법. The method of producing IL-12 according to claim 1, wherein in step (d), gelatin is added to the culture medium to increase production of IL-12. 제 1 항에 있어서, 상기 IL-12는 시그널 펩타이드를 포함하는 것인 IL-12의 제조방법.The method of claim 1, wherein the IL-12 comprises a signal peptide. 삭제delete 생물학적으로 활성인 인터루킨-12(interleukin-12, IL-12)를 생산 및 분비하는 형질전환 식물세포.Transgenic plant cells that produce and secrete biologically active interleukin-12 (IL-12). 제 7 항에 있어서, 상기 식물세포는 담배세포인 식물세포. 8. The plant cell of claim 7, wherein the plant cell is a tobacco cell. 제 7 항에 있어서, 상기 식물세포는 KCTC 1021BP인 식물세포. The plant cell of claim 7, wherein the plant cell is KCTC 1021BP.
KR1020030029910A 2003-05-12 2003-05-12 Production of biologically active interleukin-12 protein using plant cell suspension culture KR100549167B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030029910A KR100549167B1 (en) 2003-05-12 2003-05-12 Production of biologically active interleukin-12 protein using plant cell suspension culture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030029910A KR100549167B1 (en) 2003-05-12 2003-05-12 Production of biologically active interleukin-12 protein using plant cell suspension culture

Publications (2)

Publication Number Publication Date
KR20040097575A KR20040097575A (en) 2004-11-18
KR100549167B1 true KR100549167B1 (en) 2006-02-02

Family

ID=37375720

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030029910A KR100549167B1 (en) 2003-05-12 2003-05-12 Production of biologically active interleukin-12 protein using plant cell suspension culture

Country Status (1)

Country Link
KR (1) KR100549167B1 (en)

Also Published As

Publication number Publication date
KR20040097575A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
US6303341B1 (en) Method for producing immunoglobulins containing protection proteins in plants and their use
US6046037A (en) Method for producing immunoglobulins containing protection proteins in plants and their use
US20040171813A1 (en) Process for isolating and purifying proteins and peptides from plant sources
CN112094340B (en) Application of plant as host in expression of novel coronavirus pneumonia neutralizing antibody B38 antibody and/or H4 antibody
WO1996021012A9 (en) Methods for producing immunoglobulins containing protection proteins in plants and their use
US7253341B2 (en) Denaturant stable and/or protease resistant, chaperone-like oligomeric proteins, polynucleotides encoding same, their uses and methods of increasing a specific activity thereof
US11034970B2 (en) Production of protein from hairy roots of a Brassicaceae plant utilizing rhizobium comprising rol genes
JP3289021B2 (en) Method for producing protein from Hevea plant
CN113845576A (en) Recombinant feline herpesvirus type 1 gB-gD protein and application thereof
US6808709B1 (en) Immunoglobulins containing protection proteins and their use
WO2014089950A1 (en) Method for producing recombinant human basic fibroblast growth factor from rice seeds
JPH09509842A (en) Novel thiol protease inhibitor
KR100549167B1 (en) Production of biologically active interleukin-12 protein using plant cell suspension culture
WO2006095749A1 (en) Method for expression and accumulation of peptide in plant
US20060172298A1 (en) Denaturat stable and/or protease resistant, chaperone-like oligomeric proteins, polynucleotides encoding same, their uses and methods of increasing a specific activity thereof
JP3302695B2 (en) Method for producing antiviral plant transformed with lactoferrin gene
KR101460861B1 (en) Expression of bovine lactoferrin using transformed Chlorella
KR100974302B1 (en) Fetuin producing potato plant
WO2001019969A1 (en) A process for isolating and purifying viruses, soluble proteins and peptides from plant sources
JP5105272B2 (en) Rice containing a gene encoding amyloid β peptide
JP7497448B2 (en) Plant cell line capable of producing albumin with high efficiency and its use
KR100441375B1 (en) EXPRESSION METHOD OF hGM-CSF AND RECOMBINANT hGM-CSF PROTEIN USING BY PLANT CELL SUSPENSION CULTURE
KR910007612B1 (en) Method for producing of insulin in plant
CN117126881A (en) Preparation method of rabies virus antigen
JP2003310287A (en) Mass production method for human lactoferin by plant cell culture

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130122

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140115

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150105

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160119

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee