KR100416476B1 - A method for efficient controlling of total nitrogen content in waste water produced in manufacturing process of copper phthalocyanine - Google Patents
A method for efficient controlling of total nitrogen content in waste water produced in manufacturing process of copper phthalocyanine Download PDFInfo
- Publication number
- KR100416476B1 KR100416476B1 KR1020030055871A KR20030055871A KR100416476B1 KR 100416476 B1 KR100416476 B1 KR 100416476B1 KR 1020030055871 A KR1020030055871 A KR 1020030055871A KR 20030055871 A KR20030055871 A KR 20030055871A KR 100416476 B1 KR100416476 B1 KR 100416476B1
- Authority
- KR
- South Korea
- Prior art keywords
- acid solution
- copper phthalocyanine
- treatment
- nitrogen
- wet cake
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D1/00—Evaporating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D37/00—Processes of filtration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/24—Treatment of water, waste water, or sewage by flotation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/38—Organic compounds containing nitrogen
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Abstract
Description
본 발명은 동 프탈로시아닌 (Copper Phthalocyanine, CPC) 생산공정에서 발생된 질소 성분 함유 폐수 중의 질소 성분 총량에 대한 효율적 제어방법에 관한 것이다.The present invention relates to an efficient control method for the total amount of nitrogen in the nitrogen-containing wastewater generated in the copper phthalocyanine (CPC) production process.
프탈로시아닌계 안료는 색조가 선명하고 착색력이 우수하며, 내열성, 내광성 및 내용제성 등이 우수하여, 유기안료 제조산업에 있어서 매우 중요한 위치를 차지하고 있다. 이러한 프탈로시아닌계 안료에는 동 프탈로시아닌, 무금속 프탈로시아닌 또는 염소화동 프탈로시아닌과 같은 안료들이 있지만, 이 중에서도 동 프탈로시아닌계 안료는 유기안료 특유의 선명한 색조와 착색력이 있고, 무기안료에 필적하는 우수한 내성을 가지므로 현재 청색 계통 유기안료 시장 수요의 대부분을 차지하고 있다.Phthalocyanine-based pigments have a clear color tone, excellent coloring power, excellent heat resistance, light resistance and solvent resistance, and thus occupy a very important position in the organic pigment manufacturing industry. Such phthalocyanine pigments include pigments such as copper phthalocyanine, metal-free phthalocyanine or chlorinated copper phthalocyanine. It accounts for most of the market demand for blue organic pigments.
동 프탈로시아닌 안료는 프탈산 무수물 (Phthalic anhydride), 요소 (Urea) 및 염화 제1동 (CuCl) 등을 몰리브덴산 암모늄 (Ammonium molybdate)과 같은 촉매의 존재 하에서 반응시킴으로써 제조한다. 그러나, 동 프탈로시아닌 생산공정 중 발생된 폐수는 화학적 산소 요구량 (Chemical Oxygen Demand, COD) 및 생물학적 산소 요구량 (Biological Oxygen Demand, BOD)이 높고, 질소, 구리 이온 및 부유물질 등과 같은 다량의 환경오염 물질들을 포함한다는 문제점이 있다.Copper phthalocyanine pigments are prepared by reacting phthalic anhydride (Phthalic anhydride), urea (Urea) and cuprous chloride (CuCl) and the like in the presence of a catalyst such as ammonium molybdate. However, the wastewater generated during the phthalocyanine production process has high chemical oxygen demand (COD) and biological oxygen demand (BOD), and contains a large amount of environmental pollutants such as nitrogen, copper ions and suspended solids. There is a problem to include.
따라서, 동 프탈로시아닌 생산공정에서 발생된 폐수를 효율적으로 처리하여야 할 필요성이 제기되고 있으며, 이와 관련하여 대한민국 공개특허공보 제2000-63167호 (질소성분을 다량 함유한 안료 폐수를 효율적으로 정화시키는 방법)는, ⅰ) 폐수를 산 및 알칼리로 처리하고, 응집 및 가압 부상시켜 슬러지를 제거하는 1차 처리 단계, ⅱ) 침전제 및 응집제 처리에 의하여 1가 구리 이온을 제거하는 2차 처리 단계, ⅲ) 미생물 폭기조에서 활성오니 처리하는 3차 처리 단계, 및 ⅳ) 염소 가스를 주입하여 탈질시키고, 최종적으로 유기물을 산화 및 중화 처리하는 4차 처리 단계로 이루어진, 질소 성분을 다량 함유한 안료 폐수를 정화시키는 방법을 제공한다.Therefore, there is a need to efficiently treat the wastewater generated in the phthalocyanine production process, and in this regard, Korean Patent Publication No. 2000-63167 (Method for efficiently purifying pigment wastewater containing a large amount of nitrogen) Iii) a first treatment step of treating wastewater with acid and alkali, flocculation and pressure flotation to remove sludge, ii) a second treatment step of removing monovalent copper ions by precipitant and flocculant treatment, iii) a microorganism. A method for purifying a pigment wastewater containing a large amount of nitrogen consisting of a tertiary treatment step of treating sludge in an aeration tank, and iii) a fourth treatment step of injecting and denitrifying chlorine gas and finally oxidizing and neutralizing organic matter. To provide.
상기 방법은 기존의 활성오니법에 비하여 우수한 처리 효율로 질산화물을 함유한 폐수를 정화시킴으로써 처리 폐수 중 COD 및 BOD 수치를 환경 허용 기준치 이하로 낮추고, 구리 이온 및 부유물질을 제거할 수 있다는 장점이 있다.The method has the advantage of lowering the COD and BOD levels in the treated wastewater to below the environmentally acceptable standard and removing copper ions and suspended solids by purifying wastewater containing nitric oxide with superior treatment efficiency compared to the conventional activated sludge process. .
그러나, 최근 환경부는 수질환경보전법을 개정하여 폐수처리 기준을 더욱 강화한 바 있으며 (수질환경보전법 시행규칙 별표 5, '오염물질의 배출 허용 기준',2001년 12월 22일 개정), 강화된 폐수처리 기준에서는, 방류수 중 총 질소 (T-N) 량은, 청정 지역을 제외한 기타 지역을 기준으로 60 mg/l의 기준을 충족하여야 하지만, 이러한 기준에 따를 경우 상기 방법으로는 상기 기준을 충족시킬 수 없다는 문제점이 있다.However, the Ministry of Environment recently revised the Water Environment Conservation Act to further strengthen wastewater treatment standards (Attachment 5 of the Enforcement Regulations of the Water Environment Conservation Act, Amendment Standards for Contaminant Emissions, Dec. 22, 2001). Under the standard, the total nitrogen (TN) content of the effluent must meet the criteria of 60 mg / l based on the rest of the world except for the clean area, but the above method cannot meet the above standard. There is this.
따라서, 본 발명은 동 프탈로시아닌 생산공정에서 발생된 질소 성분 함유 폐수 중의 질소 성분 총량을, 종래 기술보다도 더욱 효율적으로 제어할 수 있는 새로운 폐수처리 방법을 제공하고자 하는 데에 그 기술적 과제가 있다.Therefore, the present invention has a technical problem to provide a new wastewater treatment method capable of controlling the total amount of nitrogen in the nitrogen component-containing wastewater generated in the phthalocyanine production process more efficiently than the prior art.
도 1은 본 발명에 따른 폐수처리방법에 대한 개략적인 공정 흐름도이다.1 is a schematic process flowchart of a wastewater treatment method according to the present invention.
본 발명은, 동 프탈로시아닌 생산공정에서 발생된 질소 성분 함유 폐수 중의 질소 성분 총량을 제어하는 방법에 있어서,The present invention is a method for controlling the total amount of nitrogen components in the nitrogen component-containing wastewater generated in the phthalocyanine production step,
(a) 건조된 동 프탈로시아닌을 알카리 용액에 넣고 교반 및 여과하는 단계;(a) putting dried copper phthalocyanine into an alkaline solution and stirring and filtering;
(b) 상기 (a) 단계에서 여과된 웨트 케이크 (wet cake)를 물로 세척한 다음 산 용액에 넣고 교반 및 여과하고, 상기 (a) 단계에서 발생된 1차 여과액을 증발 및 농축시키는 단계; 및(b) washing the wet cake filtered in step (a) with water, then putting it in an acid solution, stirring and filtering, and evaporating and concentrating the primary filtrate generated in step (a); And
(c) 상기 (b) 단계에서 여과된 웨트 케이크를 건조시킴으로써 동 프탈로시아닌을 제조하고, 상기 (b) 단계에서 발생된 2차 여과액을 산 및 알카리 처리하여 중화시키고, 유기응집제 처리 및 가압부상으로 슬러지를 제거하고, 무기응집제 처리 및 침전에 의하여 1가 구리 이온을 제거하고, 염소가스를 처리하여 질소를 제거하고, 중화 후 방류시키는 단계를 포함하는 것을 특징으로 하는 방법을 제공한다.(c) preparing copper phthalocyanine by drying the wet cake filtered in step (b), and neutralizing the secondary filtrate generated in step (b) by acid and alkali treatment, followed by organic coagulant treatment and pressurization. Removing sludge, removing monovalent copper ions by inorganic coagulant treatment and precipitation, treating chlorine gas to remove nitrogen, and neutralizing and then discharging the same.
또한, 본 발명은, 동 프탈로시아닌 생산공정에서 발생된 질소 성분 함유 폐수 중의 질소 성분 총량을 제어하는 방법에 있어서,In addition, the present invention is a method for controlling the total amount of nitrogen components in the nitrogen component-containing wastewater generated in the phthalocyanine production step,
(a) 건조된 동 프탈로시아닌을 제1 산 용액에 넣고 교반 및 여과하는 단계;(a) putting dried copper phthalocyanine into the first acid solution and stirring and filtering;
(b) 상기 (a) 단계에서 여과된 웨트 케이크를 물로 세척한 다음 제2 산 용액에 넣고 교반 및 여과하고, 상기 (a) 단계에서 발생된 1차 여과액을 증발 및 농축시키는 단계; 및(b) washing the wet cake filtered in step (a) with water, stirring and filtering in a second acid solution, and evaporating and concentrating the primary filtrate generated in step (a); And
(c) 상기 (b) 단계에서 여과된 웨트 케이크를 건조시킴으로써 동 프탈로시아닌을 제조하고, 상기 (b) 단계에서 발생된 2차 여과액을 산 및 알카리 처리하여 중화시키고, 유기응집제 처리 및 가압부상으로 슬러지를 제거하고, 무기응집제 처리 및 침전에 의하여 1가 구리 이온을 제거하고, 염소가스를 처리하여 질소를 제거하고, 중화 후 방류시키는 단계를 포함하는 것을 특징으로 하는 방법을 제공한다.(c) preparing copper phthalocyanine by drying the wet cake filtered in step (b), and neutralizing the secondary filtrate generated in step (b) by acid and alkali treatment, followed by organic coagulant treatment and pressurization. Removing sludge, removing monovalent copper ions by inorganic coagulant treatment and precipitation, treating chlorine gas to remove nitrogen, and neutralizing and then discharging the same.
본 발명에 따른 방법을 첨부 도면을 참조하여 더욱 상세히 설명하기로 한다.The method according to the invention will be described in more detail with reference to the accompanying drawings.
동 프탈로시아닌 제조 공정에서 발생되는 암모니아 중, 대기로 방출되는 암모니아는 물 흡수에 의한 1, 2차 포집 및 황산 흡수에 의한 3차 포집을 거쳐 유안 제조 공정으로 유도되고, 폐수로 유입되는 질소 성분이 본 발명에 따른 처리 공정을 거치게 된다.Among the ammonia produced in the phthalocyanine manufacturing process, the ammonia released into the atmosphere is led to the manufacturing process through the first and second collection by water absorption and the third collection by sulfuric acid absorption. The treatment process according to the invention is carried out.
동 프탈로시아닌 제조 공정으로부터 제조된 동 프탈로시아닌을 건조시킨 후에는, 이를 알카리 용액에 넣고 교반시킨 다음, 여과하는 과정을 수행한다. 알카리 용액은 2 내지 3%의 NaOH 용액을 사용하는 것이 바람직하다. 이러한 알카리 용액에 의한 여과 과정은 동 프탈로시아닌 조생성물에 포함된 암모니아 계열의 불순물 등을 제거하기 위한 과정이다.After the copper phthalocyanine prepared from the copper phthalocyanine manufacturing process is dried, it is placed in an alkali solution, stirred, and then filtered. It is preferable to use 2 to 3% NaOH solution for the alkaline solution. The filtration process by the alkali solution is a process for removing impurities such as ammonia-based impurities contained in the crude phthalocyanine crude product.
상기 알카리 용액에 의한 여과 단계에서 발생된 1차 여과액은 고농도의 질소를 함유하는 폐수로서, 증발농축 공정을 거치게 되며, 증발농축 공정에서 발생된 증기는 여과 과정에서의 가열수단으로 재사용된다.The primary filtrate generated in the filtration step by the alkaline solution is a wastewater containing high concentration of nitrogen, undergoes an evaporation concentration process, and the steam generated in the evaporation concentration process is reused as a heating means in the filtration process.
또한, 상기 알카리 용액에 의한 여과 단계로부터 얻어진 웨트 케이크는, 이를 물로 세척한 후, 산 용액에 넣고 교반 및 여과시키는 단계를 수행한다. 산 용액으로는 2 내지 3%의 황산 용액을 사용하는 것이 바람직하다. 이러한 산 용액에 의한 여과 과정은 알카리 용액에 의한 여과 과정에서 가수분해되지 않은 나머지 불순물을 제거하기 위한 과정이며, 특히 무기계열 불순물을 제거하기 위한 과정이다.In addition, the wet cake obtained from the filtration step with the alkaline solution is washed with water, and then put in an acid solution and stirred and filtered. It is preferable to use 2-3% sulfuric acid solution as the acid solution. The filtration process using the acid solution is a process for removing remaining impurities that are not hydrolyzed in the filtration process with an alkaline solution, and in particular, a process for removing inorganic impurities.
상기 산 용액에 의한 여과 단계에서 발생된 2차 여과액에 대해서는 대한민국 공개특허공보 제2000-63167호에 개시된 것과 유사한 폐수처리 과정이 수행된다. 상기 특허공보는 ⅰ) 산 및 알카리 처리에 의하여 여과액을 중화시키고, 무기ㆍ유기응집제를 처리하여 가압부상시키는 1차 처리 단계, ⅱ) 구리이온에 대한 침전제 및 무기ㆍ유기응집제를 처리하여 구리 이온을 제거하는 2차 처리 단계, ⅲ) 미생물 폭기조에서 활성오니 처리를 행하는 3차 처리 단계, 및 ⅳ) 염소가스 주입에 의한 탈질반응 및 최종 유기물 산화 후 중화 방류를 행하는 4차 처리 단계로 이루어진다.For the second filtrate generated in the filtration step by the acid solution, a wastewater treatment process similar to that disclosed in Korean Laid-Open Patent Publication No. 2000-63167 is performed. The patent publication includes: i) a primary treatment step of neutralizing the filtrate by acid and alkali treatment, and treating the inorganic / organic coagulant by pressure flotation; ii) treating the precipitant against the copper ion and the inorganic / organic coagulant to obtain copper ions. The secondary treatment step of removing iii), iii) a third treatment step of performing activated sludge treatment in a microbial aeration tank, and iii) a fourth treatment step of carrying out neutralization discharge after denitrification by chlorine gas injection and oxidation of the final organic matter.
그러나, 이에 반하여 본 발명에서는, 상기 단계들 중 ⅲ)의 단계, 즉 활성오니 처리 단계를 생략함으로써 공정 단축을 도모하였으며, 따라서 본 발명은 이러한 공정 단축에도 불구하고 상기 종래의 폐수처리 과정과 거의 대등한 정도의 BOD 내지 COD 값을 얻을 수 있다는 점에서, 처리비용 및 운전시간을 획기적으로 감소시킬 수 있다는 효과가 있다.However, in the present invention, the process is shortened by omitting the step (i) of the above steps, that is, the activated sludge treatment step, and thus the present invention is almost equivalent to the conventional wastewater treatment process in spite of this process shortening. Since the BOD to COD values can be obtained to some extent, there is an effect that the treatment cost and the operation time can be drastically reduced.
또한, 본 발명은 상기 특허공보에 개시된 방법과는 달리, 사용되는 탈질반응에 사용되는 염소가스의 양을 획기적으로 감소시켰다. 즉, 상기 방법이 염소가스를 5kg/시간 이하의 속도로, 170 내지 190ppm의 농도가 될 때까지, 7 내지 9시간 동안 체류시킴에 반하여, 본 발명은 염소가스를 2kg/시간 이하의 속도로, 60 내지 70ppm의 농도가 될 때까지, 1 내지 3시간 동안 체류시키는 것을 특징으로 한다.In addition, the present invention, unlike the method disclosed in the above patent publication, significantly reduced the amount of chlorine gas used in the denitrification reaction used. That is, while the above method maintains chlorine gas at a rate of 5 kg / hour or less and 7 to 9 hours until it reaches a concentration of 170 to 190 ppm, the present invention provides chlorine gas at a rate of 2 kg / hour or less, It is characterized by the retention for 1 to 3 hours until the concentration of 60 to 70ppm.
이러한, 염소가스의 사용량 감소는 처리비용 및 대기오염 유발 가능성을 감소시킨다는 점 이외에도, 승온시 염화물이 생성될 수 있는 위험성을 감소시킨다는 점에서 기존 방법에 비해서 매우 뛰어난 효과를 갖는다고 할 수 있다.In addition to the reduction in the amount of chlorine gas used, the treatment cost and the possibility of causing air pollution can be said to have a very excellent effect compared to the conventional method in that the risk of generating chloride at elevated temperature is reduced.
본 발명은 또한, 상기 동 프탈로시아닌의 알카리 여과 후 산 여과에 따른 처리방법 이외에도, 동 프탈로시아닌의 제1 산 용액에 의한 여과 후 제2 산 용액에 의한 여과에 따른 처리방법을 제공한다.The present invention also provides a treatment method according to filtration with a second acid solution after filtration with a first acid solution of copper phthalocyanine, in addition to a treatment method with acid filtration after alkali filtration of copper phthalocyanine.
본 발명에 따른 제1 산용액으로는 2 내지 3%의 황산 용액이 사용될 수 있으며, 제2 산용액으로는 1 내지 2%의 황산 용액이 사용될 수 있다.2 to 3% sulfuric acid solution may be used as the first acid solution according to the present invention, and 1 to 2% sulfuric acid solution may be used as the second acid solution.
이하, 본 발명을 하기 실시예를 참조하여 더욱 상세히 설명하기로 하지만, 본 발명이 하기 실시예에 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples.
실시예 1. 동 프탈로시아닌의 합성Example 1 Synthesis of Copper Phthalocyanine
3L의 1차 반응기에 무수 프탈산 630g (애경유화: 99.94%) 및 알킬 벤젠계 유기용제인 Essolve-350P (이수화학) 862 mL를 넣고 교반하였다. 다음으로, 5L의 2차 반응기에 1차 반응기에서 합성된 프탈이미드 626g, 요소 (남해화학: 99.9%) 630g, CuCl (한서화학: 98.4%) 103.35g, 몰리브덴산 암모늄 1.72g 및 유기용제 Essolve-350P 1538mL를 넣고 교반하였다.630 g of phthalic anhydride (Aekyung Emulsification: 99.94%) and 862 mL of an alkyl benzene organic solvent, Essolve-350P (Isu Chemical), were added to a 3 L primary reactor and stirred. Next, 626 g of phthalimide synthesized in the first reactor in a 5 L secondary reactor, 630 g of urea (Namhae Chemical: 99.9%), 103.35 g of CuCl (Hanseo Chemical: 98.4%), 1.72 g of ammonium molybdate, and an organic solvent Essolve 15350 mL -350P was added and stirred.
1차 반응기와 2차 반응기를 내경 1cm의 관으로 연결한 다음 170℃까지 승온시키고, 2차 반응기의 압력이 5kg/cm2로 유지되면 2차 반응기의 외부 온도를 240℃로 유지하면서, 2차 반응기의 발생 기체를 1차 반응기로 이송하며, 1차 반응기를 온도 170℃, 압력 3kg/cm2로 유지하면서 5시간 동안 반응시켰다.Connect the primary reactor and the secondary reactor with a pipe of 1 cm inner diameter and then increase the temperature to 170 ° C., and maintain the external temperature of the secondary reactor at 240 ° C. when the pressure of the secondary reactor is maintained at 5 kg / cm 2 . The gas generated in the reactor was transferred to the primary reactor, and the primary reactor was reacted for 5 hours while maintaining the temperature at 170 ° C. and the pressure of 3 kg / cm 2 .
반응 중 발생되는 암모니아는 40% 황산용액으로 흡수하였으며, 이때 유안이 형성되었고 기체와 함께 용제가 방출되었다. 방출된 용제는 물과 분리하여 회수하였고, 물에 용해되어 있는 유안 성분은 활성탄 처리 후, 농축 및 결정화하여 건조시켰다.The ammonia generated during the reaction was absorbed by 40% sulfuric acid solution, at which time a yuan was formed and the solvent was released together with the gas. The released solvent was recovered from water and recovered, and the soluble component dissolved in water was dried after being treated with activated carbon, concentrated and crystallized.
동 프탈로시아닌 합성 반응 완료 후, 동 프탈로시아닌 조생성물을 상온으로 냉각하고 여과 후 건조시켰다.After the copper phthalocyanine synthesis reaction was completed, the copper phthalocyanine crude product was cooled to room temperature, filtered and dried.
실시예 2. 여과 실험Example 2. Filtration Experiment
실시예 2-1. 알카리 용액 여과 후 산 용액 여과Example 2-1. Acid solution filtration after alkaline solution filtration
1L 비이커에 건조된 동 프탈로시아닌 200g을 넣고, 3% 알카리 용액 400mL를 넣은 후 교반하였다. 용액의 온도를 80℃로 유지하고, 1시간 동안 교반시킨 후 여과하였다. 여과 완료 후 1차 여과액은 증발 및 농축시키고, 웨트 케이크는 80℃의 물 200mL로 세척한 다음 (함수율 30%), 2L 비이커에 웨트 케이크 및 3% 황산 용액1000mL를 넣고 80℃로 유지하며 1시간 동안 교반한 후 여과하였다.200 g of dried copper phthalocyanine was added to a 1 L beaker, and 400 mL of 3% alkaline solution was added thereto, followed by stirring. The temperature of the solution was maintained at 80 ° C., stirred for 1 hour and then filtered. After completion of filtration, the primary filtrate was evaporated and concentrated, and the wet cake was washed with 200 mL of water at 80 ° C. (water content of 30%), and 1000 mL of wet cake and 3% sulfuric acid solution was added to a 2 L beaker and kept at 80 ° C. Stir for hours and filter.
여과 완료 후 웨트 케이크 (함수율 30%)는 물 1000mL로 세척하고 120℃에서 12시간 동안 건조시킴으로써 동 프탈로시아닌을 제조하고, 2차 여과액 (여과액량: 1900mL)에 대해서는 별도의 2차 여과액 처리 과정을 수행하였다.After completion of the filtration, the wet cake (water content: 30%) was washed with 1000 mL of water and dried at 120 ° C. for 12 hours to prepare copper phthalocyanine, and for the second filtrate (filtrate: 1900 mL), a separate secondary filtrate treatment procedure was performed. Was performed.
실시예 2-2. 제1 산 용액 여과 후 제2 산 용액 여과Example 2-2. Second acid solution filtration after first acid solution filtration
실시예 2-1과 동일한 방법으로 수행하되, 3% 알카리 용액 400mL 대신에 3% 황산 용액 400mL를 사용하였다.In the same manner as in Example 2-1, 400 mL of 3% sulfuric acid solution was used instead of 400 mL of 3% alkaline solution.
비교예 2-1. 산 용액에 의한 1회 여과Comparative Example 2-1. One time filtration by acid solution
2L 비이커에 건조된 동 프탈로시아닌 200g을 넣고, 3% 황산 용액 1200mL를 넣은 후 교반하였다. 용액의 온도를 80℃로 유지하고, 1시간 동안 교반시킨 후 여과하였다. 여과 완료 후 웨트 케이크 (함수율 50%)는 물 1200mL로 세척하고 120℃에서 12시간 동안 건조시킴으로써 동 프탈로시아닌을 제조하고, 여과액 (여과액량: 2240mL)에 대해서는 별도의 여과액 처리 과정을 수행하였다.200 g of dried copper phthalocyanine was added to a 2 L beaker, 1200 mL of a 3% sulfuric acid solution was added thereto, followed by stirring. The temperature of the solution was maintained at 80 ° C., stirred for 1 hour and then filtered. After completion of the filtration, the wet cake (50% water content) was washed with 1200 mL of water and dried at 120 ° C. for 12 hours to prepare copper phthalocyanine, and a filtrate (filtrate: 2240 mL) was subjected to a separate filtrate treatment process.
비교예 2-2. 1차 물 여과 후 2차 산 용액 여과Comparative Example 2-2. Secondary acid solution filtration after primary water filtration
1L 비이커에 건조된 동 프탈로시아닌 200g을 넣고, 물 400mL를 넣은 후 교반하였다. 용액의 온도를 80℃로 유지하고, 1시간 동안 교반시킨 후 여과하였다. 여과 완료 후 1차 여과액은 증발 및 농축시키고, 웨트 케이크는 80℃의 물 200mL로 세척한 다음 (함수율 50%), 2L 비이커에 웨트 케이크 및 3% 황산 용액 1000mL를 넣고 80℃로 유지하며 1시간 동안 교반한 후 여과하였다.200 g of dried copper phthalocyanine was added to a 1 L beaker, 400 mL of water was added thereto, followed by stirring. The temperature of the solution was maintained at 80 ° C., stirred for 1 hour and then filtered. After filtration was completed, the primary filtrate was evaporated and concentrated, and the wet cake was washed with 200 mL of water at 80 ° C. (50% water content), and then, 1000 mL of the wet cake and 3% sulfuric acid solution was added to a 2 L beaker and maintained at 80 ° C. 1 Stir for hours and filter.
여과 완료 후 웨트 케이크 (함수율 50%)는 물 1000mL로 세척하고 120℃에서12시간 동안 건조시킴으로써 동 프탈로시아닌을 제조하고, 2차 여과액 (여과액량: 1900mL)에 대해서는 별도의 2차 여과액 처리 과정을 수행하였다.After completion of the filtration, the wet cake (50% water content) was washed with 1000 mL of water and dried at 120 ° C. for 12 hours to prepare copper phthalocyanine, and for the second filtrate (filtrate amount: 1900 mL), a separate secondary filtrate treatment procedure was performed. Was performed.
실시예 3. 여과액 처리 실험Example 3 Filtrate Treatment Experiment
상기 실시예 2-1, 실시예 2-2, 비교예 2-1 및 비교예 2-2의 여과액에 대하여 하기와 같이 여과액 처리 실험을 수행하였다.The filtrate treatment experiment was performed on the filtrate of Example 2-1, Example 2-2, Comparative Example 2-1 and Comparative Example 2-2 as follows.
2000mL의 비이커에 각각 실시예 2-1, 실시예 2-2, 비교예 2-1 및 비교예 2-2의 여과액 1000mL를 넣고, pH를 중성으로 맞추기 위해서, 교반하면서 25% NaOH를 각각 실시예 2-1의 여과액에 대하여 33mL, 실시예 2-2의 여과액에 대하여 37mL, 비교예 2-1의 여과액에 대하여 37mL, 비교예 2-2의 여과액에 대하여 35mL 만큼 가하여 주었다. 이어서, 0.1% 비이온성 고분자 응집제 Polymer A (코오롱유화) 0.3mL를 첨가하고 1시간 동안 정치시킨 후, 응집슬러리와 맑은 상등액을 분리하고 응집슬러리는 여과하여 제거하였다.1000 mL of the filtrate of Example 2-1, Example 2-2, Comparative Example 2-1, and Comparative Example 2-2 was put into a 2000 mL beaker, respectively, and 25% NaOH was each performed with stirring to adjust pH to neutral. 33 mL of the filtrate of Example 2-1, 37 mL of the filtrate of Example 2-2, 37 mL of the filtrate of Comparative Example 2-1, and 35 mL of the filtrate of Comparative Example 2-2 were added. Subsequently, after adding 0.3 mL of 0.1% nonionic polymer flocculant Polymer A (Kolon Emulsifier) and standing for 1 hour, the flocculating slurry and the clear supernatant were separated and the flocculating slurry was filtered out.
중성화된 후 응집처리된 폐수에 잔류하는 구리 이온을 제거하기 위해서, 30% 유화소다를 각각 실시예 2-1의 여과액에 대하여 0.3mL, 실시예 2-2의 여과액에 대하여 0.2mL, 비교예 2-1의 여과액에 대하여 0.7mL, 비교예 2-2의 여과액에 대하여 0.6mL를 넣고 10분간 교반하였다. 이어서, 과량으로 잔류하는 황화소다를 제거하기 위해서 11% 황산제일철을 실시예 2-1의 여과액에 대하여 0.3mL, 실시예 2-2의 여과액에 대하여 0.2mL, 비교예 2-1의 여과액에 대하여 0.6mL, 비교예 2-2의 여과액에 대하여 0.5mL 만큼 넣은 후 1분간 교반하고, 12 내지 14시간 동안 정치시켜 맑은 상등액을 분리하고, 응집된 침전물은 여과하여 제거하였다.In order to remove the copper ions remaining in the coagulated waste water after neutralization, 30% sodium hydroxide was 0.3 mL with respect to the filtrate of Example 2-1 and 0.2 mL with respect to the filtrate of Example 2-2, respectively. 0.7 mL was added to the filtrate of Example 2-1 and 0.6 mL was added to the filtrate of Comparative Example 2-2, followed by stirring for 10 minutes. Subsequently, in order to remove excess sodium sulfide, 11% ferrous sulfate was filtered with 0.3 mL of the filtrate of Example 2-1, 0.2 mL of the filtrate of Example 2-2, and filtration of Comparative Example 2-1. 0.6 mL of the solution and 0.5 mL of the filtrate of Comparative Example 2-2 were added, followed by stirring for 1 minute, the mixture was allowed to stand for 12 to 14 hours to separate the clear supernatant, and the aggregated precipitate was removed by filtration.
상기 폐수에 희석수 3000mL를 넣고, 60ppm의 염소를 주입한 다음, 2시간 동안 방치하고 pH를 중성으로 조절하였다.Into the wastewater was put 3000mL of dilution water, 60ppm of chlorine was injected, it was left for 2 hours and the pH was adjusted to neutral.
하기 표 1에는 기존의 통상적인 방법에 의하여 폐수를 처리한 경우 (기존 방법 1), 대한민국 공개특허공보 제2000-63167호에 기재된 방법에 의하여 폐수를 처리한 경우 (기존 방법 2), 비교예 2-1, 비교예 2-2에 따라서 폐수를 처리한 경우 및 본 발명에 따라서 폐수를 처리한 경우 각각에 대하여 총 질소, 구리 이온, 부유물질의 농도, COD, BOD 및 질소제거 효율을 나타내었다.Table 1 below shows a case where the wastewater is treated by a conventional method (existing method 1), when the wastewater is treated by the method described in Korean Laid-Open Patent Publication No. 2000-63167 (existing method 2), Comparative Example 2 The total nitrogen, copper ions, suspended solids concentrations, COD, BOD, and nitrogen removal efficiencies were shown for each of the wastewater treated according to −1 and Comparative Example 2-2 and the treated wastewater according to the present invention.
표 1에서 볼 수 있는 바와 같이 본 발명에 따른 폐수처리방법에 의할 경우, 앞서 언급한 바와 같이 수질환경보전법 시행규칙 별표 5, '오염물질의 배출 허용 기준'에 의한 방류수 중 총 질소량 기준인 60 mg/l를 충족시킬 수 있게 된다.As can be seen from Table 1, according to the wastewater treatment method according to the present invention, as mentioned above, the total nitrogen content in the discharged water according to the Attachment 5 of the Enforcement Regulations of the Water Environment Conservation Act, 60, 'Acceptance Standard for Pollutants', is 60 mg / l can be met.
본 발명은 동 프탈로시아닌 생산공정에서 발생된 질소 성분 함유 폐수 중의 질소 성분 총량을 효율적으로 제어함으로써, 강화된 환경기준을 충족하는 새로운 폐수처리 방법을 제공할 수 있다.The present invention can provide a new wastewater treatment method that satisfies the enhanced environmental standards by efficiently controlling the total amount of nitrogen in the nitrogen-containing wastewater generated in the phthalocyanine production process.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030055871A KR100416476B1 (en) | 2003-08-12 | 2003-08-12 | A method for efficient controlling of total nitrogen content in waste water produced in manufacturing process of copper phthalocyanine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030055871A KR100416476B1 (en) | 2003-08-12 | 2003-08-12 | A method for efficient controlling of total nitrogen content in waste water produced in manufacturing process of copper phthalocyanine |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100416476B1 true KR100416476B1 (en) | 2004-01-31 |
Family
ID=37319078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030055871A KR100416476B1 (en) | 2003-08-12 | 2003-08-12 | A method for efficient controlling of total nitrogen content in waste water produced in manufacturing process of copper phthalocyanine |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100416476B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103449630A (en) * | 2013-09-02 | 2013-12-18 | 苏州富奇诺水治理设备有限公司 | Treatment method for gelatin production wastewater |
CN104003550A (en) * | 2014-05-26 | 2014-08-27 | 苏州市众和固体废物回收处理有限公司 | Copper-containing wastewater treatment system |
CN104118947A (en) * | 2013-04-24 | 2014-10-29 | 中国科学院生态环境研究中心 | Antibiotic wastewater advanced treatment and reuse method |
CN104925986A (en) * | 2015-04-21 | 2015-09-23 | 杭州科瑞特环境技术有限公司 | Near-zero discharge treatment system for pickling waste liquid and washing wastewater in steel industry and process thereof |
CN105776614A (en) * | 2016-04-28 | 2016-07-20 | 山东黄河三角洲纺织科技研究院有限公司 | Method for treating copper phthalocyanine dye printing washing wastewater |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5520665A (en) * | 1978-07-31 | 1980-02-14 | Gunze Ltd | Dye waste water treating method |
KR19980077862A (en) * | 1997-04-18 | 1998-11-16 | 지종기 | Industrial wastewater denitrification and purification |
KR20000063167A (en) * | 2000-04-04 | 2000-11-06 | 이종민 | A process for the purification of factory wastes of pigments containing rich nitrogen element |
-
2003
- 2003-08-12 KR KR1020030055871A patent/KR100416476B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5520665A (en) * | 1978-07-31 | 1980-02-14 | Gunze Ltd | Dye waste water treating method |
KR19980077862A (en) * | 1997-04-18 | 1998-11-16 | 지종기 | Industrial wastewater denitrification and purification |
KR20000063167A (en) * | 2000-04-04 | 2000-11-06 | 이종민 | A process for the purification of factory wastes of pigments containing rich nitrogen element |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104118947A (en) * | 2013-04-24 | 2014-10-29 | 中国科学院生态环境研究中心 | Antibiotic wastewater advanced treatment and reuse method |
CN104118947B (en) * | 2013-04-24 | 2016-04-13 | 中国科学院生态环境研究中心 | A kind of method of antibiotic waste water advanced treatment and reuse |
CN103449630A (en) * | 2013-09-02 | 2013-12-18 | 苏州富奇诺水治理设备有限公司 | Treatment method for gelatin production wastewater |
CN104003550A (en) * | 2014-05-26 | 2014-08-27 | 苏州市众和固体废物回收处理有限公司 | Copper-containing wastewater treatment system |
CN104003550B (en) * | 2014-05-26 | 2015-10-07 | 苏州市众和固体废物回收处理有限公司 | Copper-containing wastewater treatment system |
CN104925986A (en) * | 2015-04-21 | 2015-09-23 | 杭州科瑞特环境技术有限公司 | Near-zero discharge treatment system for pickling waste liquid and washing wastewater in steel industry and process thereof |
CN105776614A (en) * | 2016-04-28 | 2016-07-20 | 山东黄河三角洲纺织科技研究院有限公司 | Method for treating copper phthalocyanine dye printing washing wastewater |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4005011A (en) | Method for treating effluent resulting from the manufacture of synthetic dyestuffs and related intermediate chemicals | |
CN109293148B (en) | Treatment device and treatment method for sulfur-containing and salt-containing wastewater | |
CN103288236A (en) | Treatment method for salt-containing wastewater | |
CN104591449A (en) | Method for removing bromine from disperse dye wastewater | |
KR101837731B1 (en) | The Disposal system of dyeing wastewater | |
JP2683991B2 (en) | Dyeing wastewater treatment method | |
US6059978A (en) | Method of removing colorants from wastewater | |
CN111018169B (en) | Advanced treatment method for cyanogen-fluorine combined pollution wastewater | |
KR100416476B1 (en) | A method for efficient controlling of total nitrogen content in waste water produced in manufacturing process of copper phthalocyanine | |
CN108793558B (en) | Method for treating wastewater generated in activated carbon production by phosphoric acid activation method | |
US4539119A (en) | Process for the treatment of waste and contaminated waters with improved recovery of aluminum and iron flocculating agents | |
CN104926033A (en) | Efficient treatment method for printing and dyeing wastewater | |
CN113735346A (en) | Method for treating organic chemical wastewater | |
CN105254067B (en) | The resource utilization method of advanced treatment of wastewater Fenton process sludge | |
JPH0124558B2 (en) | ||
JPS58153594A (en) | Treatment of organic waste | |
CN110590024B (en) | Method for treating DSD acid oxidative condensation wastewater | |
CN111470724B (en) | Deep purification treatment method for spandex industrial production wastewater | |
RU2361823C1 (en) | Sewage treatment plant for solid domestic wastes | |
KR100318661B1 (en) | Wastewater treatment agent and its treatment method | |
CN110759548B (en) | Combined purification treatment method for landfill leachate membrane separation system | |
JPS6320600B2 (en) | ||
CN111362487A (en) | Sewage treatment method | |
CN109205916A (en) | The processing method of wash water is sprayed in production process of activated carbon | |
JPS6339309B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20110114 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20120110 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20141216 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20160823 Year of fee payment: 13 |
|
R401 | Registration of restoration | ||
FPAY | Annual fee payment |
Payment date: 20161219 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20171208 Year of fee payment: 15 |
|
FPAY | Annual fee payment |
Payment date: 20181127 Year of fee payment: 16 |
|
FPAY | Annual fee payment |
Payment date: 20191217 Year of fee payment: 17 |