KR100525307B1 - Thermal protection glassing using nanopartics - Google Patents
Thermal protection glassing using nanopartics Download PDFInfo
- Publication number
- KR100525307B1 KR100525307B1 KR10-2002-0017461A KR20020017461A KR100525307B1 KR 100525307 B1 KR100525307 B1 KR 100525307B1 KR 20020017461 A KR20020017461 A KR 20020017461A KR 100525307 B1 KR100525307 B1 KR 100525307B1
- Authority
- KR
- South Korea
- Prior art keywords
- metal
- nanoparticles
- thermal barrier
- glass
- coating
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/001—General methods for coating; Devices therefor
- C03C17/002—General methods for coating; Devices therefor for flat glass, e.g. float glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/06—Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
- C03C17/10—Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the liquid phase
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/11—Deposition methods from solutions or suspensions
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
본 발명은 박막 및 큰 입자를 대체 하기 위한 나노입자를 이용하여 보다 투명하고 보다 열 차단이 우수한 열차단유리의 특성 향상에 관한 것으로, 기존의 박막기술( 스퍼터링법 )에 비하여 공정 및 유지비 감소가 용이하고 벌크에서 보다 투명도와 열 차단율이 우수한 나노입자를 합성하였으며 합성 및 코팅단계를 축소하여 대용량화를 가능하게 하였고 벌크에서의 열 차단효과는 있지만 투명도가 떨어지는 문제점을 향상시켜 열차단 유리의 성능을 크게 향상시킬 수 있는 이점이 있으며 따라서 다양한 나노입자를 합성하여 최적의 열차단 물질의 응용이 가능해졌다. The present invention relates to the improvement of the characteristics of heat shielded glass that is more transparent and more excellent in heat shielding by using nanoparticles for replacing thin films and large particles, and is easier to reduce the process and maintenance cost compared to the conventional thin film technology (sputtering method). It also synthesized nanoparticles with better transparency and heat shielding rate in bulk, and reduced the synthesis and coating steps to enable large-capacity. There is an advantage in that it is possible to synthesize a variety of nanoparticles to enable the application of the optimal thermal barrier material.
Description
본 발명은 보다 투명하고 보다 열 차단이 잘되는 열 차단유리의 특성 향상에 관한 것으로, 열 차단용 코팅 박막에 비하여 다소 작은 열 차단률을 보이나 다양한 금속 산화물 나노입자를 이용하여 보다 투명하고 열 차단이 우수한 열 차단유리의 대량화가 가능해졌다. 기존의 열 차단용 박막에서와 다르게 초기투자비와 유지비의 문제점을 크게 향상시킬수 있는 이점이 있으며 따라서 다양한 나노 금속산화물을 이용하여 우수한 열 차단유리개발의 대량화가 가능해졌다. 열차단용 유리는 태양열의 50%인 적외선을 흡수 및 반사시킴으로써 냉난방의 효율을 높이는 동시에 에너지를 절약 할 수 있다. 그러므로 가시광선은 투과시키고 적외선은 차단이 우수한 여러물질들을 다양한 방법을 이용하여 나노사이즈로 합성하여 콜로이드상태에서 코팅하므로써 박막공정과 비교하여 초기투자비가 감소 할뿐만 아니라 여러 공정을 간소화하였고 벌크에 비해서 더욱 투명하고 열 차단이 우수한 다양한 금속산화물 나노 입자를 코팅하여 열 차단용 유리의 성능을 크게 향상시겼다. The present invention relates to improving the properties of heat shielding glass that is more transparent and more heat-resistant, and shows a somewhat smaller heat blocking rate than the heat-blocking coating thin film, but more transparent and excellent heat blocking by using various metal oxide nanoparticles. Larger quantities of thermal barrier glass are now possible. Unlike the existing thermal barrier thin film, there is an advantage that can greatly improve the problems of the initial investment cost and maintenance cost, and thus the mass production of excellent thermal barrier glass is made possible by using various nano metal oxides. Thermal barrier glass absorbs and reflects infrared rays, which are 50% of the sun's heat, improving energy efficiency. Therefore, by incorporating nano-sized materials using various methods to transmit visible light and blocking infrared rays in a colloidal state, the initial investment cost is not only reduced compared to the thin film process, but also the various processes are simplified and more than the bulk. By coating various metal oxide nanoparticles that are transparent and have excellent thermal barrier, the performance of thermal barrier glass is greatly improved.
종래의 기술로는 먼저 박막과정에서 나노미터로 두께를 제어하며 굴절률이 다른 물질들( 이산화 티탄늄, 이산화규소등 ) 및 금속/금속산화물을 3회 내지 5회 반복 증착한 다층 구조를 이용한 적외선 차단용 코팅법이 있다. 또한 입자크기가 큰 주석도우프산화인듐( ITO ) 분말을 유기매트릭스 속에 분산시킨 구조인 적외선차단제가 제공되었다. 이것은 ITO분말과 바인더와 용매로 구성된 조성물을 베이스체에 도포하고 건조해서 얻은 베이스체위의 피막형태를 형성한다. 그러나 점점더 에너지절약의 필요성이 대두되면서 벌크의 특성을 향상시킨 나노입자를 합성하고 코팅단계를 간략화함므로써 열 차단용 유리의 특성을 향상시킬수 있음을 발견하고 본 발명을 완성하게 되었다. In the prior art, first, the thickness is controlled by nanometer in the thin film process, and infrared blocking using a multilayer structure in which materials having different refractive indices (titanium dioxide, silicon dioxide, etc.) and metal / metal oxide are repeatedly deposited three to five times There is a coating method. In addition, an infrared ray blocking agent having a structure in which tin-doped indium oxide (ITO) powder having a large particle size is dispersed in an organic matrix is provided. This forms a coating on the base obtained by applying a composition composed of ITO powder, a binder and a solvent to a base body and drying it. However, as the necessity of more energy saving has emerged, the present invention has been found to be able to improve the properties of the thermal barrier glass by synthesizing nanoparticles having improved bulk properties and simplifying the coating step.
본 발명의 목적은 다양한 나노사이즈의 금속산화물을 이용한 열 차단유리에 관한 것으로, 박막공정에 비하여 초기투자비 및 유지비를 줄이고 보다 투명하고 보다 열 차단 효율을 향상시킨 열 차단유리의 성능향상과 동시에 다양한 나노 금속산화물 및 금속을 다양하게 합성하고 코팅과정을 간소화하여 건축물, 자동차용, 가전제품의 대량화에 응용할수 있는 고효율 열 차단유리의 응용에 관한 것이다. An object of the present invention relates to a thermal barrier glass using a variety of nano-size metal oxide, and compared to the thin film process, the initial investment cost and maintenance costs are reduced, and the performance of the thermal barrier glass which is more transparent and improves the thermal barrier efficiency and at the same time various nano The present invention relates to the application of high-efficiency heat shielding glass that can be applied to mass production of buildings, automobiles, and home appliances by synthesizing various metal oxides and metals and simplifying the coating process.
상기 목적을 달성하기 위하여 본 발명에서는, 수용액 상에서 열 차단용 나노 금속 및 금속산화물을 제조하는 방법에 있어서, 질화금속 및 염화금속등을 환원제(NaOH, NaBH4)등으로 환원시켜 콜로이드 상의 금속 및 금속산화물를 형성 한 후, 입자들을 건조하는 조건 없이 앞에서 형성된 콜로이드 용액에 일정한 비율로 계면 활성제 및 바인더를 첨가하여 유리위에 코팅하므로써 벌크 입장의 열 차단물질들에 비하여 보다 투명하고 보다 열 차단이 우수한 열 차단용 유리의 제조방법을 제공한다. In order to achieve the above object, in the present invention, in the method of manufacturing nano-metals and metal oxides for heat shielding in an aqueous solution, the metal and metal oxides of the colloids are reduced by reducing metal nitrides and metal chlorides with reducing agents (NaOH, NaBH 4), etc. After forming, the particles are coated on the glass by adding a surfactant and a binder in a predetermined ratio to the colloidal solution formed without drying conditions, thereby making the glass more transparent and heat-blocking than the thermal barrier materials in the bulk position. It provides a method of manufacturing.
이하 본 발명에 대하여 보다 상세히 설명한다. 먼저 금속 산화물 열 차단물질의 경우, 본 발명의 제조 방법에 따르면, 질화 금속 및 염화금속을 수용액에 첨가하여 격렬한 교반을 통해 용해시킨후, 화원제등을 첨가하여 가수분해를 통하여 나노 사이즈 금속 및 금속 산화물을 입자를 제조하는 방법으로 과정 사이에 산도(PH)를 조절하여 순수한 콜로이드상태의 입자들을 얻었다. Hereinafter, the present invention will be described in more detail. First, in the case of the metal oxide thermal barrier material, according to the production method of the present invention, the metal nitride and the metal chloride are added to an aqueous solution to dissolve through vigorous stirring, and then a hydrolysis agent is added to the nano-size metal and the metal. The acidity (PH) was adjusted between the processes by producing the oxide particles to obtain pure colloidal particles.
이원계 나노입자의 경우, 염화 금속 및 질화금속들을 수용액에 첨가하여 격력한 교반을 통해 용해 시킨후, 산도(PH)를 조절후 환원제용액을 첨가한후 다시 산도(PH)를 조절하여 나노사이즈의 콜로이드 용액을 얻었다. In the case of binary nanoparticles, metal chlorides and metal nitrides are added to an aqueous solution and dissolved by vigorous stirring. After adjusting the acidity (PH), the reducing agent solution is added, and then the acidity (PH) is adjusted again to adjust the colloid of nano size. A solution was obtained.
본 발명에 사용되는 환원제로는 NaOH나 KOH등을 들수 있으며, 금속 염화물 및 질화물 함유 용액을 100내지 4000rpm의 속도로 교반하면서 여기에 앞의 환원제를 금속 염화물 및 질화물의 화학양론적 양의 0.5내지 2배 몰비에 해당하는 환원제를 첨가하여 1내지 6시간 이상동안 반응시킴으로써 염화물 및 질화물의 환원을 통해 콜로이상의 나노입자를 형성할 수 있다. Reducing agents used in the present invention include NaOH or KOH, and while stirring the metal chloride and nitride-containing solution at a speed of 100 to 4000rpm, the reducing agent is 0.5 to 2 of the stoichiometric amount of the metal chloride and nitride By adding a reducing agent corresponding to a fold molar ratio and reacting for 1 to 6 hours or more, it is possible to form nanoparticles of colo or more through reduction of chloride and nitride.
이어, 본 발명의 나노사이즈 금속 및 금속산화물 제조 방법에 따르면, 용매를 제거하지 않고 ( 예를 들면 동결건조나 열처리 조건 없이) 콜로이드 액상상태에서 계면 활성제( Ethylene glycol, Poly(ethylene Oxide) )를 첨가하는데 콜로이드 입자의 5내지 50 wt%에 해당하는 계면활성제를 첨가하여 30분 내지 12시간이상 교반시킴으로써 열 차단물질형성을 위해 혼합용액을 제조할 수 있다. 본 발명에 따르면, 열 차단물질을 유리에 코팅하는 방법으로 통상적으로 사용되고 있는 딥 코팅법( dip coating method ), 스핀 코팅법( spin coating method ), 스프레이법(spray method) 혹은 닥터 블레이드법( Doctor blade method)을 이용하여 다양한 나노사이즈 금속산화물을 수 나노(nm) 내지 수백 마이크로미터(㎛)의 균일한 두께로 형성시킬 수 있다. Subsequently, according to the nano-size metal and metal oxide manufacturing method of the present invention, a surfactant (Ethylene glycol, Poly (ethylene Oxide)) is added in a colloidal liquid state without removing the solvent (for example, without lyophilization or heat treatment conditions). The mixed solution may be prepared to form a heat shielding material by adding a surfactant corresponding to 5 to 50 wt% of the colloidal particles and stirring for 30 minutes to 12 hours or more. According to the present invention, a dip coating method, a spin coating method, a spray method, or a doctor blade method, which are commonly used as a method of coating a heat shielding material on glass, method) can be used to form a variety of nano-size metal oxide to a uniform thickness of several nanometers (nm) to several hundred micrometers (μm).
이와 같은 본 발명의 나노입자를 이용한 열 차단용 유리의 제조 방법에 따르면, 수 나노미터의 금속 및 금속산화물 나노입자를 기존에 비해 균일하며 더 작게 제조 할 수 있으며, 이렇게 제조된 콜로이드용액을 유리에 코팅하므로써 보다 투명하고 보다 열 차단이 우수한 열 차단용 유리의 성능향상을 가져 올 수 있다. 또한 이러한 방법을 응용하여 시트지나 고분자 용매등의 응용 가능성이 있을 것으로 추정된다. According to the manufacturing method of the thermal barrier glass using the nanoparticles of the present invention, it is possible to produce a few nanometers of metal and metal oxide nanoparticles uniform and smaller than the conventional, colloidal solution prepared in this way to the glass Coating can improve the performance of the heat shield glass, which is more transparent and has better heat shielding. In addition, it is estimated that such a method may be applied to a sheet paper or a polymer solvent.
이하, 본 발명을 하기 실시예에 의거하여 좀더 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.
실시예 1 : 다양한 나노 사이즈 금속 및 금속산화물( 인듐, 주석 금속, 주석산화물 및 주석도우프산화인듐 )의 열 차단물질 제조Example 1 Preparation of Heat Barrier Materials of Various Nano-Sized Metals and Metal Oxides (Indium, Tin Metals, Tin Oxides, and Tin Doped Oxides)
다음도1a는 상온 대기중에서 인듐 염화물(염화주석 수화물) 1g을 증류수 100 내지 500ml에 30분 이상 용해시켰다. 이어, 100 내지 3000rpm이상의 속도로 교반하면서 여기에 과산화수소( H2O2 )를 한방울씩 적가하였고 그후 환원제을 첨가하여 산도(PH)를 조절하였으며 1시간 내지 12시간 동안 충분히 반응시켰다. 그후 몇번의 반복을 거쳐 세척을 하며 콜로이드용액을 얻었다.Figure 1a was dissolved 1 g of indium chloride (tin chloride hydrate) in 100 to 500ml of distilled water for 30 minutes or more in a room temperature atmosphere. Subsequently, hydrogen peroxide (H 2 O 2) was added dropwise thereto while stirring at a speed of 100 to 3000 rpm or more, and then, a pH was adjusted by adding a reducing agent and reacted sufficiently for 1 to 12 hours. After washing several times to obtain a colloidal solution.
이 방법에 의해 제조된 인듐산화물과 주석산화물의 구조적인 분석이 도 1의 X-선 회절(X-ray Diffraction, XRD)분석에서 Peak 위치로 앞의 물질임을 알 수 있고 도 2에서 에너지 분산 x-선 분광기(Energy Dispersive X-ray spectroscopy, EDX)의 스펙트럼에의한 정성분석 결과이며 도 3는 전자 투과 현미경(Transmission Electron Microscope, TEM) 관찰 결과로서 정확한 입자 사이즈를 알수있다. In the X-ray diffraction (XRD) analysis of FIG. 1, the structural analysis of the indium oxide and the tin oxide prepared by this method showed that the material was in front of the peak position. Qualitative analysis results based on spectra of an energy dispersive X-ray spectroscopy (EDX), and FIG. 3 shows the exact particle size as a result of transmission electron microscopy (TEM) observation.
실시예 2 : 나노사이즈 이원계 금속산화물의 제조Example 2 Preparation of Nano-size Binary Metal Oxides
다음 1b는 이원계 금속산화물 제조의 간략도이다.1b is a schematic diagram of the preparation of the binary metal oxide.
실시예 1과 같이 방법으로 만든 인듐 산화물 콜로이드 용액에 강 환원제( NaBH4 )를 첨가하여 산도(PH)를 조절하고 우수한 열 차단물질을 얻을 수 있었다. 이 방법에 의해 제조된 주석도우프산화인듐의 특성분석은 도 4에서처럼 에너지 분산 x-선 분광기(Energy Dispersive X-ray spectroscopy, EDX)의 스펙트럼에 의한 정성분석 결과이며 도 5는 전자 투과 현미경(Transmission Electron Microscope, TEM) 관찰 결과로서 정확한 입자 사이즈를 알 수 있다.A strong reducing agent (NaBH4) was added to the indium oxide colloidal solution prepared in the same manner as in Example 1 to adjust the acidity (PH) and obtain an excellent heat shielding material. Characterization of indium tin-doped indium oxide prepared by this method is the result of qualitative analysis by spectra of an energy dispersive X-ray spectroscopy (EDX) as shown in FIG. 4, and FIG. Electron Microscope (TEM) observations show the exact particle size.
실시예 3 : 나노사이즈 금속 및 금속산화물을 이용한 코팅용액제조Example 3 Preparation of Coating Solution Using Nano-size Metals and Metal Oxides
실시 예 1 및 2와 같은 방법으로 만든 금속 및 금속산화물 콜로이드 입자에 물 및 알코올 용매와 계면활성제( Ethylene glycol, Poly(ethylene Oxide), Triton X-100 ) 등을 5wt% 내지 50wt% 첨가하여 코팅용액을 제조하였으며 24시간이상 교반하였고 계면활성제 및 분산제의 농도에 따라 성능을 비교 평가하였다.Coating solution by adding 5wt% to 50wt% of water and alcohol solvent and surfactant (Ethylene glycol, Poly (ethylene Oxide), Triton X-100), etc. to the metal and metal oxide colloid particles made by the same method as Examples 1 and 2 Was prepared and stirred for more than 24 hours, and the performance was compared according to the concentration of the surfactant and dispersant.
실시예 4 : 다양한 두께 및 온도 조절 통한 나노사이즈 금속 및 금속산화물을 이용하여 열 차단 유리에의 코팅Example 4 Coating on Heat-Blocking Glass Using Nano-Size Metals and Metal Oxides Through Various Thickness and Temperature Controls
실시예 3에서 얻어진 코팅용액을 딥 코팅, 닥터블레이드방법 및 스핀 코팅방법을 이용하여 다양한 두께로 코팅하여 로( furnace )에 넣은 후 여러 온도를 조절하여 적외선차단용 유리의 성능을 평가하였고 두께는 0.01μm 내지 수십μm로 두께를 조절하여 적외선차단 효율의 성능을 비교 평가하였다. The coating solution obtained in Example 3 was coated in various thicknesses using a dip coating, a doctor blade method, and a spin coating method, placed in a furnace, and then the various temperatures were adjusted to evaluate the performance of the infrared cut glass. The thickness was adjusted to μm to several tens of μm to compare and evaluate the performance of infrared ray blocking efficiency.
본 발명에 따르면, 다양한 나노사이즈 금속 및 금속산화물의 콜로이드용액에 적정량의 계면활성제 및 분산제를 첨가하여 충분히 교반해서 얻어진 코팅액을 스핀 코팅법( 또는 딥 코팅 및 닥터브레이드방법)등을 이용하여 유리위에 코팅한 후 코팅두께, 코팅액의 농도, 열 차단물질, 로(furnace)의 온도등의 조건을 최적화 시켜 제작된 나노사이즈 금속 및 금속산화물을 이용한 적외선 차단용 유리는 박막공정( 스퍼터링등 )에 비하여 초기투자비 및 유지비가 적게 들며 또한 벌크에 비하여 보다 투명하고 우수한 열 차단 특성을 얻었으며 다양한 건축물, 자동차유리, 가전제품에 응용 할 수 있다. According to the present invention, a coating solution obtained by sufficiently stirring by adding an appropriate amount of surfactant and dispersant to a colloidal solution of various nano-size metals and metal oxides is coated on glass using a spin coating method (or a dip coating method and a doctor blade method). After the optimization of coating thickness, coating liquid concentration, heat shielding material, furnace temperature, etc., the infrared investment glass using nano-size metal and metal oxide has an initial investment cost compared to the thin film process (sputtering, etc.). And it has a low maintenance cost and has more transparent and excellent heat shielding properties than bulk, and can be applied to various buildings, automobile glass, and home appliances.
도 1a 및 1b는 본 발명에 따른 실시양태로서 다양한 물질의 나노입자 합성법의 개략도 이고, 1A and 1B are schematic diagrams of nanoparticle synthesis of various materials as an embodiment according to the invention,
도 2a 및 2b는 본 발명의 제 1 실시예에 따른 다양한 나노입자들의 EDX 결과이며, 2A and 2B show EDX results of various nanoparticles according to the first embodiment of the present invention.
도 3는 본 발명의 제 1 실시예에 따른 나노입자들의 TEM 결과이며 3 is a TEM result of nanoparticles according to the first embodiment of the present invention.
도 4는 본 발명의 제 1 실시예에 따른 콜로이드용액의 농도에 따른 열 차단 물질의 투과율비교이며, 4 is a comparison of the transmittance of the heat shielding material according to the concentration of the colloidal solution according to the first embodiment of the present invention,
도 5는 본 발명의 제 1 및 3의 실시예에 따른 열 차단효율의 비교 및 성능평가 결과이다. 5 is a comparison and performance evaluation results of the thermal cut-off efficiency according to the first and third embodiments of the present invention.
도 6는 본 발명의 제 1 및 3의 실시예에 따른 금속산화물 나노입자을 두께에 따른 성능평가 비교결과이다. 6 is a comparison result of the performance evaluation of the metal oxide nanoparticles according to the first and third embodiments of the present invention according to the thickness.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0017461A KR100525307B1 (en) | 2002-03-29 | 2002-03-29 | Thermal protection glassing using nanopartics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0017461A KR100525307B1 (en) | 2002-03-29 | 2002-03-29 | Thermal protection glassing using nanopartics |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20030078424A KR20030078424A (en) | 2003-10-08 |
KR100525307B1 true KR100525307B1 (en) | 2005-11-02 |
Family
ID=32377226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2002-0017461A KR100525307B1 (en) | 2002-03-29 | 2002-03-29 | Thermal protection glassing using nanopartics |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100525307B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101624173B (en) * | 2009-07-23 | 2011-11-16 | 暨南大学 | Low-temperature solvent hot preparation method of indium tin oxide monodisperse nano powder |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4473599A (en) * | 1982-05-27 | 1984-09-25 | Aetna Telecommunications Laboratories | Process for providing optical fibers conditioned for hostile environments and fibers thus formed |
US6033995A (en) * | 1997-09-16 | 2000-03-07 | Trw Inc. | Inverted layer epitaxial liftoff process |
JP2000169947A (en) * | 1998-12-03 | 2000-06-20 | Japan Science & Technology Corp | High ductile nanoparticle dispersion metallic glass and its production |
KR20030067162A (en) * | 2002-02-07 | 2003-08-14 | 대한민국 (한밭대학총장) | Manufacturing methods of nano size Gallium Nitride powder, Gallium Nitride - Gallium Oxide compound powder and Electro luminescence Devices |
-
2002
- 2002-03-29 KR KR10-2002-0017461A patent/KR100525307B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4473599A (en) * | 1982-05-27 | 1984-09-25 | Aetna Telecommunications Laboratories | Process for providing optical fibers conditioned for hostile environments and fibers thus formed |
US6033995A (en) * | 1997-09-16 | 2000-03-07 | Trw Inc. | Inverted layer epitaxial liftoff process |
JP2000169947A (en) * | 1998-12-03 | 2000-06-20 | Japan Science & Technology Corp | High ductile nanoparticle dispersion metallic glass and its production |
KR20030067162A (en) * | 2002-02-07 | 2003-08-14 | 대한민국 (한밭대학총장) | Manufacturing methods of nano size Gallium Nitride powder, Gallium Nitride - Gallium Oxide compound powder and Electro luminescence Devices |
Also Published As
Publication number | Publication date |
---|---|
KR20030078424A (en) | 2003-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10481301B2 (en) | Nanometric tin-containing metal oxide particle and dispersion, and preparation method and application thereof | |
El Nahrawy et al. | Compositional effects and optical properties of P 2 O 5 doped magnesium silicate mesoporous thin films | |
JP4101236B2 (en) | Non-acidic, non-basic colloidal solution containing dispersed titanium dioxide, method for producing the same, and coating agent containing the colloidal solution | |
WO2010055570A1 (en) | Infrared blocking particle, method for producing the same, infrared blocking particle dispersion using the same, and infrared blocking base | |
JP4922040B2 (en) | Metal oxide fine particle aqueous dispersion and method for producing the same | |
JP2015513508A (en) | Method for producing vanadium dioxide composite powder, vanadium dioxide powder slurry, and vanadium dioxide smart temperature control coating layer | |
WO2006001487A1 (en) | Fine particles of tin-modified rutile-type titanium dioxide | |
Antonello et al. | Nanocomposites of titania and hybrid matrix with high refractive index | |
Selvi et al. | Synthesis, structural and optical characterization of ZrO 2 core–ZnO@ SiO 2 shell nanoparticles prepared using co-precipitation method for opto-electronic applications | |
CN105478117A (en) | Gold@zinc oxide core-shell heterogeneous nanoparticles having strong sunlight absorption property, and preparation method thereof | |
CN115449254B (en) | Cesium tungsten bronze/silicon dioxide hollow microsphere composite material and preparation method and application thereof | |
Surynek et al. | Tuning the photocatalytic properties of sol–gel-derived single, coupled, and alloyed ZnO–TiO 2 nanoparticles | |
JP7323828B2 (en) | Transparent heat-shielding fine particles, fine particle dispersion, production method and use thereof | |
Liu et al. | One-dimensional light-colored conductive antimony-doped tin oxide@ TiO 2 whiskers: Synthesis and applications | |
Selvi et al. | Effect of shell ZnO on the structure and optical property of TiO 2 core@ shell hybrid nanoparticles | |
KR100525307B1 (en) | Thermal protection glassing using nanopartics | |
KR20230153391A (en) | Method for manufacturing a hybrid nanostructure composite containing cellulose nanoparticles and metal compound nanoparticles | |
Jin et al. | The LSPR regulation of TiO2: W nanocrystals and its application in enhanced upconversion luminescence | |
Srirodpai et al. | Preparation, characterizations and oxidation stability of polyethylene coated nanocrystalline VO2 particles and the thermo-chromic performance of EVA/VO2@ PE composite film | |
CN1704452A (en) | Process for preparing nano silicon dioxide particles | |
Gong et al. | Synthesis and applications of MANs/poly (MMA-co-BA) nanocomposite latex by miniemulsion polymerization | |
CN116970193A (en) | Composite heat insulation film prepared from room temperature phase change material based on high transparency and preparation method thereof | |
Secundino-Sánchez et al. | Stimulation of the photoluminescent properties of electrospinning TiO2 nanofibres induced by structural modifications resulting from annealing at high temperatures | |
Luo et al. | Synthesis of highly dispersible IZO and ITO nanocrystals for the fabrication of transparent nanocomposites in UV-and near IR-blocking | |
JP2015196634A (en) | Production method of metal oxide fine particle and metal oxide fine particle, and powder, dispersion liquid and dispersion of the same, and coated substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20121126 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20131024 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20141027 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20151026 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20161025 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20171010 Year of fee payment: 13 |
|
LAPS | Lapse due to unpaid annual fee |