KR100465521B1 - Method of treating wastewater using catalytic wet oxidation process - Google Patents
Method of treating wastewater using catalytic wet oxidation process Download PDFInfo
- Publication number
- KR100465521B1 KR100465521B1 KR10-2001-0078210A KR20010078210A KR100465521B1 KR 100465521 B1 KR100465521 B1 KR 100465521B1 KR 20010078210 A KR20010078210 A KR 20010078210A KR 100465521 B1 KR100465521 B1 KR 100465521B1
- Authority
- KR
- South Korea
- Prior art keywords
- wastewater
- catalyst
- wet oxidation
- catalytic wet
- reactor
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/725—Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/72—Copper
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/722—Oxidation by peroxides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/308—Dyes; Colorants; Fluorescent agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/02—Specific form of oxidant
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
난분해성 유기폐수의 처리에 효과적인 촉매습식산화방법이 개시된다. 이 폐수처리방법에 따르면, 처리 대상 폐수에 산화제로 과산화수소를 공급하고 Cu(NO3)2·3H2O 혹은 Cu/Al2O3촉매를 이용하여 기존의 촉매습식산화방법보다 낮은 온도 및 낮은 압력에서, 가령, 80℃이하의 온도 및 상압에서도 염색폐수 및 생활하수를 분해시킬 수 있다.A catalytic wet oxidation method is disclosed that is effective for the treatment of hardly degradable organic wastewater. According to this wastewater treatment method, hydrogen peroxide is supplied to the wastewater to be treated as an oxidant and lower temperature and pressure than the conventional catalytic wet oxidation method using Cu (NO 3 ) 2 · 3H 2 O or Cu / Al 2 O 3 catalysts. In, for example, dyeing wastewater and domestic sewage can be decomposed at temperatures and atmospheric pressure below 80 ° C.
Description
본 발명은 염색폐수 및 생활하수 등의 폐수를 처리하는 방법에 관한 것으로, 보다 상세하게는 촉매습식산화공정을 이용한 폐수처리방법에 관한 것이다.The present invention relates to a method for treating wastewater such as dyeing wastewater and domestic sewage, and more particularly, to a wastewater treatment method using a catalytic wet oxidation process.
염색폐수는 국내염색가공업으로 발생되는 폐수발생량의 18.5% 이상을 차지하고 있으며, 고농도의 COD성분, 난분해성 물질 및 색도유발물질 등을 다량 함유하고 있어 미생물을 이용하는 기존의 처리법에 의한 폐수처리는 그 효과를 기대하기 어려운 실정이다. 충분히 처리되지 않은 염색가공업폐수가 수계에 방류되면 색도에 의해 심미적 불쾌감을 줄 뿐 아니라 태양광의 투과를 방해하여 수중 생태계에 직접적인 영향을 미칠 수 있다.Dyeing wastewater accounts for more than 18.5% of the wastewater generated by the domestic dye processing industry, and it contains high concentrations of COD components, hardly degradable substances, and color-causing substances, so the wastewater treatment by conventional treatment methods using microorganisms is effective. It is difficult to expect. If not fully treated, the dyeing process wastewater will not only cause aesthetic discomfort by chromaticity but also impede the transmission of sunlight and directly affect the aquatic ecosystem.
또한 생활하수는 지금까지 주로 생물학적 방법에 의해 처리되어왔으나 효율적인 처리를 위해서는 넓은 부지가 필요할 뿐 아니라 전력비 등의 유지비가 과다하게필요한 실정이다.In addition, living sewage has been treated mainly by biological methods until now, but for efficient treatment, not only a large site is required but also excessive maintenance costs such as electricity costs are required.
난분해성 유기물을 분해하는 종래의 기술에는 소각과 생물학적 처리가 있는데 소각은 약 100g/L보다 높은 COD를 가지는 폐수에 적절하나 상당량의 연료가 필요하고 비용이 많이 들고, 생물학적 처리는 독성폐수와 약 20g/L이상의 COD를 가지는 폐수에는 적절하지 못하며 많은 양의 슬러지가 생성되는 등의 문제점이 있다. 따라서 유기물 함량이 소각을 위해서는 매우 낮고 생물학적 처리를 위해서는 매우 높은 난분해성 폐수에 매우 효율적인 공정으로서 현재 습식산화공정이 가장 잘 알려져 있다.Conventional techniques for decomposing hardly degradable organics include incineration and biological treatment, which is suitable for wastewaters with COD higher than about 100 g / L, but requires a significant amount of fuel and is expensive, and biological treatment is about 20 g with toxic wastewater. It is not suitable for waste waters having COD of / L or more, and there is a problem of generating a large amount of sludge. Therefore, the wet oxidation process is currently best known as a very efficient process for hardly degradable wastewaters having a very low organic matter content for incineration and a very high biological treatment.
그러나, 기존의 습식산화공정은 전형적인 조작 조건이 온도 200∼325℃, 압력 50∼150bar로서 고온 및 고압이 요구되어 고도의 내구성을 가진 장치의 설비비 또는 운전비 등의 경제적인 문제점이 있어 실적용에 많은 어려움이 있었다(Zimmerman, E. J., Chem. Eng., 56(1958)117-120).However, the conventional wet oxidation process has a typical operating condition of 200 ~ 325 ℃ temperature, 50 ~ 150bar pressure, high temperature and high pressure is required, and there are economic problems such as equipment cost or operation cost of the highly durable device, many performances There was difficulty (Zimmerman, EJ, Chem. Eng., 56 (1958) 117-120).
따라서, 습식산화공정의 혹독한 반응조작 조건을 완화시킬 수 있는 공정 개발이 시급한 실정이다. 촉매습식산화는 전술한 기존 습식산화공정의 혹독한 조건을 완화시키기 위해서 습식산화공정내에 촉매를 주입하여 독성폐수나 유기물폐수를 처리하기 위한 기술로 잘 알려져 있다. 촉매습식산화는 산화제로 공기를 이용하여 150∼200℃, 5∼50bar의 액상 반응조건에서 유기물질들을 분해하는 처리방법이다. 높은 온도와 압력에서 산소의 높은 용해성과 분산도가 증진되면서 촉매를 같이 사용하므로 반응속도가 빨라지게 된다. 산화에 의해 폐수는 최종적으로 이산화탄소나 물과 같은 무해한 생성물로 전환되어진다.Therefore, it is urgent to develop a process that can alleviate the harsh reaction operating conditions of the wet oxidation process. Catalytic wet oxidation is well known as a technique for treating toxic wastewater or organic wastewater by injecting a catalyst into the wet oxidation process in order to alleviate the harsh conditions of the conventional wet oxidation process. Catalytic wet oxidation is a treatment method that decomposes organic substances in a liquid reaction condition of 150 to 200 ° C. and 5 to 50 bar using air as an oxidant. At high temperatures and pressures, the high solubility and dispersibility of oxygen are enhanced, so that the reaction rate is increased. By oxidation, the wastewater is finally converted into harmless products such as carbon dioxide and water.
촉매습식산화법은 기존의 다른 처리방법에 비해 염색폐수와 생활하수의 처리시 다음과 같은 장점을 가지고 있다.Catalytic wet oxidation has the following advantages over the treatment of dyeing wastewater and domestic sewage compared to other treatment methods.
1. 폐수중의 COD성분과 질소화합물의 동시처리가 가능하고, 고효율 처리에 의해 처리수를 직접 방류하거나 용수로서 재이용이 가능하다.1. Simultaneous treatment of COD and nitrogen compounds in wastewater is possible, and high efficiency treatment allows direct discharge of treated water or reuse as water.
2. 폐수의 탈취, 탈색이 가능하다.2. Deodorization and discoloration of waste water are possible.
3. 처리대상 폐수는 COD가 수천 ppm ∼ 십만 ppm의 넓은 범위에서 적용이 가능하다.3. The wastewater to be treated can be applied in a wide range of COD of several thousand ppm to 100,000 ppm.
4. 에너지 소비가 낮고 운영비가 적게 들고 처리비용이 낮다.4. Low energy consumption, low operating cost and low processing cost.
5. 장치가 컴팩트(compact)하고 유지관리가 우수한 연속운전 시스템이다.5. It is a continuous operation system with compact device and excellent maintenance.
6. 처리후의 배출 가스 중에 유해가스 성분이 포함되지 않는다.6. Hazardous gas components are not included in the exhaust gas after treatment.
그러나, 이러한 많은 장점에도 불구하고 산소를 산화제로 사용할 경우 여전히 150∼200℃범위의 고온 및 5∼50bar범위의 고압 작업조건이 요구되기 때문에 많은 경제적 부담이 있어 실적용이 어려운 실정이다.However, in spite of many of these advantages, the use of oxygen as an oxidant still requires high temperatures in the range of 150 to 200 ° C. and high pressure in the range of 5 to 50 bar.
따라서, 본 발명은 기존의 촉매습식산화공정의 조작 조건에 따른 실공정 적용의 어려움을 해결하기 위한 것으로, 기존의 조작 조건을 완화시켜 상대적으로 저온 및 상압의 조건에서 운용될 수 있는 촉매습식산화공정을 이용한 폐수처리방법을 제공하는 것을 목적으로 한다.Accordingly, the present invention is to solve the difficulty of applying the actual process according to the operating conditions of the conventional catalytic wet oxidation process, the catalytic wet oxidation process that can be operated at relatively low temperature and atmospheric pressure by relaxing the existing operating conditions An object of the present invention is to provide a wastewater treatment method.
또한, 본 발명은 염색폐수 및 생활하수 처리에 동일하게 적용되어 그 적용범위를 넓힐 수 있는 촉매습식산화공정을 이용한 폐수처리방법을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a wastewater treatment method using a catalytic wet oxidation process that can be applied to dyeing wastewater and domestic sewage treatment in the same way and can expand its application range.
도1은 본 발명 방법에 적합한 폐수처리장치의 한 예에 대한 개략적 구성도이다.1 is a schematic configuration diagram of an example of a wastewater treatment apparatus suitable for the method of the present invention.
상기 목적을 달성하기 위한 본 발명의 폐수처리방법은, 폐수를 처리하기 위한 촉매습식산화 공정에서 구리계촉매를 사용하고 과산화수소를 산화제로 하여 염색폐수 및 생활하수중의 유기 오염물질들을 산화분해시킨다. 이때, 촉매로서 질산구리염 (Cu(NO3)2·3H2O) 또는 Cu/Al2O3를 사용한다.Wastewater treatment method of the present invention for achieving the above object, by using a copper-based catalyst in the catalytic wet oxidation process for treating wastewater and oxidizing hydrogen peroxide as an oxidant to oxidatively decompose organic pollutants in the dyeing wastewater and domestic sewage. At this time, copper nitrate salt (Cu (NO 3 ) 2 .3H 2 O) or Cu / Al 2 O 3 is used as a catalyst.
본 발명에서 Cu/Al2O3촉매는 Al2O3펠렛에 Cu성분이 담지되어 있는 형태를 뛸 수 있으며, 초기함침법(incipient wetness method)에 의해 제조될 수 있다. 초기함침법에서는 먼저 구리입자가 주로 γ-Al2O3담체의 외부 표면에 위치할 수 있도록 하기 위해 γ-Al2O3의 세공을 n-hexane로 먼저 포화시킨 후 Copper(Ⅱ) Nitrate (Cu(NO3)2·3H2O) 수용액의 적정량을 γ-Al2O3에 방울 방울 주입한다. 제조된 시료는 120℃에서 진공건조 시킨다. 상기 과정을 구리의 담지량이 10 ∼ 50중량백분율이 되도록 3∼5회 반복한 후, 최종적으로 400℃에서 4시간 동안 소성시킨다.In the present invention, the Cu / Al 2 O 3 catalyst may have a form in which a Cu component is supported on Al 2 O 3 pellets, and may be prepared by an incipient wetness method. In the initial impregnation method, first, the pores of γ-Al 2 O 3 are first saturated with n-hexane so that the copper particles are mainly located on the outer surface of the γ-Al 2 O 3 carrier, and then copper (II) Nitrate (Cu (NO 3 ) 2. 3 H 2 O) An appropriate amount of the aqueous solution is injected dropwise into γ-Al 2 O 3 . The prepared sample is vacuum dried at 120 ° C. The process is repeated 3 to 5 times so that the supported amount of copper is 10 to 50 weight percent, and finally calcined at 400 ° C. for 4 hours.
그리고, 질산구리염(Cu(NO3)2·3H2O)을 사용할 경우, 구리(Cu)의 농도가 0.01M이 되도록 염색 폐수 및 생활 하수와 함께 혼합·용해되어 처리될 수 있다. 이때, 구리 성분은 처리된 폐수에서 회수되어야 한다.And a salt of copper nitrate (Cu (NO 3) 2 · 3H 2 O) to have the concentration of copper (Cu) can be treated are mixed and dissolved with a dyeing waste water and sewage to be 0.01M when used. At this time, the copper component must be recovered from the treated wastewater.
본 발명에서 산화제로 사용되는 과산화수소수(H2O2)는 높은 농도 및 폐수와의 높은 혼합 비율일수록 유기 오염물질을 더 쉽게 산화시켜 제거할 수 있다. 그러나,본 발명에 의한 촉매를 사용하므로 18%(V/V) 정도의 농도를 가지는 수용액을 폐수량의 1/1000 정도 비율로 사용하는 것만으로 바람직한 효과를 가질 수 있다.Hydrogen peroxide (H 2 O 2 ) used as an oxidant in the present invention can be removed by oxidizing the organic contaminants more easily the higher the concentration and the higher the mixing ratio with the waste water. However, since the catalyst according to the present invention is used, an aqueous solution having a concentration of about 18% (V / V) may have a desirable effect only by using about 1/1000 of the wastewater.
본 발명에서 폐수는, 종래의 처리온도 및 압력에 비해 낮은, 상압 및 상온이 포함되는 20 내지 100℃ 온도 범위, 보다 실용적인 면에서는 상압 및 30 내지 80℃의 온도 범위에서 상당 효율을 가지고 처리될 수 있다. 실적용에서 예상되는 최적 온도는 80℃이다. 가령, 100℃에서는 상압에서 물에 포화될 수 있는 산소의 농도가 적기 때문에 다소 분해효율이 낮아지기 때문이다. 압력은 반응이 진행되는 동안 상압(1atm)을 유지한다. 압력이 높아지면 고압반응기를 사용해야 하기 때문에 반응기의 설비비와 운전비가 증가하여 경제적인 어려움이 있게 된다.In the present invention, the wastewater can be treated with a considerable efficiency in the temperature range of 20 to 100 ° C., which includes atmospheric pressure and room temperature, which is lower than the conventional treatment temperature and pressure, and in practical terms, the temperature range of atmospheric pressure and 30 to 80 ° C. have. The optimum temperature expected for performance is 80 ° C. For example, at 100 ° C., the decomposition efficiency is somewhat lowered because the concentration of oxygen that can be saturated in water at normal pressure is small. The pressure is maintained at 1 atm while the reaction is in progress. Higher pressures require the use of a high pressure reactor, which increases the equipment cost and operating cost of the reactor, resulting in economic difficulties.
도1은 본 발명 방법에 적합한 폐수처리장치의 한 예에 대한 개략적 구성도이다. 이하, 도1을 통해 본 발명의 촉매습식산화를 이용한 폐수처리방법이 이루어지는 공정을 살펴본다. 폐수처리장치는 도시된 바와 같이 폐수주입펌프(11)가 설치된 폐수주입배관, 과산화수소주입펌프(21)가 설치된 과산화수소주입배관, 폐수의 촉매습식산화처리가 이루어지도록 촉매가 준비되는 반응기(15), 처리된 폐수를 배출하기 위한 배수 배관, 배수 배관 상에 설치되는 기·액 분리기(23) 및 폐수주입배관과 배수 배관이 교차 접촉되는 열교환기(13)를 구비하여 이루어진다.1 is a schematic configuration diagram of an example of a wastewater treatment apparatus suitable for the method of the present invention. Hereinafter, a process in which the wastewater treatment method using the catalytic wet oxidation of the present invention will be described with reference to FIG. 1. The wastewater treatment apparatus includes a wastewater injection pipe having a wastewater injection pump 11, a hydrogen peroxide injection pipe having a hydrogen peroxide injection pump 21, a reactor 15 prepared with a catalyst for catalytic wet oxidation of wastewater, A drain pipe for discharging the treated wastewater, a gas / liquid separator 23 provided on the drain pipe, and a heat exchanger 13 in which the waste water injection pipe and the drain pipe cross-contact each other.
본 장치에서 처리 대상 폐수는 폐수저장조(10)에서 먼저 폐수주입배관을 통해 반응기(15)로 투입된다. 폐수주입배관에서 폐수는 폐수주입펌프(11)에 의해 반응기(15)로 강제 공급되며, 그 경로 상에서 열교환기(13)를 거치게 된다. 열교환기(13)는 폐수주입배관과 처리된 폐수의 배수 배관이 교차되면서 넓은 면적에서 접촉되도록 구성된다. 따라서, 처리 대상 폐수는 반응기(15)를 거친 처리된 폐수와 열교환을 하게 된다. 폐수 처리 산화반응은 통상 발열반응이므로 처리된 폐수는 상온보다 높은 온도이며 방류를 위해서는 냉각이 필요하고, 공정 효율을 위해 반응기에 투입되는 폐수는 상온보다 높은 온도가 되는 것이 바람직하다.Waste water to be treated in this apparatus is first introduced into the reactor 15 through the wastewater injection pipe in the wastewater storage tank 10. In the wastewater injection pipe, the wastewater is forcibly supplied to the reactor 15 by the wastewater injection pump 11 and passes through the heat exchanger 13 on the path. The heat exchanger 13 is configured to be in contact with a large area while the wastewater injection pipe and the treated wastewater pipe are crossed. Therefore, the wastewater to be treated is subjected to heat exchange with the treated wastewater which has passed through the reactor 15. Wastewater Treatment The oxidation reaction is usually exothermic, so the treated wastewater is at a temperature higher than room temperature and cooling is required for discharge, and the wastewater introduced into the reactor for process efficiency is preferably higher than room temperature.
반응기(15)에는 일정 온도 조건을 유지하기 위해 히터와 온도 센서를 구비한 온도조절장치(17)가 설치될 수 있다. 반응기(15) 내의 촉매 지지층에는 Cu/Al2O3촉매가 충진된다. 또한, 산화제로 사용되는 18%(V/V) 과산화수소수 수용액은 저장조(19)에서 밸브 및 정량 펌프(21)를 통하여 폐수와 함께 반응기(15) 내로 주입된다. 따라서, 반응기(15)에 주입된 폐수는 과산화수소와 섞이고, 촉매층을 거치며 촉매와 접촉하게 된다. 촉매 표면에서는 산화제로 공급되는 과산화수소수를 활성화시켜 산화력이 높은 수산화라디칼(·OH)을 빠른 속도로 생성시켜 물속에 함유된 유기성 오염물질을 손쉽게 산화분해시키게 된다. 촉매는 또한 유기성 오염물질을 흡착시키는 역할을 하기 때문에 촉매에 흡착된 유기성 오염물질이 촉매표면에서 생성된 수산화라디칼과 보다 손쉽게 반응하게 된다.The reactor 15 may be provided with a temperature controller 17 having a heater and a temperature sensor to maintain a constant temperature condition. The catalyst support layer in the reactor 15 is filled with a Cu / Al 2 O 3 catalyst. In addition, an 18% (V / V) aqueous hydrogen peroxide aqueous solution used as an oxidant is introduced into the reactor 15 together with the wastewater through a valve and a metering pump 21 in a reservoir 19. Thus, the wastewater injected into the reactor 15 is mixed with hydrogen peroxide and brought into contact with the catalyst through the catalyst bed. On the surface of the catalyst, hydrogen peroxide water supplied to the oxidant is activated to rapidly generate high oxidative radical hydroxide (· OH) to easily oxidatively decompose organic pollutants contained in the water. The catalyst also serves to adsorb organic contaminants, so that the organic contaminants adsorbed on the catalyst react more easily with the radicals produced on the catalyst surface.
반응기(15)를 거치면서 처리된 폐수는 반응기(15)로 유입되는 폐수와 열교환기(13)를 통해 냉각되어진 후 기·액 분리기(23)로 보내진다. 기·액 분리기(23)에서 기체를 방출시킨 상태로 처리된 폐수는 최종 방류된다.The wastewater treated while passing through the reactor 15 is cooled by the wastewater flowing into the reactor 15 and the heat exchanger 13 and then sent to the gas / liquid separator 23. The wastewater treated with the gas discharged from the gas / liquid separator 23 is finally discharged.
이하, 본 발명의 여러 실시예를 통해 본 발명을 상세히 살펴보며, 각각에 있어서의 효율을 살펴본다.Hereinafter, the present invention will be described in detail through various embodiments of the present invention, and the efficiency in each of them will be described.
(실시예 1)(Example 1)
1기압, 80℃의 조건에서 구리의 함량이 30%인 Cu/Al2O3촉매 300g을 충진한 후 총유기탄소(Total Organic Carbon, TOC)의 농도가 1890mg/L, 색도 3150도인 검붉은색 염색폐수를 주입하였다. 주입되는 폐수의 유량은 20L/min이었다. 주입된 18%(V/V) 과산화수소수의 유량은 폐수유량의 1/1000 이었다. 촉매가 충진된 반응기를 거친 후 폐수의 총유기탄소 농도는 5.6mg/L으로 99.7%이상의 총유기탄소가 제거되었으며 색도는 6.1도로 99.8%이상의 색도가 제거되었다.After filling 300g of Cu / Al 2 O 3 catalyst with 30% copper content at 1 atmosphere and 80 ℃, dark red color with total organic carbon (TOC) concentration of 1890mg / L and chromaticity of 3150 degrees Dyeing wastewater was injected. The flow rate of the injected wastewater was 20 L / min. The flow rate of the injected 18% (V / V) hydrogen peroxide water was 1/1000 of the wastewater flow rate. After passing through the catalyst-filled reactor, the total organic carbon concentration of the wastewater was 5.6 mg / L, and more than 99.7% of total organic carbon was removed, and the chromaticity was 6.1 degrees and more than 99.8%.
(비교예 1)(Comparative Example 1)
실시예와 모든 조건이 같으나 Cu/Al2O3촉매를 전혀 충진하지 않은 상태에서 실험을 수행하였다. 촉매가 충진되지 않은 반응기를 거친 폐수의 총유기탄소 농도는 1860mg/L로 총유기탄소의 약 1.5%만이 제거되었으며, 색도는 2995도로 5%미만의 색도만이 제거되었다.All the conditions were the same as in the example, but the experiment was performed in a state in which the Cu / Al 2 O 3 catalyst was not filled at all. The total organic carbon concentration of the wastewater passed through the catalyst-free reactor was 1860 mg / L, and only about 1.5% of the total organic carbon was removed, and the chromaticity was 2995 degrees and less than 5%.
(실시예 2)(Example 2)
실시예1과 같은 조건이나 폐수의 유량을 50L/min으로 하였을 경우이다. 촉매가 충진된 반응기를 통과한 후 폐수의 총유기탄소농도는 37mg/L로 총유기탄소의 약 98%가 제거되었으며, 색도는 56도로 98.2%이상의 색도가 제거되었다.The same conditions as in Example 1 and the case where the flow rate of the wastewater was 50 L / min. After passing through the catalyst-filled reactor, the total organic carbon concentration of the wastewater was 37 mg / L, about 98% of the total organic carbon was removed, and the color was removed at 56 degrees and more than 98.2%.
(비교예 2)(Comparative Example 2)
실시예 2와 모든 조건이 같으나 Cu/Al2O3촉매를 전혀 충진하지 않은 상태에서 실험을 수행하였다. 촉매가 충진되지 않은 반응기를 거친 폐수의 총유기탄소 농도는 1885mg/L로서 총유기탄소는 거의 제거되지 않았으며 색도도 3120도로 1%정도만이 제거되었다.All the conditions were the same as in Example 2, but the experiment was carried out in a state without filling the Cu / Al 2 O 3 catalyst. The total organic carbon concentration in the wastewater that passed through the catalyst-free reactor was 1885 mg / L, and the total organic carbon was hardly removed and only 1% of the chromaticity was 3120 degrees.
(실시예 3)(Example 3)
실시예 1과 같은 조건이나 구리의 함량이 30%인 Cu/Al2O3촉매 600g을 충진한 경우의 실시예이다. 촉매가 충진된 반응기를 거친 후 폐수의 총유기탄소 농도는 3.0mg/L, 색도는 3.2도로 대부분의 총유기탄소와 색도가 제거되었다.The same conditions as in Example 1 or when 600g of Cu / Al 2 O 3 catalyst having a copper content of 30% is filled. After the catalyst-packed reactor, the total organic carbon concentration in the wastewater was 3.0 mg / L and the chromaticity was 3.2 degrees.
(비교예 3)(Comparative Example 3)
실시예 3과 같은 조건이나 촉매를 전혀 충진하지 않은 상태에서 실험을 수행하였다. 실험결과 비교예 1과 유사한 값을 나타내었다. 총유기탄소는 1.5%이하, 색도는 5%이하만이 제거되었다.The experiment was carried out under the same conditions as in Example 3 or without any catalyst. Experimental results showed similar values to Comparative Example 1. Only less than 1.5% total organic carbon and less than 5% chromaticity have been removed.
(실시예 4)(Example 4)
실시예 2와 같은 조건이나 구리의 함량이 30%인 Cu/Al2O3촉매 600g을 충진시킨 경우이다. 촉매가 충진된 반응기를 통과한 후 폐수의총유기탄소 농도는 6.4mg/L, 색도는 6.8도로 99.7%의 총유기탄소와 99.5%이상의 색도가 제거되었다.The same conditions as in Example 2 or 600g of Cu / Al 2 O 3 catalyst having a copper content of 30%. After passing through the catalyst-filled reactor, the total organic carbon concentration of the wastewater was 6.4 mg / L, the color was 6.8 degrees, and 99.7% of total organic carbon and more than 99.5% of color were removed.
(비교예 4)(Comparative Example 4)
실시예 4와 같은 조건이나 촉매를 전혀 사용하지 않은 경우이다. 처리후 폐수의 총유기탄소 농도는 1884mg/L로 거의 제거되지 못하였으며, 색도도 3122도로 1%미만의 제거율을 보였다.The same conditions as in Example 4 or when no catalyst was used at all. After treatment, the total organic carbon concentration in wastewater was hardly removed at 1884 mg / L, and the chromaticity was less than 1% at 3122 degrees.
이와 같은 실시예 1 내지 4와 비교예 1내지 4를 아래 표1과 같이 정리할 수 있다. 표 1의 사용촉매의 상태에서 s는 고체(solid)를 의미한다.Examples 1 to 4 and Comparative Examples 1 to 4 can be summarized as shown in Table 1 below. In the state of the catalyst used in Table 1 s means solid.
이상의 실시예와 비교예로부터 폐수의 유속과 촉매의 충진량을 적절히 조절하면, 즉 폐수의 유속이 빠를 경우(처리하여야 할 폐수의 용량이 클 때) 촉매의 충진량을 증가시키면 99.5%이상의 총유기탄소 및 색도를 제거시킬 수 있음을 알 수 있다.From the above examples and comparative examples, if the flow rate of the wastewater and the filling amount of the catalyst are properly adjusted, that is, if the flow rate of the wastewater is high (when the capacity of the wastewater to be treated is large), the filling amount of the catalyst is increased to 99.5% or more of total organic carbon and It can be seen that color can be removed.
다음의 실시예들은 반응온도에 따른 결과를 나타내고 있다.The following examples show the results according to the reaction temperature.
(실시예 5)(Example 5)
실시예 1과 같은 조건이나 반응온도가 50℃일 경우이다. 촉매가 충진된 반응기를 거친 후 폐수의 총유기탄소 농도는 12.3mg/L로서 99.4%이상의 총유기탄소가 제거되었으며, 색도는 22.4도로서 99.3%이상의 색도가 제거되었다.It is a case where the conditions and reaction temperature similar to Example 1 are 50 degreeC. After passing through the catalyst-filled reactor, the total organic carbon concentration of wastewater was 12.3 mg / L, and more than 99.4% of total organic carbon was removed, and the color was 22.4 degrees and more than 99.3% of color was removed.
(실시예 6)(Example 6)
실시예 1과 같은 조건이나 반응온도를 30℃로 하였을 경우이다. 촉매가 충진된 반응기를 거친 후 폐수의 총유기탄소 농도는 134.5mg/L로서 92.9%정도의 총유기탄소가 제거되었으며, 색도는 89.2도로 97.2%정도 제거되었다.It is a case where the conditions and reaction temperature similar to Example 1 were made into 30 degreeC. After the catalyst-filled reactor, the total organic carbon concentration of the wastewater was 134.5 mg / L, and about 92.9% of total organic carbon was removed, and the color was removed by 89.2 degrees and about 97.2%.
실시예 1과 실시예 5 및 실시예 6을 비교하면 반응온도가 낮아짐에 따라 총유기탄소 및 색도의 제거효율이 감소함을 알 수 있다.Comparing Example 1, Example 5 and Example 6 it can be seen that as the reaction temperature is lowered, the removal efficiency of total organic carbon and color decreases.
다음의 실시예들은 반응온도가 낮아짐에 따라 총유기탄소 및 색도의 제거율이 감소되는 것을 극복하기 위하여 사용되는 촉매의 양을 증가시키거나 과산화수소수의 유량을 증가시킨 것이다.The following examples increase the amount of catalyst used or the flow rate of hydrogen peroxide water to overcome the reduction in total organic carbon and chromaticity removal rate as the reaction temperature decreases.
(실시예 7)(Example 7)
실시예 5와 같은 조건이나 주입된 18%(V/V) 과산화수소수의 유량을 폐수유량의 2/1000로 한 경우이다. 촉매가 충진된 반응기를 거친 후 폐수의 총유기탄소는 5.4mg/L로 99.7%이상의 총유기탄소가 제거되었으며 색도는 6.0도로 99.8%이상의 색도가 제거되었다. 결국 80℃의 반응온도를 50℃로 낮추더라도 과산화수소수의 유량을 증가시키면 80℃반응온도에서의 총유기탄소 및 색도 제거 효율을 얻을 수 있다.The same conditions as in Example 5 and the case where the flow rate of the injected 18% (V / V) hydrogen peroxide water was 2/1000 of the wastewater flow rate. After passing through the catalyst-filled reactor, total organic carbon in wastewater was 5.4 mg / L, and more than 99.7% of total organic carbon was removed, and the chromaticity was 6.0 degrees and more than 99.8%. After all, even if the reaction temperature of 80 ℃ to 50 ℃ to increase the flow rate of hydrogen peroxide water can be obtained the total organic carbon and color removal efficiency at the 80 ℃ reaction temperature.
(실시예 8)(Example 8)
실시예 5와 같은 조건이나 구리의 함량이 30%인 Cu/Al2O3촉매 600g을 충진한 경우이다. 촉매가 충진된 반응기를 거친 후 폐수의 총유기탄소는 3.9mg/L로 99.8%이상의 총유기탄소가 제거되었으며 색도는 5.3도로 99.8%이상의 색도가 제거되었다. 결국 반응온도를 낮추더라도 촉매 사용량을 증가시키면 총유기탄소 및 색도의 제거효율을 높일 수 있다.The same conditions as in Example 5 or 600g of Cu / Al 2 O 3 catalyst having a copper content of 30%. After passing through the catalyst-filled reactor, the total organic carbon of the wastewater was 3.9 mg / L, and more than 99.8% of total organic carbon was removed, and the chromaticity was 5.3 degrees and more than 99.8%. After all, even if the reaction temperature is lowered, increasing the amount of catalyst used may increase the removal efficiency of total organic carbon and color.
(실시예 9)(Example 9)
실시예 5와 같은 조건이나 구리의 함량이 30%인 Cu/Al2O3촉매 400g을 충진하고 18%(V/V) 과산화수소수의 유량을 폐수유량의 1.5/1000로 한 경우이다. 반응기를 거친 폐수의 총유기탄소농도는 5.4mg/L, 색도는 6.2도로 반응온도가 50℃임에도 불구하고 높은 제거효율을 얻을 수 있다.In the same conditions as in Example 5, 400g of Cu / Al 2 O 3 catalyst having a copper content of 30% was charged, and the flow rate of 18% (V / V) hydrogen peroxide water was 1.5 / 1000 of the wastewater flow rate. The total organic carbon concentration of the wastewater passed through the reactor was 5.4 mg / L, the chromaticity was 6.2 degrees, and the high removal efficiency was obtained despite the reaction temperature of 50 ° C.
(실시예 10)(Example 10)
실시예 6과 같은 조건이나 주입된 18%(V/V) 과산화수소수의 유량을 2/1000로 하고 구리의 함량이 30%인 Cu/Al2O3촉매 600g을 충진한 경우이다. 반응기를 거친 폐수의 총유기탄소농도는 9.4mg/L, 색도는 15.4도로 각각 99.5%, 99.5%정도 제거되었다.The same conditions as in Example 6 were performed when the flow rate of the injected 18% (V / V) hydrogen peroxide water was 2/1000 and 600 g of a Cu / Al 2 O 3 catalyst having a copper content of 30% was charged. The total organic carbon concentration of the wastewater passed through the reactor was 9.4 mg / L and the chromaticity of 15.4 degrees was removed by 99.5% and 99.5%, respectively.
이상의 실시예 7∼실시예 10의 결과로 미루어 볼 때 반응온도를 50℃, 30℃로 낮추더라도 사용되는 촉매의 양과 과산화수소수의 유량을 증가시키면 80℃에서의 제거효율과 비슷한 결과를 얻을 수 있음을 알 수 있다.In view of the results of Examples 7 to 10 above, even if the reaction temperature is lowered to 50 ° C and 30 ° C, increasing the amount of catalyst used and the flow rate of hydrogen peroxide can achieve similar results to the removal efficiency at 80 ° C. It can be seen.
(실시예 11)(Example 11)
실시예 1과 같은 조건이나 구리의 함량이 50%인 Cu/Al2O3촉매 300g을 충진시킨 경우의 결과이다. 촉매가 충진된 반응기를 통과한 폐수의 총유기탄소농도는 4.4mg/L로 99.8% 이상의 총유기탄소가 제거되었으며, 색도는 5.2도로 99.8%이상의 색도가 제거되었다.The result is the same as in Example 1 or when 300 g of a Cu / Al 2 O 3 catalyst containing 50% copper is charged. The total organic carbon concentration of the wastewater that passed through the catalyst-filled reactor was 4.4 mg / L, and more than 99.8% of total organic carbon was removed, and the chromaticity was 5.2 degrees and more than 99.8%.
(실시예 12)(Example 12)
실시예 1과 같은 조건이나 구리의 함량이 10%인 Cu/Al2O3촉매 300g을 충진시킨 경우의 결과이다. 촉매가 충진된 반응기를 통과한 폐수의 총유기탄소농도는 10.2mg/L으로 약 99.5%의 총유기탄소가 제거되었으며 색도는 11.4도로 약 99.6%정도 제거되었다.The result is the same as in Example 1 or when 300 g of a Cu / Al 2 O 3 catalyst containing 10% copper is charged. The total organic carbon concentration of the wastewater that passed through the catalyst-filled reactor was 10.2 mg / L, which removed about 99.5% of total organic carbon and about 99.6% of chromaticity.
이상과 같이 실시예 1, 실시예 11 및 실시예 12를 비교해보면 Cu/Al2O3촉매의 구리의 함량이 증가할수록 총유기탄소 및 색도의 제거효율이 증가하였다. 그러나 구리의 함량에 차이가 있더라도 Cu/Al2O3촉매를 사용할 경우 폐수의 총유기탄소와 색도를 95%이상 효과적으로 제거할 수 있다.Comparing Example 1, Example 11 and Example 12 as described above, as the copper content of the Cu / Al 2 O 3 catalyst increases, the removal efficiency of the total organic carbon and chromaticity increased. However, even if the copper content is different, the use of Cu / Al 2 O 3 catalyst can effectively remove more than 95% of total organic carbon and color of waste water.
(실시예 13)(Example 13)
실시예 1과 같은 조건이나 구리의 함량이 30%인 Cu/Al2O3촉매 300g을 사용하는 대신 Cu의 농도가 0.01M이 되도록 Cu(NO3)2·3H2O를 폐수와 함께 혼합·용해하여 폐수를 처리한 결과이다. Cu/Al2O3촉매가 충진되지 않은 반응기를 거친 후의 폐수의 총유기탄소농도는 4.2mg/L로서 99.8%이상의 총유기탄소가 제거되었으며, 색도는 5.0도로 99.8%이상의 색도가 제거되었다. 결국 고체상 촉매인 Cu/Al2O3대신에 Cu(NO3)2·3H2O를 사용하여도 비슷한 폐수처리효과를 얻을 수 있다. 그러나 Cu(NO3)2·3H2O를 사용할 경우 처리된 폐수를 방류하기전에 처리수로부터 다시 Cu를 제거하여야 하는 분리공정이 뒤따라야 한다.Instead of using 300 g of Cu / Al 2 O 3 catalyst having the same conditions as in Example 1 or 300% of copper, Cu (NO 3 ) 2 .3H 2 O was mixed with the wastewater so that the concentration of Cu was 0.01 M. It is the result of dissolving wastewater. The total organic carbon concentration of the wastewater after passing through the reactor not filled with the Cu / Al 2 O 3 catalyst was 4.2 mg / L, and more than 99.8% of total organic carbon was removed, and the chromaticity was 5.0 degrees and more than 99.8%. As a result, a similar wastewater treatment effect can be obtained by using Cu (NO 3 ) 2 · 3H 2 O instead of Cu / Al 2 O 3 as a solid catalyst. However, if Cu (NO 3 ) 2 · 3H 2 O is used, a separation process must be followed to remove Cu from the treated water prior to discharge of the treated wastewater.
이와 같은 실시예 5 내지 13을 아래 표 2에 정리하였다. 표 2의 사용촉매의 상태에서 ac는 수용액 상태를 의미한다.Examples 5 to 13 are summarized in Table 2 below. Ac in the state of the catalyst used in Table 2 means an aqueous solution state.
다음의 실시예들은 도시에서 발생되는 생활하수를 이용하여 실험한 결과들이다. 생활하수는 응집처리를 거치고 1차 침전시킨 후 실험에 사용하였다.The following examples are the results of experiments using living sewage generated in the city. Household sewage was used for the experiment after the first precipitation and flocculation treatment.
(실시예 14)(Example 14)
초기 화학적 산소요구량(Chemical Oxygen Demand, COD, 이하 COD로 함) 128.6mg/L인 생활하수를 실시예 1과 같은 조건에서 처리하였다. 촉매가 충진된 반응기를 거친 후 처리수의 COD는 4.1mg/L로서 96%이상 제거되었다.Municipal sewage with an initial chemical oxygen demand (COD, hereinafter referred to as COD) of 128.6 mg / L was treated under the same conditions as in Example 1. After passing through the catalyst-filled reactor, the COD of the treated water was removed at more than 96% as 4.1 mg / L.
(실시예 15)(Example 15)
초기 COD 128.6mg/L인 생활하수를 실시예 2와 같은 조건에서 처리하였다. 촉매가 충진된 반응기를 거친후 처리수의 COD는 8.4mg/L로서 93%이상 제거되었다.Municipal sewage with an initial COD of 128.6 mg / L was treated under the same conditions as in Example 2. After passing through the catalyst-filled reactor, the COD of the treated water was 8.4 mg / L, which was more than 93% removed.
(실시예 16)(Example 16)
실시예 3과 같은 조건에서 초기 COD 128.6mg/L인 생활하수를 처리한 결과이다. 촉매가 충진된 반응기를 거친 후 처리수의 COD는 2.1mg/L로서 98%이상 제거되었다.It is the result of treating the municipal sewage which is initial COD 128.6mg / L under the same conditions as Example 3. After passing through the catalyst-packed reactor, the COD of the treated water was 2.1 mg / L, which was removed by more than 98%.
(실시예 17)(Example 17)
실시예 4와 같은 조건에서 초기 COD 128.6mg/L인 생활하수를 처리한 결과이다. 촉매가 충진된 반응기를 거친 후 처리수의 COD는 6.0mg/L로서 95%이상 제거되었다.This is the result of treating living sewage with initial COD of 128.6 mg / L under the same conditions as in Example 4. After passing through the catalyst-filled reactor, the COD of the treated water was 6.0 mg / L, which was removed by more than 95%.
(실시예 18)(Example 18)
실시예 1과 같은 조건이나 반응온도가 50℃일 경우 초기 COD가 109.9mg/L인 생활하수를 처리한 결과이다. 처리수의 COD는 10.2mg/L로서 90%이상이 제거되었다.When the same conditions and reaction temperature as in Example 1, 50 ℃ is the result of treatment of domestic sewage with an initial COD of 109.9 mg / L. The COD of the treated water was 10.2 mg / L and more than 90% was removed.
(실시예 19)(Example 19)
실시예 1과 같은 조건이나 반응온도가 30℃일 경우 초기 COD가 109.9mg/L인 생활하수를 처리한 결과이다. 반응기를 거친 후 처리수의 COD는 18.2mg/L로서 약 83%가 제거되었다.When the same conditions and reaction temperature as in Example 1 is 30 ℃ is the result of treatment of domestic sewage with an initial COD of 109.9 mg / L. After the reactor, the COD of the treated water was 18.2 mg / L, about 83% of which was removed.
(실시예 20)(Example 20)
실시예 18과 같은 조건이나 주입된 18%(V/V) 과산화수소수의 유량을 폐수유량의 2/1000로 한 경우이다. 초기 COD가 110.4mg/L인 생활하수가 반응기를 거치게 되면 처리수의 COD는 8.3mg/L로서 약 93%정도 제거되었다.The same conditions as in Example 18 or the flow rate of the injected 18% (V / V) hydrogen peroxide water were 2/1000 of the wastewater flow rate. When the sewage with an initial COD of 110.4 mg / L was passed through the reactor, the COD of the treated water was 8.3 mg / L, which was about 93% removed.
(실시예 21)(Example 21)
실시예 18과 같은 조건이나 구리의 함량이 30%인 Cu/Al2O3촉매 600g을 충진한경우이다. 초기 COD가 112.4mg/L인 생활하수가 반응기를 거치게되면 처리수의 COD는 5.9mg/L로서 95%이상 제거되었다.The same conditions as in Example 18 or 600g of Cu / Al 2 O 3 catalyst having a copper content of 30%. When sewage with an initial COD of 112.4 mg / L was passed through the reactor, the COD of the treated water was 5.9 mg / L, which was more than 95% removed.
(실시예 22)(Example 22)
실시예 18과 같은 조건이나 구리의 함량이 30%인 Cu/Al2O3촉매 400g을 충진하고 18%(V/V) 과산화수소수의 유량을 폐수유량의 1.5/1000로 한 경우이다. 초기 COD가 113.6mg/L인 생활하수가 반응기를 거치게 되면 처리수의 COD는 6.7mg/L로서 약 94%정도 제거되었다.The same conditions as in Example 18 or 400 g of a Cu / Al 2 O 3 catalyst having a copper content of 30% were charged, and the flow rate of 18% (V / V) hydrogen peroxide water was 1.5 / 1000 of the wastewater flow rate. When the sewage with an initial COD of 113.6 mg / L was passed through the reactor, the COD of the treated water was 6.7 mg / L, which was about 94% removed.
(실시예 23)(Example 23)
실시예 19와 같은 조건이나 주입된 18%(V/V) 과산화수소수의 유량을 2/1000로 하고 구리의 함량이 30%인 Cu/Al2O3촉매 600g을 충진한 경우이다. 초기 COD가 127.6mg/L인 생활하수가 반응기를 거치게 되면 처리수의 COD는 10.4mg/L로서 90%이상 제거되었다.The same conditions as in Example 19 were performed when the flow rate of the injected 18% (V / V) hydrogen peroxide water was 2/1000 and 600 g of a Cu / Al 2 O 3 catalyst having a copper content of 30% was charged. When the municipal sewage with an initial COD of 127.6 mg / L was passed through the reactor, the COD of the treated water was 10.4 mg / L and more than 90% was removed.
(실시예 24)(Example 24)
실시예 14와 같은 조건이나 구리의 함량이 50%인 Cu/Al2O3촉매 300g을 충진시킨 경우의 결과이다. 생활하수의 초기 COD는 131.6mg/L이었으며 촉매가 충진된 반응기를 거친 후 처리수의 COD는 2.7mg/L로서 약 98% 제거되었다.The result is the same as in Example 14 or when 300 g of a Cu / Al 2 O 3 catalyst having a copper content of 50% is charged. The initial COD of domestic sewage was 131.6 mg / L, and after passing through the catalyst-filled reactor, the COD of the treated water was 2.7 mg / L, which was about 98% removed.
(실시예 25)(Example 25)
실시예 14와 같은 조건이나 구리의 함량이 10%인 Cu/Al2O3촉매 300g을 충진시킨 경우의 결과이다. 초기 COD 농도가 128.4mg/L인 생활하수가 촉매가 충진된 반응기를 통과한 후 처리수의 COD는 9.5mg/L로서 93%이상 제거되었다.The result is the same as in Example 14 or when 300 g of a Cu / Al 2 O 3 catalyst containing 10% copper is charged. After the municipal sewage with an initial COD concentration of 128.4 mg / L was passed through the catalyst-filled reactor, the COD of the treated water was 9.5 mg / L, which was removed by 93%.
(실시예 26)(Example 26)
실시예 14와 같은 조건이나 구리의 함량이 30%인 Cu/Al2O3촉매 300g을 사용하는 대신 Cu의 농도가 0.01M이 되도록 Cu(NO3)2·3H2O의 구리 질산염을 생활하수에 혼합·용해하여 생활하수를 처리한 결과이다. 초기 COD 120.6mg/L인 생활하수를 처리한 결과 처리수의 COD는 3.5mg/L로서 97%이상 제거되었다.Instead of using 300 g of a Cu / Al 2 O 3 catalyst having the same conditions as in Example 14 or 300% of copper, the copper nitrate of Cu (NO 3 ) 2 · 3H 2 O was depleted so that the concentration of Cu was 0.01M. This is the result of treatment of domestic sewage by mixing and dissolving in water. Treatment of municipal sewage with an initial COD of 120.6 mg / L resulted in more than 97% COD of 3.5 mg / L.
이와 같은 실시예 14 내지 26을 아래 표3에 정리하였다.Examples 14 to 26 are summarized in Table 3 below.
이상의 염색폐수와 생활하수를 대상으로 한 실시예에서 알 수 있듯이 Cu/Al2O3촉매, Cu(NO3)2·3H2O촉매를 과산화수소수와 함께 사용할 경우 폐수를 효과적으로 분해시킬 수 있음을 알 수 있었다.As can be seen from the examples of dyeing wastewater and domestic sewage, the use of Cu / Al 2 O 3 catalyst and Cu (NO 3 ) 2 · 3H 2 O catalyst with hydrogen peroxide can effectively decompose wastewater. Could know.
염색폐수의 경우 본 발명에 의하면 총유기탄소 및 색도를 95%이상 제거할 수 있었으며, 생활하수의 경우 촉매사용량, 과산화수소수 사용량 및 온도등을 효과적으로 조절하면 COD의 90%이상을 제거할 수 있었다.According to the present invention, in the case of the dye wastewater, more than 95% of total organic carbon and color could be removed, and in the case of domestic sewage, more than 90% of COD could be removed by effectively controlling catalyst usage, hydrogen peroxide usage and temperature.
위 결과에서 보듯이, 본 발명에 따르면 Cu(NO3)2·3H2O 및 Cu/Al2O3를 촉매로 사용하고 H2O2를 산화제로 이용할 경우 1기압, 저온(30∼80℃)에서 염색폐수와 생활하수를 효과적으로 처리할 수 있었다. 특히 기존의 생물학적 처리방법에 비해 그 처리 효율이 월등히 높아 적은 부지에 작은 크기의 시설을 설치할 수 있어 초기투자비가 적게 소요되는 장점이 있다. 또한 처리공정자체를 손쉽게 자동화할 수 있어 전문인력 없이 운전할 수 있는 이점도 있다.As shown in the above results, according to the present invention, when Cu (NO 3 ) 2 · 3H 2 O and Cu / Al 2 O 3 are used as the catalyst and H 2 O 2 is used as the oxidizing agent, 1 atmosphere and a low temperature (30 to 80 ° C.) are used. ) Was able to effectively treat dyeing wastewater and domestic sewage. In particular, the treatment efficiency is much higher than that of the existing biological treatment method, so that a small-sized facility can be installed on a small site. In addition, the process itself can be easily automated, there is an advantage that can be operated without professional personnel.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0078210A KR100465521B1 (en) | 2001-12-11 | 2001-12-11 | Method of treating wastewater using catalytic wet oxidation process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0078210A KR100465521B1 (en) | 2001-12-11 | 2001-12-11 | Method of treating wastewater using catalytic wet oxidation process |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20030052259A KR20030052259A (en) | 2003-06-27 |
KR100465521B1 true KR100465521B1 (en) | 2005-01-13 |
Family
ID=29574260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2001-0078210A KR100465521B1 (en) | 2001-12-11 | 2001-12-11 | Method of treating wastewater using catalytic wet oxidation process |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100465521B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109502835B (en) * | 2019-01-14 | 2021-09-07 | 重庆工商大学 | Paint spray booth wastewater treatment process |
CN112093883A (en) * | 2020-09-15 | 2020-12-18 | 江苏诺盟化工有限公司 | Treatment method of phenol-containing wastewater |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6430696A (en) * | 1987-07-01 | 1989-02-01 | Fmc Corp | Method of oxidizing low valence sulfur compound |
JPH0278488A (en) * | 1988-06-03 | 1990-03-19 | Kankyo Eng Kk | Complete treatment of waste water |
JPH0910780A (en) * | 1995-07-03 | 1997-01-14 | Kansai Electric Power Co Inc:The | Treatment of alkanolamine containing waste water |
KR100188169B1 (en) * | 1995-08-29 | 1999-06-01 | 박원훈 | Wastewater treatment by catalytic oxidation |
US5972226A (en) * | 1994-10-27 | 1999-10-26 | Omnium De Traitements Et De Valorisation | Process and installation for the treatment of effluents by oxidation and denitrification in the presence of a heterogeneous catalyst |
-
2001
- 2001-12-11 KR KR10-2001-0078210A patent/KR100465521B1/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6430696A (en) * | 1987-07-01 | 1989-02-01 | Fmc Corp | Method of oxidizing low valence sulfur compound |
JPH0278488A (en) * | 1988-06-03 | 1990-03-19 | Kankyo Eng Kk | Complete treatment of waste water |
US5972226A (en) * | 1994-10-27 | 1999-10-26 | Omnium De Traitements Et De Valorisation | Process and installation for the treatment of effluents by oxidation and denitrification in the presence of a heterogeneous catalyst |
JPH0910780A (en) * | 1995-07-03 | 1997-01-14 | Kansai Electric Power Co Inc:The | Treatment of alkanolamine containing waste water |
KR100188169B1 (en) * | 1995-08-29 | 1999-06-01 | 박원훈 | Wastewater treatment by catalytic oxidation |
Also Published As
Publication number | Publication date |
---|---|
KR20030052259A (en) | 2003-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4012321A (en) | Oxidation of refractory organics in aqueous waste streams by hydrogen peroxide and ultraviolet light | |
US4767543A (en) | Oxidation of wastewaters | |
CN100420634C (en) | Installation and method for the purification of an aqueous effluent by means of oxidation and membrane filtration | |
US5505856A (en) | Process for the purification of contaminated water by activated ozone | |
CN104671391A (en) | Ozone heterogeneous catalysis oxidization treatment device and technology for hardly degradable organic wastewater | |
EP0859746A1 (en) | Advanced oxidation of water using catalytic ozonation | |
KR100808935B1 (en) | Waste water treating apparatus using plasma and photocatalyst | |
US20210053852A1 (en) | Process and system for subcritical oxidation of water-borne organic contaminants | |
JP2002273494A (en) | Method of treating organic solid containing inorganic salt, particularly sewer sludge | |
KR100465521B1 (en) | Method of treating wastewater using catalytic wet oxidation process | |
JP3811614B2 (en) | Wastewater treatment method | |
JP2000117272A (en) | Waste water treatment | |
JP5020490B2 (en) | Organic sludge treatment method and organic sludge treatment equipment | |
JPH11221584A (en) | Pressurized ozone treating system and device | |
KR100205443B1 (en) | Apparatus for treating waste water using photocatalyst | |
CN105836977A (en) | Treatment method of benzene-series waste water | |
KR100297928B1 (en) | Method of nitrogen removal in wastewater with photocatalytic technology | |
JP4524525B2 (en) | Method for treating wastewater containing ammonia and hydrogen peroxide | |
CN115140878B (en) | System and method for producing hydrogen peroxide with low energy consumption and in situ removing perfluorinated compounds in water | |
KR20160002064A (en) | Preprocessing method and system for decomposing particular material of air pollutants using catalytic oxidation water | |
KR0145807B1 (en) | Process for the treatment of waste water with hydrogen peroxide at elevated temperature and pressure | |
KR100490865B1 (en) | Method of Treating wastewater using catalytic wet oxidation process | |
JP3739452B2 (en) | Power plant wastewater treatment method containing amine compounds | |
KR100493865B1 (en) | Waterwork equipment using ozone | |
WO2004065527A2 (en) | Methods for the removal of organic nitrogen, organic and inorganic contaminants from an aqueous liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20090520 Year of fee payment: 5 |
|
LAPS | Lapse due to unpaid annual fee |