[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR100360476B1 - 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그제조방법 - Google Patents

탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그제조방법 Download PDF

Info

Publication number
KR100360476B1
KR100360476B1 KR1020000035703A KR20000035703A KR100360476B1 KR 100360476 B1 KR100360476 B1 KR 100360476B1 KR 1020000035703 A KR1020000035703 A KR 1020000035703A KR 20000035703 A KR20000035703 A KR 20000035703A KR 100360476 B1 KR100360476 B1 KR 100360476B1
Authority
KR
South Korea
Prior art keywords
carbon nanotubes
nano
holes
vertical transistor
transistor
Prior art date
Application number
KR1020000035703A
Other languages
English (en)
Other versions
KR20020001260A (ko
Inventor
최원봉
이조원
이영희
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to KR1020000035703A priority Critical patent/KR100360476B1/ko
Priority to CNB01122021XA priority patent/CN1193430C/zh
Priority to JP2001192414A priority patent/JP4338910B2/ja
Priority to US09/891,240 priority patent/US6566704B2/en
Publication of KR20020001260A publication Critical patent/KR20020001260A/ko
Application granted granted Critical
Publication of KR100360476B1 publication Critical patent/KR100360476B1/ko
Priority to US10/386,536 priority patent/US6833567B2/en
Priority to US10/387,561 priority patent/US6855603B2/en
Priority to US10/388,450 priority patent/US6815294B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/02Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change
    • G11C13/025Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change using fullerenes, e.g. C60, or nanotubes, e.g. carbon or silicon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/17Memory cell being a nanowire transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/491Vertical transistors, e.g. vertical carbon nanotube field effect transistors [CNT-FETs]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/708Integrated with dissimilar structures on a common substrate with distinct switching device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/723On an electrically insulating substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/936Specified use of nanostructure for electronic or optoelectronic application in a transistor or 3-terminal device
    • Y10S977/938Field effect transistors, FETS, with nanowire- or nanotube-channel region

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Thin Film Transistor (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Memories (AREA)

Abstract

본 발명은 테라비트급으로 고집적화가 가능한 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그 제조 방법(Vertical nano-size transistor using carbon nanotubes)를 기재한다. 본 발명에 따른 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터는 알루미나와 같은 절연막에 직경 수nm의 구멍을 수 nm 간격으로 형성하여 탄소나노튜브를 화학기상법, 전기영동법 또는 기계적 방법으로 나노 크기의 구멍 속에서 수직으로 배열시켜 채널로 이용하고, 반도체 제조 방법을 이용하여 탄소나노튜브의 둘레에 게이트 전극을 형성하고 탄소나노튜브의 위아래에 각각 소스와 드레인 전극을 형성함으로써 전기적으로 스위칭 특성을 갖는 나노 크기의 수직 트랜지스터를 제작한다.

Description

탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그 제조 방법{Vertical nano-size transistor using carbon nanotubes and manufacturing method thereof}
본 발명은 테라비트급으로 고집적화가 가능한 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그 제조 방법(Vertical nano-size transistor using carbon nanotubes)에 관한 것이다.
종래의 실리콘 기판을 이용하여 제작하는 스위칭 소자는 기본적으로 불순물 확산 영역, 소자 분리 영역 및 채널이 수평적으로 연결된 구조를 가지고 있고, 또한 이러한 스위칭 소자를 여러개 집적화시킨 집적 회로도 개개의 스위칭 소자를 수평적으로 배열하여 집적화시키는 구조를 가지고 있을 뿐 만 아니라 실리콘 기판에 앞서 언급한 불순물 확산영역이나 소자 분리영역을 형성시킬 경우 공정상의 복잡성으로 인하여 미세화 및 집적화에 한계를 가지고 있었다. 기존의 미세한 스위칭 소자로서 가장 일반적으로 사용되고 있는 MOSFET(Metal oxide semiconductor field effect transistor)의 경우, 실제로 최소 패턴 크기가 0.25μm인 256M DRAM에서 소자의 크기는 약 0.72μm2이고, 최소 패턴 크기가 0.18μm인 1G DRAM에서 소자의 크기는 약 0.32μm2이며, 최소 패턴 크기가 0.13μm인 4G DRAM에서 소자의 크기는 대략 0.18μm2이고, 최소 패턴 크기가 0.1μm인 16G DRAM에서 소자의 크기는 약 0.1μm2정도이다. 이러한 기존의 스위칭 소자가 가지는 미세화의 한계를 극복하기 위한 방안으로 탄소나노튜브를 이용한 개별 스위칭 소자가 제안되었지만 여전히 기존의 스위칭 소자와 유사한 형태의 수평적인 구조를 가지고 있고 더욱이 개개의 탄소나노튜브를 조작하는데 많은 제약이 있기 때문에 이러한 탄소나노튜브를 이용한 개별소자는 고밀도로 집적화시키는 것이 거의 불가능한 실정이다. 또 탄소나노튜브를 화학기상증착법으로 직접 성장한다해도 한 개의 전자를 제어하는 소자를 설계하는 것은 불가능하다.
본 발명은 상기 문제점을 해결하기 위하여 창출한 것으로서, 탄소나노튜브의 수직 성장 및 선택적 증착법을 이용하여 나노 크기의 구멍이 배열된 부도체 기판에 나노미터 직경의 탄소나노튜브를 성장시켜 채널(channel)로 이용하고, 탄소나노튜브의 상.하부를 각각 소스(source), 드레인(drain)에 연결하고 중간에 게이트를 위치시켜 스위칭 되도록 함으로써 한 개 트랜지스터 크기가 수십 나노미터에서 최대 1마이크론 이하인 테라비트급의 탄소나노튜브를 이용한 나노 크기의 수직 트랜지스터 및 그 제조 방법을 제공하는데 그 목적이 있다.
도 1은 본 발명에 따른 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터의 수직 단면도,
도 2는 도 1의 탄소나노튜브를 이용한 나노크기의 수직트랜지스터의 평면도,
그리고 도 3a 내지 도 3f는 각각 본 발명에 따른 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터의 제조 방법을 공정 단계별로 보여주는 수직 단면도들이다.
<도면의 주요부분에 대한 부호의 설명>
10'. 구멍
10. 절연층(부도체 기판) 20. 게이트
30. 부도체 박막 40. 소스 전극
50. 드레인 전극 100. 탄소나노튜브
200. 반도체 기판
상기와 같은 목적을 달성하기 위하여 본 발명에 따른 탄소나노튜브를 이용한 나노 크기의 수직 트랜지스터는, 나노 미터 직경의 구멍들이 배열된 절연층;
상기 구멍들 속에 수직으로 형성된 탄소나노튜브들; 상기 탄소나노튜브들 둘레의 상기 절연층 상에 형성된 게이트 전극들; 상기 구멍들이 메워지도록 절연층 게이트 전극들 상에 증착된 부도체 박막; 상기 부도체 박막 및 탄소나노튜브들 상부에 형성된 드레인 전극들; 및 상기 절연층 및 탄소나노튜브 하부에 형성된 소스 전극들;을 구비한 것을 특징으로 한다.
본 발명에 있어서, 상기 절연층은 Al2O3또는 Si로 형성되고, 상기 소스 전극 및 드레인 전극은 금속막으로 형성된 것이 바람직하다.
또한, 상기와 같은 목적을 달성하기 위하여 본 발명에 따른 탄소나노튜브를 이용한 나노 크기의 수직 트랜지스터의 제조 방법은, (가) 반도체 기판 상에 소스 전극들을 형성하는 단계; (나) 부도체로 절연층을 형성하고, 상기 소스 전극에 대응하는 영역에 나노미터 직경의 구멍들을 나노미터 간격으로 형성하는 단계;
(다) 상기 구멍들 내의 소스 전극들 상에 탄소나노튜브를 수직으로 성장시키는 단계; (라) 상기 탄소나노튜브들의 둘레에 게이트 전극들을 형성하는 단계; (마) 상기 구멍들이 메워지도록 상기 게이트 전극들 상에 부도체 박막을 증착시키는 단계; 및 (바) 상기 부도체 박막과 탄소나노튜브들 상부에 드레인 전극을 형성하는 단계;를 포함하는 것을 특징으로 한다.
본 발명에 있어서, 상기 (나) 단계에서 상기 부도체는 Al2O3또는 Si 이고, 상기 (다) 단계는 화학기상법, 전기영동법 또는 기계적 압축법으로 이루어지는 것이 바람직하다.
이하 도면을 참조하면서 본 발명에 따른 탄소나노튜브를 이용한 나노 크기의 수직 트랜지스터 및 그 제조 방법을 상세하게 설명한다.
도 1은 본 발명에 따른 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터의 수직 단면도이고, 도 2는 그 본 발명에 따른 탄소나노튜브를 이용한 나노크기의 수직트랜지스터의 평면도이다. 도시된 바와 같이, 수직 배열된 탄소나노튜브 틀랜지스터(transistor)의 단위 소자는 다음과 같은 구조를 갖는다.
먼저, 탄소나노튜브의 수직 성장 및 선택적 증착법에 의해 나노 크기의 구멍(10')들이 배열된 부도체 기판(10)에 탄소나노튜브(100)들이 배열된다. 배열된 탄소나노튜브(100)들의 둘레의 부도체 기판(10) 상에 게이트 전극(20)들이 형성되고, 그 위에 구멍(10')이 메워지도록 부도체 박막(30)이 증착된다. 탄소나노튜브(10)들의 상하부에 소스 전극(40) 및 드레인 전극(50)들이 연결된다. 여기서, 부도체 기판(10)으로 알루미나와 같은 절연막을 사용하며 구멍의 크기 및 구멍 사이의 간격은 수 nm로 조절가능하기 때문에 테라비트급으로 고집적화가 가능하다.
즉, 수직 방향으로 성장된 나노미터 크기 직경의 탄소나노튜브(100)를 채널로 이용하고 탄소나노튜브의 상.하부를 각각 소스(source) 전극(40), 드레인(drain) 전극(50)에 연결하고 중간에 게이트 전극(20)이 위치하도록 하여 스위칭이 일어나도록 구성함으로써 한 개의 트랜지스터 크기가 수십 나노미터에서 최대 1마이크론 이하로 구성이 가능하게 되므로 고집적화가 가능하게 된다. 도 2를 참조할 때, 탄소나노튜브의 직경은 1~200nm 정도이고, 부도체 박막(30)은 50~500nm의 폭으로 형성된다.
이와 같이 구성된 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터는 소스 전극(40)에서 전자가 공급되어 게이트 전극(20)에 인가되는 전압에 따라 전류가 미세하게 제어되어 드레인 전극(50)으로 전류가 방출되어지는 특성을 지닌다. 단위소자 크기가 나노미터급이므로 작은 부하로 전류 제어가 가능하므로 저전력특성의 장점을 지닌다.
이와 같은 구성을 갖는 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터는도 3a 내지 도 3f에 도시된 바와 같은 방법으로 제작된다. 도시된 도면을 참조하여 본 발명에 따른 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터의 제조 방법을 공정 단계별로 설명하면 다음과 같다.
먼저, 도 3a에 도시된 바와 같이, 반도체 기판(200) 상에 소스 전극(40)들을 형성한다.
다음에, 도 3b에 도시된 바와 같이, Al2O3또는 Si 등의 부도체로 절연층(10)을 형성하고, 소스 전극(40)에 대응하는 영역에 구멍(10')들을 형성한다.
다음에, 도 3c에 도시된 바와 같이, 화학기상법, 전기영동법 또는 기계적 압축법으로 구멍(10') 내의 소스(40) 상에 탄소나노튜브(100)를 수직으로 성장시킨다. 즉, 구멍을 뚫어 탄소나노튜브를 성장시키면 구멍(10') 내에만 선택적으로 탄소나노튜브(100)가 증착된다. 이 구멍(10')들은 나노미터 크기의 구멍이 배열된 절연층(10)에 배열되도록 형성한다.
다음에, 도 3d에 도시된 바와 같이, 배열된 탄소나노튜브(100)의 둘레에 게이트 전극(20)을 형성시킨다.
다음에, 도 3e에 도시된 바와 같이, 구멍(10')이 메워지도록 게이트 전극(20) 상에 부도체 박막(30)을 증착시킨다.
다음에, 도 3f에 도시된 바와 같이, 부도체 박막(30)과 탄소나노튜브(100) 상부에 드레인 전극(50)을 형성한다.
이상 설명한 바와 같이, 본 발명에 따른 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터는 알루미나와 같은 절연막에 직경 수nm의 구멍을 수 nm 간격으로 형성하여 탄소나노튜브를 화학기상법, 전기영동법 또는 기계적 방법으로 나노 크기의 구멍 속에서 수직으로 배열시켜 채널로 이용하고, 반도체 제조 방법을 이용하여 탄소나노튜브의 둘레에 게이트 전극을 형성하고 탄소나노튜브의 위아래에 각각 소스와 드레인 전극을 형성함으로써 전기적으로 스위칭 특성을 갖는 나노 크기의 수직 트랜지스터를 제작한다.
따라서, 탄소나노튜브의 고유한 특성을 이용하여 기존의 반도체 기술의 한계를 극복할 수 있는 테라비트(Terabit) 급의 수직 구조 트랜지스터(transistor)를 구성할 수 있다.
또한, 탄소나노튜브를 양자점으로 이용하여 전자를 제한하는 구조로, 전자 몇 개로 트랜지스터를 구현할 수 있어 저전력 구동으로 여러 가지 장점을 지니고 있다.

Claims (6)

  1. 나노 미터 직경의 구멍들이 배열된 절연층;
    상기 구멍들 속에 수직으로 형성된 탄소나노튜브들;
    상기 탄소나노튜브들 둘레의 상기 절연층 상에 형성된 게이트 전극들;
    상기 구멍들이 메워지도록 절연층 게이트 전극들 상에 증착된 부도체 박막;
    상기 부도체 박막 및 탄소나노튜브들 상부에 형성된 드레인 전극들; 및
    상기 절연층 및 탄소나노튜브 하부에 형성된 소스 전극들;을
    구비한 것을 특징으로 하는 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터.
  2. 제1항에 있어서,
    상기 절연층은 Al2O3또는 Si로 형성된 것을 특징으로 하는 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터.
  3. 제1항에 있어서,
    상기 소스 전극 및 드레인 전극은 금속막으로 형성된 것을 특징으로 하는 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터.
  4. (가) 반도체 기판 상에 소스 전극들을 형성하는 단계;
    (나) 부도체로 절연층을 형성하고, 상기 소스 전극에 대응하는 영역에 나노미터 직경의 구멍들을 나노미터 간격으로 형성하는 단계;
    (다) 상기 구멍들 내의 소스 전극들 상에 탄소나노튜브를 수직으로 성장시키는 단계;
    (라) 상기 탄소나노튜브들의 둘레에 게이트 전극들을 형성하는 단계;
    (마) 상기 구멍들이 메워지도록 상기 게이트 전극들 상에 부도체 박막을 증착시키는 단계; 및
    (바) 상기 부도체 박막과 탄소나노튜브들 상부에 드레인 전극을 형성하는 단계;를 포함하는 것을 특징으로 하는 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터의 제조 방법.
  5. 제4항에 있어서,
    상기 (나) 단계에서 상기 부도체는 Al2O3또는 Si 인 것을 특징으로 하는 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터의 제조 방법.
  6. 제4항에 있어서,
    상기 (다) 단계는 화학기상법, 전기영동법 또는 기계적 압축법으로 이루어지는 것을 특징으로 하는 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터의 제조 방법.
KR1020000035703A 2000-06-27 2000-06-27 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그제조방법 KR100360476B1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020000035703A KR100360476B1 (ko) 2000-06-27 2000-06-27 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그제조방법
CNB01122021XA CN1193430C (zh) 2000-06-27 2001-06-22 使用碳纳米管的竖直纳米尺寸晶体管及其制造方法
JP2001192414A JP4338910B2 (ja) 2000-06-27 2001-06-26 炭素ナノチューブを用いたナノサイズ垂直トランジスタ及びその製造方法
US09/891,240 US6566704B2 (en) 2000-06-27 2001-06-27 Vertical nano-size transistor using carbon nanotubes and manufacturing method thereof
US10/386,536 US6833567B2 (en) 2000-06-27 2003-03-13 Vertical nano-size transistor using carbon nanotubes and manufacturing method thereof
US10/387,561 US6855603B2 (en) 2000-06-27 2003-03-14 Vertical nano-size transistor using carbon nanotubes and manufacturing method thereof
US10/388,450 US6815294B2 (en) 2000-06-27 2003-03-17 Vertical nano-size transistor using carbon nanotubes and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000035703A KR100360476B1 (ko) 2000-06-27 2000-06-27 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그제조방법

Publications (2)

Publication Number Publication Date
KR20020001260A KR20020001260A (ko) 2002-01-09
KR100360476B1 true KR100360476B1 (ko) 2002-11-08

Family

ID=19674222

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000035703A KR100360476B1 (ko) 2000-06-27 2000-06-27 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그제조방법

Country Status (4)

Country Link
US (4) US6566704B2 (ko)
JP (1) JP4338910B2 (ko)
KR (1) KR100360476B1 (ko)
CN (1) CN1193430C (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100451084B1 (ko) * 2002-04-11 2004-10-02 학교법인 선문학원 탄소나노튜브 가스센서의 제조방법
KR101008026B1 (ko) * 2010-07-12 2011-01-14 삼성전자주식회사 파묻힌 게이트 구조를 갖는 탄소나노튜브 트랜지스터
KR101018294B1 (ko) * 2008-09-19 2011-03-04 한국과학기술원 수직형 트랜지스터 소자
KR102324232B1 (ko) 2020-06-03 2021-11-08 연세대학교 산학협력단 게이트-올-어라운드 구조의 수직형 트랜지스터 및 그 제조 방법

Families Citing this family (206)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10036897C1 (de) * 2000-07-28 2002-01-03 Infineon Technologies Ag Feldeffekttransistor, Schaltungsanordnung und Verfahren zum Herstellen eines Feldeffekttransistors
US7084507B2 (en) * 2001-05-02 2006-08-01 Fujitsu Limited Integrated circuit device and method of producing the same
JP2003017508A (ja) * 2001-07-05 2003-01-17 Nec Corp 電界効果トランジスタ
KR100450825B1 (ko) * 2002-02-09 2004-10-01 삼성전자주식회사 탄소나노튜브를 이용하는 메모리 소자 및 그 제조방법
US6515325B1 (en) * 2002-03-06 2003-02-04 Micron Technology, Inc. Nanotube semiconductor devices and methods for making the same
US7392230B2 (en) * 2002-03-12 2008-06-24 Knowmtech, Llc Physical neural network liquid state machine utilizing nanotechnology
US20040039717A1 (en) * 2002-08-22 2004-02-26 Alex Nugent High-density synapse chip using nanoparticles
US7398259B2 (en) 2002-03-12 2008-07-08 Knowmtech, Llc Training of a physical neural network
US6889216B2 (en) * 2002-03-12 2005-05-03 Knowm Tech, Llc Physical neural network design incorporating nanotechnology
US8156057B2 (en) * 2003-03-27 2012-04-10 Knowm Tech, Llc Adaptive neural network utilizing nanotechnology-based components
US9269043B2 (en) 2002-03-12 2016-02-23 Knowm Tech, Llc Memristive neural processor utilizing anti-hebbian and hebbian technology
US7412428B2 (en) 2002-03-12 2008-08-12 Knowmtech, Llc. Application of hebbian and anti-hebbian learning to nanotechnology-based physical neural networks
US7049625B2 (en) * 2002-03-18 2006-05-23 Max-Planck-Gesellschaft Zur Fonderung Der Wissenschaften E.V. Field effect transistor memory cell, memory device and method for manufacturing a field effect transistor memory cell
US6891227B2 (en) 2002-03-20 2005-05-10 International Business Machines Corporation Self-aligned nanotube field effect transistor and method of fabricating same
US6872645B2 (en) * 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
US7752151B2 (en) * 2002-06-05 2010-07-06 Knowmtech, Llc Multilayer training in a physical neural network formed utilizing nanotechnology
JP2004040844A (ja) * 2002-06-28 2004-02-05 Shinano Kenshi Co Ltd 整流子およびこれを用いた回転電機
US6979947B2 (en) 2002-07-09 2005-12-27 Si Diamond Technology, Inc. Nanotriode utilizing carbon nanotubes and fibers
US7827131B2 (en) * 2002-08-22 2010-11-02 Knowm Tech, Llc High density synapse chip using nanoparticles
US7012266B2 (en) 2002-08-23 2006-03-14 Samsung Electronics Co., Ltd. MEMS-based two-dimensional e-beam nano lithography device and method for making the same
WO2005004196A2 (en) 2002-08-23 2005-01-13 Sungho Jin Article comprising gated field emission structures with centralized nanowires and method for making the same
JP4547852B2 (ja) * 2002-09-04 2010-09-22 富士ゼロックス株式会社 電気部品の製造方法
TW560042B (en) * 2002-09-18 2003-11-01 Vanguard Int Semiconduct Corp ESD protection device
WO2004032193A2 (en) * 2002-09-30 2004-04-15 Nanosys, Inc. Large-area nanoenabled macroelectronic substrates and uses therefor
CN1703730A (zh) * 2002-09-30 2005-11-30 纳米系统公司 使用纳米线晶体管的集成显示器
TWI354261B (en) * 2002-09-30 2011-12-11 Nanosys Inc Integrated displays using nanowire transistors
US7619562B2 (en) * 2002-09-30 2009-11-17 Nanosys, Inc. Phased array systems
US7135728B2 (en) * 2002-09-30 2006-11-14 Nanosys, Inc. Large-area nanoenabled macroelectronic substrates and uses therefor
US7067867B2 (en) * 2002-09-30 2006-06-27 Nanosys, Inc. Large-area nonenabled macroelectronic substrates and uses therefor
US7051945B2 (en) * 2002-09-30 2006-05-30 Nanosys, Inc Applications of nano-enabled large area macroelectronic substrates incorporating nanowires and nanowire composites
US7507987B2 (en) * 2002-10-11 2009-03-24 Massachusetts Institute Of Technology Method of making packets of nanostructures
US7253434B2 (en) * 2002-10-29 2007-08-07 President And Fellows Of Harvard College Suspended carbon nanotube field effect transistor
JP5025132B2 (ja) * 2002-10-29 2012-09-12 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ カーボンナノチューブ素子の製造
DE10250984A1 (de) 2002-10-29 2004-05-19 Hahn-Meitner-Institut Berlin Gmbh Feldeffekttransistor sowie Verfahren zu seiner Herstellung
DE10250868B8 (de) * 2002-10-31 2008-06-26 Qimonda Ag Vertikal integrierter Feldeffekttransistor, Feldeffekttransistor-Anordnung und Verfahren zum Herstellen eines vertikal integrierten Feldeffekttransistors
DE10250834A1 (de) * 2002-10-31 2004-05-19 Infineon Technologies Ag Speicherzelle, Speicherzellen-Anordnung, Strukturier-Anordnung und Verfahren zum Herstellen einer Speicherzelle
DE10250829B4 (de) * 2002-10-31 2006-11-02 Infineon Technologies Ag Nichtflüchtige Speicherzelle, Speicherzellen-Anordnung und Verfahren zum Herstellen einer nichtflüchtigen Speicherzelle
DE10250830B4 (de) * 2002-10-31 2015-02-26 Qimonda Ag Verfahren zum Herstellung eines Schaltkreis-Arrays
KR100790859B1 (ko) * 2002-11-15 2008-01-03 삼성전자주식회사 수직 나노튜브를 이용한 비휘발성 메모리 소자
JP4251268B2 (ja) * 2002-11-20 2009-04-08 ソニー株式会社 電子素子及びその製造方法
KR100489800B1 (ko) * 2002-11-26 2005-05-16 한국전자통신연구원 캐패시터 및 그 제조방법
TWI220162B (en) * 2002-11-29 2004-08-11 Ind Tech Res Inst Integrated compound nano probe card and method of making same
US6870361B2 (en) * 2002-12-21 2005-03-22 Agilent Technologies, Inc. System with nano-scale conductor and nano-opening
US7183568B2 (en) * 2002-12-23 2007-02-27 International Business Machines Corporation Piezoelectric array with strain dependant conducting elements and method therefor
KR100493166B1 (ko) 2002-12-30 2005-06-02 삼성전자주식회사 수직나노튜브를 이용한 메모리
US6933222B2 (en) * 2003-01-02 2005-08-23 Intel Corporation Microcircuit fabrication and interconnection
KR20040066270A (ko) * 2003-01-17 2004-07-27 삼성에스디아이 주식회사 카본계 물질로 이루어진 도전층이 형성된 애노드 기판을갖는 평판 디스플레이 장치
AU2003207066A1 (en) * 2003-02-06 2004-08-30 Fujitsu Limited Magnetic recording medium and method for producing the same, magnetic medium substrate being employed therein, and magnetic storage device
DE10307815B3 (de) * 2003-02-24 2004-11-11 Infineon Technologies Ag Integriertes elektronisches Bauelement mit gezielt erzeugten Nanoröhren in vertikalen Strukturen und dessen Herstellungsverfahren
KR100988080B1 (ko) * 2003-02-27 2010-10-18 삼성전자주식회사 파묻힌 게이트 구조를 갖는 탄소나노튜브 트랜지스터 및그 제조 방법
US20060276043A1 (en) * 2003-03-21 2006-12-07 Johnson Mark A L Method and systems for single- or multi-period edge definition lithography
WO2004086461A2 (en) * 2003-03-21 2004-10-07 North Carolina State University Methods for nanoscale structures from optical lithography and subsequent lateral growth
TWI220163B (en) * 2003-04-24 2004-08-11 Ind Tech Res Inst Manufacturing method of high-conductivity nanometer thin-film probe card
WO2004105140A1 (ja) 2003-05-22 2004-12-02 Fujitsu Limited 電界効果トランジスタ及びその製造方法
US7199498B2 (en) 2003-06-02 2007-04-03 Ambient Systems, Inc. Electrical assemblies using molecular-scale electrically conductive and mechanically flexible beams and methods for application of same
US7095645B2 (en) 2003-06-02 2006-08-22 Ambient Systems, Inc. Nanoelectromechanical memory cells and data storage devices
US7148579B2 (en) * 2003-06-02 2006-12-12 Ambient Systems, Inc. Energy conversion systems utilizing parallel array of automatic switches and generators
KR101015498B1 (ko) * 2003-06-14 2011-02-21 삼성전자주식회사 수직 카본나노튜브 전계효과트랜지스터 및 그 제조방법
US6909151B2 (en) 2003-06-27 2005-06-21 Intel Corporation Nonplanar device with stress incorporation layer and method of fabrication
DE10331528A1 (de) * 2003-07-11 2005-02-03 Infineon Technologies Ag DRAM-Halbleiterspeicherzelle sowie Verfahren zu deren Herstellung
US7426501B2 (en) 2003-07-18 2008-09-16 Knowntech, Llc Nanotechnology neural network methods and systems
DE10335813B4 (de) * 2003-08-05 2009-02-12 Infineon Technologies Ag IC-Chip mit Nanowires
DE10339529A1 (de) * 2003-08-21 2005-03-24 Hahn-Meitner-Institut Berlin Gmbh Vertikaler Nano-Transistor, Verfahren zu seiner Herstellung und Speicheranordnung
DE10339531A1 (de) * 2003-08-21 2005-03-31 Hahn-Meitner-Institut Berlin Gmbh Vertikaler Nano-Transistor, Verfahren zu seiner Herstellung und Speicheranordnung
FR2860780B1 (fr) * 2003-10-13 2006-05-19 Centre Nat Rech Scient Procede de synthese de structures filamentaires nanometriques et composants pour l'electronique comprenant de telles structures
JP4762522B2 (ja) * 2003-10-28 2011-08-31 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP5250615B2 (ja) * 2003-10-28 2013-07-31 株式会社半導体エネルギー研究所 半導体装置
US7374793B2 (en) 2003-12-11 2008-05-20 International Business Machines Corporation Methods and structures for promoting stable synthesis of carbon nanotubes
US7038299B2 (en) 2003-12-11 2006-05-02 International Business Machines Corporation Selective synthesis of semiconducting carbon nanotubes
AU2003301031A1 (en) * 2003-12-18 2005-08-03 International Business Machines Corporation Carbon nanotube conductor for trench capacitors
CN1898784A (zh) * 2003-12-23 2007-01-17 皇家飞利浦电子股份有限公司 包括异质结的半导体器件
US8013359B2 (en) * 2003-12-31 2011-09-06 John W. Pettit Optically controlled electrical switching device based on wide bandgap semiconductors
US20050145838A1 (en) * 2004-01-07 2005-07-07 International Business Machines Corporation Vertical Carbon Nanotube Field Effect Transistor
JP3997991B2 (ja) * 2004-01-14 2007-10-24 セイコーエプソン株式会社 電子装置
DE102004003374A1 (de) * 2004-01-22 2005-08-25 Infineon Technologies Ag Halbleiter-Leistungsschalter sowie dafür geeignetes Herstellungsverfahren
US20050167655A1 (en) * 2004-01-29 2005-08-04 International Business Machines Corporation Vertical nanotube semiconductor device structures and methods of forming the same
US7211844B2 (en) 2004-01-29 2007-05-01 International Business Machines Corporation Vertical field effect transistors incorporating semiconducting nanotubes grown in a spacer-defined passage
US7553371B2 (en) * 2004-02-02 2009-06-30 Nanosys, Inc. Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production
US20110039690A1 (en) * 2004-02-02 2011-02-17 Nanosys, Inc. Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production
US8025960B2 (en) * 2004-02-02 2011-09-27 Nanosys, Inc. Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production
US7829883B2 (en) 2004-02-12 2010-11-09 International Business Machines Corporation Vertical carbon nanotube field effect transistors and arrays
KR101050468B1 (ko) * 2004-02-14 2011-07-19 삼성에스디아이 주식회사 바이오 칩 및 이를 이용한 바이오 분자 검출 시스템
US7456482B2 (en) * 2004-03-22 2008-11-25 Cabot Microelectronics Corporation Carbon nanotube-based electronic switch
US7115971B2 (en) * 2004-03-23 2006-10-03 Nanosys, Inc. Nanowire varactor diode and methods of making same
CA2564220A1 (en) * 2004-04-30 2005-12-15 Nanosys, Inc. Systems and methods for nanowire growth and harvesting
US20050279274A1 (en) * 2004-04-30 2005-12-22 Chunming Niu Systems and methods for nanowire growth and manufacturing
US7785922B2 (en) 2004-04-30 2010-08-31 Nanosys, Inc. Methods for oriented growth of nanowires on patterned substrates
US20060086994A1 (en) * 2004-05-14 2006-04-27 Susanne Viefers Nanoelectromechanical components
US20060052947A1 (en) * 2004-05-17 2006-03-09 Evelyn Hu Biofabrication of transistors including field effect transistors
US7268063B1 (en) * 2004-06-01 2007-09-11 University Of Central Florida Process for fabricating semiconductor component
GB0413310D0 (en) * 2004-06-15 2004-07-14 Koninkl Philips Electronics Nv Nanowire semiconductor device
US7109546B2 (en) 2004-06-29 2006-09-19 International Business Machines Corporation Horizontal memory gain cells
US7042009B2 (en) 2004-06-30 2006-05-09 Intel Corporation High mobility tri-gate devices and methods of fabrication
WO2006016914A2 (en) * 2004-07-07 2006-02-16 Nanosys, Inc. Methods for nanowire growth
US7194912B2 (en) * 2004-07-13 2007-03-27 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbon nanotube-based sensor and method for continually sensing changes in a structure
JP2008506548A (ja) 2004-07-19 2008-03-06 アンビエント システムズ, インコーポレイテッド ナノスケール静電および電磁モータおよび発電機
KR100666187B1 (ko) * 2004-08-04 2007-01-09 학교법인 한양학원 나노선을 이용한 수직형 반도체 소자 및 이의 제조 방법
US7348284B2 (en) 2004-08-10 2008-03-25 Intel Corporation Non-planar pMOS structure with a strained channel region and an integrated strained CMOS flow
US20080020499A1 (en) * 2004-09-10 2008-01-24 Dong-Wook Kim Nanotube assembly including protective layer and method for making the same
US7345296B2 (en) * 2004-09-16 2008-03-18 Atomate Corporation Nanotube transistor and rectifying devices
US7943418B2 (en) * 2004-09-16 2011-05-17 Etamota Corporation Removing undesirable nanotubes during nanotube device fabrication
US7776307B2 (en) * 2004-09-16 2010-08-17 Etamota Corporation Concentric gate nanotube transistor devices
US7462890B1 (en) 2004-09-16 2008-12-09 Atomate Corporation Nanotube transistor integrated circuit layout
US20060060863A1 (en) * 2004-09-22 2006-03-23 Jennifer Lu System and method for controlling nanostructure growth
US7422946B2 (en) 2004-09-29 2008-09-09 Intel Corporation Independently accessed double-gate and tri-gate transistors in same process flow
US7233071B2 (en) * 2004-10-04 2007-06-19 International Business Machines Corporation Low-k dielectric layer based upon carbon nanostructures
US7345307B2 (en) * 2004-10-12 2008-03-18 Nanosys, Inc. Fully integrated organic layered processes for making plastic electronics based on conductive polymers and semiconductor nanowires
US7473943B2 (en) * 2004-10-15 2009-01-06 Nanosys, Inc. Gate configuration for nanowire electronic devices
US20060086977A1 (en) 2004-10-25 2006-04-27 Uday Shah Nonplanar device with thinned lower body portion and method of fabrication
WO2006046178A1 (en) * 2004-10-27 2006-05-04 Koninklijke Philips Electronics N.V. Semiconductor device with tunable energy band gap
US20080012461A1 (en) * 2004-11-09 2008-01-17 Nano-Proprietary, Inc. Carbon nanotube cold cathode
AU2005309906B2 (en) 2004-11-24 2010-12-09 Nanosys, Inc. Contact doping and annealing systems and processes for nanowire thin films
US20060113524A1 (en) * 2004-12-01 2006-06-01 Colin Bill Polymer-based transistor devices, methods, and systems
US7560366B1 (en) 2004-12-02 2009-07-14 Nanosys, Inc. Nanowire horizontal growth and substrate removal
US7202173B2 (en) * 2004-12-20 2007-04-10 Palo Alto Research Corporation Incorporated Systems and methods for electrical contacts to arrays of vertically aligned nanorods
US7409375B2 (en) * 2005-05-23 2008-08-05 Knowmtech, Llc Plasticity-induced self organizing nanotechnology for the extraction of independent components from a data stream
US7535016B2 (en) * 2005-01-31 2009-05-19 International Business Machines Corporation Vertical carbon nanotube transistor integration
US7502769B2 (en) * 2005-01-31 2009-03-10 Knowmtech, Llc Fractal memory and computational methods and systems based on nanotechnology
US20100065820A1 (en) * 2005-02-14 2010-03-18 Atomate Corporation Nanotube Device Having Nanotubes with Multiple Characteristics
US7518196B2 (en) 2005-02-23 2009-04-14 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
TWI420628B (zh) * 2005-03-28 2013-12-21 奈米碳管結合墊結構及其方法
KR100688542B1 (ko) 2005-03-28 2007-03-02 삼성전자주식회사 수직형 나노튜브 반도체소자 및 그 제조방법
CA2603352C (en) * 2005-04-06 2013-10-01 Jene Golovchenko Molecular characterization with carbon nanotube control
US7989349B2 (en) * 2005-04-15 2011-08-02 Micron Technology, Inc. Methods of manufacturing nanotubes having controlled characteristics
CN101253628B (zh) * 2005-05-09 2011-04-13 南泰若股份有限公司 双端纳米管器件和系统及其制作方法
US7230286B2 (en) * 2005-05-23 2007-06-12 International Business Machines Corporation Vertical FET with nanowire channels and a silicided bottom contact
EP1941554A2 (en) * 2005-06-02 2008-07-09 Nanosys, Inc. Light emitting nanowires for macroelectronics
US7278324B2 (en) * 2005-06-15 2007-10-09 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbon nanotube-based sensor and method for detection of crack growth in a structure
US7420396B2 (en) * 2005-06-17 2008-09-02 Knowmtech, Llc Universal logic gate utilizing nanotechnology
US7599895B2 (en) 2005-07-07 2009-10-06 Knowm Tech, Llc Methodology for the configuration and repair of unreliable switching elements
US7838943B2 (en) * 2005-07-25 2010-11-23 International Business Machines Corporation Shared gate for conventional planar device and horizontal CNT
US7352607B2 (en) * 2005-07-26 2008-04-01 International Business Machines Corporation Non-volatile switching and memory devices using vertical nanotubes
US7402875B2 (en) 2005-08-17 2008-07-22 Intel Corporation Lateral undercut of metal gate in SOI device
EP1755137A1 (en) * 2005-08-18 2007-02-21 University of Teheran A method of forming a carbon nanotube emitter, carbon nanotube emitter with applications in nano-printing and use thereof
US7491962B2 (en) 2005-08-30 2009-02-17 Micron Technology, Inc. Resistance variable memory device with nanoparticle electrode and method of fabrication
KR100682952B1 (ko) * 2005-08-31 2007-02-15 삼성전자주식회사 나노탄성 메모리 소자 및 그 제조 방법
JP2009513368A (ja) * 2005-09-23 2009-04-02 ナノシス・インコーポレイテッド ナノ構造体のドーピング方法
DE102005046427B4 (de) * 2005-09-28 2010-09-23 Infineon Technologies Ag Leistungstransistor mit parallelgeschalteten Nanodrähten
JP5037804B2 (ja) * 2005-09-30 2012-10-03 富士通株式会社 垂直配向カーボンナノチューブを用いた電子デバイス
FR2891664B1 (fr) * 2005-09-30 2007-12-21 Commissariat Energie Atomique Transistor mos vertical et procede de fabrication
FR2895572B1 (fr) * 2005-12-23 2008-02-15 Commissariat Energie Atomique Materiau a base de nanotubes de carbone et de silicium utilisable dans des electrodes negatives pour accumulateur au lithium
EP1804286A1 (en) * 2005-12-27 2007-07-04 Interuniversitair Microelektronica Centrum Elongate nanostructure semiconductor device
US7741197B1 (en) 2005-12-29 2010-06-22 Nanosys, Inc. Systems and methods for harvesting and reducing contamination in nanowires
KR101287350B1 (ko) * 2005-12-29 2013-07-23 나노시스, 인크. 패터닝된 기판 상의 나노와이어의 배향된 성장을 위한 방법
WO2007092770A2 (en) * 2006-02-02 2007-08-16 William Marsh Rice University Fabrication de dispositifs electriques par façonnage de nanotubes
US20070183189A1 (en) * 2006-02-08 2007-08-09 Thomas Nirschl Memory having nanotube transistor access device
US8785058B2 (en) * 2006-04-07 2014-07-22 New Jersey Institute Of Technology Integrated biofuel cell with aligned nanotube electrodes and method of use thereof
US8679630B2 (en) * 2006-05-17 2014-03-25 Purdue Research Foundation Vertical carbon nanotube device in nanoporous templates
US20080002755A1 (en) * 2006-06-29 2008-01-03 Raravikar Nachiket R Integrated microelectronic package temperature sensor
US8101984B2 (en) * 2006-07-07 2012-01-24 The Regents Of The University Of California Spin injector
US20080135892A1 (en) * 2006-07-25 2008-06-12 Paul Finnie Carbon nanotube field effect transistor and method of making thereof
KR100806129B1 (ko) 2006-08-02 2008-02-22 삼성전자주식회사 탄소 나노 튜브의 형성 방법
KR100749751B1 (ko) 2006-08-02 2007-08-17 삼성전자주식회사 트랜지스터 및 그 제조 방법
US7667260B2 (en) 2006-08-09 2010-02-23 Micron Technology, Inc. Nanoscale floating gate and methods of formation
US8643087B2 (en) * 2006-09-20 2014-02-04 Micron Technology, Inc. Reduced leakage memory cells
EP2082419A4 (en) * 2006-11-07 2014-06-11 SYSTEMS AND METHODS FOR NANOWIL GROWTH
US7786024B2 (en) * 2006-11-29 2010-08-31 Nanosys, Inc. Selective processing of semiconductor nanowires by polarized visible radiation
KR100820174B1 (ko) 2006-12-05 2008-04-08 한국전자통신연구원 수직구조의 탄소나노튜브를 이용한 전자소자 및 그제조방법
WO2008069485A1 (en) * 2006-12-05 2008-06-12 Electronics And Telecommunications Research Institute The electronic devices using carbon nanotubes having vertical structure and the manufacturing method thereof
US8168495B1 (en) 2006-12-29 2012-05-01 Etamota Corporation Carbon nanotube high frequency transistor technology
US9806273B2 (en) * 2007-01-03 2017-10-31 The United States Of America As Represented By The Secretary Of The Army Field effect transistor array using single wall carbon nano-tubes
DE102007001130B4 (de) * 2007-01-04 2014-07-03 Qimonda Ag Verfahren zum Herstellen einer Durchkontaktierung in einer Schicht und Anordnung mit einer Schicht mit Durchkontaktierung
US7930257B2 (en) * 2007-01-05 2011-04-19 Knowm Tech, Llc Hierarchical temporal memory utilizing nanotechnology
US9487877B2 (en) * 2007-02-01 2016-11-08 Purdue Research Foundation Contact metallization of carbon nanotubes
US7858918B2 (en) * 2007-02-05 2010-12-28 Ludwig Lester F Molecular transistor circuits compatible with carbon nanotube sensors and transducers
US7838809B2 (en) 2007-02-17 2010-11-23 Ludwig Lester F Nanoelectronic differential amplifiers and related circuits having carbon nanotubes, graphene nanoribbons, or other related materials
US7839028B2 (en) 2007-04-03 2010-11-23 CJP IP Holding, Ltd. Nanoelectromechanical systems and methods for making the same
WO2009023304A2 (en) * 2007-05-02 2009-02-19 Atomate Corporation High density nanotube devices
US8546027B2 (en) * 2007-06-20 2013-10-01 New Jersey Institute Of Technology System and method for directed self-assembly technique for the creation of carbon nanotube sensors and bio-fuel cells on single plane
US7964143B2 (en) * 2007-06-20 2011-06-21 New Jersey Institute Of Technology Nanotube device and method of fabrication
US7736979B2 (en) * 2007-06-20 2010-06-15 New Jersey Institute Of Technology Method of forming nanotube vertical field effect transistor
FR2920252A1 (fr) * 2007-08-24 2009-02-27 Commissariat Energie Atomique Procede de realisation d'un transistor comportant une connexion electrique a base de nanotubes ou de nanofils.
JP5539210B2 (ja) * 2007-10-02 2014-07-02 プレジデント アンド フェローズ オブ ハーバード カレッジ ナノポアデバイスのためのカーボンナノチューブ合成
EP2238611A2 (en) * 2007-12-31 2010-10-13 Etamota Corporation Edge-contacted vertical carbon nanotube transistor
KR101410930B1 (ko) * 2008-01-17 2014-06-23 삼성전자주식회사 탄소나노튜브 상의 금속 산화막 형성방법 및 이를 이용한탄소나노튜브 트랜지스터 제조방법
US20090194424A1 (en) * 2008-02-01 2009-08-06 Franklin Aaron D Contact metallization of carbon nanotubes
KR101002336B1 (ko) * 2008-02-04 2010-12-20 엘지디스플레이 주식회사 나노 디바이스, 이를 포함하는 트랜지스터, 나노 디바이스및 이를 포함하는 트랜지스터의 제조 방법
DE102008015118A1 (de) * 2008-03-10 2009-09-24 Ohnesorge, Frank, Dr. Raumtemperatur-Quantendraht-(array)-Feldeffekt-(Leistungs-) Transistor "QFET", insbesondere magnetisch "MQFET", aber auch elektrisch oder optisch gesteuert
US8912654B2 (en) * 2008-04-11 2014-12-16 Qimonda Ag Semiconductor chip with integrated via
US8362566B2 (en) 2008-06-23 2013-01-29 Intel Corporation Stress in trigate devices using complimentary gate fill materials
DE102009031481A1 (de) 2008-07-03 2010-02-11 Ohnesorge, Frank, Dr. Konzept für optische (Fernfeld-/Fresnel-Regime aber auch Nahfeld-) Mikroskopie/Spektroskopie unterhalb/jenseits des Beugungslimits - Anwendungen für optisches (aber auch elektronisches) schnelles Auslesen von ultrakleinen Speicherzellen in Form von lumineszierenden Quantentrögen - sowie in der Biologie/Kristallographie
US9494615B2 (en) * 2008-11-24 2016-11-15 Massachusetts Institute Of Technology Method of making and assembling capsulated nanostructures
KR101539669B1 (ko) * 2008-12-16 2015-07-27 삼성전자주식회사 코어-쉘 타입 구조물 형성방법 및 이를 이용한 트랜지스터 제조방법
US8715981B2 (en) * 2009-01-27 2014-05-06 Purdue Research Foundation Electrochemical biosensor
US8872154B2 (en) * 2009-04-06 2014-10-28 Purdue Research Foundation Field effect transistor fabrication from carbon nanotubes
KR101935416B1 (ko) 2009-05-19 2019-01-07 원드 매터리얼 엘엘씨 배터리 응용을 위한 나노구조화된 재료
DE102009041642A1 (de) 2009-09-17 2011-03-31 Ohnesorge, Frank, Dr. Quantendrahtarray-Feldeffekt-(Leistungs-)-Transistor QFET (insbesondere magnetisch - MQFET, aber auch elektrisch oder optisch angesteuert) bei Raumtemperatur, basierend auf Polyacetylen-artige Moleküle
DE102010007676A1 (de) 2010-02-10 2011-08-11 Ohnesorge, Frank, Dr., 91054 Konzept für lateral aufgelöste Fourier Transformations Infrarot Spektroskopie unterhalb/jenseits des Beugungslimits - Anwendungen für optisches (aber auch elektronisches) schnelles Auslesen von ultrakleinen Speicherzellen in Form von lumineszierenden Quantentrögen - sowie in der Biologie/Kristallographie
CN102214577B (zh) * 2010-04-09 2012-12-26 中国科学院微电子研究所 一种制作纳米开关的方法
US8431817B2 (en) 2010-06-08 2013-04-30 Sundiode Inc. Multi-junction solar cell having sidewall bi-layer electrical interconnect
US8476637B2 (en) 2010-06-08 2013-07-02 Sundiode Inc. Nanostructure optoelectronic device having sidewall electrical contact
US8659037B2 (en) 2010-06-08 2014-02-25 Sundiode Inc. Nanostructure optoelectronic device with independently controllable junctions
FR2962595B1 (fr) 2010-07-06 2015-08-07 Commissariat Energie Atomique Dispositif microélectronique a niveaux métalliques d'interconnexion connectes par des vias programmables
US8288759B2 (en) 2010-08-04 2012-10-16 Zhihong Chen Vertical stacking of carbon nanotube arrays for current enhancement and control
TWI476948B (zh) * 2011-01-27 2015-03-11 Hon Hai Prec Ind Co Ltd 外延結構及其製備方法
US8633055B2 (en) 2011-12-13 2014-01-21 International Business Machines Corporation Graphene field effect transistor
US9024367B2 (en) * 2012-02-24 2015-05-05 The Regents Of The University Of California Field-effect P-N junction
WO2014039509A2 (en) 2012-09-04 2014-03-13 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media
US9406888B2 (en) * 2013-08-07 2016-08-02 GlobalFoundries, Inc. Carbon nanotube device
EP2947045B1 (en) 2014-05-19 2019-08-28 IMEC vzw Low defect-density vertical nanowire semiconductor structures and method for making such structures
US9515179B2 (en) 2015-04-20 2016-12-06 Semiconductor Components Industries, Llc Electronic devices including a III-V transistor having a homostructure and a process of forming the same
US9472773B1 (en) 2015-12-09 2016-10-18 International Business Machines Corporation Stacked carbon nanotube multiple threshold device
US10340459B2 (en) * 2016-03-22 2019-07-02 International Business Machines Corporation Terahertz detection and spectroscopy with films of homogeneous carbon nanotubes
RU175418U1 (ru) * 2016-12-12 2017-12-04 Российская Федерация, от имени которой выступает федеральное государственное казенное учреждение "Войсковая часть 68240" (ФГКУ "В/ч" 68240) Полевой транзистор на углеродной пленке с вертикальным каналом проводимости
CN108269802B (zh) * 2017-01-04 2020-11-06 上海新昇半导体科技有限公司 一种碳纳米管束场效应晶体管阵列及其制造方法
RU204091U1 (ru) * 2020-12-25 2021-05-06 Общество с ограниченной ответственностью "Сенсор Микрон" Полевой транзистор с вертикальным каналом для СВЧ - техники

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000002044A (ko) * 1998-06-16 2000-01-15 김영환 트랜지스터

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6038060A (en) * 1997-01-16 2000-03-14 Crowley; Robert Joseph Optical antenna array for harmonic generation, mixing and signal amplification
US6034389A (en) * 1997-01-22 2000-03-07 International Business Machines Corporation Self-aligned diffused source vertical transistors with deep trench capacitors in a 4F-square memory cell array
US6231744B1 (en) * 1997-04-24 2001-05-15 Massachusetts Institute Of Technology Process for fabricating an array of nanowires
US6069380A (en) * 1997-07-25 2000-05-30 Regents Of The University Of Minnesota Single-electron floating-gate MOS memory
US6472705B1 (en) * 1998-11-18 2002-10-29 International Business Machines Corporation Molecular memory & logic
US6459095B1 (en) * 1999-03-29 2002-10-01 Hewlett-Packard Company Chemically synthesized and assembled electronics devices
US6062931A (en) * 1999-09-01 2000-05-16 Industrial Technology Research Institute Carbon nanotube emitter with triode structure
US6340822B1 (en) * 1999-10-05 2002-01-22 Agere Systems Guardian Corp. Article comprising vertically nano-interconnected circuit devices and method for making the same
US6297063B1 (en) * 1999-10-25 2001-10-02 Agere Systems Guardian Corp. In-situ nano-interconnected circuit devices and method for making the same
US6444256B1 (en) * 1999-11-17 2002-09-03 The Regents Of The University Of California Formation of nanometer-size wires using infiltration into latent nuclear tracks
US7335603B2 (en) * 2000-02-07 2008-02-26 Vladimir Mancevski System and method for fabricating logic devices comprising carbon nanotube transistors
TWI292583B (en) * 2000-08-22 2008-01-11 Harvard College Doped elongated semiconductor articles, growing such articles, devices including such articles and fabicating such devices
US6525453B2 (en) * 2001-05-02 2003-02-25 Huang Chung Cheng Field emitting display
JP2003018544A (ja) * 2001-06-29 2003-01-17 Nec Corp ディジタル放送用記録装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000002044A (ko) * 1998-06-16 2000-01-15 김영환 트랜지스터

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100451084B1 (ko) * 2002-04-11 2004-10-02 학교법인 선문학원 탄소나노튜브 가스센서의 제조방법
KR101018294B1 (ko) * 2008-09-19 2011-03-04 한국과학기술원 수직형 트랜지스터 소자
KR101008026B1 (ko) * 2010-07-12 2011-01-14 삼성전자주식회사 파묻힌 게이트 구조를 갖는 탄소나노튜브 트랜지스터
KR102324232B1 (ko) 2020-06-03 2021-11-08 연세대학교 산학협력단 게이트-올-어라운드 구조의 수직형 트랜지스터 및 그 제조 방법

Also Published As

Publication number Publication date
US20030227015A1 (en) 2003-12-11
JP2002110977A (ja) 2002-04-12
JP4338910B2 (ja) 2009-10-07
KR20020001260A (ko) 2002-01-09
US6833567B2 (en) 2004-12-21
CN1330412A (zh) 2002-01-09
CN1193430C (zh) 2005-03-16
US20020001905A1 (en) 2002-01-03
US20030230782A1 (en) 2003-12-18
US6815294B2 (en) 2004-11-09
US6855603B2 (en) 2005-02-15
US6566704B2 (en) 2003-05-20
US20030230760A1 (en) 2003-12-18

Similar Documents

Publication Publication Date Title
KR100360476B1 (ko) 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그제조방법
KR100688542B1 (ko) 수직형 나노튜브 반도체소자 및 그 제조방법
US7112464B2 (en) Devices having vertically-disposed nanofabric articles and methods of making the same
JP4493344B2 (ja) カーボン・ナノチューブ電界効果トランジスタ半導体デバイス及びこれの製造方法
US6798000B2 (en) Field effect transistor
TWI461350B (zh) 使用奈米結構物之三極管及其製造方法
EP1593164B1 (en) Devices having vertically-disposed nanofabric articles and methods of making the same
JP2006505119A (ja) 電界効果トランジスタおよび該電界効果トランジスタの製造方法
US8759830B2 (en) Vertical organic field effect transistor and method of its manufacture
KR100327496B1 (ko) 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그제조방법
KR100393189B1 (ko) 탄소나노튜브를 이용한 mram 및 그 제조 방법
US7176147B2 (en) Combination insulator and organic semiconductor formed from self-assembling block co-polymers
KR100320136B1 (ko) 탄소나노튜브의 선택적 성장을 이용한 수직형 스위칭소자의 제작
KR100988080B1 (ko) 파묻힌 게이트 구조를 갖는 탄소나노튜브 트랜지스터 및그 제조 방법
KR101008026B1 (ko) 파묻힌 게이트 구조를 갖는 탄소나노튜브 트랜지스터
JP2006049459A (ja) カーボンナノチューブトランジスタの製造方法
US6456014B1 (en) Field emission device
KR20090028115A (ko) 상온에서 동작하는 단전자 논리 소자 및 그 제조방법
KR20020084881A (ko) 측면게이트를 이용한 실리콘 단전자 트랜지스터 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120914

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20130924

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140922

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150917

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160920

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170919

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20180917

Year of fee payment: 17