KR100340806B1 - Method for extending lifetime of gas turbine hot parts by hot isostatic pressing - Google Patents
Method for extending lifetime of gas turbine hot parts by hot isostatic pressing Download PDFInfo
- Publication number
- KR100340806B1 KR100340806B1 KR1019990046955A KR19990046955A KR100340806B1 KR 100340806 B1 KR100340806 B1 KR 100340806B1 KR 1019990046955 A KR1019990046955 A KR 1019990046955A KR 19990046955 A KR19990046955 A KR 19990046955A KR 100340806 B1 KR100340806 B1 KR 100340806B1
- Authority
- KR
- South Korea
- Prior art keywords
- high temperature
- temperature
- gas turbine
- parts
- cooling
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0068—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
본 발명은 Ni기 초합금을 사용해서 진공정밀주조기술로 만들어지는 가스터빈 블레이드(blade)와 같은 고온 부품의 내부에 존재하는 결함을 제거하고 미세조직을 최적화함으로써 고온부품의 사용 수명을 연장하기 위한 고온등압압축기술을 이용한 가스터빈 고온부품의 수명연장방법에 관한 것이다. 그 고온등압압축처리방법은 진공가열, 승온승압, 항온유지, 냉각 등 4단계로 구성된다. 특히, 본 발명에서는 냉각과정을 2 단계로 구분하여서 수행함으로써 결정입계와 γ' 강화상을 미세하게 석출시켜 고온강도를 향상시킬 수 있게 한 것이다. 이에 따른, 제 1 단계인 제어냉각단계(410)에서는, 1200±20℃에서 1120±20℃까지의 온도구간에서 냉각속도를 분당 5℃이하로 최소화하여 재료의 결정입계를 톱니 모양으로 변형시켜 고온 크리프(Creep) 강도를 증가시킨다. 그후 제 2 단계인 균일급속냉각단계(420)에서는, 1120 ±20℃에서 30℃까지의 온도구간에서 분당 100℃이상으로 균일 급속냉각시킴으로써 고온 강화상인 γ' 을 미세하게 석출시켜 고온강도를 증가시킨다. 아울러, 이와 같은 고온등압압축처리 후에 진공분위기에서 850±30℃에서 8시간 이상 후열처리하는 단계(500)를 더 수행함으로써, 2차 γ' 을 미세하게 추가로 석출시켜 고온강도를 더욱 향상시킬 수 있게 되는 장점이 있다.The present invention uses a Ni-based superalloy to remove defects in the interior of high temperature parts such as gas turbine blades, which are made by vacuum precision casting, and to optimize the microstructure, thereby increasing the service life of the high temperature parts. The present invention relates to a method for extending the service life of gas turbine high temperature parts using isocompression technology. The high temperature isocompression treatment method is composed of four stages: vacuum heating, elevated temperature boost, constant temperature maintenance, and cooling. In particular, in the present invention, by performing the cooling process divided into two stages to finely precipitate the grain boundary and the γ 'strengthening phase to improve the high temperature strength. Accordingly, in the first step, the controlled cooling step 410, the cooling rate is minimized to 5 ° C. or less per minute in a temperature range of 1200 ± 20 ° C. to 1120 ± 20 ° C. to deform the grain boundary of the material into a sawtooth shape so as to be high temperature. Increases creep strength. Thereafter, in the second step, the uniform rapid cooling step 420, by uniformly rapid cooling to more than 100 ℃ per minute in a temperature range of 1120 ± 20 ℃ to 30 ℃ fine precipitates the high temperature enhanced phase γ 'to increase the high temperature strength . In addition, after the high temperature isocompression treatment is further performed after the heat treatment (500) for 8 hours or more at 850 ± 30 ° C. in a vacuum atmosphere, the secondary γ 'is further finely precipitated to further improve the high temperature strength. It has the advantage of being able to.
Description
본 발명은 고온등압압축처리 과정에서 냉각공정을 제어하고 후열처리공정을 복합적으로 적용하여 가스터빈 블레이드 소재 내부에 존재하는 결함을 효과적으로 제거하고 미세 조직을 최적화하여 가스터빈 고온부품의 수명을 연장하기 위한 방법에 관한 것이다. 특히, 본 발명은 가스터빈 블레이드 내부에 존재하는 결함을 효과적으로 제거하고, 미세조직을 최적화하여 기계적 특성을 향상시키기 위해 진공가열, 승온승압, 항온유지, 냉각공정으로 구성된 고온등압압축과정을 개선하여 냉각공정을 제어하므로써 결정입계를 변형시키고, 고온강화상인 γ'상을 미세하게 석출시키고 후열처리하는 방법을 추가로 적용하여 2차 γ'상을 추가로 석출시켜 기계적 특성을 향상시키기 위한 방법에 관한 것이다.The present invention is to control the cooling process in the high temperature isocompression process and to apply the post-heat treatment process in combination to effectively remove the defects in the gas turbine blade material and to optimize the microstructure to extend the life of high temperature gas turbine components It is about a method. In particular, the present invention is to improve the high temperature isostatic compression process consisting of vacuum heating, elevated temperature, constant temperature, cooling process to effectively remove the defects present in the gas turbine blade, optimize the microstructure to improve the mechanical properties A method for improving the mechanical properties by further modifying the secondary γ 'phase by further modifying the grain boundary by controlling the cooling process, and further applying a method of finely depositing γ' phase, which is a high temperature strengthening image, and post-heat treatment. will be.
일반적으로, 가스터빈 블레이드는 고온에서 사용하기 때문에 장시간 사용할 때 표면의 결함은 물론 재료내부에 결함이 발생하여 성장하게 되며 미세조직 또한 변태 및 열화된다. 종래에는 이러한 재료내부의 결함과 미세조직을 제거하는 방법으로는 진공열처리를 수행하였으나 이러한 기술로는 γ'상과 미세조직을 조절할 수는 있으나, 재료내부에 형성된 결함은 완전하게 제거할 수 없다는 문제점이 있다.In general, since the gas turbine blades are used at a high temperature, defects on the surface as well as defects occur in the material when they are used for a long time, and microstructures are also transformed and deteriorated. Conventionally, the vacuum heat treatment was performed as a method of removing defects and microstructures in the material, but these techniques can control the γ 'phase and the microstructure, but defects formed in the material cannot be completely removed. There is this.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위하여, 재료내부의 결함을 제거하면서 동시에 결정입계의 형상 제어와 γ' 강화상의 석출을 최적화하기 위해 고온등압압축처리 공정을 개선하고, 후열처리 공정을 함께 적용하는 복합공정을 수행함으로써 가스터빈에 사용되는 고온 부품의 수명을 보다 연장시키는데 그 목적이 있다.Therefore, in order to solve the above problems, the present invention improves the high temperature isothermal compression process to remove the defects in the material and at the same time optimize the shape control of the grain boundary and the precipitation of the γ 'reinforcement phase, and the post heat treatment process. The purpose is to extend the service life of high temperature parts used in gas turbines by carrying out the combined process of applying them together.
도 1은 본 발명에 따른 고온등압압축처리를 위한 전체 공정도,1 is an overall process diagram for the high temperature isocompression treatment according to the present invention,
도 2는 도 1에서 냉각 공정과 후열처리 공정에 대한 세부 공정도,Figure 2 is a detailed process diagram for the cooling process and the post-heat treatment process in Figure 1,
도 3은 도 1의 각 공정에 대한 온도, 압력 및 시간 관계를 나타낸 그래프,3 is a graph showing a relationship of temperature, pressure, and time for each process of FIG. 1;
도 4는 도 2에 도시된 후열처리 공정에 대한 온도, 진공도 및 시간 관계를 나타낸 그래프,Figure 4 is a graph showing the relationship between temperature, vacuum degree and time for the post-heat treatment process shown in FIG.
도 5는 본 발명의 효과를 나타내는 그림으로 결정입계의 형상이 톱니모양으로 제어된 상태를 나타낸 사진,5 is a picture showing the effect of the present invention is a photograph showing a state in which the shape of the grain boundary is controlled in the shape of a sawtooth,
도 6은 본 발명의 효과를 나타내는 그림으로 재료내부에 1차 γ' 가 미세하게 형성된 사진,Figure 6 is a picture showing the effect of the present invention is a photo finely formed primary γ 'in the material,
도 7은 본 발명이 피로(fatigue) 강도에 미치는 영향을 나타낸 도면,7 is a view showing the effect of the present invention on the fatigue (fatigue) strength,
도 8은 본 발명이 크리프 강도에 미치는 영향을 나타낸 도면.8 is a view showing the effect of the present invention on the creep strength.
〈도면의 주요 부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>
A : 제어냉각공정 곡선 B : 균일급속냉각공정 곡선A: Controlled cooling process curve B: Uniform rapid cooling process curve
10 : 톱니 형상 결정입계 20 : 미세하게 석출된 γ' 형상10: tooth shape grain boundary 20: finely deposited γ 'shape
30 : 2차 석출된 γ' 형상30: second precipitated γ 'shape
이하, 본 발명을 첨부된 도면들에 의거하여 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 고온등압압축처리 공정에 대한 전체 흐름도를 나타낸다.1 shows an overall flow chart of the high temperature isocompression treatment process of the present invention.
이에 도시된 바와 같이, 그 고온등압압축처리 공정은, 크게 유해가스를 배출하기 위한 과정으로서 진공분위기에서 300℃로 30분 이상 가열하는 진공가열과정(100)과, 1200±50℃의 온도구간으로 온도를 올리고 100MPa 이상으로 압력을 올리는 승온승압과정(200)과, 그리고 국부적 용융이 진행되는 온도 이하에서 주조결합 및 기공 등을 소성 변형시켜 결함을 제거하기 위한 온도구간에서 4시간 이상 항온을 유지하는 항온유지과정(300)과, 그리고 냉각 과정(400)으로 이루어진다.As shown in the drawing, the high temperature isocompression treatment process is a process for discharging harmful gases largely, the vacuum heating process 100 for heating at 300 ° C. for at least 30 minutes in a vacuum atmosphere, and a temperature section of 1200 ± 50 ° C. Temperature raising step to raise the temperature to 100MPa or more, and to maintain a constant temperature for more than 4 hours in the temperature range to remove defects by plastically deforming casting bonds and pores at a temperature below which local melting proceeds. The constant temperature maintenance process 300 and the cooling process 400 is made up.
상기한 냉각과정(400)과 이 냉각과정을 종료한 후의 후열처리 과정(500)을 도 2 내지 도 8을 참조하여 상세히 설명한다.The cooling process 400 and the post-heat treatment process 500 after finishing the cooling process will be described in detail with reference to FIGS. 2 to 8.
도 2는 냉각과정(400)과 추가적으로 후열처리하는 과정(500)을 개략적으로 나타낸 흐름도이다. 도 3은 본 발명의 진공가열과정(100), 승온승압과정(200), 항온유지과정(300), 냉각과정(400)으로 구성된 고온등압압축처리 과정을 시간, 온도및 압력의 관계로 나타낸 그래프이다. 도 4는 고온등압압축처리한 후, 후열처리 과정을 시간, 온도 및 압력의 관계로 나타낸 그래프이다. 이러한 도 2 내지 도 4를 참조하여 설명한다.2 is a flowchart schematically illustrating a cooling process 400 and an additional post-heat treatment process 500. Figure 3 is a high temperature isostatic compression process consisting of the vacuum heating process 100, the temperature rising step 200, the constant temperature holding step 300, the cooling step 400 of the present invention as a relationship between time, temperature and pressure It is a graph. 4 is a graph showing the post-heat treatment process in relation to time, temperature, and pressure after the high temperature isothermal compression treatment. This will be described with reference to FIGS. 2 to 4.
먼저, 도 2에 도시된 바와 같이, 냉각과정(400)은 제어냉각(410)과 균일급속냉각(420)의 2 단계로 제어하여 고온강도를 크게 향상시키는 과정으로 이루어진다.First, as shown in Figure 2, the cooling process 400 is made of a process of greatly improving the high temperature strength by controlling in two stages of the control cooling 410 and uniform rapid cooling (420).
즉, 제 1 단계인 제어냉각단계(410)에서는 상기 1200±20℃에서 4시간 이상 항온유지한 후, 도 3의 'A' 부분에서와 같이, Ni기 초합금의 고온강도 향상에 기여하는 γ'이 γ기지에 용해되어 있다가 석출하는 1120 ±20℃ 까지 분당 5℃ 이하로 천천히(최소화) 냉각한 후 30분 이상 유지하므로써 입계형상을 톱니형상으로 변형시켜 고온 크리프 강도를 증가시킬 수 있다.That is, in the control cooling step 410, which is the first step, after maintaining constant temperature for 4 hours or more at 1200 ± 20 ° C, γ ', which contributes to improving the high temperature strength of the Ni-based superalloy, as shown in the' A 'part of FIG. By dissolving in the γ-base and slowly cooling (minimizing) to 1120 ± 20 ° C to 5 ° C or less per minute and then maintaining it for 30 minutes or more, the grain boundary shape can be deformed into a sawtooth shape to increase the high temperature creep strength.
그 후, 제 2 단계인 균일급속냉각단계(420)에서는, 도 3의 'B' 부분에서와 같이, 그 이하 온도구간(1120 ±20℃에서 30℃까지)에서는 분당 100℃ 이상으로 균일급속냉각하여 재료의 변형을 억제하고 톱니모양의 입계가 변형되지 않고, 냉각과정에서 석출하는 고온강화상인 γ'상의 성장을 억제하여 미세하게 분포시킴으로써 재료의 고온강도를 향상시키게 된다. 이 균일급속냉각단계(420)에서는 고온에서 Ni기 초합금이 최대의 강도를 유지하기 위해 γ' 강화상이 평균 0.5㎛ 정도 크기로 미세하게 석출한 후 성장하지 못하도록 분당 100℃ 이상으로 균일급속냉각한다.Then, in the second step, the uniform rapid cooling step 420, as in the 'B' portion of Figure 3, in the temperature section (1120 ± 20 ℃ to 30 ℃) or less in the uniform rapid cooling above 100 ℃ per minute Therefore, the deformation of the material is suppressed, the grain boundary of the sawtooth shape is not deformed, and the high temperature strength of the material is improved by suppressing the fine distribution by inhibiting the growth of the γ 'phase, which is a high temperature strengthening image that precipitates during the cooling process. In the uniform rapid cooling step 420, in order to maintain the maximum strength of the Ni-based superalloy at high temperature, the γ'-reinforced phase is finely precipitated to an average size of about 0.5 μm and then uniformly cooled to 100 ° C. or more so as not to grow.
이와 같은 2단계의 제어냉각과정(400) 수행 후에, 가스터빈 블레이드 소재의 미세조직내에 급속냉각으로 완전히 석출하지 못하고 잔류하고 있는 γ'을 석출하여 기지 조직을 평형상으로 변태시키며, 미세한 2차 γ'상으로 고온강도를 더욱 향상시키기 위해, 도 4에서와 같이, 진공분위기에서 850 ±30℃로 가열하고 8시간 이상 유지하는 후열처리과정(500)을 추가적으로 수행함으로써, 고온강도를 더욱 향상시킬 수 있다. 이와 같은 본 발명의 열처리 공정은 특수 제작된 고온 고압 열처리장치를 사용하여 이루어지는 것으로 설정압력, 온도, 시간에 따라 이에 대응하여 열처리작업이 이루어지는 것이다.After performing the two-step control cooling process (400) as described above, γ 'remaining in the microstructure of the gas turbine blade material is not completely precipitated by rapid cooling, thereby transforming the matrix into an equilibrium state, and the fine secondary γ In order to further improve the high temperature strength in phase, as shown in Figure 4, by further performing a post-heat treatment (500) that is heated to 850 ± 30 ℃ in a vacuum atmosphere and maintained for more than 8 hours, it is possible to further improve the high temperature strength have. Such a heat treatment process of the present invention is made by using a specially made high temperature high pressure heat treatment apparatus is a heat treatment operation corresponding to this according to the set pressure, temperature, time.
도 5는 본 발명의 효과를 분석한 사진으로 고온등압압축처리 후 광학현미경을 이용하여 미세조직을 관찰한 결과 결정입계가 톱니형상(10)으로 변형된 것을 알 수 있다.FIG. 5 is a photograph analyzing the effect of the present invention. As a result of observing the microstructure using an optical microscope after high temperature isostatic compression treatment, it can be seen that the grain boundary is deformed into a sawtooth shape 10.
도 6은 본 발명에서 고온등압압축처리후 가스터빈 블레이드의 미세조직을 주사전자 현미경을 이용하여 분석한 것으로 γ' 강화상이 미세하고 균일하게 분포된 것을 알 수 있다. 여기서, 도면부호 '20'은 미세하게 석출된 γ'형상을, '30'은 2차 석출된 γ'형상을 나타낸다.Figure 6 shows that the microstructure of the gas turbine blade after high temperature isostatic compression treatment in the present invention by using a scanning electron microscope it can be seen that the γ 'enhanced phase is fine and uniformly distributed. Here, reference numeral '20' denotes a finely precipitated γ 'shape and' 30 'denotes a secondary precipitated γ' shape.
도 7은 본 발명에서 고온등압압축처리 및 후열처리 후 내부결함의 제거 및 미세조직이 최적화됨으로 인하여 피로(fatigue) 특성이 6배 이상 크게 향상된 것을 나타낸다.FIG. 7 shows that the fatigue property is greatly improved by more than 6 times due to the removal of internal defects and the optimization of the microstructure after the high temperature isothermal compression treatment and the post heat treatment.
도 8은 본 발명에서 고온등압압축처리 및 후열처리 후 내부결함의 제거 및 미세조직이 최적화됨으로 인하여 크리프 특성이 3배 이상 향상된 것을 나타낸다.Figure 8 shows that the creep properties are improved by more than three times due to the removal of internal defects and the optimization of microstructure after high temperature isothermal compression and post heat treatment.
이상과 같이 본 발명에서는 냉각과정을 2단계로 제어함으로써 도 5에 도시된 바와 같이 고온 강도의 주요 인자인 결정입계를 목적하는 바와 같이 톱니형상으로 변형시키고, γ'강화상을 미세하게 분포되도록 조절할 수 있으며(도 6 참조), 도 4와 같이 고온등압압축처리 후 850 ±30℃에서 진공열처리 공정을 추가로 적용함으로써 도 6의 도면부호 '30'처럼 2차 γ'상이 1차 γ'상 사이에 추가로 석출되어 피로특성을 6배 이상(도 7 참조), 고온 크리프 강도는 3배 이상(도 8 참조) 크게 향상시킬 수 있다. 따라서, 본 발명은 가스터빈 블레이드와 고온부품의 내부에 존재하는 결함을 제거하고 미세조직을 최적화킴으로써 고온부품의 사용수명을 연장할 수 있다.As described above, in the present invention, by controlling the cooling process in two stages, as shown in FIG. 5, the grain boundary, which is the main factor of high temperature strength, is transformed into a sawtooth shape as desired, and the γ 'enhanced image is finely controlled. (See Fig. 6), by applying a vacuum heat treatment process at 850 ± 30 ℃ after high temperature isostatic compression as shown in Figure 4, the secondary γ 'phase as shown in the reference numeral' 30 'of FIG. It is further precipitated in between, and can significantly improve fatigue characteristics by six times or more (see FIG. 7), and high temperature creep strength by three times or more (see FIG. 8). Therefore, the present invention can extend the service life of the hot parts by removing defects existing in the gas turbine blades and the hot parts and optimizing the microstructure.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990046955A KR100340806B1 (en) | 1999-10-27 | 1999-10-27 | Method for extending lifetime of gas turbine hot parts by hot isostatic pressing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990046955A KR100340806B1 (en) | 1999-10-27 | 1999-10-27 | Method for extending lifetime of gas turbine hot parts by hot isostatic pressing |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010038834A KR20010038834A (en) | 2001-05-15 |
KR100340806B1 true KR100340806B1 (en) | 2002-06-20 |
Family
ID=19617238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019990046955A KR100340806B1 (en) | 1999-10-27 | 1999-10-27 | Method for extending lifetime of gas turbine hot parts by hot isostatic pressing |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100340806B1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4935072A (en) * | 1986-05-13 | 1990-06-19 | Allied-Signal, Inc. | Phase stable single crystal materials |
KR920021236A (en) * | 1991-05-13 | 1992-12-18 | 한스 요트. 헤쪄, 게르트 뤼크 | Turbine Blades and Manufacturing Method Thereof |
JPH09194946A (en) * | 1996-11-29 | 1997-07-29 | Japan Steel Works Ltd:The | Production of high-low pressure integrated type turbine rotor |
-
1999
- 1999-10-27 KR KR1019990046955A patent/KR100340806B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4935072A (en) * | 1986-05-13 | 1990-06-19 | Allied-Signal, Inc. | Phase stable single crystal materials |
KR920021236A (en) * | 1991-05-13 | 1992-12-18 | 한스 요트. 헤쪄, 게르트 뤼크 | Turbine Blades and Manufacturing Method Thereof |
JPH09194946A (en) * | 1996-11-29 | 1997-07-29 | Japan Steel Works Ltd:The | Production of high-low pressure integrated type turbine rotor |
Also Published As
Publication number | Publication date |
---|---|
KR20010038834A (en) | 2001-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9670572B2 (en) | Method for post-built heat treatment of additively manufactured components made of gamma-prime strengthened superalloys | |
CN1190295C (en) | Repair of single crystal nickel superalloy part | |
US20060207693A1 (en) | Modified advanced high strength single crystal superalloy composition | |
CN107971491A (en) | A kind of method for eliminating electron beam selective melting increasing material manufacturing nickel base superalloy tiny crack in parts | |
US20140305368A1 (en) | Manufacturing a component of single crystal or directionally solidified material | |
CN103088275A (en) | Method for producing a superalloy component or fitting | |
EP1323842B1 (en) | Method of restoration of mechanical properties of cast inconel 718 for serviced aircraft components | |
JP6761580B2 (en) | Manufacturing method of α + β type titanium alloy wing member | |
CN107488825B (en) | A kind of precipitation strength type polycrystalline cast Ni-base alloy military service injury recovery method | |
GB2293629A (en) | A turbomachine aerofoil and a method of production | |
CN110079752A (en) | Inhibit the heat treatment method of the single crystal super alloy of 3D printing or welding recrystallization | |
CN110846600B (en) | Multi-step reversion heat treatment method for additive manufacturing of single crystal nickel-based high-temperature alloy | |
KR100340806B1 (en) | Method for extending lifetime of gas turbine hot parts by hot isostatic pressing | |
CN113351881B (en) | Mixed additive manufacturing method for aero-engine case | |
CN114433871A (en) | Selective laser melting forming manufacturing process for cobalt-based high-temperature alloy baffle | |
CN111975006B (en) | Repair method of aircraft engine blade | |
CN109385590A (en) | A kind of control method of single crystal super alloy recrystallization | |
CN110284087A (en) | A kind of restoring heat treatment method for repairing K403 nickel base superalloy blade creep impairment | |
CN114250519B (en) | Solution heat treatment method for reducing content of solution holes of high-rhenium nickel-based single crystal superalloy | |
CN115502416B (en) | Laser selective melting forming GH4099 high-temperature alloy heat treatment method | |
CN111534768A (en) | Hierarchical hot isostatic pressing method for Cu-containing cast Al-Si-Mg aluminum alloy casting | |
JPH06240427A (en) | Production of precipitation hardening superalloy | |
EP4394082A1 (en) | Superalloy components having coatings thereon and methods for producing the same | |
RU2810141C1 (en) | Method for manufacturing product from nickel alloys with controlled variable structure | |
CN115094360B (en) | Heat treatment process of single crystal high temperature alloy with deformation resistance and recrystallization resistance effects |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
N231 | Notification of change of applicant | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130603 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20140602 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20150601 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20160601 Year of fee payment: 15 |
|
FPAY | Annual fee payment |
Payment date: 20170601 Year of fee payment: 16 |
|
FPAY | Annual fee payment |
Payment date: 20180530 Year of fee payment: 17 |
|
FPAY | Annual fee payment |
Payment date: 20190529 Year of fee payment: 18 |