KR100427567B1 - Rotary vane type vacuum pump rota - Google Patents
Rotary vane type vacuum pump rota Download PDFInfo
- Publication number
- KR100427567B1 KR100427567B1 KR10-2001-0019420A KR20010019420A KR100427567B1 KR 100427567 B1 KR100427567 B1 KR 100427567B1 KR 20010019420 A KR20010019420 A KR 20010019420A KR 100427567 B1 KR100427567 B1 KR 100427567B1
- Authority
- KR
- South Korea
- Prior art keywords
- rotor
- vacuum pump
- support shaft
- vane
- coupling
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/08—Rotary pistons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/344—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/344—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
- F04C18/3441—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
- F04C18/3442—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the inlet and outlet opening
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/001—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/0042—Driving elements, brakes, couplings, transmissions specially adapted for pumps
- F04C29/005—Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Rotary Pumps (AREA)
Abstract
본 발명의 목적은 내구성이 향상되며, 가공 및 조립시간이 단축되어 제작비용을 절감하고 생산성을 배가시키며, 유지보수비용을 절감할 수 있는 구조의 로터리 베인형 진공펌프의 로터를 제공하는데 있으며,It is an object of the present invention to provide a rotor of a rotary vane type vacuum pump having a structure that can improve durability, shorten processing and assembly time, reduce manufacturing costs, double productivity, and reduce maintenance costs.
이를 위해 본 발명은 베인홈을 구비하는 로터본체와,To this end, the present invention is a rotor body having a vane groove,
그 본체의 양단에 형성되는 지지축부를 가지는 제1 및 제2로터가 연결되어 사용되는 구조의 진공펌프용 로터에 있어서,A vacuum pump rotor having a structure in which first and second rotors having support shaft portions formed at both ends of the main body are connected and used.
상기 베인홈은 로터본체와 제1 및 제2로터의 연결부인 지지축부까지 연장가공되어 일단이 개방된 형태의 슬롯홈으로 가공되며,The vane groove is processed into a slot groove of one end is opened by extending to the support shaft portion that is the connection between the rotor body and the first and second rotor,
상기 제1로터와 제2로터의 연결부인 지지축부의 외주에는 각각 원통형상의 슬라이딩 베어링인 슬리이브를 끼워 계합하며,The outer periphery of the support shaft portion, which is a connection portion between the first rotor and the second rotor, is fitted with sleeves, which are cylindrical sliding bearings, respectively.
상기 제1로터와 제2로터는 베인홈 가공 및 슬리이브 조립에 의해 생겨난 개방단부홈에 끼워 계합되는 계합돌기를 구비하는 연결커플링에 의해 연결조립되는 구조로 구성되어 있다.The first rotor and the second rotor are configured to be connected and assembled by a coupling coupling having a engaging projection to be engaged in the open end groove generated by the vane groove processing and the sleeve assembly.
Description
본 발명은 로터리 베인형 진공펌프의 로터의 조립구조 개선에 관한 것이다.The present invention relates to improving the assembly structure of the rotor of the rotary vane type vacuum pump.
로터리 베인형 펌프는 모터가 회전함에 따라 모터에 연결된 회전자, 즉 로터가 회전하므로써 로터의 홈에 끼워져 있던 베인이 원심력에 의하여 실린더 내면에 기밀하게 접촉하면서 회전하게 되며, 그에 의하여 진공을 요하는 설비로부터 펌프 흡입구를 통해 기체를 흡입하여 압축한 후 배기밸브를 열고 배기구를 통하여 배기하는 과정을 반복하므로써 진공펌프에 접속된 설비를 진공화시키게 된다. 따라서 실린더 내면과 끊임없이 접촉하고 회전운동을 하는 로터는 펌프의 핵심부분으로써 펌프의 성능을 결정짓는 중요한 부품이므로 설계에 입각한 정밀한 가공과 내구성의확보가 중요하다.The rotary vane type pump rotates the rotor connected to the motor as the motor rotates, that is, the vane fitted to the groove of the rotor as the rotor rotates in a tight contact with the inner surface of the cylinder by centrifugal force, thereby requiring a vacuum. The gas connected to the vacuum pump is evacuated by repeating the process of sucking and compressing the gas through the pump inlet, and then opening the exhaust valve and exhausting it through the exhaust port. Therefore, the rotor, which is in constant contact with the inner surface of the cylinder and rotates, is an essential part of the pump as a key part of the pump. Therefore, it is important to ensure precise processing and durability based on the design.
이에따라 로터는 가공시간이 오래걸릴 뿐 아니라 가공후에도 내구성이 좋아야 한다. 또한 펌프의 용량은 기체의 흡입량과 압축비에 의존하는 바 압축비를 증가시키기 위해 도 9 및 도 10에 도시하는 것과 같이 복수개의 로터(41)(42)…, 통상 제1로터(41)와 제2로터(42)의 2단으로 구성된 로터(40)를 많이 사용하고 있다.As a result, the rotor not only takes a long time but also needs to be durable after machining. In addition, the capacity of the pump depends on the intake amount and the compression ratio of the gas, so that the plurality of rotors 41, 42,..., As shown in FIGS. Usually, the rotor 40 which consists of two stages of the 1st rotor 41 and the 2nd rotor 42 is used a lot.
도시한 종래 구조의 로터(40)에 의하면 제1로터(41)와 제2로터(42)를 각기 제작하여 로터핀(43)을 사용하여 조립하게 되며, 각각의 제1 및 제2로터(41)(42)는 각기 두개씩의 몸체(41a)(41b)와 (42a)(42b)로 분할하여 제작한 후 볼트(44)(45)에 의해 분리제작된 몸체(41a)(41b),(42a)(42b)를 하나로 조립하여 완성상태의 제1 및 제2로터(41)(42)를 형성하고 있다.According to the conventional rotor 40 shown in the drawings, the first rotor 41 and the second rotor 42 are manufactured and assembled using the rotor pins 43, respectively, and the first and second rotors 41, respectively. 42 is divided into two bodies 41a, 41b and 42a and 42b, respectively, and is manufactured separately by bolts 44 and 45, respectively. ) 42b are assembled into one to form first and second rotors 41 and 42 in the finished state.
그리고 제1로터(41)와 제2로터(42)는 다시 로터핀(43)을 핀구멍(46)(47)에 끼워 연결접속하므로써 하나의 완성된 로터(40)를 형성하게 된다.The first rotor 41 and the second rotor 42 are connected to each other by inserting the rotor pins 43 into the pinholes 46 and 47 to form one completed rotor 40.
이와같이 각각의 로터(41)(42)를 2개의 몸체(41a)(41b),(42a)(42b)로 분리성형하여 조립하는 이유는 각각의 로터(41)(42)에 베인(도 2의 부호12 참조)을 끼워 계합하기 위한 베인홈(48)(49)을 가공하여야 하는데, 가공공구(Slot cutter)가 지지축(50)(51),(52)(53)에 의해 양단이 막힌 4각구멍 형상의 베인홈(48)(49)을 가공하기 위하여서는 로터(41)(42) 몸체를 관통하면서 가공하여야 하나 이와같은 가공방식은 기술적으로 매우 어렵고 생산성이 크게 떨어지게 되기 때문에 불가피하게 각각의 로터(41)(42)를 2개의 분리된 몸체(41a)(41b),(42a)(42b)로 형성하여 일단부가 개방된 홈을 분리된 몸체 각각에 가공한 후 각각의 경계면(54)(55)을 밀착시켜 도 10에서와같이 볼트(44)(45)로 조립하므로써 사방이 막힌 직사각형 형상의 구멍인 베인홈(48)(49)을 제공하게 되는 것이다. 그러나 이와같은 종래 로터(40)의 조립구조에 의하면 제1 및 제2로터(41)(42)를 각기 2개의 분리몸체(41a)(41b),(42a)(42b)로 제작하여야 하므로 가공시간과 비용이 많이 소요되고 또 경계면(54)(55)의 정밀한 가공작업과 볼트(44)(45)를 사용하여 체결하여야 하기 때문에 드릴링 작업과 탭 작업을 각각의 몸체 마다에 실시하여야 하며, 또 복수개의 로터핀(43)을 끼워 계합하기 위한 복수개의 드릴공(46)(47)을 가공하여야 하므로 구멍가공에 따른 지지축부(51)(52)의 강도 저하가 발생하며 또 지지축부(51)(52)가 슬라이딩 베어링부의 역할을 수행하여야 하므로 경도와 강도를 높이기 위하여 소재전체의 열처리를 실시하여야 하는 관계로 로터(40)의 제작비용이 크게 증가하고 생산성이 낮은 문제점이 있었다. 또 지지축부(51)(52)의 마모시 로터(41)(42)전체를 교체하여야 하기 때문에 유지보수비용이 많이 드는 단점이 있었다.The reason for assembling each of the rotors 41 and 42 into two bodies 41a, 41b and 42a and 42b is that the rotors 41 and 42 have vanes (Fig. 2). The vane grooves 48 and 49 must be machined to engage the fittings (refer to reference numeral 12), and the slotting tool is formed by the support shafts 50, 51, 52 and 53 blocked at both ends. To process the angular hole-shaped vane grooves 48 and 49, it is necessary to process the rotor 41 and 42 through the body. However, this processing method is technically very difficult and the productivity is greatly reduced, which is inevitable. The rotors 41 and 42 are formed into two separate bodies 41a, 41b and 42a and 42b so that grooves having one end portion are processed in each of the separated bodies, and then each boundary surface 54 ( 55 is brought into close contact and assembled with bolts 44 and 45 as shown in FIG. 10 to provide vane grooves 48 and 49 which are rectangular holes closed in all directions. However, according to the assembly structure of the conventional rotor 40, the first and second rotors 41 and 42 must be manufactured with two separate bodies 41a, 41b and 42a and 42b, respectively. Excessive and costly and precise machining of the interface (54) and (55) and fastening with bolts (44) and (45) require drilling and tapping to be carried out for each body. Since a plurality of drill holes 46 and 47 for engaging the two rotor pins 43 are to be machined, the strength of the support shafts 51 and 52 is reduced due to the hole processing, and the support shafts 51 ( 52) has to play the role of the sliding bearing part, so the heat treatment of the whole material to be performed in order to increase the hardness and strength, the manufacturing cost of the rotor 40 was greatly increased and the productivity was low. In addition, since the entire rotor 41, 42 has to be replaced when the support shafts 51, 52 are worn out, there is a disadvantage that the maintenance cost is high.
이에 본 발명은 상기한 문제점을 감안하여 제안한 것으로 그의 목적으로 하는 것은 내구성이 향상되며, 가공 및 조립시간이 단축되어 제작비용을 절감하고 생산성을 배가시키며, 유지보수비용을 절감할 수 있는 구조의 로터리 베인형 진공펌프의 로터를 제공하는데 있다.Accordingly, the present invention has been proposed in view of the above problems, and its purpose is to improve durability, reduce processing and assembly time, thereby reducing manufacturing costs, doubling productivity, and reducing maintenance costs. To provide a rotor of the vane vacuum pump.
상기한 목적을 달성하기 위한 본 발명의 로터리 베인형 진공펌프의 로터는The rotor of the rotary vane type vacuum pump of the present invention for achieving the above object is
베인홈을 구비하는 로터와,A rotor having a vane groove,
상기 로터는 양단에 지지축부를 가지는 제1 및 제2로터가 연결되어 사용되는 구조의 진공펌프용 로터에 있어서,In the rotor is a vacuum pump rotor having a structure in which the first and second rotors having support shafts at both ends are connected and used,
상기 베인홈은 로터의 제1 및 제2로터 각각의 연결부인 일측 지지축부까지 슬롯홈으로 연장가공되어 상기 지지축부의 끝단이 개방된 형태로 형성되며,The vane groove is formed by extending the slot groove to one side support shaft portion, which is a connection portion of each of the first and second rotors of the rotor, the end of the support shaft portion is opened,
상기 제1로터와 제2로터의 연결부인 일측 지지축부의 외주에는 각각 원통형상의 슬라이딩 베어링인 슬리이브가 끼워져 계합되며,On the outer circumference of one support shaft portion, which is a connecting portion of the first rotor and the second rotor, sleeves each having cylindrical cylindrical bearings are fitted and engaged.
상기 제1로터와 제2로터는 슬롯홈으로 가공된 베인홈에 의하여 일측 지지축부에 형성된 개방단부홈에 끼워져 계합되는 계합돌기가 양측을 돌출되어 있는 연결커플링에 의해 연결조립되는 구조로 되어 있다.The first rotor and the second rotor are connected to each other by a coupling coupling in which the engagement protrusions are inserted into the open end grooves formed on one side of the support shaft by the vane grooves processed into the slot grooves. .
도 1은 본 발명에 의한 로터가 장착된 로터리 베인형 진공펌프 장치의 절개단면도이다.1 is a cut-away cross-sectional view of a rotary vane type vacuum pump apparatus equipped with a rotor according to the present invention.
도 2는 동상 진공펌프 장치의 A-A 단면도이다.2 is a sectional view taken along the line A-A of the in-phase vacuum pump apparatus.
도 3은 본 발명에 의한 로터의 부품 분해 사시도이다.3 is an exploded perspective view of parts of the rotor according to the present invention.
도 4는 본 발명에 의한 제1로터의 정면도이다.4 is a front view of the first rotor according to the present invention.
도 5는 본 발명에 의한 제2로터의 정면도이다.5 is a front view of a second rotor according to the present invention.
도 6은 본 발명에 의한 로터의 조립과정을 보여주기 위한 도면으로서, 슬리이브가 끼워진 상태를 나타내는 사시도이다.6 is a view showing the assembly process of the rotor according to the present invention, a perspective view showing a state in which the sleeve is fitted.
도 7은 본 발명에 의한 연결 커플링의 측면도이다.7 is a side view of the coupling coupling according to the invention.
도 8은 본 발명에 의한 로터가 조립된 상태를 나타내는 정면도이다.8 is a front view showing a state in which the rotor according to the present invention is assembled.
도 9는 종래 로터의 분해 사시도이다.9 is an exploded perspective view of a conventional rotor.
도 10은 종래 로터의 조립된 상태를 일부단면하여 나타낸 정면도이다.10 is a front view showing a partially cross-sectional view of an assembled state of a conventional rotor.
※ 도면의 주요부분에 대한 부호의 설명※ Explanation of code for main part of drawing
1 : 로터리 베인형 진공펌프 장치 2 : 펌프 장치1: Rotary vane type vacuum pump device 2: Pump device
3 : 펌프 하우징 4 : 오일 저장 케이싱3: pump housing 4: oil storage casing
5 : 제1실린더 6 : 제2실린더5: 1st cylinder 6: 2nd cylinder
7 : 오일 펌프 하우징 8 : 오일 펌프 카바7: oil pump housing 8: oil pump cover
9 : 제1로터 10 : 제2로터9: first rotor 10: second rotor
11 : 제1베인 12 : 제2베인11: first vane 12: second vane
13 : 로터 14 : 연결커플링13 rotor 14 connection coupling
15,16 : 슬리이브(슬라이딩 베어링) 17,18 : 본체15,16 sleeve (sliding bearing) 17,18 body
19,20,21,22 : 지지축부 23,24 : 베인홈19,20,21,22: Support shaft 23,24: Vane groove
23a,24a : 개방단부홈 25,26 : 계합돌기23a, 24a: Open end groove 25, 26: Engagement protrusion
27 : 모터 28 : 모터축27: motor 28: motor shaft
29 : 펌프 흡입구 30,31 : 배기구29 pump inlet 30,31 exhaust port
이하 본 발명의 구성과 작용을 첨부한 도면을 참조하여 설명한다.Hereinafter, the configuration and operation of the present invention will be described with reference to the accompanying drawings.
도 1은 본 발명에 의한 로터가 장착된 로터리 베인형 진공펌프 장치(1)의 절개 단면도로서 펌프 내부의 주요 부분들을 보여주고 있다. 그리고 도 2는 동상 펌프의 A-A 단면도이며, 도 3은 본 발명에 의한 진공펌프 장치용 로터의 부품 분해 사시도이다. 도 1에 도시하는 것과같이 기체의 흡입 압축 및 배기를 담당하는 펌프장치(2)는 펌프 하우징(3)과 오일 저장 케이싱(4)에 둘러쌓여 있으며, 오일 저장 케이싱(4) 내의 공간부는 다량의 오일을 저장하고 있다.Fig. 1 is a cutaway sectional view of a rotary vane type vacuum pump apparatus 1 equipped with a rotor according to the present invention, showing main parts of the pump. 2 is a sectional view taken along the line A-A of the in-phase pump, and FIG. 3 is an exploded perspective view of parts of the rotor for a vacuum pump device according to the present invention. As shown in FIG. 1, the pump device 2, which is responsible for the suction compression and exhaust of the gas, is surrounded by the pump housing 3 and the oil storage casing 4, and the space in the oil storage casing 4 has a large amount of space. Oil is being stored.
펌프장치(2, 이하 펌프 장치라함은 장치 전체를 뜻하는 진공펌프 장치와는 구별되는 펌프 하우징과 오일 저장 케이싱으로 둘러쌓인 부분을 지칭한다)는 제1실린더(5), 제2실린더(6), 오일 펌프 하우징(7), 오일 펌프 카바(8) 및 실린더 내부에서 회전 운동하는 제1로터(9)와 제2로터(10)를 포함하는 구성으로 되어 있으며, 각각의 로터(9)(10)의 베인 홈 내에 2개씩의 베인(11)(11),(12)(12)을 보유한 상기 로터(9),(10)가 회전할 때 발생하는 원심력에 의해 각 베인(11)(11),(12)(12)이 베인홈의 바깥쪽으로 이동하여 상기 실린더(5),(6) 내벽면에 밀착한 형태로 회전하면서 펌프 흡입구(29)에 접속되는 도시하지 아니한 진공설비로부터 실린더(5),(6)내로 가스를 흡입한 후 압축하여 외부로 배기하는 과정을 반복하게 되므로써 설비를 진공화시키게 된다.The pump device (hereinafter referred to as pump device refers to the part enclosed by the pump housing and the oil storage casing which is distinct from the vacuum pump device, which means the whole device) is the first cylinder (5), the second cylinder (6) , The oil pump housing (7), the oil pump cover (8) and the first rotor (9) and the second rotor (10) for rotational movement inside the cylinder, each rotor (9) (10) Each vane 11, 11 by the centrifugal force generated when the rotor 9, 10 having two vanes 11, 11, 12, 12 having two vanes in the vane groove of the rotor rotates. Cylinder (5) from a vacuum facility (not shown) connected to the pump inlet (29) while moving (12) and (12) outwardly of the vane groove and rotating in close contact with the inner walls of the cylinders (5) and (6). ), (6) to inhale the gas and then compressed and exhausted to the outside it is repeated to vacuum the equipment.
본 발명에서 채택한 로터(13)는 도 3에 도시하는 것과같이 제1로터(9)와 제2로터(10)가 연결커플링(14) 및 슬리이브(15)(16)에 의하여 연결되는 구조로 되어 있다. 제1로터(9)와 제2로터(10)는 각기 제1 및 제2실린더(5)(6)내에 수용되어 회전운동하는 본체(17)(18)와, 그 본체(17)(18)의 양단으로부터 연장되어 회전력을 전달하고 지지하는 지지축부(19)(20),(21)(22)를 구비하고 있다. 상기 제1로터(9)와 제2로터(10)에 형성된 각각의 베인홈(23)(24)은 본체(17)(18)와 일측 지지축부(20)(21), 즉 슬리이브(15)(16)가 끼워지는 연결부위인 중앙측의 지지축부(20)(21)의 끝단까지 연장되도록 슬롯홈 가공으로 형성되므로써 상기 지지축부(20)(21)의 끝단부가 개방된 형태로 형성된다.The rotor 13 adopted in the present invention has a structure in which the first rotor 9 and the second rotor 10 are connected by a coupling coupling 14 and a sleeve 15 and 16 as shown in FIG. 3. It is. The first rotor 9 and the second rotor 10 are accommodated in the first and second cylinders 5 and 6, respectively, and have a main body 17 and 18 that rotate in rotation, and the main body 17 and 18, respectively. And support shafts 19, 20, 21 and 22 extending from both ends of the shaft to transmit and support rotational force. Each of the vane grooves 23 and 24 formed in the first rotor 9 and the second rotor 10 has a main body 17, 18 and one side support shaft portion 20, 21, that is, a sleeve 15. (16) is formed by the slot groove processing so as to extend to the end of the support shaft portion 20, 21 of the central side, which is the connecting portion is inserted into the end portion of the support shaft portion 20, 21 is formed in an open form. .
이와 같은 형태로 베인홈(23)(24)을 가공하면 마치 포크 형상과 같이 본체(17)(18)가 2개의 벌어진 몸체를 가지게 되므로 2개의 대향하는 몸체는 가공시의 응력에 의해 서로 벌어지게 되는데, 이것의 벌어짐을 방지하기 위하여 슬라이딩 베어링인 슬리이브(15)(16)가 지지축부(20)(21) 외주에 끼워져 벌어짐을 구속하게 된다. 상기의 지지축부(20)(21)에 슬리이브(15)(16)가 끼워진 상태에서는 지지축부(20)(21)의 일측 끝단면에는 사방이 막힌 대략 4각형상의 구멍으로 된 개방단부홈(23a)(24a)이 형성된다. 이 개방단부홈(23a)(24a)의 길이가 긴쪽의 양측은 슬리이브(15)(16)의 내경과 같은 원호로 이루어지게 되며, 이들 개방단부홈(23a)(24a)에는 연결커플링(14)의 양단에 돌출된 계합돌기(25)(26)가 기밀하게 끼워지게 되며, 이에 따라 제1 및 제2로터(9)(10)는 슬리이브(15)(16)와 연결커플링(14)에 의해 일체화된 상태로 조립되는 것이다.When the vane grooves 23 and 24 are processed in such a shape, the body 17 and 18 have two open bodies, as in the shape of a fork, so that two opposing bodies are separated from each other by the stress at the time of processing. In order to prevent this from happening, the sleeve 15, which is a sliding bearing, is fitted to the outer circumference of the support shafts 20 and 21 to restrain the gap. In the state in which the sleeves 15 and 16 are fitted to the support shafts 20 and 21, open end grooves formed of approximately quadrangular holes, which are blocked on all sides, on one end surface of the support shafts 20 and 21. 23a) 24a are formed. Both sides of the long end of the open end grooves 23a and 24a are formed in the same arc as the inner diameter of the sleeves 15 and 16, and the open end grooves 23a and 24a are connected to a coupling coupling ( The engagement protrusions 25 and 26 protruding from both ends of the 14 are hermetically fitted, so that the first and second rotors 9 and 10 are connected to the sleeves 15 and 16 and the coupling coupling ( 14) is assembled in an integrated state.
상기 연결커플링(14)의 양단에 단면이 -자형으로 각각 돌출된 계합돌기(25)(26)는 서로 평면상에 있어도 무방하나 도 7에 도시하는 것과 같이 서로 ×자(교차평면)를 이루도록 형성하여 위상차를 주게 되는 경우 회전관성력의 분산을 도모하고, 각각 슬리이브(15)(16)에 작용하는 힘의 작용점이 어긋나게 되어 결합의 안전성을 증대시키게 된다. 슬라이딩 베어링으로서의 기능을 함께 구비하는 슬리이브(15)(16)는 열처리하여 사용하므로써, 마모시에는 슬리이브(15)(16)만 교체하여 사용할 수 있다.Engagement protrusions 25 and 26 whose cross sections protrude in a − shape at both ends of the coupling coupling 14 may be on a plane with each other, but as shown in FIG. 7, they form a cross (X) (cross plane). When forming and giving a phase difference, the rotational inertia force is dispersed, and the working points of the forces acting on the sleeves 15 and 16 are shifted, respectively, thereby increasing the safety of the coupling. Since the sleeves 15 and 16 which have a function as a sliding bearing are used by heat treatment, only the sleeves 15 and 16 can be replaced when worn.
이와 같은 본 발명은 로터(13)의 제1로터(9)와 제2로터(10)를 각기 단일몸체로 형성하고 일단이 개방된 베인홈(23)(24)을 절삭가공한 후 슬리이브(15)(16)와 연결커플링(14)을 사용하여 제1로터(9)와 제2로터(10)를 연결접속하므로써, 모터(27)가 구동되면 모터축(28)에 접속된 지지축부(19)에 의해 제1로터(9)가 회전운동하게 되며, 제1로터(9)와 슬리이브(15)(16) 및 연결커플링(14)에 의해 연결된 제2로터(10)도 함께 회전하여 펌프흡입구(29)를 통해 진공설비(도시생략)로부터 기체를 흡입하여 압축한 후 배기구(30)(31)를 통해 외부로 배출하게 되는 것이다.In the present invention, the first rotor 9 and the second rotor 10 of the rotor 13 are formed in a single body, respectively, and one end is cut after cutting the vane grooves 23 and 24 with the sleeve ( 15) The support shaft portion connected to the motor shaft 28 when the motor 27 is driven by connecting and connecting the first rotor 9 and the second rotor 10 by using the coupling coupling 14 and the coupling shaft 14. The first rotor 9 is rotated by (19), and the second rotor 10 connected by the first rotor 9 and the sleeve 15, 16 and the coupling coupling 14 together is also present. By rotating and sucking the gas from the vacuum installation (not shown) through the pump suction port 29 to compress and then discharge to the outside through the exhaust port (30) (31).
이상과 같은 본 발명에 의하면 제1로터와 제2로터의 베인홈을 일단이 개방된 형태로 로터몸체를 관통하도록 가공하고, 베인홈 가공에 의하여 2개로 분리된 지지축부의 외주에는 슬라이딩 베어링의 기능을 하는 원통링 형상의 슬리이브를 끼워 벌어짐을 구속함과 동시에 사면이 막힌 직사각형 형태의 구멍을 형성시킨 후 그 구멍에 끼워 맞춤되는 연결커플링을 사용하여 제1로터와 제2로터를 조립하게 되는 것에 의해서 종래 제1로터와 제2로터의 몸체를 각기 2개로 분할하여 제작한 후 볼트에 의해 조립하던 방식에 비해서 부품의 소요와 가공공정 및 제작시간이 크게 단축되므로써 적은 제작비용으로 로터의 생산성을 크게 높일 수 있는 효과가 있으며, 또 슬리이브의 채택에 따라 전체 로터부재에의 열처리가 생략되고 슬리이브만을 간단히 교체하여 사용할 수 있어 유지보수비용을 저감하게 되는 효과가 있다.According to the present invention as described above, the vane grooves of the first rotor and the second rotor are processed so as to penetrate the rotor body in an open shape, and a sliding bearing function is formed on the outer circumference of the support shaft separated into two by vane groove processing. The first and second rotors are assembled by using a coupling ring fitted into the holes after the cylindrical ring-shaped sleeve is constrained to form a constricted gap. By dividing the body of the first rotor and the second rotor into two, and then assembling by bolts, the required parts, processing process and manufacturing time is significantly shortened, thereby reducing the productivity of the rotor at a low manufacturing cost. There is an effect that can be greatly increased, and by adopting the sleeve, the heat treatment to the whole rotor member is omitted, and only the sleeve is simply replaced. It can be used to reduce the maintenance cost.
Claims (2)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0019420A KR100427567B1 (en) | 2001-04-12 | 2001-04-12 | Rotary vane type vacuum pump rota |
US09/921,906 US20020150489A1 (en) | 2001-04-12 | 2001-08-06 | Rotary vane type vacuum pump rotor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0019420A KR100427567B1 (en) | 2001-04-12 | 2001-04-12 | Rotary vane type vacuum pump rota |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020078458A KR20020078458A (en) | 2002-10-18 |
KR100427567B1 true KR100427567B1 (en) | 2004-04-17 |
Family
ID=19708118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2001-0019420A KR100427567B1 (en) | 2001-04-12 | 2001-04-12 | Rotary vane type vacuum pump rota |
Country Status (2)
Country | Link |
---|---|
US (1) | US20020150489A1 (en) |
KR (1) | KR100427567B1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004083604A1 (en) * | 2003-03-21 | 2004-09-30 | Luk Automobiltechnik Gmbh & Co. Kg | Pump rotor |
US7458792B2 (en) * | 2003-06-30 | 2008-12-02 | Mahle Motorkomponenten Schweiz Ag | Sintered metal rotor of a rotary piston pump |
DE102009017452B4 (en) * | 2009-04-07 | 2011-03-03 | Joma-Polytec Gmbh | Oil pump |
WO2011095148A2 (en) * | 2010-02-04 | 2011-08-11 | Ixetic Bad Homburg Gmbh | Tandem pump |
EP2746532B1 (en) * | 2012-12-19 | 2018-02-14 | Pierburg Pump Technology GmbH | Rotor assembly for a vacuum pump and vacuum pump with such a rotor assembly |
JP5991310B2 (en) * | 2013-12-18 | 2016-09-14 | 株式会社デンソー | Rotary pump and fuel vapor leak detection device using the same |
FR3023327B1 (en) * | 2014-07-04 | 2016-07-15 | Pcm | PUMPING DEVICE |
EP3032105B1 (en) * | 2014-12-12 | 2021-05-19 | Pierburg Pump Technology GmbH | Mechanical motor vehicle vacuum pump |
CN105626533B (en) * | 2015-12-25 | 2017-12-15 | 常州市武进广宇花辊机械有限公司 | Rotary-vane vaccum pump |
CN107313940B (en) * | 2017-07-28 | 2019-10-08 | 威伯科汽车控制系统(中国)有限公司 | A kind of shell and vacuum pump |
IT201900014604A1 (en) * | 2019-08-09 | 2021-02-09 | Vhit S P A Soc Unipersonale | Low-wear rotor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5598686A (en) * | 1979-01-23 | 1980-07-26 | Amadera Kuatsu Kogyo Kk | Rotor construction of rotary compressor |
JPS61152987A (en) * | 1984-12-26 | 1986-07-11 | Nippon Piston Ring Co Ltd | Manufacture of rotor for rotary fluid pump |
JPH07243384A (en) * | 1994-02-28 | 1995-09-19 | Shuichi Nozawa | Rotary pump |
-
2001
- 2001-04-12 KR KR10-2001-0019420A patent/KR100427567B1/en active IP Right Grant
- 2001-08-06 US US09/921,906 patent/US20020150489A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5598686A (en) * | 1979-01-23 | 1980-07-26 | Amadera Kuatsu Kogyo Kk | Rotor construction of rotary compressor |
JPS61152987A (en) * | 1984-12-26 | 1986-07-11 | Nippon Piston Ring Co Ltd | Manufacture of rotor for rotary fluid pump |
JPH07243384A (en) * | 1994-02-28 | 1995-09-19 | Shuichi Nozawa | Rotary pump |
Also Published As
Publication number | Publication date |
---|---|
US20020150489A1 (en) | 2002-10-17 |
KR20020078458A (en) | 2002-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4713059B2 (en) | Pressure seal for vacuum pump | |
KR100427567B1 (en) | Rotary vane type vacuum pump rota | |
US4505655A (en) | Vane pump with positioning pins for cam ring and side plates | |
JP2015068211A (en) | Rotary compressor | |
EP1750011A1 (en) | Screw rotor and screw type fluid machine | |
US20060051231A1 (en) | Compressor machine with two counter-rotating rotors | |
KR20030037834A (en) | Bearing plate structure for compressor | |
SE0003075D0 (en) | Vacuum pump | |
JPWO2020084666A1 (en) | Vane pump device | |
JPH11247761A (en) | Hermetic compressor | |
KR102451435B1 (en) | pump seal | |
KR100351151B1 (en) | Structure and method for engaging parts in compressor | |
JPH03249391A (en) | Turning rotor device | |
US5735677A (en) | Scroll type fluid machine having recesses on the swivel scroll end plate | |
KR100425741B1 (en) | Structure for reducing loss of gas flow in compressor | |
KR20040039135A (en) | Manufacturing methode for vane slot in compressor | |
KR100442403B1 (en) | Manufacturing methode for vane slot in compressor | |
JPS6347668Y2 (en) | ||
KR20240069873A (en) | Rotor for Vane Pump and Vane Pump using the same | |
KR920002172B1 (en) | Vain type rotary pump | |
KR900009051Y1 (en) | Rotary compressor | |
JP2909188B2 (en) | Fluid compressor | |
JPS59165885A (en) | Rotary compressor with multiple cylinders | |
JPH11512506A (en) | Rotary pump with oil compression chamber | |
JP5760786B2 (en) | Rotary fluid machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130404 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20140402 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20160407 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20170407 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20180409 Year of fee payment: 15 |