KR100352481B1 - Sintered Magnet and Fabricating Method of NdFeB Type - Google Patents
Sintered Magnet and Fabricating Method of NdFeB Type Download PDFInfo
- Publication number
- KR100352481B1 KR100352481B1 KR1020000041847A KR20000041847A KR100352481B1 KR 100352481 B1 KR100352481 B1 KR 100352481B1 KR 1020000041847 A KR1020000041847 A KR 1020000041847A KR 20000041847 A KR20000041847 A KR 20000041847A KR 100352481 B1 KR100352481 B1 KR 100352481B1
- Authority
- KR
- South Korea
- Prior art keywords
- ndfeb
- fega
- sintered magnet
- compound
- weight
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0293—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/02—Permanent magnets [PM]
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Hard Magnetic Materials (AREA)
Abstract
본 발명은 분말야금법에 의해 NdFeB계 소결 자석을 제조할 때 NdFeB계 소결 자석의 잔류 자속 밀도와 최대 자기 에너지적을 감소시키지 않고 NdFeB계 소결 자석의 보자력을 향상시키기 위하여 FeGa3화합물을 첨가한 FeGa3화합물이 첨가된 NdFeB계 소결 자석 및 그 제조 방법에 관한 것으로, 중량%로, Nd : 29.00∼33.00, Dy : 1.00 이하, Al : 0.30 이하, Cu : 0.05 이하, B : 0.90∼1.20, 잔부는 Fe로 조성되는 NdFeB계 합금 분말을 준비하는 단계와; 상기 NdFeB계 합금에 0.01∼0.80중량%의 FeGa3화합물 분말을 혼합하여 미분쇄하는 단계와; 상기 미분쇄 혼합 분말을 자장을 인가한 상태에서 압축 성형하여 소결한 후 열처리하는 단계를 포함하는 보자력증가를 위해 FeGa3화합물이 첨가된 NdFeB계 소결 자석 제조 방법이 제공된다.The invention FeGa 3 the order without reducing the preparation of a NdFeB sintered magnet by a powder metallurgy method and maximum residual magnetic flux density of the NdFeB sintered magnet magnetic energy small to improve the coercive force of the NdFeB sintered magnet was added to FeGa 3 compound The present invention relates to a NdFeB-based sintered magnet to which a compound is added and a method for manufacturing the same, in terms of weight%, Nd: 29.00 to 33.00, Dy: 1.00 or less, Al: 0.30 or less, Cu: 0.05 or less, B: 0.90 to 1.20, and the balance is Fe Preparing an NdFeB-based alloy powder; Pulverizing by mixing 0.01 to 0.80 wt.% FeGa 3 compound powder in the NdFeB-based alloy; Provided is a method for manufacturing an NdFeB-based sintered magnet to which a FeGa 3 compound is added for increasing coercive force, including compressing and sintering the pulverized mixed powder in a state in which a magnetic field is applied, followed by heat treatment.
Description
본 발명은 보자력증가를 위해 FeGa3화합물이 첨가된 NdFeB계 소결 자석 및 그 제조 방법에 관한 것으로, 보다 상세하게는 분말야금법에 의해 NdFeB계 소결 자석을 제조할 때 NdFeB계 소결 자석의 잔류 자속 밀도와 최대 자기 에너지적을 감소시키지 않고 NdFeB계 소결 자석의 보자력을 향상시키기 위하여 FeGa3화합물을 첨가한 보자력증가를 위해 FeGa3화합물이 첨가된 NdFeB계 소결 자석 및 그 제조 방법에 관한 것이다.The present invention relates to an NdFeB-based sintered magnet to which a FeGa 3 compound is added for increasing coercivity and a method of manufacturing the same. And a NdFeB-based sintered magnet to which a FeGa 3 compound is added to increase the coercive force to which the FeGa 3 compound is added to improve the coercive force of the NdFeB-based sintered magnet without reducing the maximum magnetic energy.
NdFeB계 영구자석이 처음 개발된 이후, 이 영구자석의 자기적 특성을 향상시키기 위해 많은 연구가 진행되어 왔다. 이 중 NdFeB계 소결 자석의 보자력(coercivity)을 향상시키기 위해서 NdFeB계 합금을 제조할 때 다양한 종류의원소를 첨가하여 NdFeB계 소결 자석을 제조하는 방법이 사용되고 있다.Since the first development of NdFeB-based permanent magnets, many studies have been conducted to improve the magnetic properties of the permanent magnets. Among them, in order to improve the coercivity of NdFeB-based sintered magnets, a method of manufacturing NdFeB-based sintered magnets by adding various kinds of elements is used.
Nd를 다른 희토류계 원소인 Dy와 Tb 등으로 치환시키는 방법은 보자력을 향상시키지만 이들 희토류계 원소는 포화 자화를 감소시키고, 따라서 잔류 자속 밀도(remanence)와 최대 자기 에너지적(maximum energy product)을 감소시킨다.Substituting Nd with other rare earth elements Dy and Tb improves coercivity, but these rare earth elements reduce saturation magnetization, thus reducing residual magnetic flux density and maximum energy product. Let's do it.
또한, 낮은 융점을 갖는 Al, Ga, Zn 등과 높은 융점을 갖는 Nb, Mo, V, W, Ti 등도 NdFeB계 소결 자석의 보자력을 향상시키는데 효과적인 원소로 알려져 있다.In addition, Al, Ga, Zn, etc., which have a low melting point, and Nb, Mo, V, W, Ti, which have a high melting point, are also known as effective elements for improving the coercive force of NdFeB-based sintered magnets.
이들 원소의 첨가에 의해 NdFeB계 소결 자석의 보자력이 향상되는 것은 NdFeB 소결 자석의 미세구조가 첨가 원소에 의해 변하기 때문인 것으로 설명되고 있다.The enhancement of the coercive force of the NdFeB-based sintered magnet by the addition of these elements is explained because the microstructure of the NdFeB sintered magnet is changed by the additional element.
그러나, 상기 첨가 원소들도 NdFeB계 소결 자석의 보자력을 향상시키지만 마찬가지로 포화자화를 감소시키고, 따라서 잔류자속밀도와 최대 자기 에너지적을 감소시키는 문제가 있다.However, the addition elements also improve the coercive force of the NdFeB-based sintered magnet, but likewise reduce the saturation magnetization, thus reducing the residual magnetic flux density and the maximum magnetic energy.
본 발명은 이러한 종래 기술의 문제점을 감안하여 안출된 것으로, 그 목적은 분말야금법에 의해 NdFeB계 소결 자석을 제조할 때 NdFeB계 소결 자석의 잔류자속밀도와 최대 자기 에너지적을 감소시키지 않으면서 NdFeB계 소결 자석의 보자력을 증가시킴으로써 소결 자석의 성능을 향상시켜 주는 FeGa3화합물이 첨가된 NdFeB계 소결 자석 및 그 제조 방법을 제공하는데 있다.The present invention has been made in view of the problems of the prior art, and its object is to produce NdFeB-based sintered magnets by powder metallurgy without reducing the residual magnetic flux density and maximum magnetic energy of NdFeB-based sintered magnets. The present invention provides an NdFeB-based sintered magnet to which a FeGa 3 compound is added to improve the performance of the sintered magnet by increasing the coercive force of the sintered magnet, and a method of manufacturing the same.
도 1은 TRE가 많은 NdFeB계 소결 자석에서 FeGa3화합물 첨가량에 따른 자기적 특성을 나타낸 그래프이다.1 is a graph showing the magnetic properties according to the amount of FeGa 3 compound added in a NdFeB-based sintered magnet with a high TRE.
상기한 목적을 달성하기 위하여, 본 발명은 중량%로, Nd : 29.00∼33.00, Dy : 1.00 이하, Al : 0.30 이하, Cu : 0.05 이하, B : 0.90∼1.20, 잔부는 Fe로 조성되는 NdFeB계 합금 분말을 준비하는 단계; 상기 NdFeB계 합금에 0.01∼0.80중량%의 FeGa3화합물 분말을 혼합하여 미분쇄하는 단계; 상기 미분쇄 혼합 분말을 자장을 인가한 상태에서 압축 성형하여 소결한 후 열처리하는 단계를 포함하는 보자력증가를 위해 FeGa3화합물이 첨가된 NdFeB계 소결 자석 제조 방법을 제공한다.In order to achieve the above object, the present invention provides a NdFeB based on the weight%, Nd: 29.00 to 33.00, Dy: 1.00 or less, Al: 0.30 or less, Cu: 0.05 or less, B: 0.90 to 1.20, the balance is Fe Preparing an alloy powder; Mixing and pulverizing 0.01 to 0.80% by weight of FeGa 3 compound powder in the NdFeB-based alloy; The present invention provides a method for manufacturing an NdFeB-based sintered magnet to which a FeGa 3 compound is added for increasing coercive force, including compressing and sintering the pulverized mixed powder in a state in which a magnetic field is applied, followed by heat treatment.
또한, 본 발명은 상기 방법에 의하여 제조되는 NdFeB계 소결 자석을 제공한다.The present invention also provides an NdFeB-based sintered magnet manufactured by the above method.
상기 NdFeB계 합금 조성은 바람직하기로는 Nd : 31.90중량%, Dy : 0.74중량%, Al : 0.12중량%, B : 0.98중량%, 잔부 Fe로 조성되어 TRE(Total Rare Earth ; 희토류의 총량)를 많게 할 수 있다.The NdFeB-based alloy composition is preferably composed of Nd: 31.90% by weight, Dy: 0.74% by weight, Al: 0.12% by weight, B: 0.98% by weight, balance Fe to increase TRE (Total Rare Earth; total amount of rare earths). can do.
또한, 상기 NdFeB계 합금 조성은 바람직하기로는 Nd : 30.000중량%, Dy : 0.370중량%, Al : 0.040중량%, Cu : 0.024중량%, B : 1.000중량%, 잔부 Fe로 조성되어 TRE를 적게 할 수 있다.In addition, the NdFeB-based alloy composition is preferably composed of Nd: 30.000% by weight, Dy: 0.370% by weight, Al: 0.040% by weight, Cu: 0.024% by weight, B: 1.000% by weight, balance Fe to reduce the TRE. Can be.
또한, 상기 NdFeB계 소결 자석의 보자력을 증가시키면서 잔류 자속 밀도와 최대 에너지적의 손실을 감소시키지 않기 위하여 FeGa3화합물의 적정 첨가 함량은 0.01∼0.80중량%, 바람직하기로는 0.1∼0.2중량%로 한다.In addition, in order to increase the coercive force of the NdFeB-based sintered magnet while not reducing the residual magnetic flux density and the maximum energy loss, an appropriate content of the FeGa 3 compound is 0.01 to 0.80 wt%, preferably 0.1 to 0.2 wt%.
상기한 바와 같이 이루어지는 본 발명은 분말야금법에 의해 NdFeB계 소결 자석을 제조할 때 미분쇄 과정에서 NdFeB계 합금에 FeGa3화합물을 첨가함으로써 기존의 NdFeB계 소결 자석에 비하여 잔류 자속 밀도와 최대 자기 에너지적을 감소시키지 않으면서 자석의 보자력을 향상시켜 주는 효과를 제공한다.According to the present invention made as described above, when manufacturing an NdFeB-based sintered magnet by powder metallurgy, FeGa 3 compound is added to the NdFeB-based alloy in the pulverization process. Provides the effect of improving the coercive force of the magnet without reducing the enemy.
(실시예)(Example)
이하에 상기한 본 발명을 바람직한 실시예가 도시된 첨부 도면을 참고하여 더욱 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings showing a preferred embodiment of the present invention described above in more detail.
첨부한 도면, 도 1은 TRE가 많은 NdFeB계 소결 자석에서 FeGa3화합물 첨가량에 따른 자기적 특성을 나타낸 그래프이다.1 is a graph showing magnetic properties according to the amount of FeGa 3 compound added in an NdFeB-based sintered magnet having a high TRE.
본 발명은 이를 위하여, TRE가 많은 Fe - 31.9Nd - 0.74Dy - 0.12Al - 0.98B를 기본조성으로 하는 NdFeB계 합금을 이용하여 소결 자석을 제조할 때 제조 공정 중에 NdFeB계 합금을 습식방법(wet process)에 의하여 미분쇄할 때에 FeGa3화합물을 첨가하여 NdFeB계 소결 자석의 보자력을 증가시키는 제 1실시예와; TRE가 낮은 Fe - 30Nd - 0.37Dy - 0.04Al - 0.024Cu - 1B 조성의 NdFeB계 합금을 이용하여 소결 자석을 제조할 때 제조 공정 중에 NdFeB계 합금을 건식방법(dry process)에 의하여 미분쇄할 때에 FeGa3화합물을 첨가하여 NdFeB계 소결 자석의 보자력을 증가시키는 제 2실시예가 있다.To this end, the present invention provides a wet method for manufacturing a sintered magnet when manufacturing a sintered magnet using an NdFeB alloy having a TRE-rich Fe-31.9Nd-0.74Dy-0.12Al-0.98B as a basic composition. a first embodiment of increasing a coercive force of an NdFeB-based sintered magnet by adding a FeGa 3 compound at the time of pulverizing by a process); When sintered magnet is manufactured by using NdFeB-based alloy having a low Fe-30Nd-0.37Dy-0.04Al-0.024Cu-1B composition, when the NdFeB-based alloy is pulverized by the dry process during the manufacturing process There is a second embodiment in which the coercive force of the NdFeB-based sintered magnet is increased by adding a FeGa 3 compound.
(제 1실시예)(First embodiment)
TRE가 많은 NdFeB계 소결 자석에서 FeGa3화합물이 보자력을 향상시키는 효과가 있는지를 조사하기 위하여 Fe - 31.9Nd - 0.74Dy - 0.12Al - 0.98B를 기본조성으로 상기 FeGa3화합물을 첨가하여 분말야금법으로 NdFeB계 소결 자석을 제조하였다.In order to investigate whether the FeGa 3 compound has the effect of improving the coercivity in the NdFeB-based sintered magnet with a lot of TRE, the powder metallurgy method was added by adding the FeGa 3 compound based on Fe-31.9Nd-0.74Dy-0.12Al-0.98B NdFeB-based sintered magnet was prepared.
여기서, 상기 Fe는 철(Iron), Nd는 네오디뮴(Neodymium), Dy는 디스프로슘(Dysprosium), Al은 알루미늄(Aluminium), B는 붕소(Boron), Ga은 갈륨(Gallium) 원소를 나타내는 원소 기호이다.Here, Fe is iron, Nd is neodymium, Dy is dysprosium, Al is aluminum, B is boron, Ga is gallium element. .
그리고, 상기 Fe - 31.9Nd - 0.74Dy - 0.12Al - 0.98B는 잔부의 Fe - 31.9중량%의 Nd - 0.74중량%의 Dy - 0.12중량%의 Al - 0.98중량%의 B의 조성비로 이루어진 합금을 의미하며, 이하 같은 의미로 표시된다.And, Fe-31.9Nd-0.74Dy-0.12Al-0.98B is an alloy consisting of a composition ratio of the balance of Fe-31.9% by weight of Nd-0.74% by weight of Dy-0.12% by weight of Al-0.98% by weight of B. It is represented as follows.
FeGa3화합물의 첨가량에 따른 성능을 조사하기 위하여 아래의 표 1에 나타낸 바와 같이, Fe - 31.9Nd - 0.74Dy - 0.12Al - 0.98B 합금에(소결 자석 A) 0.1 중량%의 FeGa3(소결 자석 B), 0.2 중량%의 FeGa3(소결 자석 C), 0.4 중량%의 FeGa3(소결 자석 D), 그리고 0.8 중량%의 FeGa3(소결 자석 E)을 첨가한 5가지의 조성을 선정하였다.In order to investigate the performance according to the addition amount of the FeGa 3 compound, as shown in Table 1 below, Fe-31.9Nd-0.74Dy-0.12Al-0.98B alloy (sintered magnet A) 0.1% by weight of FeGa 3 (sintered magnet B), five compositions containing 0.2 wt% FeGa 3 (sintered magnet C), 0.4 wt% FeGa 3 (sintered magnet D), and 0.8 wt% FeGa 3 (sintered magnet E) were selected.
Fe - 31.9Nd - 0.74Dy - 0.12Al - 0.98B 합금은 고순도의 Nd, Dy, Al, B와 Fe를 사용하여 진공 유도로에서 용해하였으며, FeGa3첨가 합금도 고순도의 Fe와 Ga을 사용하여 진공 유도로에서 용해하였다.The Fe-31.9Nd-0.74Dy-0.12Al-0.98B alloy was dissolved in a vacuum induction furnace using high purity Nd, Dy, Al, B and Fe, and the FeGa 3 addition alloy was also vacuumed using high purity Fe and Ga. Dissolved in an induction furnace.
Fe - 31.9Nd - 0.74Dy - 0.12Al - 0.98B 합금은 용해 후 1000∼1100℃(실제 실험에서는 1050℃)에서 15∼25(실제로는 20시간) 동안 진공 중에서 균질 처리하였다.The Fe-31.9Nd-0.74Dy-0.12Al-0.98B alloy was homogenized in vacuum for 15-25 (actually 20 hours) at 1000-1100 ° C. (1050 ° C. in the actual experiment) after dissolution.
Fe - 31.9Nd - 0.74Dy - 0.12Al - 0.98B 합금은 상온에서 수소를 이용하여 수소 분쇄(Hydrogen Decrepitation)한 후에 FeGa3화합물을 첨가하여 미분쇄하였다.The Fe-31.9Nd-0.74Dy-0.12Al-0.98B alloy was pulverized by hydrogen dehydration (Hydrogen Decrepitation) using hydrogen at room temperature and then pulverized by adding FeGa 3 compound.
상기 미분쇄는 n-헥산(hexane)을 분쇄 매체로 볼밀(ball milling)하는 습식 방법을 사용하였으며, 미분쇄 후 피셔 서브-시브 사이저(Fisher sub-sieve sizer)로 측정한 분말의 평균 입도는 약 3㎛이다. 상기 미분쇄는 제트밀 방식으로 하여도 무방하다.The fine grinding was performed using a wet method of ball milling n-hexane as a grinding medium, and the average particle size of the powder measured by the Fisher sub-sieve sizer after the fine grinding was About 3 μm. The fine grinding may be performed by jet mill method.
준비된 분말은 자장을 인가한 상태에서 프레스를 이용하여 일정 형태로 성형하였으며, 성형된 컴팩트(compact)는 고진공 상태의 1050∼1100℃(실제로는 1080℃) 온도에서 1∼2시간 동안 소결한 후, 500∼600℃에서 1∼3시간 동안 열처리하였다.The prepared powder was molded into a predetermined shape by using a press while applying a magnetic field, and the compact formed was sintered at a temperature of 1050 to 1100 ° C (actually 1080 ° C) in a high vacuum state for 1 to 2 hours, Heat treatment was performed at 500 to 600 ° C. for 1 to 3 hours.
제조된 NdFeB계 소결 자석의 자기적 특성은 D.C. 플럭스미터(D.C. fluxmeter)를 이용하여 측정하였다.The magnetic properties of the manufactured NdFeB-based sintered magnets were D.C. It was measured using a flux meter (D.C. fluxmeter).
도 1과 표 2에 나타난 바와 같이, FeGa3화합물의 첨가는 NdFeB계 소결 자석의 보자력을 향상시키는데 효과적이면서 잔류자속밀도에는 큰 영향을 미치지 않았다. 보자력은 FeGa3화합물이 0.1 중량% 첨가되었을 때 급격히 증가하고 FeGa3화합물의 첨가량이 더 증가하면 서서히 감소하였다. 잔류 자속 밀도와 최대 자기 에너지적은 FeGa3화합물이 0.2 중량% 첨가될 때까지 변화가 없었으며, FeGa3화합물의 첨가량이 더 증가하면 조금씩 감소하였다.As shown in FIG. 1 and Table 2, the addition of the FeGa 3 compound was effective to improve the coercive force of the NdFeB-based sintered magnet and had no significant effect on the residual magnetic flux density. If the coercive force is rapidly increased when the FeGa 3 compound is added 0.1% by weight and further increasing the added amount of the compound FeGa 3 was decreased gradually. The residual magnetic flux density and the maximum magnetic energy level did not change until the addition of FeGa 3 compound by 0.2% by weight, and gradually decreased as the amount of FeGa 3 compound added increased.
FeGa3화합물의 첨가에 의해 NdFeB계 소결 자석의 보자력이 증가하는 것은 습윤성(wettability)이 좋은 Nd6Fe14-xGax(x1) 입계상(grain boundary phase)이 생성되기 때문인 것으로 설명할 수 있다.The increase in the coercive force of the NdFeB-based sintered magnet by the addition of the FeGa 3 compound is attributed to the good wettability of Nd 6 Fe 14-x Ga x (x 1) It can be explained that the grain boundary phase is generated.
분말야금법에 의해 NdFeB계 소결 자석을 제조할 때 미분쇄 과정에서 FeGa3화합물을 첨가하는 것은 NdFeB계 소결 자석의 보자력 향상시키는데 효과가 있었다.When manufacturing the NdFeB-based sintered magnet by powder metallurgy, adding the FeGa 3 compound in the pulverization process was effective in improving the coercive force of the NdFeB-based sintered magnet.
FeGa3화합물의 적정 첨가량은 0.1∼0.2 중량%로, 이 때 잔류 자속 밀도와 최대 자기 에너지적의 변화 없이 NdFeB계 소결 자석의 보자력이 약 2kOe 증가하였다.The proper amount of FeGa 3 compound was 0.1 to 0.2% by weight, and the coercive force of the NdFeB-based sintered magnet was increased by about 2 kOe without changing the residual magnetic flux density and the maximum magnetic energy.
FeGa3화합물의 첨가량이 더 증가하면 FeGa3화합물을 첨가하지 않은 소결 자석에 비해 보자력은 증가하지만, 잔류 자속 밀도가 감소하여 최대 자기 에너지적은감소하였고, 특히 FeGa3화합물의 첨가량이 0.8중량%를 초과하는 경우에는 잔류 자속 밀도가 감소될 뿐만 아니라 입자 성장(grain growth)에 의해 각형성이 나빠져 최대 자기 에너지적이 감소되어 FeGa3화합물 첨가에 의한 보자력 향상효과가 NdFeB계 소결 자석의 특성 향상에 기여하지 못하였다.When the addition amount of FeGa 3 compound further increased the coercive force than the sintered magnet it was not added FeGa 3 compounds is increased, but was in the residual magnetic flux density decreases reduced less the maximum magnetic energy, in particular the added amount of the FeGa 3 compound exceeds 0.8 wt.% In this case, not only the residual magnetic flux density is decreased but also the angular deterioration is reduced by grain growth, and the maximum magnetic energy is reduced. Therefore, the coercive force improvement effect of the FeGa 3 compound addition does not contribute to the improvement of the characteristics of the NdFeB-based sintered magnet. It was.
(제 2실시예)(Second embodiment)
상기 제 1실시예에 비하여 상대적으로 NdFeB계 소결 자석에서 TRE(total rare earth)가 적은 합금계에서 FeGa3화합물의 보자력 향상 효과를 조사하기 위하여 표 3에 나타낸 바와 같이 Fe - 30Nd - 0.37Dy - 0.04Al - 0.024Cu - 1B 조성의 NdFeB계 합금에 FeGa3화합물을 0.13 중량% 첨가한 소결 자석(G)과 FeGa3화합물을 첨가하지 않은 소결 자석(F)을 선정하였다.In order to investigate the coercive force improvement effect of the FeGa 3 compound in the alloy system having less total rare earth (TRE) in the NdFeB-based sintered magnet as compared to the first embodiment, as shown in Table 3, Fe-30Nd-0.37Dy-0.04 A sintered magnet (G) in which 0.13% by weight of the FeGa 3 compound was added to an NdFeB-based alloy having an Al-0.024Cu -1B composition and a sintered magnet (F) in which the FeGa 3 compound was not added were selected.
Fe - 30Nd - 0.37Dy - 0.04Al - 0.024Cu - 1B 합금은 상기와 같이 고순도의 원소를 사용하여 진공 유도로에서 용해한 후에, 1000∼1100℃(실제 실험에서는 1050℃)에서 15∼25시간(실제로는 20시간) 동안 진공 중에서 균질 처리하였다.The Fe-30Nd-0.37Dy-0.04Al-0.024Cu-1B alloy was dissolved in a vacuum induction furnace using a high purity element as described above, and then 15 to 25 hours (actually 1050 ° C in actual experiments) at 1000 to 1100 ° C. Was homogenized in vacuo for 20 h).
Fe - 30Nd - 0.37Dy - 0.04Al - 0.024Cu - 1B 합금은 상온에서 수소를 이용하여 수소 분쇄(Hydrogen Decrepitation)한 후에, FeGa3화합물을 첨가하여 미분쇄하였다.The Fe-30Nd-0.37Dy-0.04Al-0.024Cu-1B alloy was pulverized with hydrogen at room temperature using hydrogen decitation (Hydrogen Decrepitation), and then pulverized by adding a FeGa 3 compound.
미분쇄는 수소 분위기에서 볼밀(ball mill)을 이용한 건식방법을 사용하였으며, 미분쇄 후 피셔 서브-시브 사이저(Fisher sub-sieve sizer)로 측정한 결과, 분말의 평균 입도는 약 3㎛이다.The fine grinding was carried out using a dry method using a ball mill in a hydrogen atmosphere, and the average particle size of the powder was about 3 μm as measured by the Fisher sub-sieve sizer after the fine grinding.
준비된 분말은 자장을 인가한 상태에서 프레스(press)를 이용하여 일정 형태로 성형하여 고진공 상태의 1050∼1100℃(실제로는 1080℃) 온도에서 1∼4시간 동안 소결한 후에, 500∼600℃ 온도에서 1∼3시간 동안 열처리하였다.The prepared powder is molded into a predetermined form by using a press while applying a magnetic field, and then sintered at a high vacuum of 1050 to 1100 ° C. (actually 1080 ° C.) for 1 to 4 hours, followed by a temperature of 500 to 600 ° C. Heat treatment for 1 to 3 hours at.
제조된 NdFeB계 소결 자석의 자기적 특성은 D.C 플럭스미터(d.c.fluxmeter)를 이용하여 측정하였으며, 그 결과는 표 4와 같다.Magnetic properties of the manufactured NdFeB-based sintered magnet was measured using a D.C flux meter (d.c.fluxmeter), the results are shown in Table 4.
상기의 TRE가 많은 NdFeB계 합금에서와 마찬가지로 Fe - 30Nd - 0.37Dy - 0.04Al - 0.024Cu - 1B 조성의 합금계에서도 0.13 중량%의 FeGa3화합물을 첨가한 소결 자석은 FeGa3화합물을 첨가하지 않은 소결 자석에 비하여 보자력이 약 2kOe 정도 증가하였으며, 그 반면에 잔류 자속 밀도와 최대 자기 에너지적의 감소는 거의 없었다.Similarly, the number of the TRE in the NdFeB-based alloy Fe - 30Nd - 0.37Dy - 0.04Al - 0.024Cu - 1B sintered FeGa 3 by the addition of the compound of 0.13% by weight in the alloy system of the composition of the magnet is without addition of the compound FeGa 3 The coercivity increased about 2 kOe compared to the sintered magnet, while there was little decrease in residual magnetic flux density and maximum magnetic energy.
상기한 바와 같은 본 발명은 분말야금법에 의해 NdFeB계 소결 자석을 제조할 때 미분쇄 과정에서 NdFeB계 합금에 FeGa3화합물을 첨가함으로써, NdFeB계 소결 자석의 잔류 자속 밀도와 최대 자기 에너지적을 감소시키지 않고도 NdFeB계 소결 자석의 보자력을 증가시켜 주는 효과를 제공한다.As described above, the present invention does not reduce the residual magnetic flux density and the maximum magnetic energy of the NdFeB-based sintered magnet by adding a FeGa 3 compound to the NdFeB-based alloy during the pulverization process when manufacturing the NdFeB-based sintered magnet by powder metallurgy. It provides an effect of increasing the coercive force of the NdFeB-based sintered magnet without.
이상에서는 본 발명을 특정의 바람직한 실시예를 예로 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.In the above, the present invention has been illustrated and described with reference to specific preferred embodiments, but the present invention is not limited to the above-described embodiments and the general knowledge in the technical field to which the present invention pertains without departing from the spirit of the present invention. Various changes and modifications will be made by those who possess.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000041847A KR100352481B1 (en) | 2000-07-21 | 2000-07-21 | Sintered Magnet and Fabricating Method of NdFeB Type |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000041847A KR100352481B1 (en) | 2000-07-21 | 2000-07-21 | Sintered Magnet and Fabricating Method of NdFeB Type |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020008907A KR20020008907A (en) | 2002-02-01 |
KR100352481B1 true KR100352481B1 (en) | 2002-09-11 |
Family
ID=19679139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020000041847A KR100352481B1 (en) | 2000-07-21 | 2000-07-21 | Sintered Magnet and Fabricating Method of NdFeB Type |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100352481B1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6477102A (en) * | 1987-09-18 | 1989-03-23 | Hitachi Metals Ltd | Magnet for disc rotor type brushless motor |
US5223047A (en) * | 1986-07-23 | 1993-06-29 | Hitachi Metals, Ltd. | Permanent magnet with good thermal stability |
JPH06188113A (en) * | 1992-08-13 | 1994-07-08 | Philips Electron Nv | Manufacture of permanent magnet composed mainly of ndfeb |
US5472525A (en) * | 1993-01-29 | 1995-12-05 | Hitachi Metals, Ltd. | Nd-Fe-B system permanent magnet |
US6045629A (en) * | 1995-07-21 | 2000-04-04 | Showa Denko K.K. | Alloy used for production of a rare-earth magnet and method for producing the same |
KR20000029088A (en) * | 1998-10-14 | 2000-05-25 | 마쯔노고오지 | R-T-B type sintered permanent magnet |
KR100285350B1 (en) * | 1998-12-24 | 2001-04-02 | 신현준 | Manufacturing method of permanent magnet for resin magnet |
-
2000
- 2000-07-21 KR KR1020000041847A patent/KR100352481B1/en not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5223047A (en) * | 1986-07-23 | 1993-06-29 | Hitachi Metals, Ltd. | Permanent magnet with good thermal stability |
JPS6477102A (en) * | 1987-09-18 | 1989-03-23 | Hitachi Metals Ltd | Magnet for disc rotor type brushless motor |
JPH06188113A (en) * | 1992-08-13 | 1994-07-08 | Philips Electron Nv | Manufacture of permanent magnet composed mainly of ndfeb |
US5472525A (en) * | 1993-01-29 | 1995-12-05 | Hitachi Metals, Ltd. | Nd-Fe-B system permanent magnet |
US6045629A (en) * | 1995-07-21 | 2000-04-04 | Showa Denko K.K. | Alloy used for production of a rare-earth magnet and method for producing the same |
KR20000029088A (en) * | 1998-10-14 | 2000-05-25 | 마쯔노고오지 | R-T-B type sintered permanent magnet |
KR100285350B1 (en) * | 1998-12-24 | 2001-04-02 | 신현준 | Manufacturing method of permanent magnet for resin magnet |
Also Published As
Publication number | Publication date |
---|---|
KR20020008907A (en) | 2002-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8123832B2 (en) | R-T-B system sintered magnet | |
US7175718B2 (en) | Rare earth element permanent magnet material | |
JPH0531807B2 (en) | ||
US5647886A (en) | Magnetic powder, permanent magnet produced therefrom and process for producing them | |
JPH06275414A (en) | Nd-fe-b based permanent magnet | |
US4135953A (en) | Permanent magnet and method of making it | |
JPH07105289B2 (en) | Rare earth permanent magnet manufacturing method | |
JP2000234151A (en) | Rare earth-iron-boron system rare earth permanent magnet material | |
EP0416098B1 (en) | Magnetically anisotropic sintered magnets | |
JPS61263201A (en) | Manufacture of generator | |
KR100352481B1 (en) | Sintered Magnet and Fabricating Method of NdFeB Type | |
JPH06231926A (en) | Rare earth permanent magnet | |
JPH0660367B2 (en) | Method of manufacturing permanent magnet material | |
KR100394992B1 (en) | Fabricating Method of NdFeB Type Sintered Magnet | |
JP2571403B2 (en) | Manufacturing method of rare earth magnet material | |
JP3080275B2 (en) | R-Fe-Co-Al-Nb-Ga-B sintered magnet excellent in corrosion resistance and heat resistance and method for producing the same | |
JPH06275415A (en) | Nd-fe-b based permanent magnet | |
JPH06231921A (en) | Nd-fe-b type permanent magnet | |
JP3253006B2 (en) | RE-T-M-B sintered magnet with excellent magnetic properties | |
JP2577373B2 (en) | Sintered permanent magnet | |
JPS62158852A (en) | Permanent magnet material | |
JPH08288112A (en) | Rare-earth permanent magnet and its manufacture | |
JPS62136550A (en) | Permanent magnet material | |
JPH0320044B2 (en) | ||
JPS62158854A (en) | Permanaent magnet material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20090731 Year of fee payment: 8 |
|
LAPS | Lapse due to unpaid annual fee |