KR100504554B1 - method for manufacturing capacitor of semiconductor device - Google Patents
method for manufacturing capacitor of semiconductor device Download PDFInfo
- Publication number
- KR100504554B1 KR100504554B1 KR10-2000-0079678A KR20000079678A KR100504554B1 KR 100504554 B1 KR100504554 B1 KR 100504554B1 KR 20000079678 A KR20000079678 A KR 20000079678A KR 100504554 B1 KR100504554 B1 KR 100504554B1
- Authority
- KR
- South Korea
- Prior art keywords
- layer
- forming
- contact hole
- insulating layer
- capacitor
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000004065 semiconductor Substances 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 238000000151 deposition Methods 0.000 claims abstract description 5
- 238000005530 etching Methods 0.000 claims abstract description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 16
- 239000001301 oxygen Substances 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- 239000007789 gas Substances 0.000 claims description 10
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 9
- 229910052707 ruthenium Inorganic materials 0.000 claims description 9
- 230000004888 barrier function Effects 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 238000009832 plasma treatment Methods 0.000 claims description 3
- 239000007983 Tris buffer Substances 0.000 claims description 2
- 238000010926 purge Methods 0.000 claims description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 claims description 2
- 238000000231 atomic layer deposition Methods 0.000 abstract description 13
- 239000010410 layer Substances 0.000 description 95
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 10
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 7
- 239000002994 raw material Substances 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- LUVAQAGMHUTQQE-UHFFFAOYSA-I C(C=C)(=O)[O-].[Ta+5].C(C=C)(=O)[O-].C(C=C)(=O)[O-].C(C=C)(=O)[O-].C(C=C)(=O)[O-] Chemical compound C(C=C)(=O)[O-].[Ta+5].C(C=C)(=O)[O-].C(C=C)(=O)[O-].C(C=C)(=O)[O-].C(C=C)(=O)[O-] LUVAQAGMHUTQQE-UHFFFAOYSA-I 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
Classifications
-
- H01L28/65—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28556—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
-
- H01L28/91—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/02—Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
- H10B12/03—Making the capacitor or connections thereto
- H10B12/033—Making the capacitor or connections thereto the capacitor extending over the transistor
- H10B12/0335—Making a connection between the transistor and the capacitor, e.g. plug
-
- H01L28/75—
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Semiconductor Memories (AREA)
Abstract
본 발명은 캐패시터의 하부 전극을 ALD 방법(atomic layer deposition method)으로 증착시켜 캐패시터 하부 전극의 막질의 개선 및 균일한 단차 피복성을 확보하여 캐패시터의 전기적 특성을 향상시키는 반도체 소자의 커패시터 제조 방법에 관한 것으로, 반도체 기판상에 제 1 절연층을 형성하고 제 1 콘택홀을 형성하는 단계; 상기 제 1 콘택홀내에 플러그을 형성하는 단계; 상기 플러그을 포함한 상기 제 1 절연층상에 제 2 절연층을 형성하는 단계; 상기 플러그와 대응되는 상기 제 2 절연층을 식각하여 제 2 콘택홀을 형성하는 단계; 상기 제 2 콘택홀 내에 ALD 방법으로 하부 전극을 형성하는 단계; 상기 제 2 절연층을 식각하는 단계; 상기 하부 전극상에 유전층을 형성하는 단계; 상기 유전층상에 상부 전극을 형성하는 단계를 포함하여 이루어진다.The present invention relates to a capacitor manufacturing method of a semiconductor device for depositing the lower electrode of the capacitor by the ALD method (atomic layer deposition method) to improve the film quality of the lower electrode of the capacitor and to ensure uniform step coverage to improve the electrical characteristics of the capacitor. Forming a first insulating layer and forming a first contact hole on the semiconductor substrate; Forming a plug in the first contact hole; Forming a second insulating layer on the first insulating layer including the plug; Etching the second insulating layer corresponding to the plug to form a second contact hole; Forming a lower electrode in the second contact hole by an ALD method; Etching the second insulating layer; Forming a dielectric layer on the lower electrode; Forming an upper electrode on the dielectric layer.
Description
본 발명은 반도체 소자의 캐패시터에 관한 것으로, 특히캐패시터의 하부 전극을 ALD 방법(atomic layer deposition method)으로 증착시켜 캐패시터 하부 전극의 막질의 개선 및 균일한 단차 피복성을 확보하여 캐패시터의 전기적 특성을 향상시키는 반도체 소자의 캐패시터 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitor of a semiconductor device. In particular, the lower electrode of the capacitor is deposited by the ALD method (atomic layer deposition method) to improve the film quality of the lower electrode of the capacitor and to ensure uniform step coverage to improve the electrical characteristics of the capacitor. It relates to a capacitor manufacturing method of a semiconductor device.
반도체 소자가 집적화되고, 특히 0.1㎛정도의 디지인룰(design rule)을 가지는 소자에서 캐패시터 하부 전극의 균일한 단차 피복성(step coverage)을 확보하고 막질 특성을 개선시켜 캐패시터의 전기적 특성을 향상시키는 연구가 활발하게 진행되고 있다. A study to improve the electrical characteristics of a capacitor by integrating semiconductor devices and securing uniform step coverage of the lower electrode of the capacitor and improving film quality, especially in devices having a design rule of about 0.1 μm. Is actively underway.
그리고 0.1㎛정도의 디지인룰(design rule)을 가지는 소자에서는 캐패시터의 하부 전극의 물질로 루테늄(ruthenium)층을 많이 사용하지만, 루테늄층은 원료 물질 자체가 산소를 많이 포함하고 있고 또한 반응 가스로 산소를 사용하기 때문에 증착된 루테늄층 내부에 산소가 존재하게 된다.In a device having a design rule of about 0.1 μm, a ruthenium layer is used as a material of the lower electrode of the capacitor, but the ruthenium layer contains a large amount of oxygen in the raw material itself and is also a reactive gas. Because of using the oxygen is present inside the deposited ruthenium layer.
이러한 산소의 존재는 유전층으로 Ta2O5층을 형성하고 후속 열공정을 진행하면서 장벽 금속층으로 형성되어 있는 TiN층을 산화시켜 이중 캐패시터를 형성하거나, 막의 들림현상(film lifting)이 일어날 수 있다.The presence of oxygen may form a Ta 2 O 5 layer as a dielectric layer and oxidize the TiN layer formed as a barrier metal layer to form a double capacitor while performing a subsequent thermal process, or film lifting may occur.
이하 첨부된 도면을 참고하여 종래 기술의 반도체 소자의 캐패시터 제조 방법에 관하여 설명하면 다음과 같다.Hereinafter, a capacitor manufacturing method of a semiconductor device of the prior art will be described with reference to the accompanying drawings.
도 1a내지 도 1f는 종래 기술에 따른 반도체 소자의 캐패시터 제조 방법의 공정 단면도이다.1A to 1F are cross-sectional views illustrating a method of manufacturing a capacitor of a semiconductor device according to the prior art.
도 1a와 같이, 반도체 기판(1)상에 제 1 절연층(2)을 산화층으로 형성하고, 도 1b와 같이, 제 1 절연층(2)을 식각하여 제 1 콘택홀(3)을 형성한 후, 제 1 콘택홀(3)을 포함한 제 1 절연층(2)상에 다결정 실리콘층을 적층하고 에치백(etch back)하여 다결정 실리콘 플러그(4)를 형성한다.As shown in FIG. 1A, the first insulating layer 2 is formed as an oxide layer on the semiconductor substrate 1, and the first insulating layer 2 is etched to form the first contact hole 3 as illustrated in FIG. 1B. Thereafter, a polycrystalline silicon layer is laminated on the first insulating layer 2 including the first contact hole 3 and etched back to form a polycrystalline silicon plug 4.
도 1c와 같이, 제 1 콘택홀(3)내의 다결정 실리콘 플러그(4)상에 장벽 금속층으로 Ti층(5)을 형성하고 Ti층(5)상에 TiN층(6)을 형성한다.As shown in FIG. 1C, the Ti layer 5 is formed as a barrier metal layer on the polycrystalline silicon plug 4 in the first contact hole 3, and the TiN layer 6 is formed on the Ti layer 5.
그리고 제 1 절연층(2)와 TiN층(6)상에 제 2 절연층(7)을 산화층으로 형성한다.The second insulating layer 7 is formed of an oxide layer on the first insulating layer 2 and the TiN layer 6.
도 1d와 같이, 제 1 콘택홀(3)과 대응되는 제 2 절연층(7)을 식각하여 제 2 콘택홀(8)을 형성하고 제 2 콘택홀(8)을 포함한 제 2 절연층(7)상에 Ru층(9)을 형성한다.As shown in FIG. 1D, the second insulating layer 7 corresponding to the first contact hole 3 is etched to form the second contact hole 8 and the second insulating layer 7 including the second contact hole 8. To form a Ru layer (9).
Ru층(9)은 LPCVD 방법을 사용하여 형성하는 한다. 그런데 Ru층의 원료 물질 자체가 산소를 많이 포함하고 있고 또한 반응 가스로 산소를 사용하기 때문에 증착된 Ru층 내부에 산소가 존재하게 된다.The Ru layer 9 is formed using the LPCVD method. However, since the raw material itself of the Ru layer contains a lot of oxygen and uses oxygen as the reaction gas, oxygen exists in the deposited Ru layer.
도 1e와 같이, Ru층(9)을 CMP(chemical mechanical polishing)방법으로 식각하여 제 2 콘택홀(8)내에 잔류시킨 후 제 2 절연층(7)을 제거한다.As shown in FIG. 1E, the Ru layer 9 is etched by the chemical mechanical polishing (CMP) method to remain in the second contact hole 8, and then the second insulating layer 7 is removed.
그리고 Ru층(9)상에 유전층(10)으로 Ta2O5층을 형성하고 열처리 공정을 진행한다.In addition, a Ta 2 O 5 layer is formed on the Ru layer 9 as the dielectric layer 10 and the heat treatment process is performed.
그런데 Ru층(9) 내부에 산소가 존재하기 때문에 Ta2O5층을 형성하고 후속 열공정을 진행하면서 장벽 금속층으로 형성되어 있는 TiN층을 산화시켜 이중 캐패시터를 형성하거나, 막의 들림현상(film lifting)이 일어날 수 있다.However, since oxygen is present in the Ru layer 9, a Ta 2 O 5 layer is formed and a subsequent thermal process is performed to oxidize a TiN layer formed of a barrier metal layer to form a double capacitor, or to lift a film. ) May occur.
도 1f와 같이, 유전층(10)상에 캐패시터의 상부 전극(11)을 TiN층 또는 Ru층으로 형성한다. As shown in FIG. 1F, the upper electrode 11 of the capacitor is formed of a TiN layer or a Ru layer on the dielectric layer 10.
이와 같은 종래 기술의 반도체 소자의 캐패시터는 다음과 같은 문제가 있다.Such a capacitor of a semiconductor device of the prior art has the following problems.
캐패시터의 하부 전극의 물질로 Ru층을 LPCVD 방법으로 증착하게 되면 Ru층의 원료 물질 자체가 산소를 많이 포함하고 있고 또한 반응 가스로 산소를 사용하기 때문에 증착된 Ru층 내부에 산소가 존재하게 된다.When the Ru layer is deposited by the LPCVD method as a material of the lower electrode of the capacitor, oxygen is present in the deposited Ru layer because the raw material of the Ru layer itself contains a lot of oxygen and oxygen is used as the reaction gas.
이러한 산소의 존재는 유전층으로 Ta2O5층을 형성하고 후속 열공정을 진행하면서 장벽 금속층으로 형성되어 있는 TiN층을 산화시켜 이중 캐패시터를 형성하거나, 막의 들림현상(film lifting)이 일어나는 문제가 있다.The presence of such oxygen forms a Ta2O 5 layer as a dielectric layer and oxidizes a TiN layer formed of a barrier metal layer to form a double capacitor while performing a subsequent thermal process, or a film lifting occurs.
본 발명은 이와 같은 종래 기술의 반도체 소자의 캐패시터의 문제를 해결하기 위한 것으로, 캐패시터의 하부 전극으로 사용하는 Ru층을 ALD 방법(atomic layer deposition method)으로 증착시키는 것으로 Ru층의 균일한 단차 피복성을 확보할 수 있고 또한 Ru층 내의 산소를 효과적으로 제거하여 전기적 특성이 우수한 반도체 소자의 캐패시터 제조 방법을 제공하는 데 그 목적이 있다. The present invention is to solve such a problem of the capacitor of the semiconductor device of the prior art, by depositing the Ru layer used as the lower electrode of the capacitor by the ALD method (atomic layer deposition method), uniform step coverage of the Ru layer It is an object of the present invention to provide a method for manufacturing a capacitor of a semiconductor device which can secure the and effectively removes oxygen in the Ru layer and has excellent electrical characteristics.
이와 같은 목적을 달성하기 위한 본 발명에 따른 반도체 소자의 캐패시터 제조 방법은 반도체 기판상에 제 1 절연층을 형성하고 제 1 콘택홀을 형성하는 단계; 상기 제 1 콘택홀내에 플러그를 형성하는 단계; 상기 플러그을 포함한 상기 제 1 절연층상에 제 2 절연층을 형성하는 단계; 상기 플러그와 대응되는 상기 제 2 절연층을 식각하여 제 2 콘택홀을 형성하는 단계; 상기 제 2 콘택홀을 포함한 반도체 기판의 전면에 ALD 방법으로 루테늄층을 증착하고 상기 루테늄층의 전면에 평탄화 공정을 실시하여 상기 제 2 콘택홀의 내부에 하부 전극을 형성하는 단계; 상기 제 2 절연층을 제거하는 단계; 상기 하부 전극상에 Ta2O5층으로 이루어진 유전층을 형성하는 단계; 상기 유전층상에 상부 전극을 형성하는 단계를 포함하여 이루어지는 것을 특징으로 한다.According to another aspect of the present invention, there is provided a method of manufacturing a capacitor of a semiconductor device, the method including: forming a first insulating layer and a first contact hole on a semiconductor substrate; Forming a plug in the first contact hole; Forming a second insulating layer on the first insulating layer including the plug; Etching the second insulating layer corresponding to the plug to form a second contact hole; Depositing a ruthenium layer on an entire surface of the semiconductor substrate including the second contact hole by an ALD method, and performing a planarization process on the entire surface of the ruthenium layer to form a lower electrode in the second contact hole; Removing the second insulating layer; Forming a dielectric layer comprising a Ta 2 O 5 layer on the lower electrode; And forming an upper electrode on the dielectric layer.
삭제delete
이하, 첨부된 도면을 참고하여 본 발명에 따른 반도체 소자의 캐패시터 제조 방법에 관하여 상세히 설명하면 다음과 같다. Hereinafter, a capacitor manufacturing method of a semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings.
도 2a내지 도 2f는 본 발명에 따른 반도체 소자의 캐패시터의 제조 방법의 공정 단면도이다.2A to 2F are cross-sectional views of a method of manufacturing a capacitor of a semiconductor device according to the present invention.
도 2a와 같이, 반도체 기판(21)상에 제 1 절연층(22)을 산화층으로 형성하고, 도 2b와 같이, 제 1 절연층(22)을 식각하여 제 1 콘택홀(23)을 형성한 후, 제 1 콘택홀(23)을 포함한 제 1 절연층(22)상에 다결정 실리콘층을 적층하고 에치백(etch back)하여 다결정 실리콘 플러그(24)를 형성한다.As shown in FIG. 2A, the first insulating layer 22 is formed as an oxide layer on the semiconductor substrate 21, and as shown in FIG. 2B, the first insulating layer 22 is etched to form the first contact hole 23. Thereafter, a polycrystalline silicon layer is stacked on the first insulating layer 22 including the first contact hole 23 and etched back to form a polycrystalline silicon plug 24.
도 2c와 같이, 제 1 콘택홀(23)내의 다결정 실리콘 플러그(24)상에 장벽 금속층으로 Ti층(25)을 형성하고 Ti층(25)상에 TiN층(26)을 형성한다.As shown in FIG. 2C, a Ti layer 25 is formed as a barrier metal layer on the polycrystalline silicon plug 24 in the first contact hole 23, and a TiN layer 26 is formed on the Ti layer 25.
그리고 제 1 절연층(22)와 TiN층(26)상에 제 2 절연층(27)을 산화층으로 형성한다.The second insulating layer 27 is formed of an oxide layer on the first insulating layer 22 and the TiN layer 26.
도 2d와 같이, 제 1 콘택홀(23)과 대응되는 제 2 절연층(27)을 식각하여 제 2 콘택홀(28)을 형성하고 제 2 콘택홀(28)을 포함한 제 2 절연층(27)상에 Ru층(29)을 ALD 방법(atomic layer deposition method)을 이용하여 형성한다.As illustrated in FIG. 2D, the second insulating layer 27 corresponding to the first contact hole 23 is etched to form the second contact hole 28 and the second insulating layer 27 including the second contact hole 28. The Ru layer 29 is formed using the ALD method (atomic layer deposition method).
Ru층(29)의 형성 방법은 Tris(2,4-octanedionato)ruthenium을 기상 상태로 만들고 반도체 기판(21)의 온도는 250 ~350℃, 반응로의 압력은 0.1 ~10 torr, 반응 가스로 O2의 양을 10 ~100 sccm, 그리고 0.1 ~ 수십초에 걸쳐 Ru을 증착한다. The method of forming the Ru layer 29 makes Tris (2,4-octanedionato) ruthenium in a gaseous state, the temperature of the semiconductor substrate 21 is 250-350 ° C., the pressure of the reactor is 0.1-10 torr, and O2 is the reaction gas. The amount of 10 to 100 sccm, and Ru deposited over 0.1 to several tens of seconds.
이어서 산소를 환원시키기 위해 NH3 가스를 100 ~ 2,000 sccm으로 하고 플라즈마(plasma)처리는 R.F.power를 30 ~ 500 W로 유지하고, 처리 시간은 0.1 ~ 수십초간 실시한다.Subsequently, in order to reduce oxygen, NH 3 gas is set to 100 to 2,000 sccm, plasma treatment is performed at RF power of 30 to 500 W, and treatment time is performed for 0.1 to several tens of seconds.
그리고 Ru층(29)과 NH3 가스의 플라즈마 처리는 인시튜(in-situ)로 할 수 있다. 다음으로 N2 가스 또는 Ar 가스 등으로 퍼지(puge)를 실시하다.Plasma treatment of the Ru layer 29 and the NH 3 gas can be performed in-situ. Next, a purge is performed with N 2 gas or Ar gas.
여기서 Ru층(29)는 상기와 같은 방법을 반복하여 증착하며 ALD 방법은 일개층(one mono layer)씩 증착되기 때문에 막질의 밀도가 높고 막 내부에 산소를 포함하지 않는 다.In this case, the Ru layer 29 is repeatedly deposited as described above. Since the ALD method is deposited by one mono layer, the density of the film is high and does not include oxygen in the film.
도 2e와 같이, Ru층(29)을 CMP(chemical mechanical polishing)방법으로 식각하여 제 2 콘택홀(28)내에 잔류시킨 후 제 2 절연층(27)을 제거한다.As shown in FIG. 2E, the Ru layer 29 is etched by the chemical mechanical polishing (CMP) method to remain in the second contact hole 28, and then the second insulating layer 27 is removed.
그리고 Ru층(29)상에 유전층(30)으로 Ta2O5층을 형성한다. Ta2O5층을 형성하는 방법은 탄탈륨 에칠레이트(Ta(OC2H5)5)를 170 ~190 ℃로 유지시키는 기화기에서 기상 상태로 만들고, O2 가스를 10 ~ 1,000 sccm 정도를 사용하고, 반응로 내의 압력을 0.1 ~ 2 torr로 유지하고, 반도체 기판(21)을 300 ~ 450 ℃로 유지하여 Ta2O5층을 형성한다.A Ta 2 O 5 layer is formed on the Ru layer 29 as the dielectric layer 30. The method of forming the Ta 2 O 5 layer is made in a gaseous state in a vaporizer which maintains tantalum acrylate (Ta (OC 2 H 5 ) 5 ) at 170 to 190 ° C., and O 2 gas is used at about 10 to 1,000 sccm. The pressure in the reactor is maintained at 0.1 to 2 torr, and the semiconductor substrate 21 is maintained at 300 to 450 캜 to form a Ta 2 O 5 layer.
이어서 후속 열공정으로 300 ~ 500 ℃에서 N2O 플라즈마 또는 UV-O3 처리를 하고, 500 ~ 650 ℃에서 N2 및 O2을 이용하여 RTP(rapid thermal processing)공정을 실시한다.Subsequently, N 2 O plasma or UV-O 3 treatment is performed at 300 to 500 ° C. in a subsequent thermal process, and rapid thermal processing (RTP) is performed using N 2 and O 2 at 500 to 650 ° C.
도 2f와 같이, 유전층(30)상에 캐패시터의 상부 전극(31)로 TiN층 또는 Ru층 중 하나를 선택하여 형성한다.As shown in FIG. 2F, one of the TiN layer and the Ru layer is selected as the upper electrode 31 of the capacitor on the dielectric layer 30.
이와 같은 본 발명에 따른 반도체 소자의 캐패시터 제조방법은 다음과 같은 효과가 있다.Such a capacitor manufacturing method of a semiconductor device according to the present invention has the following effects.
캐패시터의 하부 전극으로 사용하는 Ru층을 일개층(one mono layer)씩 증착하는 ALD 방법(atomic layer deposition method)으로 형성하기 때문에 균일한 단차 피복성을 확보할 수 있고 또한 Ru층 내의 산소를 효과적으로 제거하여 전기적 특성을 향상시킬 수 있다.Since the Ru layer, which is used as the lower electrode of the capacitor, is formed by the ALD method (atomic layer deposition method), which deposits one mono layer, it is possible to ensure uniform step coverage and to effectively remove oxygen in the Ru layer. The electrical characteristics can be improved.
도 1a내지 도 1f는 종래 기술의 반도체 소자의 캐패시터의 구조 단면도1A to 1F are structural cross-sectional views of a capacitor of a semiconductor device of the prior art
도 2a내지 도 2f는 본 발명에 따른 반도체 소자의 캐패시터 제조 방법의 공정 단면도2A to 2F are cross-sectional views of a method of manufacturing a capacitor of a semiconductor device according to the present invention.
도면의 주요 부분에 대한 부호의 설명Explanation of symbols for the main parts of the drawings
21 : 반도체 기판 22 : 제 1 절연층21 semiconductor substrate 22 first insulating layer
23 : 제 1 콘택홀 24 : 다결정 실리콘 플러그23: first contact hole 24: polycrystalline silicon plug
25 : Ti층 26 : TiN층25 Ti layer 26 TiN layer
27 : 제 2 절연층 28 : 제 2 콘택홀27: second insulating layer 28: second contact hole
29 : Ru층 30 : 유전층29: Ru layer 30: dielectric layer
31 : 상부 전극31: upper electrode
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0079678A KR100504554B1 (en) | 2000-12-21 | 2000-12-21 | method for manufacturing capacitor of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0079678A KR100504554B1 (en) | 2000-12-21 | 2000-12-21 | method for manufacturing capacitor of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020050520A KR20020050520A (en) | 2002-06-27 |
KR100504554B1 true KR100504554B1 (en) | 2005-08-01 |
Family
ID=27684195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2000-0079678A KR100504554B1 (en) | 2000-12-21 | 2000-12-21 | method for manufacturing capacitor of semiconductor device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100504554B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040001882A (en) * | 2002-06-29 | 2004-01-07 | 주식회사 하이닉스반도체 | Method for forming ruthenium and method for fabricating capacitor using the same |
KR100755057B1 (en) * | 2005-03-30 | 2007-09-06 | 주식회사 하이닉스반도체 | Method for manufacturing capacitor |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990051335A (en) * | 1997-12-19 | 1999-07-05 | 윤종용 | A method of depositing TIALN by atomic layer deposition and a dielectric full capacitor of semiconductor device using a TIALN thin film formed by the method |
KR19990081298A (en) * | 1998-04-28 | 1999-11-15 | 윤종용 | Capacitor Manufacturing Method of Semiconductor Device |
KR20000051888A (en) * | 1999-01-27 | 2000-08-16 | 윤종용 | Reaction chamber for the atomic layer deposition and method for forming a material layer using the same |
KR20010066730A (en) * | 1999-12-08 | 2001-07-11 | 윤종용 | Method for forming a metal layer by an atomic layer deposition and a semiconductor device with the metal layer as a barrier metal layer, an upper electrode, or a lower electrode of capacitor |
KR20010110527A (en) * | 2000-06-07 | 2001-12-13 | 윤종용 | Metal-insulator-metal capacitor and manufacturing method thereof |
KR100372644B1 (en) * | 2000-06-30 | 2003-02-17 | 주식회사 하이닉스반도체 | Method for manufacturing capacitor in nonvolatile semiconductor memory device |
KR100383772B1 (en) * | 2000-12-08 | 2003-05-14 | 주식회사 하이닉스반도체 | Method for forming a bottom electrode of capacitor in a semiconductor device |
-
2000
- 2000-12-21 KR KR10-2000-0079678A patent/KR100504554B1/en not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990051335A (en) * | 1997-12-19 | 1999-07-05 | 윤종용 | A method of depositing TIALN by atomic layer deposition and a dielectric full capacitor of semiconductor device using a TIALN thin film formed by the method |
KR19990081298A (en) * | 1998-04-28 | 1999-11-15 | 윤종용 | Capacitor Manufacturing Method of Semiconductor Device |
KR20000051888A (en) * | 1999-01-27 | 2000-08-16 | 윤종용 | Reaction chamber for the atomic layer deposition and method for forming a material layer using the same |
KR20010066730A (en) * | 1999-12-08 | 2001-07-11 | 윤종용 | Method for forming a metal layer by an atomic layer deposition and a semiconductor device with the metal layer as a barrier metal layer, an upper electrode, or a lower electrode of capacitor |
KR20010110527A (en) * | 2000-06-07 | 2001-12-13 | 윤종용 | Metal-insulator-metal capacitor and manufacturing method thereof |
KR100372644B1 (en) * | 2000-06-30 | 2003-02-17 | 주식회사 하이닉스반도체 | Method for manufacturing capacitor in nonvolatile semiconductor memory device |
KR100383772B1 (en) * | 2000-12-08 | 2003-05-14 | 주식회사 하이닉스반도체 | Method for forming a bottom electrode of capacitor in a semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
KR20020050520A (en) | 2002-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100604845B1 (en) | Metal-Insulator-Metal capacitor having insulating layer with nitrogen and method for manufacturing the same | |
KR100505397B1 (en) | Method for fabricating capacitor of semiconductor device | |
KR100387264B1 (en) | Method for manufacturing a capacitor in a semiconductor device | |
KR100504554B1 (en) | method for manufacturing capacitor of semiconductor device | |
KR100414948B1 (en) | Method of forming a capacitor in a semiconductor device | |
KR100400248B1 (en) | Method for forming the line in semiconductor device | |
KR100671604B1 (en) | Method of manufacturing a capacitor in a semiconductor device | |
KR100551884B1 (en) | Method of manufacturing a capacitor in a semiconductor device | |
KR20030047373A (en) | A method for forming a capacitor of a semiconductor device | |
KR100408726B1 (en) | A method for forming a capacitor of a semiconductor device | |
KR100827521B1 (en) | Capacitor of semiconductor device and method for manufacturing the same | |
KR100729905B1 (en) | Method of manufacturing a capacitor in semiconductor device | |
KR100476374B1 (en) | Method for fabricating semiconductor device | |
KR100604664B1 (en) | Capacitor with double dielectric and method for manufacturing the same | |
KR100691941B1 (en) | Method of manufacturing a capacitor in semiconductor device | |
KR100359785B1 (en) | Semiconductor device and method for fabricating the same | |
KR100538808B1 (en) | Method for fabricating capacitor with metal bottom electrode | |
KR100680463B1 (en) | Method of forming a capacitor in a semiconductor device | |
KR101016952B1 (en) | Method of manufacturing semiconductor device | |
KR20020050368A (en) | Method of manufacturing a capacitor in a semiconductor device | |
KR100596424B1 (en) | Method of manufacturing capacitor for semiconductor device | |
KR100404481B1 (en) | Method for manufacturing capacitor semiconductor device | |
KR20000041429A (en) | Method for fabricating capacitor which can prevent oxidation of bottom electrode | |
KR100364804B1 (en) | Method for Fabricating of Semiconductor Device | |
KR100671634B1 (en) | Method for Fabricating Capacitor of Semiconductor Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20100624 Year of fee payment: 6 |
|
LAPS | Lapse due to unpaid annual fee |