[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR100347077B1 - Organosilicon compound, Ziegler-Natta catalyst containing the same and process for polymerization of olefins - Google Patents

Organosilicon compound, Ziegler-Natta catalyst containing the same and process for polymerization of olefins Download PDF

Info

Publication number
KR100347077B1
KR100347077B1 KR1019960706084A KR19967006084A KR100347077B1 KR 100347077 B1 KR100347077 B1 KR 100347077B1 KR 1019960706084 A KR1019960706084 A KR 1019960706084A KR 19967006084 A KR19967006084 A KR 19967006084A KR 100347077 B1 KR100347077 B1 KR 100347077B1
Authority
KR
South Korea
Prior art keywords
compound
magnesium
ziegler
carbon atoms
alkyl group
Prior art date
Application number
KR1019960706084A
Other languages
Korean (ko)
Inventor
모토키 호사카
겐지 고토
마사히코 마츠오
Original Assignee
도호 티타늄 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP6113754A external-priority patent/JPH07292029A/en
Priority claimed from JP30996294A external-priority patent/JPH08143580A/en
Application filed by 도호 티타늄 가부시키가이샤 filed Critical 도호 티타늄 가부시키가이샤
Application granted granted Critical
Publication of KR100347077B1 publication Critical patent/KR100347077B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 화학식(1)의 유기실리콘 화합물에 관한 것이다:The present invention relates to organosilicon compounds of formula (1):

상기식에서,In the above formula,

R1및 R2는 동이하거나 상이할 수 있으며 각각 탄소수 1 내지 3의 알킬그룹이고,R 1 and R 2 may be the same or different and each is an alkyl group having 1 to 3 carbon atoms,

R3및 R4는 동일하거나 상이할 수 있으며 각각 탄소수 1 내지 3의 알킬그룹 또는 할로겐원자이며,R 3 and R 4 may be the same or different and each is an alkyl group or halogen atom having 1 to 3 carbon atoms,

m 및 n은 각각 0, 또는 정수 1 또는 2이다.m and n are 0 or the integer 1 or 2, respectively.

본 발명의 유기실리콘 화합물은 올레핀을 중합용 지글러-나타 촉매의 유용한 전자 공여체 성분으로 사용된다.The organosilicon compounds of the present invention employ olefins as useful electron donor components of Ziegler-Natta catalysts for polymerization.

Description

유기 실리콘 화합물, 이를 함유하는 지글러-나타 촉매 및 올레핀의 중합 방법{Organosilicon compound, Ziegler-Natta catalyst containing the same and process for polymerization of olefins}Organic silicon compound, Ziegler-Natta catalyst containing the same and process for polymerization of olefins}

본 발명 이전에는, 지글러-나타 촉매의 성분으로서 전자 공여체(외부 전지공여체)로 사용하거나 지글러-나타 촉매의 고형 촉매성분에 함유된 전자공여체(내부 전자 공여체)로 사용하는 많은 특정의 유기실리콘 화합물이 개선된 입체적 규칙성을 지닌 중합체를 제조하는데 사용되거나, 촉매를 사용하는 올레핀 중합에서 촉매 활성을 증진시키는 목적으로 제시되어 왔다.Prior to the present invention, many specific organosilicon compounds used as electron donors (external cell donors) as components of Ziegler-Natta catalysts or as electron donors (internal electron donors) contained in solid catalyst components of Ziegler-Natta catalysts It has been proposed to be used to prepare polymers with improved steric regularity or to promote catalytic activity in olefin polymerization using catalysts.

이러한 종류의 유기실리콘 화합물을 생산하는 공정에는 다양한 방법이 제시되어 왔다. 예를들어, 미합중국특허 제4,977,291호에는 출발화합물로서 방향족 그룹을 함유한 실리콘화합물이 촉매, 예를들어, 라니 니켈(Raney nickel) 촉매의 존재하에 수화시켜, 하나 이상의 사이클로알킬 그룹을 지닌 실리콘화합물을 생성시키는 방법이 기재되어 있다.Various methods have been proposed in the process for producing organosilicon compounds of this kind. For example, US Pat. No. 4,977,291 discloses that a silicone compound containing an aromatic group as a starting compound is hydrated in the presence of a catalyst, such as a Raney nickel catalyst, to provide a silicone compound having at least one cycloalkyl group. Methods of making are described.

미합중국특허 제4,958.041호에는, 테트라알콕시실란 또는 모노유기트리알콕시실란과 구조식 [R1MgCl]을 함유하는 그리냐아르 시약(Grignard reagent)을 반응시켜, 일반식 [R1R2Si(OR3)2](식중, R1및 R2는 탄소수 3∼10개의 알킬기 또는 사이클로 알킬기를 각각 나타내며, R3는 탄소소 1~5개의 알킬기를 나타내며, R1및 R2중의 적어도 하나는 분지쇄의 알킬기이다)로 표시되는 유기 실리콘 화합물을 제조하는 방법이 기재되어 있다.In U.S. Patent No. 4,958.041, a tetraalkoxysilane or a monoorganotrialkoxysilane and a Grignard reagent containing a structural formula [R 1 MgCl] are reacted to form a general formula [R 1 R 2 Si (OR 3 ). 2] (wherein, R 1 and R 2 represents a C3-C10 alkyl group or cycloalkyl group, respectively, R 3 represents a carbon cows 1-5 alkyl group, R 1 and R 2 is an alkyl group of at least one of branched-chain A method for producing an organosilicon compound is shown.

JP-A-5-255350호에는 올레핀 중합용 지글러-나타 촉매의 전자 공여체로 사용되는 일반식(R'O)x(R')ySi(OR)4-x-y의 사이클로알콕시실란이 기재되어 있으며, 상기 일반식에서, R은 탄소수 1 내지 5의 알킬그룹 및 탄소소 2 내지 5의 아실그룹중에서 독립적으로 선택되고, R'는 사이클로펜틸그룹, 사이클로헥실 그룹, 사이클로헵틸 그룹, 및 이들의 치환된 그룹중에서 독립적으로 선택되고, x는 1, 2, 3, 또는 4이며, y는 0, 1, 또는 2이다. 본원에 사용된 기호 "JP-A"는 심사되지 않고 공개된 일본국 특허출원을 나타낸다. JP-A-5-310757호에는 신규한 실란화합물로서 t-부톡시사이클로펜틸디에톡시실란 및 이를 제조하는 방법이 기재되어 있다.JP-A-5-255350 describes cycloalkoxysilanes of the general formula (R'O) x (R ') y Si (OR) 4-xy which are used as electron donors of Ziegler-Natta catalysts for olefin polymerization. R is independently selected from an alkyl group having 1 to 5 carbon atoms and an acyl group having 2 to 5 carbon atoms, and R 'is a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and substituted groups thereof. Are independently selected from and x is 1, 2, 3, or 4, and y is 0, 1, or 2. The symbol "JP-A" as used herein denotes a Japanese patent application published without examination. JP-A-5-310757 describes t-butoxycyclopentyldiethoxysilane and a process for preparing the same as a novel silane compound.

한편, 촉매의 한가지 성분으로 유기실리콘 화합물을 함유하는 지글러-나타촉매를 사용한 종래의 중합방법의 예에는 이 JP-A-57-63310호 및 JP-A-57-63311호에 기재된 방법이 포함되며, 이러한 방법에서, 마그네슘 화합물, 티탄화합물 및 내부전자 공여체로 이루어진 고형의 촉매성분(a), 유기알루미늄화합물(b), 및 외부 전자 공여체로서 Si-O-C 결합을 지닌 유기실리콘 화합물(c)의 복합물을 포함하는 촉매가 탄소수 3 이상의 올레핀을 중합하는데 사용된다. 그러나, 이러한 방법은 고수율로 입체 규칙적인 중합체를 얻는데 항상 만족스러운 방법은 아니므로, 또다른 개발이 요구되어 왔다.On the other hand, examples of the conventional polymerization method using a Ziegler-Natta catalyst containing an organosilicon compound as one component of the catalyst include the methods described in this JP-A-57-63310 and JP-A-57-63311. In this method, a composite of a solid catalyst component (a) consisting of a magnesium compound, a titanium compound and an internal electron donor, an organoaluminum compound (b), and an organosilicon compound (c) having a Si-OC bond as an external electron donor A catalyst comprising is used to polymerize olefins having 3 or more carbon atoms. However, this method has not always been satisfactory for obtaining stereoregular polymers in high yields, so further developments have been required.

한편, JP-A-63-3010호에는 올레핀의 중합용 촉매시스템 및 이러한 촉매시스템을 사용하는 올레핀 중합방법이 기재되어 있으며, 상기 특허출원에 기재된 촉매 시스템은 디알콕시마그네슘, 방향족 디카르복실산의 디에스테르, 방향족 탄화수소와 티탄할라이드를 접촉시켜, 분말상태의 생성물을 가열처리함으로써 제조된 고형의 촉매성분(a), 유기알루미늄 화합물(b), 및 유기실리콘 화합물(c)을 포함한다.On the other hand, JP-A-63-3010 discloses a catalyst system for the polymerization of olefins and an olefin polymerization method using such a catalyst system, and the catalyst system described in the patent application is made of dialkoxy magnesium and aromatic dicarboxylic acid. A solid catalyst component (a), an organoaluminum compound (b), and an organosilicon compound (c) produced by contacting a diester, an aromatic hydrocarbon with a titanium halide and heating the powder product.

JP-A-1-315406호에는 올레핀 중합용 촉매시스템 및 이러한 촉매시스템을 사용하는 올레핀 중합방법이 기재되어 있으며, 상기 촉매시스템은 사염화티탄을 알킬벤젠 중의 디에톡시마그네슘의 현탁액과 접촉시키고, 여기에, 프탈산 디클로라인드를 가하여 반응시켜 고형물을 얻고, 생성된 고형물을 알킬벤젠의 존재하에 사염화티탄과 추가로 접촉시킴으로써 제조되는 고형의 촉매성분(a), 유기알루미늄 화합물(b), 및 유기실리콘 화합물(c)을 포함한다.JP-A-1-315406 describes a catalyst system for olefin polymerization and an olefin polymerization method using such a catalyst system, wherein the catalyst system contacts titanium tetrachloride with a suspension of diethoxy magnesium in alkylbenzene. , A solid catalyst component (a), an organoaluminum compound (b), and an organosilicon prepared by adding phthalic acid dichlorinate to obtain a solid, and further contacting the resulting solid with titanium tetrachloride in the presence of alkylbenzene. Compound (c).

JP-A-2-84404호에는 올레핀을 중합하는 촉매시스템 및 이러한 촉매시스템을 사용하는 올레핀의 호모- 또는 공중합 방법이 제시되어 있으며, 이러한 촉매시스템은 마그네슘 화합물과 티탄 화합물을 접촉시킴으로써 제조되며, 마그네슘, 티탄 및 할로겐을 기본적으로 함유하는 고형의 티탄촉매 성분(a), 유기알루미늄 화합물(b), 및 사이클로펜틸 그룹 또는 이의 유도체, 사이클로펜테닐 그룹 또는 이의 유도체, 또는 사이클로펜타디에닐 그룹 또는 이의 유도체를 함유하는 유기실리콘 화합물(c)을 포함한다.JP-A-2-84404 discloses a catalyst system for polymerizing olefins and a method for homo- or copolymerization of olefins using such a catalyst system, which is prepared by contacting a magnesium compound with a titanium compound, Solid titanium catalyst components (a), organoaluminum compounds (b), and cyclopentyl groups or derivatives thereof, cyclopentenyl groups or derivatives thereof, or cyclopentadienyl groups or derivatives thereof, which basically contain titanium and halogen It contains the organosilicon compound (c) containing.

상기와 같이 공지된 기술들 각각은 높은 촉매활성을 목적으로 하여, 생성된 중합체로부터 염소 및 티탄과 같은 잔류 촉매성분을 제거하는 단계(후처리 단계; deashing step)를 생략할 수 있게 하며, 동시에, 입체적으로 규칙적인 중합체의 수율을 증진시키거나, 중합하는 동안 촉매활성의 지속성을 증진시키고, 우수한 촉매 활성의 결과를 얻을 수 있게 한다.Each of the known techniques as described above allows for the purpose of high catalytic activity to omit the removal of residual catalyst components such as chlorine and titanium from the resulting polymer (deashing step), and at the same time, It is possible to enhance the yield of the stereoregular polymer or to improve the persistence of the catalytic activity during the polymerization and to obtain a result of the excellent catalytic activity.

그러나, 최근, 유기알루미늄 화합물, 및 요구되는 경우, 제 3 의 성분으로 전자 공여체 화합물과 함께 삼염화티탄형의 촉매성분을 포함하는 통상의 촉매 시스템을 사용함으로써 얻는 올레핀중합체에 비하여, 높은 활성촉매성분, 유기알루미늄 화합물 및 유기실리콘 화합물을 포함하는 촉매 시스템을 사용한 중합으로 얻는 올레핀 중합체가 좁은 분자량분포를 지니고 있음이 지적되고 있다. 좁은 분자량 분포를 지니는 폴리올레핀은 불량한 성형성으로 인해, 적용성이 저하된다. 통상의 촉매가 광범위한 분자량 분포를 지닌 폴리올레핀을 얻는데 사용되는 경우에는, 한편으로는 일반적으로 높은 융점을 지닌 입체적으로 매우 규칙적인 중합체의 수율을 감소시킨다.However, in recent years, compared to olefin polymers obtained by using an organoaluminum compound and, if desired, a conventional catalyst system comprising a titanium trichloride type catalyst component with an electron donor compound as a third component, a higher active catalyst component, It has been pointed out that olefin polymers obtained by polymerization using a catalyst system containing an organoaluminum compound and an organosilicon compound have a narrow molecular weight distribution. Polyolefins having a narrow molecular weight distribution have poor applicability due to poor moldability. When conventional catalysts are used to obtain polyolefins with a wide range of molecular weight distributions, on the one hand they generally reduce the yield of sterically very regular polymers with high melting points.

이러한 문제점을 해결하기 위해서 다양한 방법이 제시되어 왔다. 예를들어,광범위한 분자량 분포의 폴리올레핀을 얻는 다수-단계 중합 시스템이 재시되어 왔다. 그럼에도 불구하고, 다수-단계 중합 시스템은 사소하고 복잡한 중합 공정을 반복해야 하고, 또한 중합에 사용된 킬레이트화제를 회수하는 단계를 포함하며, 따라서, 노동력 및 비용면에서 양호하지 못하다.Various methods have been proposed to solve this problem. For example, multi-stage polymerization systems have been described which yield polyolefins with a broad molecular weight distribution. Nevertheless, the multi-stage polymerization system must repeat the minor and complex polymerization process and also involves recovering the chelating agent used for the polymerization, which is therefore poor in labor and cost.

최근의 방법에 의하면, JP-A-3-7703호에는 마그네슘, 티탄, 할로겐 및 전자 공여체를 기본적으로 함유하는 고형의 티탄 촉매성분(a), 유기알루미늄 화합물(b), 및 전자 공여체로서 둘 이상의 유기실리콘 화합물(c)을 포함하는 촉매 시스템의 존재하에 올레핀을 중합하는 방법이 기재되어 있다. 상기된 방법에 따르면, 광범위한 분자량 분포를 지닌 폴리올레핀이 노동력을 요구하는 다수-단계 중합화 작동없이 제조될 수 있다. 그러나, 중합에 전자 공여체로서 둘 이상의 유기실리콘 화합물을 사용하여 공정은 여전히 지루하고 복잡하다.According to a recent method, JP-A-3-7703 discloses two or more solid titanium catalyst components (a), organoaluminum compounds (b), and electron donors which basically contain magnesium, titanium, halogens and electron donors. A process for polymerizing olefins in the presence of a catalyst system comprising an organosilicon compound (c) is described. According to the process described above, polyolefins with a wide range of molecular weight distributions can be produced without the need for labor-intensive multi-stage polymerization operations. However, using two or more organosilicon compounds as electron donors for polymerization is still tedious and complex.

발명의 요약Summary of the Invention

본 발명의 목적은 촉매성분으로 매우 유용한 신규한 유기실리콘 화합물을 제공하는데 있으며, 특히, 프로필렌 또는 에틸렌과 같은 올레핀을 중합하는 촉매를 제공하는데 있고, 이러한 촉매로 특히 높은 촉매활성 및 매우 높은 수율의 고입체 규칙성을 유지시키면서 광범위한 분자량 분포 및 높은 결정성을 지닌 중합체를 얻을 수 있다.It is an object of the present invention to provide novel organosilicon compounds which are very useful as catalyst components, in particular to provide catalysts for polymerizing olefins such as propylene or ethylene, with such catalysts having particularly high catalytic activity and very high yields. Polymers with a wide range of molecular weight distribution and high crystallinity can be obtained while maintaining stereoregularity.

본 발명의 또다른 목적은 유효한 전자 공여체 성분으로서 유기실리콘 화합물을 포함하는 올레핀 중합용 지글러-나타 촉매를 제공하는데 있다.Another object of the present invention is to provide a Ziegler-Natta catalyst for olefin polymerization comprising an organosilicon compound as an effective electron donor component.

본 발명의 또다른 목적은 올레핀을 중합화하여 광범위한 분자량 분포 및 고입체규칙성의 폴리올레핀을 고수율로 생성시키는 방법을 제공하는데 있다.It is another object of the present invention to provide a process for polymerizing olefins to produce polyolefins of high molecular weight distribution and high stereoregularity in high yield.

상기된 종래의 방법의 문제점을 해결하기 위하여 올레핀 중합용 촉매에 대한 광범위한 연구를 수행한 결과, 본 발명자들은 내부 및/또는 외부 전자 공여체로 사용되어 올레핀 중합용 촉매의 성분으로 작용하는 신규한 유기실리콘 화합물을 개발하는데 성공하였고, 유기실리콘 화합물이 매우 효과적임을 밝혀냈다. 즉, 상기된 목적은 하기 화학식(1)의 유기실리콘 화합물로 달성된다:As a result of extensive research on the catalyst for olefin polymerization in order to solve the problems of the conventional method described above, the present inventors have found that novel organosilicones used as internal and / or external electron donors act as components of the catalyst for olefin polymerization. We have succeeded in developing the compounds and found that the organosilicon compounds are very effective. That is, the above object is achieved with an organosilicon compound of formula (1):

[화학식 1][Formula 1]

상기식에서,In the above formula,

Rl및 R2는 동일하거나 상이할 수 있으며, 각각 탄소수 1 내지 3의 알킬그룹이고,R 1 and R 2 may be the same or different and each is an alkyl group having 1 to 3 carbon atoms,

R3및 R4는 동일하거나 상이할 수 있으며, 각각 탄소수 1 내지 3의 알킬 그룹 또는 할로겐 원자이며,R 3 and R 4 may be the same or different and each is an alkyl group having 1 to 3 carbon atoms or a halogen atom,

m 및 n은 각각 0, 또는 정수 1 또는 2이다.m and n are 0 or the integer 1 or 2, respectively.

[도면의 간단한 설명][Brief Description of Drawings]

도 1은 사이클로헥실사이클로펜틸디메톡시실란을 분석하는 MS의 결과를 나타내는 챠트이다.1 is a chart showing the results of MS analyzing cyclohexylcyclopentyldimethoxysilane.

도 2는 사이클로헥실사이클로펜틸디메톡시실란을 분석하는1H-NMR/13C-NMR(COSY 스펙트럼)의 이차원분석 결과를 나타내는 챠트이다.2 is a chart showing the results of two-dimensional analysis of 1 H-NMR / 13 C-NMR (COSY spectrum) for analyzing cyclohexylcyclopentyldimethoxysilane.

도 3은 사이클로헥실사이클로펜틸디메톡시실란을 분석하는 IR의 결과를 나타내는 챠트이다.Fig. 3 is a chart showing the results of IR for analyzing cyclohexylcyclopentyldimethoxysilane.

본 발명은 실란 결합제 또는 올레핀 중합용 촉매성분으로 사용될 수 있는 유기실리콘 화합물, 및 올레핀의 중합화에 유효한 전자 공여체로서 유기실리콘 화합물을 함유하는 지글러-나타 촉매(Ziegler-Natta catalyst)에 관한 것이다. 이러한 지글러-나타 촉매로 고도의 입체 규칙성 및 광범위한 분자량 분포를 지닌 올레핀 중합체를 고수율로 얻을 수 있다. 본 발명은 또한 상기 촉매의 존재하에 올레핀을 중합하는 방법에 관한 것이다.The present invention relates to an organosilicon compound that can be used as a silane binder or a catalyst component for olefin polymerization, and to a Ziegler-Natta catalyst containing an organosilicon compound as an electron donor effective for the polymerization of olefins. These Ziegler-Natta catalysts yield high yields of olefin polymers with high stereoregularity and broad molecular weight distribution. The invention also relates to a process for polymerizing olefins in the presence of said catalyst.

화학식 (1)에서 R1및 R2의 알킬 그룹의 예에는 메틸, 에틸, n-프로필, 및 이소프로필이 포함된다. 이들중 메틸과 에틸이 바람직하다.Examples of alkyl groups of R 1 and R 2 in formula (1) include methyl, ethyl, n-propyl, and isopropyl. Of these, methyl and ethyl are preferred.

본 발명의 유기실리콘 화합물은 사이클로헥실 그룹() 또는 이의 유도체 및 사이클로펜틸 그룹() 또는 이의 유도체가 실리콘 원자에 직접 결합된 비대칭 유기실리콘 화합물이다.The organosilicon compound of the present invention is a cyclohexyl group ( ) Or derivatives thereof and cyclopentyl groups ( ) Or a derivative thereof is an asymmetric organosilicon compound bonded directly to a silicon atom.

비대칭 유기실리콘 화합물(즉, 사이클로헥실사이클로펜틸디알콕시실란)의 예에는 사이클로헥실사이클로펜틸디메톡시실란, 사이클로헥실사이클로펜틸디에톡시실란, 사이클로헥실사이클로펜틸디-n-프로폭시실란, 및 사이클로헥실사이클로펜틸디이소프로폭시실란이 포함된다. 이들 중에서, 사이클로헥실사이클로펜틸디메톡시실란, 및 사이클로헥실사이클로펜틸디에톡시실란이 올레핀 중합용 촉매의 성분으로 작용하는 전자 공여체로의 사용에 바람직한 화합물이다.Examples of asymmetric organosilicon compounds (ie cyclohexylcyclopentyldialkoxysilanes) include cyclohexylcyclopentyldimethoxysilane, cyclohexylcyclopentyldiethoxysilane, cyclohexylcyclopentyldi-n-propoxysilane, and cyclohexylcyclo Pentyldiisopropoxysilanes are included. Among them, cyclohexylcyclopentyldimethoxysilane and cyclohexylcyclopentyldiethoxysilane are preferred compounds for use as electron donors serving as components of the catalyst for olefin polymerization.

이들 비대칭 유기실리콘 화합물의 다양한 유도체도 화학식 (1)의 범위내에 포함된다. 특히, 사이클로헥실 그룹의 3-, 4- 또는 5-위치에서 메틸그룹, 염소 또는 브롬과 같은 하나 또는 두 개의 치환체 (R3), 및/또는 사이클로펜틸 그룹의 2-, 3- 또는 5-위치에서 메틸그룹, 염소 또는 브롬과 같은 하나 또는 두 개의 치환체(R4)를 지니는 유기실리콘 화합물이 바람직하다. 두 개의 치환체는 사이클로 헥실 또는 사이클로펜틸 그룹의 동일한 위치에 있을 수 있다. 화학식 (1)에서 m 또는 n이 2인 경우, 다수의 치환체(R3) 및 (R4)는 동일하거나 상이할 수 있다.Various derivatives of these asymmetric organosilicon compounds are also included within the scope of formula (1). In particular, one or two substituents (R 3 ) such as methyl group, chlorine or bromine at the 3-, 4- or 5-position of the cyclohexyl group, and / or the 2-, 3- or 5-position of the cyclopentyl group Preference is given to organosilicon compounds having one or two substituents (R 4 ), such as methyl group, chlorine or bromine at. Two substituents may be at the same position of a cyclohexyl or cyclopentyl group. When m or n in formula (1) is 2, the plurality of substituents (R 3 ) and (R 4 ) may be the same or different.

비대칭 유기실리콘 화합물의 특정의 유도체의 예에는 3-메틸사이클로헥실사이클로펜틸디메톡시실란, 3-메틸사이클로헥실사이클로펜틸디에톡시실란, 3-메틸사이클로헥실사이클로펜틸디프로폭시실란, 4-메틸사이클로헥실사이클로펜틸디메톡시실란, 4-메틸사이클로헥실사이클로펜틸디에톡시실란, 4-메틸사이클로헥실사이클로펜틸디프로폭시실란, 3,5-디메틸사이클로헥실사이클로펜틸디메톡시실란, 3,5-디메틸사이클로헥실사이클로펜틸디에톡시실란, 3,5-메틸사이클로헥실사이클로펜틸디프로폭시실란, 3,3-디메틸사이클로헥실사이클로펜틸디메톡시실란, 4,4-디메틸사이클로헥실사이클로펜틸디메톡시실란, 사이클로헥실-2-메틸사이 클로펜틸디메톡시실란, 사이클로헥실-2-메틸사이클로펜틸디에톡시실란, 사이클로헥실-2-메틸사이클로펜틸디프로폭시실란, 3-메틸사이클로헥실-2-메틸사이클로펜틸디메톡시실란, 3-메틸사이클로헥실-2-메틸사이클로펜틸디에톡시실란, 3-메틸사이클로헥실-2-메틸사이클로펜틸디프로폭시실란, 4-메틸사이클로헥실-2-메틸사이클로펜틸디메톡시실란, 4-메틸사이클로헥실-2-메틸사이클로펜틸디에톡시실란, 4-메틸사이 클로헥실-2-메틸사이클로펜틸디프로폭시실란, 3,5-디메틸사이클로헥실-2-메틸사이클로펜틸디메톡시실란,3,5-디메틸사이클로헥실-2-메틸사이클로펜틸디에톡시실란, 3,5-디메틸사이클로헥실-2-메틸사이클로펜틸디프로폭시실란, 3,3-디메틸사이클로헥실-2-메틸사이클로펜틸디메톡시실란, 4,4-디메틸사이클로헥실-2-메틸사이클로펜틸디메톡시실란, 사이클로헥실-3-메틸사이클로펜틸디메톡시실란, 사이클로헥실-3-메틸사이클로펜틸디에톡시실란, 사이클로헥실-3-메틸사이클로펜틸디프로폭시실란, 3-3메틸사이클로헥실-3-메틸사이클로펜틸디메톡시실란, 3-메틸사이클로헥실-3-메틸사이클로펜틸디에톡시실란, 3-메틸사이클로헥실-3-메틸사이클로펜틸디프로폭시실란, 4-메틸사이클로헥실-3-메틸사이클로펜틸디메톡시실란, 4-메틸사이클로헥실-3-메틸사이클로펜틸디에톡시실란, 4-메틸사이클로헥실-3-메틸사이클로펜틸디프로폭시실란, 3,5-디메틸사이클로헥실-3-메틸사이클로펜틸디메톡시실란, 3,5-디메틸사이클로헥실-3-메틸사이클로펜틸디에톡시실란, 3,5-디메틸사이클로헥실-3-메틸사이클로펜틸디프로폭시실란, 3,3-디메틸사이클로헥실-3-메틸사이클로펜틸디메톡시실란, 4,4-디메틸사이클로헥실-3-메틸사이클로펜틸디메톡시실란, 사이클로헥실-2,3-디메틸사이클로펜틸디메톡시실란, 사이클로헥실-2,3-디메틸사이클로펜틸디에톡시실란, 사이클로헥실-2,3-디메틸사이클로펜틸디프로폭시실란, 3-메틸사이클로헥실-2,3-디메틸사이클로펜틸디메톡시실란, 3-메틸사이클로헥실-2,3-디메틸사이클로펜틸디에톡시실란, 3-메틸사이클로헥실-2,3-디메틸사이클로펜틸디프로폭시실란, 4-메틸사이클로헥실-2,3-디메틸사이클로펜틸디메톡시실란, 4-메틸사이클로헥실-2,3-디메틸사이클로펜틸디에톡시실란, 4-메틸사이클로헥실-2,3-디메틸사이클로펜틸디프로폭시실란, 3,5-디메틸사이클로헥실-2,3-디메틸사이클로펜틸디메톡시실란, 3,5-디메틸사이클로헥실-2,3-디메틸사이클로펜틸디에톡시실란, 3,5-디메틸사이클로헥실-2,3-디메틸사이클로펜틸디프로폭시실란, 3,3-디메틸사이클로헥실-2,3-디메틸사이클로펜틸디메톡시실란, 4,4-디메틸사이클로헥실-2,3-디메틸사이클로펜틸디메톡시실란, 사이클로헥실-2,5-디메틸사이클로펜틸디메톡시실란, 사이클로헥실-2,5-디메틸사이클로펜틸디에톡시실란, 사이클로헥실-2,5-디메틸사이클로펜틸디프로폭시실란, 3-메틸사이클로헥실-2,5-디메틸사이클로펜틸디메톡시실란, 3-메틸사이클로헥실-2,5-디메틸사이클로펜틸디에톡시실란, 3-메틸사이클로헥실-2,5-디메틸사이클로펜틸디프로폭시실란, 4-메틸사이클로헥실-2,5-디메틸사이클로펜틸디메톡시실란, 4-메틸사이클로헥실-2,5-디메틸사이클로펜틸디에톡시실란, 4-메틸사이클로헥실-2,5-디메틸사이클로펜틸디프로폭시실란, 3,5-디메틸사이클로헥실-2,5-디메틸사이클로펜틸디메톡시실란, 3,5-디메틸사이클로헥실-2,5-디메틸사이클로펜틸디에톡시실란, 3,5-디메틸사이클로헥실-2,5-디메틸사이클로펜틸디프로폭시실란, 3,3-디메틸사이클로헥실-2,5-디메틸사이클로펜틸디메톡시실란, 4,4-디메틸사이클로헥실-2,5-디메틸사이클로펜틸디메톡시실란, 사이클로헥실-2,2-디메틸사이클로펜틸디메톡시실란, 사이클로헥실-2,2-디메틸사이클로펜틸디에톡시실란, 사이클로헥실-2,2-디메틸사이클로펜틸디프로폭시실란, 3-메틸사이클로헥실-2,2-디메틸사이클로펜틸디메톡시실란, 3-메틸사이클로헥실-2,2-디메틸사이클로펜틸디에톡시실란, 3-메틸사이클로헥실-2,2-디메틸사이클로펜틸디프로폭시실란, 4-메틸사이클로헥실-2,2-디메틸사이클로펜틸디메톡시실란, 4-메틸사이클로헥실-2,2-디메틸사이클로펜틸디에톡시실란, 4-메틸사이클로헥실-2,2-디메틸사이클로펜틸디프로폭시실란, 3,5-디메틸사이클로헥실-2,2-디메틸사이클로펜틸디메톡시실란, 3,5-디메틸사이클로헥실-2,2-디메틸사이클로펜틸디에톡시실란, 3,5-디메틸사이클로헥실-2,2-디메틸사이클로펜틸디프로폭시실란, 3,3-디 메틸사이클로헥실-2,2-디메틸사이클로펜틸디메톡시실란, 4,4-디메틸사이클로헥실-2,2-디메틸사이클로펜틸디메톡시실란, 사이클로헥실-3,3-디메틸사이클로펜틸디메톡시실란, 사이클로헥실-3,3-디메틸사이클로펜틸디에톡시실란, 사이클로헥실-3,3-디메틸사이클로펜틸디프로폭시실란, 3-메틸사이클로헥실-3,3-디메 틸사이클로펜틸디메톡시실란, 3-메틸사이클로헥실-3,3-디메틸사이클로펜틸디에톡시실란, 3-메틸사이클로헥실-3,3-디메틸사이클로펜틸디프로폭시실란, 4-메틸사이클로헥실-3,3-디메틸사이클로펜틸디메톡시실란, 4-메틸사이클로헥실-3,3-디메틸사이클로펜틸디에톡시실란, 4-메틸사이클로헥실-3,3-디메틸사이클로펜틸디프로폭시실란, 3,5-디메틸사이클로헥실-3,3-디메틸사이클로펜틸디메톡시시리란, 3,5-디메틸사이클로헥실-3,3-디메틸사이클로펜틸디에톡시실란 3,5-디메틸사이클로헥실-3,3-디메틸사이클로펜틸디프로폭시실란, 3,3-디메틸사이클로헥실-3,3-디메틸사이클로펜틸디메톡시실란, 4,4-디메틸사이클로헥실-3,3-디메틸사이 클로펜틸디메톡시실란, 3-클로로사이클로헥실사이클로펜틸디메톡시실란, 4-클로로사이클로헥실사이클로펜틸디메톡시실란, 3,5-디클로로사이클로헥실사이클로펜틸디메톡시실란, 사이클로헥실-2-클로로사이클로펜틸디메톡시실란, 사이클로헥실-3-사이클로펜틸디메톡시실란, 사이클로헥실-2,3-디클로로사이클로펜틸디메톡시실란, 사이클로헥실-2,5-디클로로사이클로펜틸디메톡시실란, 3-클로로사이클로헥실-2-클로로사이클로펜틸디메톡시실란, 4-클로로사이클로헥실-3-클로로사이클로 펜틸디메톡시실란, 및 3,5-디클로로사이클로헥실-2,3-디클로로사이클로펜틸디메톡시실란이 포함된다.Examples of specific derivatives of asymmetric organosilicon compounds include 3-methylcyclohexylcyclopentyldimethoxysilane, 3-methylcyclohexylcyclopentyldiethoxysilane, 3-methylcyclohexylcyclopentyldipropoxysilane, 4-methylcyclohexyl Cyclopentyldimethoxysilane, 4-methylcyclohexylcyclopentyldiethoxysilane, 4-methylcyclohexylcyclopentyldipropoxysilane, 3,5-dimethylcyclohexylcyclopentyldimethoxysilane, 3,5-dimethylcyclohexylcyclo Pentyl diethoxysilane, 3,5-methylcyclohexylcyclopentyldipropoxysilane, 3,3-dimethylcyclohexylcyclopentyldimethoxysilane, 4,4-dimethylcyclohexylcyclopentyldimethoxysilane, cyclohexyl-2- Methylcyclopentyldimethoxysilane, cyclohexyl-2-methylcyclopentyldiethoxysilane, cyclohexyl-2-methylcyclopentyldipropoxy Column, 3-methylcyclohexyl-2-methylcyclopentyldimethoxysilane, 3-methylcyclohexyl-2-methylcyclopentyldiethoxysilane, 3-methylcyclohexyl-2-methylcyclopentyldipropoxysilane, 4- Methylcyclohexyl-2-methylcyclopentyldimethoxysilane, 4-methylcyclohexyl-2-methylcyclopentyldiethoxysilane, 4-methylcyclohexyl-2-methylcyclopentyldipropoxysilane, 3,5-dimethyl Cyclohexyl-2-methylcyclopentyldimethoxysilane, 3,5-dimethylcyclohexyl-2-methylcyclopentyldiethoxysilane, 3,5-dimethylcyclohexyl-2-methylcyclopentyldipropoxysilane, 3,3 -Dimethylcyclohexyl-2-methylcyclopentyldimethoxysilane, 4,4-dimethylcyclohexyl-2-methylcyclopentyldimethoxysilane, cyclohexyl-3-methylcyclopentyldimethoxysilane, cyclohexyl-3-methylcyclo Pentyl diethoxysilane, cyclohexyl-3-methyl Cyclopentyldipropoxysilane, 3-3methylcyclohexyl-3-methylcyclopentyldimethoxysilane, 3-methylcyclohexyl-3-methylcyclopentyldiethoxysilane, 3-methylcyclohexyl-3-methylcyclopentyldipe Lopoxysilane, 4-methylcyclohexyl-3-methylcyclopentyldimethoxysilane, 4-methylcyclohexyl-3-methylcyclopentyldiethoxysilane, 4-methylcyclohexyl-3-methylcyclopentyldipropoxysilane, 3,5-dimethylcyclohexyl-3-methylcyclopentyldimethoxysilane, 3,5-dimethylcyclohexyl-3-methylcyclopentyldiethoxysilane, 3,5-dimethylcyclohexyl-3-methylcyclopentyldipropoxy Silane, 3,3-dimethylcyclohexyl-3-methylcyclopentyldimethoxysilane, 4,4-dimethylcyclohexyl-3-methylcyclopentyldimethoxysilane, cyclohexyl-2,3-dimethylcyclopentyldimethoxysilane, Cyclohexyl-2,3-dimethylcyclopentyl Ethoxysilane, cyclohexyl-2,3-dimethylcyclopentyldipropoxysilane, 3-methylcyclohexyl-2,3-dimethylcyclopentyldimethoxysilane, 3-methylcyclohexyl-2,3-dimethylcyclopentyldie Methoxysilane, 3-methylcyclohexyl-2,3-dimethylcyclopentyldipropoxysilane, 4-methylcyclohexyl-2,3-dimethylcyclopentyldimethoxysilane, 4-methylcyclohexyl-2,3-dimethylcyclo Pentyl diethoxysilane, 4-methylcyclohexyl-2,3-dimethylcyclopentyldipropoxysilane, 3,5-dimethylcyclohexyl-2,3-dimethylcyclopentyldimethoxysilane, 3,5-dimethylcyclohexyl- 2,3-dimethylcyclopentyldiethoxysilane, 3,5-dimethylcyclohexyl-2,3-dimethylcyclopentyldipropoxysilane, 3,3-dimethylcyclohexyl-2,3-dimethylcyclopentyldimethoxysilane, 4,4-dimethylcyclohexyl-2,3-dimethylcyclopentyldimethoxysilane, cyclohex -2,5-dimethylcyclopentyldimethoxysilane, cyclohexyl-2,5-dimethylcyclopentyldiethoxysilane, cyclohexyl-2,5-dimethylcyclopentyldipropoxysilane, 3-methylcyclohexyl-2,5 -Dimethylcyclopentyldimethoxysilane, 3-methylcyclohexyl-2,5-dimethylcyclopentyldiethoxysilane, 3-methylcyclohexyl-2,5-dimethylcyclopentyldipropoxysilane, 4-methylcyclohexyl-2 , 5-dimethylcyclopentyldimethoxysilane, 4-methylcyclohexyl-2,5-dimethylcyclopentyldiethoxysilane, 4-methylcyclohexyl-2,5-dimethylcyclopentyldipropoxysilane, 3,5-dimethyl Cyclohexyl-2,5-dimethylcyclopentyldimethoxysilane, 3,5-dimethylcyclohexyl-2,5-dimethylcyclopentyldiethoxysilane, 3,5-dimethylcyclohexyl-2,5-dimethylcyclopentyldiprop Foxysilane, 3,3-dimethylcyclohexyl-2,5-dimethylcyclopentyldimethoxy Column, 4,4-dimethylcyclohexyl-2,5-dimethylcyclopentyldimethoxysilane, cyclohexyl-2,2-dimethylcyclopentyldimethoxysilane, cyclohexyl-2,2-dimethylcyclopentyldiethoxysilane, cyclo Hexyl-2,2-dimethylcyclopentyldipropoxysilane, 3-methylcyclohexyl-2,2-dimethylcyclopentyldimethoxysilane, 3-methylcyclohexyl-2,2-dimethylcyclopentyldiethoxysilane, 3- Methylcyclohexyl-2,2-dimethylcyclopentyldipropoxysilane, 4-methylcyclohexyl-2,2-dimethylcyclopentyldimethoxysilane, 4-methylcyclohexyl-2,2-dimethylcyclopentyldiethoxysilane, 4-methylcyclohexyl-2,2-dimethylcyclopentyldipropoxysilane, 3,5-dimethylcyclohexyl-2,2-dimethylcyclopentyldimethoxysilane, 3,5-dimethylcyclohexyl-2,2-dimethyl Cyclopentyl diethoxysilane, 3,5-dimethylcyclohexyl-2,2-dimethylcyclo Tildipropoxysilane, 3,3-dimethylcyclohexyl-2,2-dimethylcyclopentyldimethoxysilane, 4,4-dimethylcyclohexyl-2,2-dimethylcyclopentyldimethoxysilane, cyclohexyl-3, 3-dimethylcyclopentyldimethoxysilane, cyclohexyl-3,3-dimethylcyclopentyldiethoxysilane, cyclohexyl-3,3-dimethylcyclopentyldipropoxysilane, 3-methylcyclohexyl-3,3-dimethyl Cyclopentyldimethoxysilane, 3-methylcyclohexyl-3,3-dimethylcyclopentyldiethoxysilane, 3-methylcyclohexyl-3,3-dimethylcyclopentyldipropoxysilane, 4-methylcyclohexyl-3,3 -Dimethylcyclopentyldimethoxysilane, 4-methylcyclohexyl-3,3-dimethylcyclopentyldiethoxysilane, 4-methylcyclohexyl-3,3-dimethylcyclopentyldipropoxysilane, 3,5-dimethylcyclohexyl -3,3-dimethylcyclopentyldimethoxysilane, 3,5-dimethylcyclohex -3,3-dimethylcyclopentyldiethoxysilane 3,5-dimethylcyclohexyl-3,3-dimethylcyclopentyldipropoxysilane, 3,3-dimethylcyclohexyl-3,3-dimethylcyclopentyldimethoxysilane, 4,4-dimethylcyclohexyl-3,3-dimethylcyclopentyldimethoxysilane, 3-chlorocyclohexylcyclopentyldimethoxysilane, 4-chlorocyclohexylcyclopentyldimethoxysilane, 3,5-dichlorocyclohexylcyclo Pentyldimethoxysilane, cyclohexyl-2-chlorocyclopentyldimethoxysilane, cyclohexyl-3-cyclopentyldimethoxysilane, cyclohexyl-2,3-dichlorocyclopentyldimethoxysilane, cyclohexyl-2,5-dichloro Cyclopentyldimethoxysilane, 3-chlorocyclohexyl-2-chlorocyclopentyldimethoxysilane, 4-chlorocyclohexyl-3-chlorocyclo pentyldimethoxysilane, and 3,5-dichlorocyclohexyl-2,3-dichloro It is a cycle comprising a cyclopentyl dimethoxysilane.

이들 비대칭 유기실리콘 화합물중 바람직한 화합물은 사이클로헥실사이클로펜틸디메톡시실란, 사이클로헥실사이클로펜틸디에톡시실란, 3-메틸사이클로헥실사이클로펜틸디메톡시실란, 4-메틸사이클로헥실사이클로펜틸디메톡시실란, 및 3,5-디메틸사이클로헥실사이클로펜틸디메톡시실란이다. 이들 유기실리콘 화합물은 개별적으로 또는 이들의 둘 이상의 복합물로 사용될 수 있다.Preferred of these asymmetric organosilicon compounds are cyclohexylcyclopentyldimethoxysilane, cyclohexylcyclopentyldiethoxysilane, 3-methylcyclohexylcyclopentyldimethoxysilane, 4-methylcyclohexylcyclopentyldimethoxysilane, and 3, 5-dimethylcyclohexylcyclopentyldimethoxysilane. These organosilicon compounds can be used individually or in combination of two or more thereof.

본 발명의 유기실리콘 화합물은 다양한 올레핀 중합용 촉매의 (내부 및/또는 외부) 전자 공여체로 유용하다. 즉, 유기실리콘 화합물은 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 또는 비닐사이클로헥산 등의 호모- 또는 공중합에 전자 공여체로서 사용될 수 있다. 특히, 유기실리콘 화합물은 에틸렌 또는 프로필렌의 호모중합 또는 에틸렌과 프로필렌의 공중합에 촉매의 전자 공여체로 사용되기에 적합하고, 이의 최적의 사용은 프로필렌의 호모중합 또는 프로필렌과 에틸렌의 공중합에 촉매의 전자 공여체로 사용되는 것이다.The organosilicon compounds of the invention are useful as (internal and / or external) electron donors of various catalysts for olefin polymerization. That is, the organosilicon compound can be used as an electron donor in homo- or copolymerization such as ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, or vinylcyclohexane. In particular, the organosilicon compound is suitable for use as an electron donor in catalysts for homopolymerization of ethylene or propylene or for copolymerization of ethylene and propylene, the optimal use of which is an electron donor of catalysts for homopolymerization of propylene or copolymerization of propylene and ethylene. It is used as.

본 발명의 사이클로헥실사이클로펜틸디알콕시실란은 다양한 방법으로 제조될 수 있다. 가장 간단한 방법중 하나는 모노사이클로알킬트리알콕시실란(즉, 모노사이클로헥실- 또는 모노사이클로펜틸-트리알콕시실란)을 그리냐아르 시약(즉, 각각 사이클로펜틸 또는 사이클로헥실 그룹을 지닌 그리냐아르 시약)과 반응시켜 유기실리콘 화합물을 얻는 것이다.Cyclohexylcyclopentyl dialkoxysilanes of the invention can be prepared in a variety of ways. One of the simplest methods is a monocycloalkyltrialkoxysilane (i.e. a monocyclohexyl- or monocyclopentyl-trialkoxysilane) to Grignard reagents (ie Grignard reagents with cyclopentyl or cyclohexyl groups, respectively) It is reacted with to obtain an organosilicon compound.

예를들어, 사이클로펜틸 클로라이드(시판중인 제품)를 용매, 예를들어, 테트 라하이드로푸란, 디에틸에티르, 또는 디-n-부틸에티르와 같은 에테르의 존재하에마그네슘과 반응시켜 사이클로펜틸 그리냐아르 시약(사이클로펜틸마그네슘 클로라이드)를 수득한다. 이러한 반응은 실온 내지 60℃의 온도에서 수행할 수 있다. 사이클로펜틸 그리냐아르 시약을 이어서 사이클로헥실트리메톡시실란과 반응시켜 사이클로헥실사이클로펜틸디메톡시실란을 얻는다; 이러한 반응은 상기된 반응에서와 같이 테트라하이드로푸란, 디에틸 에테르, 또는 디-n-부틸 에테르와 같은 에테르의 존재하에, 또는 헥산 또는 헵탄과 같은 지방족 탄화수소 용매 또는 톨루엔, 벤젠, 또는 크실렌과 같은 방향족 탄화수소 용매의 존재하에 수행될 수 있다. 상기 반응은 50℃ 내지 200℃의 온도에서, 바람직하게는 100℃ 내지 200℃의 온도에서 또는 용매를 비등시키거나 환류시키면서 100℃ 내지 200℃의 온도에서 수행될 수 있다.For example, cyclopentyl chloride (commercially available) is reacted with magnesium in the presence of a solvent, for example ether such as tetrahydrofuran, diethylether, or di-n-butylether, to cyclopentyl chloride Obtain a Nyaar reagent (cyclopentylmagnesium chloride). This reaction can be carried out at a temperature from room temperature to 60 ° C. Cyclopentyl Grignard reagent is then reacted with cyclohexyltrimethoxysilane to obtain cyclohexylcyclopentyldimethoxysilane; This reaction is carried out in the presence of an ether such as tetrahydrofuran, diethyl ether, or di-n-butyl ether as in the reaction described above, or an aliphatic hydrocarbon solvent such as hexane or heptane or an aromatic such as toluene, benzene, or xylene It may be carried out in the presence of a hydrocarbon solvent. The reaction can be carried out at a temperature of 50 ° C. to 200 ° C., preferably at a temperature of 100 ° C. to 200 ° C. or at a temperature of 100 ° C. to 200 ° C. while boiling or refluxing the solvent.

상기된 반응에서 사용되는 모노사이클로알킬트리알콕시실란, 예를들어, 사이클로헥실트리메톡시실란이 시판제품일 수 있지만, 다양한 공지된 방법으로 제조될 수 있다. 한가지 방법으로, 바람직한 화합물은 사이클로헥실트리클로로실란을 메탄올과 반응시켜 실란 화합물을 염화수소를 방출시키며 알콕시화시킴으로써 제조될 수 있다. 반응에 사용되는 사이클로헥실트리클로로실란이 시판중의 제품일 수 있지만, 사이클로헥산을 트리클로로실란(HSiCl3)로 하이드로실릴화 반응시킴으로써 용이하게 제조될 수 있다. 사이클로헥실트리메톡시실란을 제조하는 또 다른 방법은 촉매, 예를들어, 라니 니켈 촉매의 존재하에 페닐트리메톡시실란의 시판제품을 수소화시킴을 포함한다.Monocycloalkyltrialkoxysilanes used in the reactions described above, for example cyclohexyltrimethoxysilane, may be commercially available products, but may be prepared by various known methods. In one method, preferred compounds can be prepared by reacting cyclohexyltrichlorosilane with methanol to alkoxylate the silane compound with hydrogen chloride. The cyclohexyltrichlorosilane used for the reaction may be a commercially available product, but can be easily prepared by hydrosilylation of cyclohexane with trichlorosilane (HSiCl 3 ). Another method of preparing cyclohexyltrimethoxysilane involves hydrogenating a commercial product of phenyltrimethoxysilane in the presence of a catalyst, such as a Raney nickel catalyst.

생성된 사이클로헥실사이클로펜틸디메톡시실란은 핵자기공명 분광법(1H-NMR,13C-NMR), 자외선흡수 분광법(IR), 질량 분광법(MS)등으로 분석할 수 있다.13C-MNR 분광법(CDCl3중에서)은 메톡시 그룹의 탄소원자에 기인되어 δ =50.7에서의 시그날, 사이클로헥실 그룹에 기인되어 δ =24.5, 26.8, 26.9, 및 27.8에서의 시그날, 및 사이클로펜틸 그룹에 기인되어 δ =22.8, 26.7, 및. 27.4에서의 시그날을 지닌 스펙트럼을 나타냈다. IR 분광은 Si-O-C 결합에 기인되어 1,100cm-1주위에서의 피크를 지닌 스펙트럼을 나타냈다.The resulting cyclohexylcyclopentyldimethoxysilane can be analyzed by nuclear magnetic resonance spectroscopy ( 1 H-NMR, 13 C-NMR), ultraviolet absorption spectroscopy (IR), mass spectroscopy (MS) and the like. 13 C-MNR spectroscopy (in CDCl 3 ) is a signal at δ = 50.7 due to the carbon atom of the methoxy group, a signal at δ = 24.5, 26.8, 26.9, and 27.8 due to the cyclohexyl group, and cyclopentyl Δ = 22.8, 26.7, and due to the group. Spectrum with signal at 27.4 is shown. IR spectroscopy showed spectra with peaks around 1,100 cm −1 due to Si-OC bonding.

올레핀 중합용 지글러-나타 촉매의 한가지 성분으로 작용하는 전자 공여체로 사용되는 경우에, 본 발명의 화합물, 즉, 사이클로헥실사이클로펜틸디알콕시실란은 촉매활성에 관하여 높은 성능을 유지하고, 고성능 촉매로 공지된 통상의 촉매보다 성능이 낮지 않으면서도 고입체규칙성의 중합체를 수득시키면서 광범위한 분자량 분포 및 높은 결정성을 지닌 폴리올레핀을 얻을 수 있게 한다.When used as an electron donor acting as one component of the Ziegler-Natta catalyst for olefin polymerization, the compound of the present invention, i.e., cyclohexylcyclopentyl dialkoxysilane, maintains high performance with respect to catalytic activity and is known as a high performance catalyst. It is possible to obtain polyolefins with a wide range of molecular weight distribution and high crystallinity while obtaining a high-stereoregular polymer without lowering performance than conventional catalysts.

본 발명의 지글러-나타 촉매는 화학식 (1)의 유기실리콘 화할물이 내부 또는 외부 전자 공여체로 함유되는 한 특별히 한정되는 것이 아니며, 지글러-나타 촉매용의 통상의 성분이 유기실리콘 화합물과 함께 사용될 수 있다. 본 발명의 바람직한 양태에서, 지글러-나타 촉매는 마그네슘, 티탄, 전자 공여체 화합물, 및 할로겐을 기본적으로 포함하며 마그네슘 화합물, 티탄 할라이드 화합물, 및 내부 전자 공여체 화합물을 접촉시킴으로써 제조되는 고형의 촉매성분(A), 유기알루미늄 화합물(B), 및 외부 전자 공여체로서 화학실 (1)의 유기실리콘 화합물(C)를 포함한다.The Ziegler-Natta catalyst of the present invention is not particularly limited as long as the organosilicon compound of formula (1) is contained as an internal or external electron donor, and conventional components for the Ziegler-Natta catalyst can be used together with the organosilicon compound. have. In a preferred embodiment of the invention, the Ziegler-Natta catalyst comprises magnesium, titanium, electron donor compounds, and halogens and is a solid catalyst component (A) prepared by contacting a magnesium compound, a titanium halide compound, and an internal electron donor compound (A ), An organoaluminum compound (B), and an organosilicon compound (C) of the chemical chamber (1) as an external electron donor.

고형의 촉매성분(A)를 제조하는데 사용될 수 있는 마그네슘 화합물은 금속성 마그네슘, 마그네슘 디할라이드, 디알킬마그네슘, 알킬마그네슘 할라이드, 디알콕시마그네슘, 디아릴옥시마그네슘, 및 알콕시마그네슘 할라이드를 포함한다. 상기된 마그네슘 화합물의 알킬 또는 알콕시 잔기는 일반적으로 1 내지 6의 탄소원자를 지니며, 바람직하게는 1 내지 4의 탄소원자를 지닌다.Magnesium compounds that can be used to prepare the solid catalyst component (A) include metallic magnesium, magnesium dihalide, dialkylmagnesium, alkylmagnesium halides, dialkoxymagnesium, diaryloxymagnesium, and alkoxymagnesium halides. Alkyl or alkoxy moieties of the magnesium compounds described above generally have 1 to 6 carbon atoms and preferably have 1 to 4 carbon atoms.

마그네슘 할라이드의 특정예로는 마그네슘 디클로라이드, 마그네슘 디브로미드, 마그네슘 디요오디드, 및 마그네슘 디플루오라이드가 있다.Specific examples of magnesium halides are magnesium dichloride, magnesium dibromide, magnesium diiodide, and magnesium difluoride.

디알킬마그네슘의 특정예에는 디메틸마그네슘, 디에틸마그네슘, 에틸메틸마그네슘, 디프로필마그네슘, 메틸프로필마그네슘, 에틸프로필마그네슘, 디부틸마그네슘, 부틸메틸마그네슘, 및 부틸에틸마그네슘이 있다. 이들 디알킬마그네슘은 금속성 마그네슘을 할로겐화된 탄화수소 또는 알콜과 반응시켜 얻을 수 있다.Specific examples of dialkyl magnesium include dimethyl magnesium, diethyl magnesium, ethyl methyl magnesium, dipropyl magnesium, methyl propyl magnesium, ethyl propyl magnesium, dibutyl magnesium, butyl methyl magnesium, and butyl ethyl magnesium. These dialkyl magnesiums can be obtained by reacting metallic magnesium with halogenated hydrocarbons or alcohols.

알킬마그네슘 할라이드의 특정예에는 에틸마그네슘 클로라이드, 프로필마그네슘 클로라이드, 및 부틸마그네슘 클로라이드가 포함된다. 이들 알킬마그네슘 할라이드는 금속성 마그네슘을 할로겐화된 탄화수소 또는 알콜과 반응시킴으로써 얻을 수 있다.Specific examples of alkylmagnesium halides include ethylmagnesium chloride, propylmagnesium chloride, and butylmagnesium chloride. These alkylmagnesium halides can be obtained by reacting metallic magnesium with halogenated hydrocarbons or alcohols.

디알콕시마그네슘 및 디아릴옥시마그네슘의 특정예에는 디메톡시마그네슘, 디에톡시마그네슘, 디프로폭시마그네슘, 디부톡시마그네슘, 디페녹시마그네슘, 에톡시메톡시마그네슘, 에톡시프로폭시마그네슘 및 부톡시에톡시마그네슘이 포함된다.Specific examples of dialkoxy magnesium and diaryloxymagnesium include dimethoxymagnesium, diethoxy magnesium, dipropoxymagnesium, dibutoxymagnesium, diphenoxymagnesium, ethoxymethoxymagnesium, ethoxypropoxymagnesium and butoxyethoxy Magnesium is included.

알콕시마그네슘 할라이드의 특정예로는 메톡시마그네슘 클로라이드, 에톡시마그네슘 클로라이드, 프로폭시마그네슘 클로라이드, 및 부톡시마그네슘 클로라이드가 있다.Specific examples of alkoxymagnesium halides are methoxymagnesium chloride, ethoxymagnesium chloride, propoxymagnesium chloride, and butoxymagnesium chloride.

이들 마그네슘 화합물중 바람직한 화합물은 디알콕시마그네슘이고, 디에톡시마그네슘 및 디프로폭시마그네슘이 특히 바람직하다. 마그네슘 화합물은 독립적으로 사용되거나 둘 이상의 복합물로 사용될 수 있다.Preferred compounds among these magnesium compounds are dialkoxymagnesium, and diethoxymagnesium and dipropoxymagnesium are particularly preferable. Magnesium compounds can be used independently or in combination of two or more.

바람직하게 사용될 수 있는 디알콕시마그네슘은 알콕시 잔기에 1 내지 3의 탄소원자를 지닌 하나 이상의 디알콕시마그네슘종이며, 이들은 과립 또는 분말형이고, 이들의 입자는 불규칙적이거나 구형일 수 있다. 구형 입자의 디에톡시마그네슘을 사용하는 경우에, 생성된 분말 중합체는 보다 양호한 입자모양일 수 있고, 보다 좁은 입자 크기분포로 생성될 수 있다. 그 결과, 생성된 중합체 분말은 개선된 처리특성을 지니며, 미세한 입자에 기인된 곤란성이 제거될 수 있다.Preferred dialkoxymagnesiums which can be used are one or more dialkoxymagnesium species having 1 to 3 carbon atoms in the alkoxy moiety, which are granular or powdered, and their particles may be irregular or spherical. In case of using spherical particles of diethoxy magnesium, the resulting powder polymer may be of better particle shape and may be produced with a narrower particle size distribution. As a result, the resulting polymer powder has improved processing characteristics, and the difficulty caused by the fine particles can be eliminated.

상기 참조된 바와 같이 구형의 디에톡시마그네슘 입자가 실질적으로 구형일 필요는 없으며, 타원형 또는 타원-유사 입자가 또한 사용될 수 있다. 상기된 용어 "구형"은 장축직경(ℓ) 대 단축직경(w)의 비율(ℓ/w)가 3이하, 바람직하게는 1 내지 2, 더욱 바람직하게는 1 내지 1.5로 한정될 수 있다.As referenced above, the spherical diethoxy magnesium particles need not be substantially spherical, ellipsoidal or ellipse-like particles may also be used. The term "spherical" described above may be defined as the ratio (L / w) of the major axis diameter (L) to the minor axis diameter (w) of 3 or less, preferably 1 to 2, more preferably 1 to 1.5.

사용된 디알콕시마그네슘은 평균 입자크기가 1 내지 200㎛이고, 더욱 바람직하게는 5 내지 150㎛이다.The dialkoxy magnesium used has an average particle size of 1 to 200 mu m, more preferably 5 to 150 mu m.

구형의 디에톡시마그네슘의 경우에, 평균 입자크기는 1 내지 100㎛이고, 바람직하게는 5 내지 50㎛이며, 더욱 바람직하게는 10 내지 400㎛이다. 좁은 크기분포를 지닌 입자를 소량의 미세하거나 거친 입자와 함께 사용하는 것이 바람직하다.더욱 특히, 5㎛이하의 미세한 입자를 20%이하, 바람직하게는 10%이하로 함유하고, 100㎛ 이상의 거친 입자를 10% 이하, 바람직하게는 5% 이하로 함유하는 입자를 사용하는 것이 바람직하다. 그러나 입자 크기분포는 3 이하, 바람직하게는 2 이하의 ln(D90/D10)에 상응한다. 여기서, D90및 D10은 각각 작은 직경측으로부터 나타낸 누적 입자크기분포의 누적 90% 직경 및 누적 10% 직경을 나타낸다.In the case of spherical diethoxy magnesium, the average particle size is 1 to 100 mu m, preferably 5 to 50 mu m, and more preferably 10 to 400 mu m. Preference is given to using particles having a narrow size distribution together with a small amount of fine or coarse particles. More particularly, coarse particles containing less than 20%, preferably less than 10%, containing less than 5 μm of fine particles Preference is given to using particles containing 10% or less, preferably 5% or less. However, the particle size distribution corresponds to ln (D 90 / D 10 ) of 3 or less, preferably 2 or less. Here, D 90 and D 10 each represent a cumulative 90% diameter and a cumulative 10% diameter of the cumulative particle size distribution shown from the smaller diameter side.

상기된 디알콕시마그네슘이 고형의 촉매성분(A)의 제조에 출발물질로서 항상 요구되는 것은 아니다. 예를들어, 상기된 디알콕시마그네슘은 고형의 촉매성분(A)의 제조시에 촉매, 예를들어, 요오드의 존재하에 금속성 마그네슘 및 알콜로부터 동일반응계에서 제조될 수 있다.The dialkoxy magnesiums mentioned above are not always required as starting materials for the preparation of the solid catalyst component (A). For example, the dialkoxy magnesium described above can be prepared in situ from metallic magnesium and alcohol in the presence of a catalyst, for example iodine, in the preparation of a solid catalyst component (A).

고형의 촉매성분(A)를 제조하는데 사용될 수 있는 티탄할라이드 화합물은 일반식 Ti(OR5)nX4-n(여기서, R5는 탄소수 1 내지 4의 알킬 그룹이고, X는 염소 원자, 브롬 원자 또는 요오드 원자이며, n은 0 또는 정수 1, 2, 또는 3이다)로 나타내는 하나 이상의 티탄 할라이드 및 알콕시티탄 할라이드이다.The titanium halide compound that can be used to prepare the solid catalyst component (A) is of the general formula Ti (OR 5 ) n X 4-n (wherein R 5 is an alkyl group having 1 to 4 carbon atoms, X is a chlorine atom, bromine An atom or an iodine atom, n is one or more titanium halides and alkoxytitanium halides represented by zero or an integer of 1, 2, or 3).

티탄 할라이드의 특정예에는 TiCl4, TIBr4및 TiI4와 같은 티탄 테트라할라이드가 포함된다. 알콕시티탄 할라이드의 특정예에는 Ti(OCH3)Cl3, Ti(OC2H5)Cl3, Ti(OC3H7)Cl3, Ti(On-C4H9)Cl3, Ti(OCH3)2Cl2, Ti(OC2H5)2Cl2, Ti(OC3H7)2Cl2, Ti(On-C4H9)2Cl2, Ti(OCH3)3Cl, Ti(OC2H5)3Cl, Ti(OC3H7)3Cl, 및 Ti(On-C4H9)3Cl가 있다. 바람직한 티탄 할라이드 화합물은 티탄 테트라할라이드이며, TiCl4가 특히 바람직하다. 티탄 할라이드 화합물은 독립적으로 또는 둘 이상의 복합물로 사용될 수 있다.Specific examples of titanium halides include titanium tetrahalides such as TiCl 4 , TIBr 4 and TiI 4 . Specific examples of alkoxytitanium halides include Ti (OCH 3 ) Cl 3 , Ti (OC 2 H 5 ) Cl 3 , Ti (OC 3 H 7 ) Cl 3 , Ti (On-C4H 9 ) Cl 3 , Ti (OCH 3 ) 2 Cl 2 , Ti (OC 2 H 5 ) 2 Cl 2 , Ti (OC 3 H 7 ) 2 Cl 2 , Ti (On-C 4 H 9 ) 2 Cl 2 , Ti (OCH 3 ) 3 Cl, Ti (OC 2 H 5 ) 3 Cl, Ti (OC 3 H 7 ) 3 Cl, and Ti (On-C 4 H 9 ) 3 Cl. Preferred titanium halide compounds are titanium tetrahalides, with TiCl 4 being particularly preferred. Titanium halide compounds can be used independently or in combination of two or more.

고형의 촉매성분(A)를 제조하는데 사용될 수 있는 전자 공여체 화합물은 산소 또는 질소를 함유하는 유기 화합물이다. 그러한 화합물에는 알콜, 페놀, 에테르, 에스테르, 케톤, 산할라이드, 알데하이드, 아민, 아미드, 니트릴, 이소시아네이트, 및 Si-O-C 결합을 함유하는 유기실리콘 화합물이 포함된다.Electron donor compounds that can be used to prepare the solid catalyst component (A) are organic compounds containing oxygen or nitrogen. Such compounds include alcohols, phenols, ethers, esters, ketones, acid halides, aldehydes, amines, amides, nitriles, isocyanates, and organosilicon compounds containing Si-O-C bonds.

전자 공여체 화합물의 특정예에는 메탄올, 에탄올, 프로판올, 부탄올, 펜타놀, 헥사놀, 옥타놀, 2-에틸헥실 알콜, 및 도데카놀과 같은 알콜류; 페놀 및 크레졸과 같은 페놀류; 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 디부틸 에테르, 디아밀 에테르, 및 디페닐 에테르와 같은 에테르류; 메틸 포르메이트, 에틸 아세테이트, 비닐 아세테이트, 프로필 아세테이트, 옥틸 아세테이트, 사이클로헥실 아세테이트, 에틸 프로피오네이트, 에틸 부티레이트, 메틸 벤조에이트, 에틸 벤조에티트 프로필 벤조에이트, 부틸 벤조에이트, 옥틸 벤조에이트, 사이클로헥실 벤조에이트, 페닐 벤조에이트, 메틸 p-톨루일레이트, 에틸 p-톨루일레이트, 메틸 아니세이트, 및 에틸 아니세이트와 같은 모노카르복실산 에스테르류; 디에틸 말레이트, 디부틸 말레이트, 디메틸 아디페이트, 디에틸 아디페이트, 디프로필 아디페이트, 디부틸 아디페이트, 디메틸 아디페이트, 디이소데실 아디페이트, 디옥틸 아디페이트, 디메틸 프탈레이트, 디에틸 프탈레이트, 디프로필 프탈레이트, 디부틸 프탈레이트, 디펜틸 프탈레이트, 디헥실 프탈레이트, 디헵틸 프탈레이트, 디옥틸 프탈레이트, 디노닐 프탈레이트, 및 디데실 프탈레이트와 같은 디카르복실산 에스테르류; 아세톤, 메틸 에틸 케톤, 메틸 부틸 케톤, 아세토페논, 및 벤조페논과 같은 케톤류; 프탈산 디클로라이드 및 테레프탈산 디클로라이드와 같은 산할라이드류; 아세트알데하이드, 프로피온알데하이드, 옥틸알데하이드, 및 벤즈알데하이드와 같은 알데하이드류; 메틸아민, 에틸아민, 트리부틸아민, 피페리딘, 아닐린 및 피리딘과 같은 아민류; 아세트아미드 및 아실아미드와 같은 아미드류; 아세토니트릴, 벤조니트릴, 및 톨루니트릴과 같은 니트릴류; 및 페닐이소시아네이트 및 n-부틸 이소시아네이트와 같은 이소시아네이트류가 포함된다.Specific examples of the electron donor compound include alcohols such as methanol, ethanol, propanol, butanol, pentanol, hexanol, octanol, 2-ethylhexyl alcohol, and dodecanol; Phenols such as phenol and cresol; Ethers such as dimethyl ether, diethyl ether, dipropyl ether, dibutyl ether, diamyl ether, and diphenyl ether; Methyl formate, ethyl acetate, vinyl acetate, propyl acetate, octyl acetate, cyclohexyl acetate, ethyl propionate, ethyl butyrate, methyl benzoate, ethyl benzoate propyl benzoate, butyl benzoate, octyl benzoate, cyclohexyl Monocarboxylic acid esters such as benzoate, phenyl benzoate, methyl p-toluylate, ethyl p-toluylate, methyl aniseate, and ethyl aniseate; Diethyl maleate, dibutyl maleate, dimethyl adipate, diethyl adipate, dipropyl adipate, dibutyl adipate, dimethyl adipate, diisodecyl adipate, dioctyl adipate, dimethyl phthalate, diethyl phthalate Dicarboxylic acid esters such as dipropyl phthalate, dibutyl phthalate, dipentyl phthalate, dihexyl phthalate, diheptyl phthalate, dioctyl phthalate, dinonyl phthalate, and didecyl phthalate; Ketones such as acetone, methyl ethyl ketone, methyl butyl ketone, acetophenone, and benzophenone; Acid halides such as phthalic acid dichloride and terephthalic acid dichloride; Aldehydes such as acetaldehyde, propionaldehyde, octylaldehyde, and benzaldehyde; Amines such as methylamine, ethylamine, tributylamine, piperidine, aniline and pyridine; Amides such as acetamide and acylamide; Nitriles such as acetonitrile, benzonitrile, and tolunitrile; And isocyanates such as phenyl isocyanate and n-butyl isocyanate.

Si-O-C 결합을 함유하는 유기실리콘 화합물의 특정예에는 트리메틸메톡시실란, 트리메틸에톡시실란, 트리-n-프로필메톡시실란, 트리-n-프로필에톡시실란, 트리-n-부틸메톡시실란, 트리-이소부틸메톡시실란, 트리-t-부틸메톡시실란, 트리-n-부틸에톡시실란, 트리사이클로헥실메톡시실란, 트리사이클로헥실에톡시실란, 디메틸디메톡시실란, 디메틸디에톡시실란, 디-n-프로필디메톡시실란, 디이소프로필디메톡시실란, 디-n-프로필디에톡시실란, 디이소프로필디에톡시실란, 디-n-부틸디메톡시실란, 디이소부틸디메톡시실란, 디-t-부틸디메톡시실란, 디-n-부틸디에톡시실란, n-부틸메틸디메톡시실란, 비스(2-에틸헥실)디메톡시실란, 비스(2-에틸헥실)디에톡시실란, 디사이클로헥실디메톡시실란, 디사이클로헥실디에톡시실란, 디사이클로펜틸디메톡시실란, 디사이클로펜틸디에톡시실란, 사이클로헥실메틸디메톡시실란, 사이클로헥실메틸디에톡시실란, 사이클로헥실에틸디메톡시실란, 사이클로헥실이소프로필디메톡시실란, 사이클로헥실에텔디에톡시실란, 사이클로펜틸에틸디메톡시실란,사이클로펜틸에틸디에톡시실란, 사이클로펜틸이소프로필디메톡시실란, 사이클로헥실(n-펜틸)디메톡시실란, 사이클로펜틸이소부틸디메톡시실란, 디페닐디메톡시실란, 디페닐디에톡시실란, 페닐메틸디메톡시실란, 페닐메틸디에톡시시리란, 페닐에틸디메톡시실란, 페닐에틸디에톡시실란, 사이클로헥실디메틸메톡시실란, 사이클로헥실디메틸에톡시실란, 사이클로헥실디에틸메톡시실란, 사이클로헥실디에틸에톡시실란, 2-에틸헥실트리메톡시실란, 2-에틸헥실트리에톡시실란, 사이클로헥실(n-펜틸)디에톡시실란, 사이클로펜틸메틸디메톡시실란, 사이클로펜틸에틸디메톡시실란, 사이클로펜틸메틸디에톡시실란, 사이클로펜틸에틸디에톡시실란, 사이클로헥실(n-프로필)디메톡시실리란, 사이클로헥실(n-부틸)디메톡시실란, 사이클로헥실(n-프리필)디에톡시실란, 사이클로헥실(n-부틸)디에톡시실란, 메틸트리메톡시실란, 메틸트리에톡시실란, 에틸트리메톡시실란, 에틸트리에톡시실란, n-프로필트리메톡시실란, n-프로필트리에톡시실란, 이소프로필트리메톡시실란, 이소프로필트리에톡시실란, n-부틸트리메톡시실란, 이소부틸트리메톡시실란, t-부틸트리메톡시실란, n-부틸트리에톡시실란, 사이클로헥실트리메톡시실란, 사이클로헥실트리에톡시실란, 사이클로펜틸트리메톡시실란, 사이클로펜틸트리에톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 2-에틸헥실트리메톡시실란, 2-에틸헥실트리에톡시실란, 페닐트리메톡시실란, 및 페닐트리에톡시실란이 있다.Specific examples of organosilicon compounds containing Si-OC bonds include trimethylmethoxysilane, trimethylethoxysilane, tri-n-propylmethoxysilane, tri-n-propylethoxysilane, and tri-n-butylmethoxysilane , Tri-isobutylmethoxysilane, tri-t-butylmethoxysilane, tri-n-butylethoxysilane, tricyclohexylmethoxysilane, tricyclohexylethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane , Di-n-propyldimethoxysilane, diisopropyldimethoxysilane, di-n-propyldiethoxysilane, diisopropyldiethoxysilane, di-n-butyldimethoxysilane, diisobutyldimethoxysilane, di -t-butyldimethoxysilane, di-n-butyldiethoxysilane, n-butylmethyldimethoxysilane, bis (2-ethylhexyl) dimethoxysilane, bis (2-ethylhexyl) diethoxysilane, dicyclohexyl Dimethoxysilane, dicyclohexyl diethoxysilane, dicyclopentyldimethoxysilane, disa Clopentyl diethoxysilane, cyclohexyl methyl dimethoxy silane, cyclohexyl methyl diethoxy silane, cyclohexyl ethyl dimethoxy silane, cyclohexyl isopropyl dimethoxy silane, cyclohexyl ether diethoxysilane, cyclopentyl ethyl dimethoxy silane, cyclo Pentylethyldiethoxysilane, cyclopentylisopropyldimethoxysilane, cyclohexyl (n-pentyl) dimethoxysilane, cyclopentylisobutyldimethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, phenylmethyldimethoxysilane , Phenylmethyl diethoxy silane, phenyl ethyl dimethoxy silane, phenyl ethyl diethoxy silane, cyclohexyl dimethyl methoxy silane, cyclohexyl dimethyl ethoxy silane, cyclohexyl diethyl methoxy silane, cyclohexyl diethyl ethoxy silane, 2-ethylhexyltrimethoxysilane, 2-ethylhexyltriethoxysilane, cyclohexyl (n-pentyl) diethoxysilane, cyclo Pentylmethyldimethoxysilane, cyclopentylethyldimethoxysilane, cyclopentylmethyldiethoxysilane, cyclopentylethyldiethoxysilane, cyclohexyl (n-propyl) dimethoxysilane, cyclohexyl (n-butyl) dimethoxysilane, Cyclohexyl (n-prefill) diethoxysilane, cyclohexyl (n-butyl) diethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltri Methoxysilane, n-propyltriethoxysilane, isopropyltrimethoxysilane, isopropyltriethoxysilane, n-butyltrimethoxysilane, isobutyltrimethoxysilane, t-butyltrimethoxysilane, n -Butyltriethoxysilane, cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane, cyclopentyltrimethoxysilane, cyclopentyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-ethyl Hexyltrime Sisilran, 2-ethyl hexyl tree in the silane, phenyl trimethoxy silane, phenyltrimethoxysilane, and a silane.

이들 중에서 바람직한 전자 공여체 화합물은 에스테르이고, 프탈산 디에스테르가 더욱 바람직하다. 프탈산 디에스테르중의 에스테르잔기는 탄소수 1 내지 12, 바람직하게는 탄소수 2 내지 10의 직쇄 또는 측쇄 알킬 그룹이다. 적합한 프탈산디에스테르의 특정예에는 디메틸 프탈레이트, 디에틸 프탈레이트, 디-n-프로필프탈레이트, 디이소프로필 프탈레이트, 디-n-부틸 프탈레이트, 디이소부틸 프탈레이트, 에틸메틸 프탈레이트, 메틸이소프로필 프탈레이트, 에틸-n-프로필 프탈레이트, 에틸-n-부틸 프탈레이트, 디-n-펜틸 프탈레이트, 디이소펜틸 프탈레이트, 디헥실 프탈레이트, 디-n-헵틸 프탈레이트, 디-n-옥틸 프탈레이트, 비스(2-메틸헥실)프탈레이트, 비스(2-에틸헥실)프탈레이트, 디-n-노닐 프탈레이트, 디이소데실 프탈레이트, 비스(2,2-디메틸헵틸)프탈레이트, n-부틸이소헥실 프탈레이트, n-부틸이소옥틸 프탈레이트, n-펜틸헥실 프탈레이트, n-펜틸이소헥실 프탈레이트, 이소펜틸헵틸 프탈레이트, n-펜틸이소옥틸 프탈레이트, n-펜틸이소노닐 프탈레이트, 이소펜틸-n-데실 프탈레이트, n-펜틸운데실 프탈레이트, 이소펜틸이소헥실 프탈레이트, n-헥실이소옥틸 프탈레이트, n-헥실이소노닐 프탈레이트, n-헥실-n-데실 프탈레이트, n-헵틸이소옥틸 프탈레이트, n-헵틸이소노닐 프탈레이트, n-헵틸네오데실 프탈레이트, 및 이소옥틸이소노닐 프탈레이트가 있다. 이들 프탈산 에스테르는 독립적으로 사용되거나 둘이상의 복합물로 사용될 수 있다. 프탈산 에스테르의 바람직한 혼합물은 디에틸 프탈레이트와 비스(2-에틸헥실)프탈레이트; 디-n-부틸 프탈레이트와 비스(2-에틸헥실)프탈레이트; 디이소부틸과 비스(2-에틸헥실)프탈레이트; 및 디에틸 프탈레이트와 비스(2-에틸헥실)프탈레이트와 디-n-부틸 프탈레이트로 예시된다.Among these, the preferred electron donor compound is an ester, and phthalic acid diester is more preferable. The ester residue in the phthalic acid diester is a straight or branched chain alkyl group having 1 to 12 carbon atoms, preferably 2 to 10 carbon atoms. Specific examples of suitable phthalic acid diesters include dimethyl phthalate, diethyl phthalate, di-n-propylphthalate, diisopropyl phthalate, di-n-butyl phthalate, diisobutyl phthalate, ethylmethyl phthalate, methylisopropyl phthalate, ethyl- n-propyl phthalate, ethyl-n-butyl phthalate, di-n-pentyl phthalate, diisopentyl phthalate, dihexyl phthalate, di-n-heptyl phthalate, di-n-octyl phthalate, bis (2-methylhexyl) phthalate , Bis (2-ethylhexyl) phthalate, di-n-nonyl phthalate, diisodecyl phthalate, bis (2,2-dimethylheptyl) phthalate, n-butylisohexyl phthalate, n-butylisooctyl phthalate, n-pentyl Hexyl phthalate, n-pentylisohexyl phthalate, isopentylheptyl phthalate, n-pentylisooctyl phthalate, n-pentylisononyl phthalate, isopentyl-n-decyl phthalate Nitrate, n-pentyl undecyl phthalate, isopentylisohexyl phthalate, n-hexylisooctyl phthalate, n-hexylisononyl phthalate, n-hexyl-n-decyl phthalate, n-heptylisooctyl phthalate Sononyl phthalate, n-heptyl neodecyl phthalate, and isooctylisononyl phthalate. These phthalic acid esters can be used independently or in combination of two or more. Preferred mixtures of phthalic acid esters include diethyl phthalate and bis (2-ethylhexyl) phthalate; Di-n-butyl phthalate and bis (2-ethylhexyl) phthalate; Diisobutyl and bis (2-ethylhexyl) phthalate; And diethyl phthalate, bis (2-ethylhexyl) phthalate and di-n-butyl phthalate.

고형의 촉매성분(A)은 상기된 마그네슘 화합물, 티탄 할라이드 화합물 및 전자 공여체 화합물을 통상의 방법중에서 적절하게 선택된 방법으로 접촉시킴으로써 제조될 수 있다. 고형의 촉매성분(A)를 제조하는 공지된 방법은 예를들어, JP-A-63-308004호, JP-A-63-314211호, JP-A-64-6006호, JP-A-64-14210호, JP-A-64-43506호, JP-A-63-3010호, 및 JP-A-62-158704호에 기재되어 있다.The solid catalyst component (A) can be prepared by contacting the above-described magnesium compound, titanium halide compound and electron donor compound with a method appropriately selected from conventional methods. Known methods for producing the solid catalyst component (A) include, for example, JP-A-63-308004, JP-A-63-314211, JP-A-64-6006, JP-A-64 -14210, JP-A-64-43506, JP-A-63-3010, and JP-A-62-158704.

고형의 촉매성분(A)를 제조하는 전형적인 방법을 이하 기재하고자 한다.A typical method of preparing the solid catalyst component (A) is described below.

(1) 연화마그네슘을 테트라알콕시티탄에 용해시키고, 용액을 폴리실록산과 접촉시켜 고형성분을 얻는다. 고형성분을 사염화실리콘과 반응시키고, 프탈산 디클로라이드와 접촉시키며, 사염화티탄과 반응시켜 고형의 촉매성분(A)를 얻는다. 생성된 고형의 촉매성분을 유기알루미늄 화합물, 유기실리콘 화합물 및 올레핀으로 예비처리한다.(1) Magnesium softened is dissolved in tetraalkoxy titanium, and the solution is contacted with polysiloxane to obtain a solid component. The solid component is reacted with silicon tetrachloride, contacted with phthalic acid dichloride, and reacted with titanium tetrachloride to obtain a solid catalyst component (A). The resulting solid catalyst component is pretreated with an organoaluminum compound, an organosilicon compound and an olefin.

(2) 무수 염화마그네슘 및 2-에틸헥실 알콜을 반응시켜 균일용액을 형성시키고, 프탈산 무수물과 접촉시킨다. 생성용액을 사염화티탄 및 프탈산의 디에스테르와 접촉시켜 고형성분을 얻는다. 생성물을 사염화티탄과 더 반응시켜 고형의 촉매 성분(A)를 제조한다.(2) Anhydrous magnesium chloride and 2-ethylhexyl alcohol are reacted to form a homogeneous solution and brought into contact with phthalic anhydride. The resulting solution is contacted with a diester of titanium tetrachloride and phthalic acid to obtain a solid component. The product is further reacted with titanium tetrachloride to produce solid catalyst component (A).

(3) 금속성 마그네슘, 부틸 클로라이드, 및 부틸 에테르를 반응시켜 유기마그네슘 화합물을 합성한다. 유기마그네슘 화합물을 테트라부톡시티탄 및 테트라에 톡시실란과 접촉시켜 고형물을 얻고, 이어서, 프탈산의 디에스테르(예, 탄소수 1 내지 10의 알킬 에스테르), 디부틸 에테르, 및 사염화티탄과 접촉시켜 고형의 촉매성분(A)을 제조한다. 생성된 고형의 촉매성분은 유기알루미늄 화합물, 유기실리콘 화합물 및 올레핀으로 예비처리될 수 있다.(3) Metallic magnesium, butyl chloride, and butyl ether are reacted to synthesize an organomagnesium compound. The organic magnesium compound is contacted with tetrabutoxytitanium and tetraethoxysilane to obtain a solid, followed by contact with a diester of phthalic acid (e.g., an alkyl ester having 1 to 10 carbon atoms), dibutyl ether, and titanium tetrachloride. The catalyst component (A) is prepared. The resulting solid catalyst component may be pretreated with an organoaluminum compound, an organosilicon compound and an olefin.

(4) 유기마그네슘 화합물, 예를들어, 디부틸마그네슘, 및 유기알루미늄 화합물을 탄화수소 용매의 존재하에 알콜, 예를들어, 부탄을 또는 2-에틸헥실 알콜과접촉시켜 균일한 용액을 얻는다. 생성된 용액을 실리콘 화합물, 예를들어, SiCl4, HSiCl3또는 폴리실록산과 접촉시켜 고형성부을 얻는다. 고형성분을 방향족 탄화수소용매의 존재하에 사염화티탄 및 프탈산 디에스테르와 접촉시키고, 반응혼합물을 사염화티탄과 더 접촉시켜 고형의 촉매성분(A)를 얻는다.(4) An organomagnesium compound such as dibutylmagnesium and an organoaluminum compound is contacted with an alcohol such as butane or 2-ethylhexyl alcohol in the presence of a hydrocarbon solvent to obtain a homogeneous solution. The resulting solution is contacted with a silicon compound such as SiCl 4 , HSiCl 3 or polysiloxane to obtain a solid portion. The solid component is contacted with titanium tetrachloride and phthalic acid diester in the presence of an aromatic hydrocarbon solvent, and the reaction mixture is further contacted with titanium tetrachloride to obtain a solid catalyst component (A).

(5) 염화마그네슘, 테트라알콕시티탄, 및 지방족알콜을 자방족 탄화수소의 존재하에 접촉시켜 균일한 용액을 형성시킨다. 용액에 사염화티탄을 가하고, 혼합물을 가열하여 고형성분을 침전시킨다. 고형성분을 프탈산의 디에스테르와 접촉시키고 사염화티탄과 더 반응시켜 고형의 촉매성분(A)을 제조한다.(5) Magnesium chloride, tetraalkoxytitanium, and aliphatic alcohols are contacted in the presence of an aliphatic hydrocarbon to form a uniform solution. Titanium tetrachloride is added to the solution, and the mixture is heated to precipitate a solid component. The solid component is contacted with a diester of phthalic acid and further reacted with titanium tetrachloride to prepare a solid catalyst component (A).

(6) 금속성 마그네슘분말, 알킬 모노할라이드, 및 요오드를 접촉시킨다. 생성된 반응물, 테트라알콕시티탄, 산할라이드, 및 지방족 알콜을 지방족 탄화수소의 존재하에 접촉시켜 균일한 용액을 형성시킨다. 용액에 사염화티탄을 가하고, 혼합물을 가열하여 고형성분을 침전시킨다. 고형성분을 프탈산의 디에스테르와 접촉시키고 사염화티탄과 더 반응시켜 고형의 촉매성분(A)를 제조한다.(6) Metallic magnesium powder, alkyl monohalide and iodine are contacted. The resulting reactants, tetraalkoxytitanium, acid halides, and aliphatic alcohols are contacted in the presence of aliphatic hydrocarbons to form a uniform solution. Titanium tetrachloride is added to the solution, and the mixture is heated to precipitate a solid component. The solid component is contacted with a diester of phthalic acid and further reacted with titanium tetrachloride to prepare a solid catalyst component (A).

(7) 디에톡시마그네슘을 알킬벤젠 또는 할로겐화된 탄화수소 용매에 현탁시키고, 생성된 현탁액을 사염화티탄과 접촉시킨다. 혼합물을 가열하고, 이어서, 프탈산의 디에스테르(예, 탄소수 1 내지 10의 알킬에스테르)와 접촉시켜 고형성분을 얻는다. 고형성분을 알킬벤젠으로 세척하고, 이어서, 알킬벤젠의 존재하에 사염화티탄과 접촉시켜 고형의 촉매성분(A)를 얻는다. 생성된 고형의 촉매성분은 탄화수소 용매의 존재하에 가열처리될 수 있다.(7) The diethoxy magnesium is suspended in an alkylbenzene or halogenated hydrocarbon solvent and the resulting suspension is contacted with titanium tetrachloride. The mixture is heated and then contacted with a diester of phthalic acid (eg, an alkyl ester having 1 to 10 carbon atoms) to obtain a solid component. The solid component is washed with alkylbenzene and then contacted with titanium tetrachloride in the presence of alkylbenzene to obtain a solid catalyst component (A). The resulting solid catalyst component can be heat treated in the presence of a hydrocarbon solvent.

(8) 디에톡시마그네슘을 알킬벤젠에 현탁시키고, 생성된 현탁액을 사염화티탄 및 프탈산 클로라이드와 접촉시켜 고형성분을 얻는다. 고형성분을 알킬벤젠으로 세척하고, 알킬벤젠의 존재하에 사염화티탄과 다시 접촉시켜 고형의 촉매성분(A)를 얻는다. 생성된 고형의 촉매성분은 사염화티탄과 두 번이상 더 접촉될 수 있다.(8) Dietary magnesium is suspended in alkylbenzene, and the resulting suspension is contacted with titanium tetrachloride and phthalic acid chloride to obtain a solid component. The solid component is washed with alkylbenzene and contacted again with titanium tetrachloride in the presence of alkylbenzene to obtain a solid catalyst component (A). The resulting solid catalyst component may be contacted with the titanium tetrachloride more than once more.

(9) 디에톡시마그내슘, 염화칼슘, 및 Si(OR6)4(여기서, R6은 알킬 그룹 또는 아릴 그룹이다)로 나타내는 실리콘 화합물을 공동-분쇄하여 생성된 분쇄물을 방향족 탄화수소에 현탁시킨다. 현탁액을 사염화티탄 및 프탈산의 디에스테르(예, 탄소수 1 내지 10의 알킬 에스테르)와 접촉시키고, 생성물을 사염화티탄과 더 접촉시켜 고형의 촉매성분(A)를 제조한다.(9) Co-milling the silicon compound represented by diethoxy magnesium, calcium chloride, and Si (OR 6 ) 4 , wherein R 6 is an alkyl group or an aryl group, suspends the resulting pulverized product in an aromatic hydrocarbon. The suspension is contacted with diesters of titanium tetrachloride and phthalic acid (eg, alkyl esters having 1 to 10 carbon atoms) and the product is further contacted with titanium tetrachloride to prepare a solid catalyst component (A).

(10) 디에톡시마그네슘 및 프탈산의 디에스테르를 알킬벤젠에 현탁시키고, 현탁액을 사염화티탄에 가하여 고형성분을 얻는다. 고형성분을 알킬벤젠으로 세척하고, 알킬벤젠의 존재하에 사염화티탄과 더 접촉시켜 고형의 촉매성분(A)를 얻는다.(10) The diesters of diethoxy magnesium and phthalic acid are suspended in alkylbenzene, and the suspension is added to titanium tetrachloride to obtain a solid component. The solid component is washed with alkylbenzene and further contacted with titanium tetrachloride in the presence of alkylbenzene to obtain a solid catalyst component (A).

(11) 칼슘 할라이드 및 지방족 마그네슘, 예를들어, 마그네슘 스테아레이트를 사염화티탄 및 프탈산의 디에스테르(예, 탄소수 1 내지 10의 알킬 에스테르)와 접촉시키고, 생성물을 사염화티탄과 더 접촉시켜 고형의 촉매성분(A)를 제조한다.(11) Calcium halides and aliphatic magnesium, such as magnesium stearate, are contacted with diesters of titanium tetrachloride and phthalic acid (e.g. alkyl esters having 1 to 10 carbon atoms) and the product is further contacted with titanium tetrachloride to give a solid catalyst Component (A) is prepared.

(12) 디에톡시마그네슘을 알킬벤젠 또는 할로겐화된 탄화수소 용매에 현탁시키고, 생성된 현탁액을 사염화티탄과 접촉시킨다. 혼합물을 가열하고, 이어서, 프탈산의 디에스테르(예, 탄소수 1 내지 10의 알킬에스테르)와 접촉시켜 반응시킨다.생성된 고형성분을 알킬벤젠으로 세척하고, 이어서, 알킬벤젠의 존재하애 사염화티탄과 접촉시켜 고형의 촉매성분(A)를 얻는다. 상기된 제조방법의 어떠한 단계에서든지, 시스템은 염화알루미늄과 접촉될 수 있다.(12) Diethoxymagnesium is suspended in an alkylbenzene or halogenated hydrocarbon solvent and the resulting suspension is contacted with titanium tetrachloride. The mixture is heated and then reacted by contact with a diester of phthalic acid (e.g., alkyl ester having 1 to 10 carbon atoms). The resulting solids are washed with alkylbenzene and then contacted with titanium tetrachloride in the presence of alkylbenzene. To obtain a solid catalyst component (A). At any stage of the process described above, the system can be contacted with aluminum chloride.

(13) 디에톡시마그네슘을 알킬벤젠 또는 할로겐화된 탄화수소 용매에 현탁시키고, 생성된 현탁액을 사염화티탄과 접촉시킨다. 혼합물을 가열하고, 이어서, 알킬잔기(예, 디에틸 프탈레이트 및 비스(2-에틸헥실)프탈레이트)의 탄소수가 상이한 둘이상의 프탈산의 디에스테르와 접촉시켜 고형성분을 얻는다. 생성된 고형성분을 알킬벤젠으로 세척하고, 알킬벤젠의 존재하에 사염화티탄과 접촉시켜 고형의 촉매 성분(A)를 얻는다. 상기된 제조단계에서, 고형성분을 사염화티탄과 접촉시킬 때, 알킬잔기의 탄소수가 상이한 둘이상의 프탈산 디에스테르와 다시 접촉될 수 있다. 또한, 프탈산의 디에스테르는 프탈산의 디에스테르가 아닌 상기 열거된 전자 공여체 화합물과 함께 사용될 수 있다.(13) Diethoxymagnesium is suspended in an alkylbenzene or halogenated hydrocarbon solvent and the resulting suspension is contacted with titanium tetrachloride. The mixture is heated and then contacted with diesters of two or more phthalic acids having different carbon numbers of alkyl residues (eg diethyl phthalate and bis (2-ethylhexyl) phthalate) to obtain a solid component. The resulting solid component is washed with alkylbenzene and contacted with titanium tetrachloride in the presence of alkylbenzene to obtain a solid catalyst component (A). In the above production step, when the solid component is contacted with titanium tetrachloride, it may be contacted again with at least two phthalic acid diesters having different carbon atoms in the alkyl residue. In addition, diesters of phthalic acid can be used with the electron donor compounds listed above that are not diesters of phthalic acid.

(14) 디에톡시마그네슘, 사염화티탄, 및 프탈산의 디에스테르를 클로르벤젠의 존재하에 접촉시키고, 이어서, 반응물을 사염화티탄 및 프탈산 디클로라이드와 접촉시킨다. 생성물을 사염화티탄과 더 접촉시켜 고형의 촉매성분(A)을 제조한다. 제조된 고형의 촉매성분은 사염화티탄과 더 접촉될 수 있다. 또한, 상기된 제조방법의 어떠한 단계에서, 실리콘화합물이 제조 시스템과 접촉될 수 있다.(14) Diesters of diethoxy magnesium, titanium tetrachloride, and phthalic acid are contacted in the presence of chlorbenzene, and then the reaction is contacted with titanium tetrachloride and phthalic acid dichloride. The product is further contacted with titanium tetrachloride to produce a solid catalyst component (A). The solid catalyst component produced may be further contacted with titanium tetrachloride. In addition, at any stage of the manufacturing method described above, the silicon compound may be contacted with the manufacturing system.

(15) 디에톡시마그네슘, 2-에틸헥실 알콜, 및 이산화탄소를 톨루엔의 존재하에 접촉시켜 균일한 용액을 형성시킨다. 용액을 사염화티탄 및 프탈산의 디에스테르와 접촉시켜 고형성분을 얻는다. 고형 성분을 테트라하이드로푸란에 용해시키고,고형성분을 침전시킨다. 생성된 고형선분을 사염화티탄과 접촉시켜 고형의 촉매성분을 제조한다. 요구되는 경우, 사염화티탄과의 접촉을 반복 수행할 수 있다. 상기 제조방법의 어떠한 단계에서도, 실리콘화합물, 예를들어, 테트라부톡시실란이 제조 시스템과 접촉될 수 있다.(15) Diethoxymagnesium, 2-ethylhexyl alcohol, and carbon dioxide are contacted in the presence of toluene to form a uniform solution. The solution is contacted with a diester of titanium tetrachloride and phthalic acid to obtain a solid component. The solid component is dissolved in tetrahydrofuran and the solid component is precipitated. The resulting solid line is contacted with titanium tetrachloride to produce a solid catalyst component. If desired, contact with titanium tetrachloride can be repeated. At any stage of the production process, a silicon compound, such as tetrabutoxysilane, may be contacted with the production system.

고형의 촉매성분(A)를 제조하는데 사용되는 마그네슘 화합물, 티탄 할라이드 화합물 및 진자 공여체 화합물의 양은 제조방법에 따라 다양하며, 일반적으로 특정화될 수 없다. 예를들어, 티탄할라이드 화합물은 마그네슘 화합물의 mol당 0.5 내지 100mo1, 바람직하게는 1 내지 10mo1의 양으로 사용되고, 전자공여체 화합물은 0.01 내지 3 mol, 바람직하게는 0.02 내지 1mol의 양으로 사용된다. 고형의 촉매 성분(A)중의 티탄함량은 특별히 제한되는 것은 아니며, 고형의 촉매성분(A)를 기준으로 일반적으로 0.5 내지 10중량%, 바람직하게는 1 내지 5 중량%이다.The amount of magnesium compound, titanium halide compound and pendulum donor compound used to prepare the solid catalyst component (A) varies depending on the preparation method, and generally cannot be specified. For example, the titanium halide compound is used in an amount of 0.5 to 100 mo1, preferably 1 to 10 mo1 per mol of the magnesium compound, and the electron donor compound is used in an amount of 0.01 to 3 mol, preferably 0.02 to 1 mol. The titanium content in the solid catalyst component (A) is not particularly limited and is generally 0.5 to 10% by weight, preferably 1 to 5% by weight, based on the solid catalyst component (A).

본 발명에 사용될 수 있는 유기알루미늄 화합물(B)는 일반식 R7 yAlY3-y(여기서, R7은 탄소수 1 내지 4의 알킬 그룹이고, Y는 수소, 염소, 브롬, 및 요오드 원자이며, y는 정수 1, 2, 또는 3이다)의 화합물을 포함한다.The organoaluminum compound (B) which can be used in the present invention is of the general formula R 7 y AlY 3-y , wherein R 7 is an alkyl group having 1 to 4 carbon atoms, Y is hydrogen, chlorine, bromine, and iodine atoms, y is an integer of 1, 2, or 3).

유기알루미늄 화합물(B)의 특정예에는 트리에틸알루미늄, 디에틸알루미늄 클로라이드, 트리이소부틸알루미늄, 디에틸알루미늄 브로미드, 및 디에틸알루미늄 하이드라이드가 있다. 이들 유기알루미늄 화합물은 독립적으로 사용되거나 둘이상의 복합물로 사용될 수 있다. 이들중 바람직한 화합물은 트리에틸알루미늄 및 트리이소부틸알루미늄이다.Specific examples of the organoaluminum compound (B) include triethylaluminum, diethylaluminum chloride, triisobutylaluminum, diethylaluminum bromide, and diethylaluminum hydride. These organoaluminum compounds can be used independently or in combination of two or more. Preferred of these are triethylaluminum and triisobutylaluminum.

본 발명에 바람직하게 사용되는 유기실리콘 화합물(C)에는 일반식(1)의 화합물을 포함한다.The organosilicon compound (C) preferably used in the present invention includes a compound of the general formula (1).

특정의 유기실리콘 화합물(C)을 고형의 촉매성분(A) 및 유기알루미늄 화합물(B)과 함께 사용하면 현저하게 높은 입체적 규칙성 및 광범위한 분자랑분포를 지니는 올레핀 중합체를 종래의 촉매에 의한 것 보다도 고수율로 생성시킬 수 있다.When certain organosilicon compounds (C) are used in combination with the solid catalyst component (A) and the organoaluminum compound (B), olefin polymers with remarkably high stereoregularity and broad molecular weight distribution can be obtained compared with conventional catalysts. It can be produced in high yield.

본 발명에서, 올레핀은 고형의 촉매성분(A), 유기알루미늄 화합물(B), 및 유기실리콘 화합물(C)를 포함하는 지글러-나타 촉매의 존재하에 호모- 또는 공중합된다. 사용되는 성분(A), (B), 및 (C)의 비율은 발명의 효과가 저하되지 않는 한 특별히 한정되는 것은 아니다. 일반적으로, 유기알루미늄 화합물(B)는 고형의 촉매성분(A)중의 티탄 원자의 mol당 1 내지 500mo1, 바람직하게는 5 내지 400mo1의 양으 로 사용되며, 유기실리콘 화합물(C)은 유기알루미늄 화합물(B)의 mol당 0.0020 내지 2mol, 바람직하게는 0.0025 내지 0.5mol의 양으로 사용된다.In the present invention, the olefin is homo- or copolymerized in the presence of a Ziegler-Natta catalyst comprising a solid catalyst component (A), an organoaluminum compound (B), and an organosilicon compound (C). The ratio of component (A), (B), and (C) used is not specifically limited unless the effect of this invention is reduced. In general, the organoaluminum compound (B) is used in an amount of 1 to 500 mo1, preferably 5 to 400 mo1 per mol of the titanium atom in the solid catalyst component (A), and the organosilicon compound (C) is an organoaluminum compound ( It is used in an amount of 0.0020 to 2 mol, preferably 0.0025 to 0.5 mol per mol of B).

본 발명의 지글러-나타 촉매는 상기된 성분(A), (B) 및 (C)를 접촉시킴으로써 제조될 수 있다. 성분(A), (B), 및 (C)의 접촉 순서에는 특별한 제한이 없다. 일반적으로, 성분(B)를 성분(C)와 접촉시키고, 이어서, 성분(A)와 접촉시키거나, 성분(B)를 성분(A)와 접촉시키고, 이어서, 성분(C)와 접촉시킨다.Ziegler-Natta catalysts of the present invention can be prepared by contacting components (A), (B) and (C) described above. There is no particular limitation on the contact order of components (A), (B), and (C). In general, component (B) is contacted with component (C) and then contacted with component (A), or component (B) is contacted with component (A) and then with component (C).

성분(A), (B), 및 (C)의 바람직한 혼합을 하기 표 1에 기재한다.Preferred mixing of components (A), (B) and (C) are shown in Table 1 below.

본 발명에 따른 중합반응은 유기용매의 존재 또는 부재하에 수행될 수 있다. 중합에 사용되는 올레핀 단량체는 개스상태 또는 액체상태일 수 있다. 중합은 200℃이하의 온도, 바람직하게는 100℃이하의 온도에서 10MPa이하의 압력, 바람직하게는 5MPa이하의 압력하에 수행된다. 반응은 연속 시스템으로 수행되거나 배치(batch) 시스템으로 수행될 수 있고, 한 단계 또는 두 단계 이상의 단계로 수행될 수 있다.The polymerization reaction according to the invention can be carried out in the presence or absence of an organic solvent. The olefin monomer used for the polymerization may be gaseous or liquid. The polymerization is carried out under a pressure of 10 MPa or less, preferably 5 MPa or less at a temperature of 200 ° C or less, preferably 100 ° C or less. The reaction can be carried out in a continuous system or in a batch system and can be carried out in one or two or more steps.

본 발명에 따라 호모- 또는 공중합되는 올레핀은 특별히 한정되는 것은 아니며, 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 및 비닐사이클로헥산과 같이 일반적으로 2 내지 20의 탄소수를 지니는 올레핀이다. 이들 올레핀은 독립적으로 사용되거나 둘 이상의 복합물로 사용될 수 있다. 높은 입체적 규칙성, 광범위한 분자량 분포, 및 높은 수율을 나타내게 하는 본발명의 효과는 폴리에틸렌의 호모중 합 또는 프로필렌과 에틸렌의 공중합으로 설명될 수 있다.Homo- or copolymerized olefins according to the invention are not particularly limited and generally have 2 to 20 carbon atoms, such as ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, and vinylcyclohexane Olefins. These olefins can be used independently or in combination of two or more. The effect of the present invention, which results in high steric regularity, broad molecular weight distribution, and high yield, can be explained by homopolymerization of polyethylene or copolymerization of propylene and ethylene.

촉매활성 및 입체적 규칙성 및 생성된 중합체의 입자특성을 개선시키기 위해서, 실질적으로 중합하기 전에 선-중합을 수행하는 것이 바람직하다. 선-중합된 모노머는 에틸렌 및 프로필렌 뿐만아니라 스티렌 및 비닐사이클로헥산과 같은 다른 모노머를 포함한다.In order to improve the catalytic activity and steric regularity and the particle properties of the resulting polymer, it is preferable to carry out pre-polymerization substantially before the polymerization. Pre-polymerized monomers include ethylene and propylene as well as other monomers such as styrene and vinylcyclohexane.

본 발명의 촉매는 중합 반응에서의 리터당 고형의 촉매성분중의 티탄원자로 계산하는 경우 약 0.005 내지 0.5mmol, 바람직하게는 약 0.01 내지 0.5 mmol의 양으로 사용된다.The catalyst of the present invention is used in an amount of about 0.005 to 0.5 mmol, preferably about 0.01 to 0.5 mmol, in terms of titanium atoms in the solid catalyst component per liter in the polymerization reaction.

본 발명에 따르면, 생성된 올레핀 중합체는 올레핀 중합체의 중량 펑균분자량 대 수평균분자량(Mw/Mn)의 비율로 1이상 크게 통상의 방법으로 제조된 것들보다 광범위한 분자량 분포를 지니며, 입체적으로 규칙적인 중합체의 수율도 극히 높다. 즉, 본 발명의 방법은 광범위한 분자량 분포(예를들어, Mw/Mn이 6이상)를 지닐 뿐 만아니라 극히 높은 수율로 높은 입체적 규칙성을 지닌다.According to the present invention, the resulting olefin polymer has a broader molecular weight distribution than those produced by conventional methods at least one largely in the ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) of the olefin polymer, and is stericly regular. The yield of the polymer is also extremely high. That is, the method of the present invention not only has a wide range of molecular weight distributions (e.g., Mw / Mn is 6 or more) but also has high stereoregularity with extremely high yield.

본 발명은 이하 비교와 비교하여 실시예를 참조로 보다 상세히 기술된다. 그러나, 본 발명은 이러한 실시예로 한정되는 것이 아님을 이해해야 한다. 모든 백분율은 달리 명시되지 않는 한 중량 백분율이다.The invention is described in more detail with reference to the examples in comparison with the comparison below. However, it should be understood that the present invention is not limited to these examples. All percentages are weight percentages unless otherwise specified.

실시예 1Example 1

사이클로헥실사이클로펜틸디메톡시실란의 제조:Preparation of Cyclohexylcyclopentyldimethoxysilane:

교반기, 온도계, 딤로트 응축기(Dimroth condenser), 및 적하 깔대기가 장착된 2-목 플라스크에 18.5g(0.76mo1)의 마그네슘 부스러기를 넣었다. 마그네슘을 아르곤 스트림하에 건조시키고, 20ml의 디-n-부틸 에테르를 가하였다. 반응물을 실온으로 냉각시키고, 소량의 1,2-디브로모에탄을 가하여 마그네슘을 활성화시켰다.600ml의 디-n-부틸 에테르에 79.6g(0.76mol)의 사이클로페닐 클로라이드를 용해시 켜 제조된 용액을 3.5시간에 걸쳐 적가하였다. 이때 온도는 50℃로 상승하였다. 이어서, 143.0g(0.07mol)의 사이클로헥실트리메톡시실란은 실온에서 가하고, 반응물을 1시간동안 환류시켰다.18.5 g (0.76 mo1) of magnesium shavings were placed in a two-neck flask equipped with a stirrer, thermometer, Dimroth condenser, and dropping funnel. Magnesium was dried under an argon stream and 20 ml of di-n-butyl ether were added. The reaction was cooled to room temperature and a small amount of 1,2-dibromoethane was added to activate magnesium. A solution prepared by dissolving 79.6 g (0.76 mol) of cyclophenyl chloride in 600 ml of di-n-butyl ether. Was added dropwise over 3.5 hours. At this time, the temperature rose to 50 ° C. Then 143.0 g (0.07 mol) of cyclohexyltrimethoxysilane were added at room temperature and the reaction was refluxed for 1 hour.

반응이 완결된 후에, 반응 혼합물을 실온으로 냉각시키긴 372g(0.38mo1)의 10%황산 수용액을 40℃이하의 온도에서 적가하였다. 유기층을 300ml의 1% 탄산수소나트륨 수용액으로 세척하고, 무수 황산 마그네슘으로 건조시켰다. 시약을 건조시킨후에 여과하고, 진공 증류시켜 0.2토르에서 78℃의 비점을 지닌 143.6g의 분획을 얻었다. 수율은 84,6%였다. 이 반응물이 사이클로헥실사이클로펜틸디메톡시실란임을 MS,1H-NMR/13C-NMR의 이차원분석, 및 IR로 확인하였다. MS,1H-NMR/13C-NMR(COSY 스펙트럼)의 이차원분석, 및 IR의 결과를 도 1, 도 2, 및 도 3에 각각 나타낸다.After the reaction was completed, 372 g (0.38 mo1) of 10% sulfuric acid aqueous solution, which had cooled the reaction mixture to room temperature, was added dropwise at a temperature below 40 ° C. The organic layer was washed with 300 ml of 1% aqueous sodium hydrogen carbonate solution and dried over anhydrous magnesium sulfate. The reagent was dried, filtered and vacuum distilled to yield 143.6 g of a fraction having a boiling point of 78 ° C. at 0.2 Torr. Yield 84,6%. The reaction was identified as cyclohexylcyclopentyldimethoxysilane by two-dimensional analysis of MS, 1 H-NMR / 13 C-NMR, and IR. The results of MS, 1 H-NMR / 13 C-NMR (COSY spectrum), and IR are shown in FIGS. 1, 2, and 3, respectively.

MS,1H-NMR/13C-NMR, 및 IR에 의한 분석은 하기된 조건하에서 수행하였다.Analysis by MS, 1 H-NMR / 13 C-NMR, and IR was performed under the following conditions.

MS: 장치... 피니간 매트(Finigan Mat; GC-MS)MS: Device ... Finigan Mat (GC-MS)

1H-NMR/13C-NMR: 장치... JEOL GSX270, 용매‥‥CDC13. 1 H-NMR / 13 C-NMR: Apparatus ... JEOL GSX270, Solvent ... CDC1 3 .

IR: 장치...퍼킨 엘머 1600 시리즈(Perkin Elmer 1600 Series; FT-IR), KBr 샌드법.IR: device ... Perkin Elmer 1600 Series (FT-IR), KBr sand method.

실시예 2Example 2

고형의 촉매성분(A-1)의 제조:Preparation of solid catalyst component (A-1):

질소로 완전히 세정된 교반기가 장착된 200㎖의 둥근 플라스크에, 10g의 디에톡시마그네슘 및 80㎖의 톨루엔을 충전시켜 현탁액을 제조하였다. 현탁액에 20㎖의 사염화티탄을 가하고, 승혼하여 62℃에 도달한 시점에서 디에틸프탈레이트 1.0㎖를 가하고, 다시 승온시켜 110℃에 도달한 시점에서 디부틸프탈레이트 3.5㎖를 가하고, 다시 승온시켜 112℃로 하였다. 이후 112℃의 온도를 유지시킨 상태에서 1.5시간 교반하여 반응시켰다. 반응종료후, 90℃의 100㎖ 톨루엔으로 2회 세척하고, 20㎖의 사염화탄소 및 80㎖의 톨루엔을 가하였다. 혼합물을 100℃로 가열하여 교반시키면서 2시간동안 반응시켰다. 반응이 완결된 후에, 반응혼합물을 40℃의 100㎖ n-헵탄으로 10회 세척하여 고형의 촉매성분(A-1)을 얻었다. 이 고형의 촉매성분(A-1) 중의 티탄 함유율을 측정한 결과, 2.46중량%이었다,A 200 ml round flask equipped with a stirrer thoroughly washed with nitrogen was charged with 10 g of diethoxy magnesium and 80 ml of toluene to prepare a suspension. 20 ml of titanium tetrachloride was added to the suspension, 1.0 ml of diethyl phthalate was added when the mixture reached 62 ° C, and the temperature was increased again. 3.5 ml of dibutyl phthalate was added when the temperature reached 110 ° C. It was set as. Then, the reaction was stirred for 1.5 hours while maintaining the temperature of 112 ℃. After completion of the reaction, the mixture was washed twice with 90 ml of 100 ml toluene, and 20 ml of carbon tetrachloride and 80 ml of toluene were added. The mixture was heated to 100 ° C. and reacted for 2 hours with stirring. After the reaction was completed, the reaction mixture was washed 10 times with 40 ml of 100 ml n-heptane to obtain a solid catalyst component (A-1). As a result of measuring the titanium content in this solid catalyst component (A-1), it was 2.46 weight%,

촉매 시스템의 제조 및 중합:Preparation and polymerization of catalyst systems:

교반기가 장착되고 질소개스로 세정된 2.0ℓ-용적의 압력용기(autoclave)에 1.32mmol의 트리에틸알루미늄, 0.13mmo1의 사이클로헥실사이클로펜틸디메톡시실란, 및 티탄원자로 0.0066mmo1의 상기 제조된 고형의 촉매성분(A-1)을 충전시켜 중합용의 촉매시스템을 형성시켰다. 이어서, 1.8ℓ의 수소 개스 및 1.4ℓ의 액화 프로필렌을 압력용기에 충전시키고, 70℃에서 30분동안 중합시켰다. 생성된 중합체의 특성을 표 2에 나타낸다. 표 2에서, n-헵탄-불용성 함유물, 중합 활성, 결정상 중합체의 전체 수율, 및 분자량분포를 다음과 같이 얻었다.The prepared solid catalyst of 1.32 mmol of triethylaluminum, 0.13 mmol of cyclohexylcyclopentyldimethoxysilane, and 0.0066 mmol of titanium atom in a 2.0 liter-volume autoclave equipped with a stirrer and cleaned with nitrogen gas. Component (A-1) was charged to form a catalyst system for polymerization. Subsequently, 1.8 L of hydrogen gas and 1.4 L of liquefied propylene were charged to a pressure vessel and polymerized at 70 DEG C for 30 minutes. The properties of the resulting polymers are shown in Table 2. In Table 2, n-heptane-insoluble content, polymerization activity, total yield of crystalline polymer, and molecular weight distribution were obtained as follows.

n-헵탄-불용성 함유물:n-heptane-insoluble content:

n-헵탄을 6시간동안 비등시켜 생성된 중합체를 정량((a) g )하고 불용성 중합체를 정량((b) g)하였다.N-heptane was boiled for 6 hours to quantify the resulting polymer ((a) g) and insoluble polymer ((b) g).

중합 활성:Polymerization activity:

(a)/고형 촉매성분의 중량(g)(a) / weight of solid catalyst component (g)

전체 결정상 중합체의 수율:Yield of total crystalline polymer:

((b)/(a)) × 100(%)((b) / (a)) × 100 (%)

분자량 분포:Molecular Weight Distribution:

Mw/MnMw / Mn

Mw: 중량평균 분자량Mw: weight average molecular weight

Mn: 수평균 분자량Mn: number average molecular weight

실시예 3Example 3

고형의 촉매성분(A-2)의 제조:Preparation of solid catalyst component (A-2):

질소로 완전히 세정되고 교반기가 장착된 200ml-용적의 둥근 플라스크에 20ml의 사염화티탄 및 30ml의 톨루엔을 충전시켜 혼합용액을 제조하였다. 이 혼합용액에 10g의 구형의 디에톡시마그네슘 입자(길이/폭-1,1/1; 평균입자크기 30㎛; In(D90/D10)=1.23), 50ml의 톨루엔, 및 3.6ml의 디-n-부틸 프탈레이트의 현탁액을 가하고, 혼합물을 90℃로 가열하여, 교반시키면서 1시간동안 반응시켰다. 반응이 완결된 후에, 반응 혼합물을 90℃의 100ml 톨루엔으로 2회 세척하고, 20ml의 사염화티탄 및 80ml의 톨루엔를 가하였다, 혼합물을 110℃로 가열하여, 교반시키면서 2시간동안 반응시켰다. 반응이 완결된 후에, 반응 혼합물을 40℃의 100ml n-헵탄으로10회 세척하여 고형의 촉매성분(A-2)를 얻었다. 고체-액체 분리로 분리된 고형의 촉매성분(A-2)의 고형물은 2.87%의 티탄을 함유하는 것으로 밝혀졌다.A 200 ml-volume round flask thoroughly washed with nitrogen and equipped with a stirrer was charged with 20 ml of titanium tetrachloride and 30 ml of toluene to prepare a mixed solution. To this mixed solution, 10 g of spherical diethoxy magnesium particles (length / width-1,1 / 1; average particle size 30 μm; In (D 90 / D 10 ) = 1.23), 50 ml of toluene, and 3.6 ml of di A suspension of n-butyl phthalate was added and the mixture was heated to 90 ° C. and reacted for 1 hour with stirring. After the reaction was completed, the reaction mixture was washed twice with 90 ml of 100 ml toluene and 20 ml of titanium tetrachloride and 80 ml of toluene were added, the mixture was heated to 110 캜 and reacted for 2 hours with stirring. After the reaction was completed, the reaction mixture was washed 10 times with 40 ml of 100 ml n-heptane to obtain a solid catalyst component (A-2). The solid of solid catalyst component (A-2) separated by solid-liquid separation was found to contain 2.87% titanium.

촉매시스템의 제조 및 중합:Preparation and Polymerization of Catalytic Systems:

고형의 촉매성분(A-2)를 사용함을 제외하고는 실시예 2에시와 동일한 방법으로 프로필렌을 중합시켰다. 반응 결과를 표 2에 나타낸다.Propylene was polymerized in the same manner as in Example 2 except that the solid catalyst component (A-2) was used. The reaction results are shown in Table 2.

실시예 4Example 4

고형의 촉매성분(A-3)의 제조:Preparation of solid catalyst component (A-3):

질소로 완전히 세정되고 교반기가 장착된 200ml-용적의 둥근 플라스크에 10g의 디에톡시마그네슘 및 80ml의 톨루엔을 충전시켜 현탁액을 제조하였다. 이 현탁액에 20ml의 사염화티탄을 가하고, 혼합물을 60℃로 가열하여 1.0ml의 디에틸 프탈레이트를 가하였다. 혼합물을 110℃까지 가열하여, 2.5ml의 디-이소-옥틸 프탈레이트를 가하였다. 혼합물을 112℃로 가열하여, 교반시키면서 1.5시간동안 반응시켰다. 반응이 완결된 후에, 반응 혼합물을 90℃의 100ml 톨루엔으로 2회 세척하고, 20ml의 사염화티탄 및 80ml의 톨루엔을 가하였다. 혼합물을 100℃로 가열하여, 교반시키면서 2시간동안 100℃에서 반응시켰다. 반응이 완결된 후에, 반응 혼합물을 40℃의 100ml n-헵탄으로 10회 세척하여 고형의 촉매성분(A-3)을 얻었다. 고체-액체 분리로 분리된 고형의 촉매성분(A-3)의 고형물은 2.74%의 티탄을 함유하는 것으로 밝혀졌다.A suspension was prepared by filling a 200 ml-volume round flask thoroughly washed with nitrogen and equipped with a stirrer with 10 g of diethoxy magnesium and 80 ml of toluene. 20 ml of titanium tetrachloride was added to this suspension, and the mixture was heated to 60 ° C to add 1.0 ml of diethyl phthalate. The mixture was heated to 110 ° C. and 2.5 ml of di-iso-octyl phthalate was added. The mixture was heated to 112 ° C. and reacted for 1.5 hours with stirring. After the reaction was completed, the reaction mixture was washed twice with 90 ml of 100 ml toluene and 20 ml of titanium tetrachloride and 80 ml of toluene were added. The mixture was heated to 100 ° C. and reacted at 100 ° C. for 2 hours with stirring. After the reaction was completed, the reaction mixture was washed 10 times with 100 ml n-heptane at 40 ° C. to obtain a solid catalyst component (A-3). The solid of solid catalyst component (A-3) separated by solid-liquid separation was found to contain 2.74% titanium.

촉매시스템의 제조 및 중합:Preparation and Polymerization of Catalytic Systems:

고형의 촉매성분(A-3)를 사용함을 제외하고는 실시예 2에서와 동일한 방법으로 프로필렌을 중합시켰다. 반응 결과를 표 2에 나타낸다.Propylene was polymerized in the same manner as in Example 2 except that the solid catalyst component (A-3) was used. The reaction results are shown in Table 2.

실시예 5Example 5

고혀의 촉매성분(A-4)의 제조:Preparation of the catalyst component (A-4) of the tongue:

질소로 완전히 세정되고 교반기가 장착된 200ml-용적의 둥근 플라스크에 10g의 디에톡시마그네슘 및 80ml의 톨루엔을 충전시켜 현탁액을 제조하였다. 이 현탁액에 20ml의 사염화티탄을 가하고, 혼합물을 62℃로 가열하여 1.0ml의 디에틸 프탈레이트를 가하였다. 혼합물을 110℃까지 가열하여, 4.0ml의 디-이소-옥틸 프탈레이트를 가하였다. 혼합물을 112℃로 가열하여, 교반시키면서 1.5시간동안 반응시켰 다. 반응이 완결된 후에, 반응 혼합물을 90℃의 100ml 톨루엔으로 2회 세척하고, 20ml의 사염화티탄 및 80ml의 톨루엔을 가하였다. 혼합물을 100℃로 가열하여, 교반시키면서 2시간동안 100℃에서 반응시켰다. 반응이 완결된 후에, 반응 혼합물을 40℃의 100ml n-헵탄으로 10회 세척하여 고형의 촉매성분(A-4)을 얻었다. 고체-액체 분리방법으로 분리된 고형의 촉매성분(A-4)의 고형물은 2.17%의 티탄을 함유하는 것으로 밝혀졌다.A suspension was prepared by filling a 200 ml-volume round flask thoroughly washed with nitrogen and equipped with a stirrer with 10 g of diethoxy magnesium and 80 ml of toluene. 20 ml of titanium tetrachloride was added to this suspension, and the mixture was heated to 62 DEG C and 1.0 ml of diethyl phthalate was added. The mixture was heated to 110 ° C. and 4.0 ml of di-iso-octyl phthalate was added. The mixture was heated to 112 ° C. and reacted for 1.5 hours with stirring. After the reaction was completed, the reaction mixture was washed twice with 90 ml of 100 ml toluene and 20 ml of titanium tetrachloride and 80 ml of toluene were added. The mixture was heated to 100 ° C. and reacted at 100 ° C. for 2 hours with stirring. After the reaction was completed, the reaction mixture was washed 10 times with 40 ml of 100 ml n-heptane to obtain a solid catalyst component (A-4). The solids of the solid catalyst component (A-4) separated by the solid-liquid separation method were found to contain 2.17% of titanium.

촉매시스템의 제조 및 중합:Preparation and Polymerization of Catalytic Systems:

고형의 촉매성분(A-4)를 사용함을 제외하고는 실시예 2에서와 동일한 방법으로 프로필렌을 중합시켰다. 반응 결과를 표 2에 나타낸다.Propylene was polymerized in the same manner as in Example 2 except that the solid catalyst component (A-4) was used. The reaction results are shown in Table 2.

비교예 1Comparative Example 1

사이클로헥실사이클로펜틸디메톡시실란을 페닐트리에톡시실란으로 대체함을 제외하고는 실시예 2에서와 동일한 방법으로 프로필렌을 중합시켰다. 반응 결과를표 2에 나타낸다.Propylene was polymerized in the same manner as in Example 2 except for replacing cyclohexylcyclopentyldimethoxysilane with phenyltriethoxysilane. The reaction results are shown in Table 2.

비교예 2Comparative Example 2

사이클로헥실사이클로펜틸디메톡시실란을 사이클로헥실메틸디메톡시실란으로 대체함을 제외하고는 실시예 2에서와 동일한 방법으로 프로필렌을 중합시켰다. 반응 결과를 표 2에 나타낸다.Propylene was polymerized in the same manner as in Example 2 except for replacing cyclohexylcyclopentyldimethoxysilane with cyclohexylmethyldimethoxysilane. The reaction results are shown in Table 2.

비교예 3Comparative Example 3

사이클로헥실사이클로펜틸디메톡시실란을 디사이클로펜틸디메톡시실란으로 대체함을 제외하고는 실시예 2에서와 동일한 방법으로 프로필렌을 중합시켰다. 반응 결과를 표 2에 나타낸다.Propylene was polymerized in the same manner as in Example 2 except for replacing cyclohexylcyclopentyldimethoxysilane with dicyclopentyldimethoxysilane. The reaction results are shown in Table 2.

실시예 6Example 6

고형의 촉매성분(A-5)의 제조:Preparation of solid catalyst component (A-5):

질소로 완전히 세정되고 교반기가 장착된 200ml-용적의 둥근 플라스크에 7.14g의 무수 염화마그네슘, 37.5ml의 데칸 및 35.1ml의 2-에틸헥실 알콜을 충전시키고, 생성된 혼합물을 130℃에서 2시간동안 가열하여 균일한 용액을 얻었다. 이어서, 1.67g의 프탈산 무수물을 가한 다음, 130℃에서 1시간동안 교반하였다. 생성된 균일한 용액을 실온으로 냉각시키고 -20℃로 냉각된 200ml의 사염화티탄을 1시간에 걸쳐 적가하였다. 반응이 완결된 후에, 생성된 용액의 온도를 4시간에 걸쳐 110℃로 상승시켜, 5.03ml의 디이소부틸 테레프탈레이트를 가하고, 이어서, 생성된 용액을 2시간동안 교반시켜 110℃에서 계속 반응시켰다. 뜨거운 반응 혼합물을 여과하여 고형물을 얻고, 이어서, 275ml의 사염화티탄에 분산시켜 110℃에서 2시간동안정치시켰다. 그후에, 고형물을 뜨거운 분산액으로부터 여과하여 분리하고, 고형물을 110℃의 데칸 및 헵탄으로 세척하여 고형의 촉매성분(A-5)를 얻었다. 고체-액체 분리방법으로 분리된 고형의 촉매성분(A-5)의 고형물은 2.06%의 티탄을 함유하는 것으로 밝혀졌다.A 200 ml-volume round flask thoroughly washed with nitrogen and equipped with a stirrer was charged with 7.14 g of anhydrous magnesium chloride, 37.5 ml of decane and 35.1 ml of 2-ethylhexyl alcohol, and the resulting mixture was stirred at 130 ° C. for 2 hours. Heated to obtain a uniform solution. Subsequently, 1.67 g of phthalic anhydride was added, followed by stirring at 130 ° C. for 1 hour. The resulting uniform solution was cooled to room temperature and 200 ml of titanium tetrachloride cooled to −20 ° C. was added dropwise over 1 hour. After the reaction was completed, the temperature of the resulting solution was raised to 110 ° C. over 4 hours, 5.03 ml of diisobutyl terephthalate was added, and the resulting solution was then stirred for 2 hours to continue reaction at 110 ° C. . The hot reaction mixture was filtered to give a solid which was then dispersed in 275 ml of titanium tetrachloride and allowed to stand at 110 ° C. for 2 hours. Thereafter, the solid was separated from the hot dispersion by filtration, and the solid was washed with decane and heptane at 110 ° C. to obtain a solid catalyst component (A-5). The solids of the solid catalyst component (A-5) separated by the solid-liquid separation method were found to contain 2.06% of titanium.

촉매시스템의 제조 및 중합:Preparation and Polymerization of Catalytic Systems:

고형의 촉매성분(A-5)를 사용함을 제외하고는 실시예 2에서와 동일한 방법으로 프로필렌을 중합시켰다. 반응 결과를 표 2에 나타낸다.Propylene was polymerized in the same manner as in Example 2 except that the solid catalyst component (A-5) was used. The reaction results are shown in Table 2.

실시예 7Example 7

고형의 촉매성분(A-6)의 제조:Preparation of solid catalyst component (A-6):

질소로 완전히 세정되고 교반기가 장착된 250ml-용적의 둥근 플라스크에 74ml의 클로로벤젠에 용해된 1.4 ml의 사염화티탄의 용액을 충전시키고, 이어서, 3.6ml의 디이소부틸 프탈레이트 및 11.8g의 디에톡시마그네슘을 가하였다. 생성된 용액에 24ml의 클로로벤젠에 용해된 94ml의 사염화티탄의 용액을 가하였다. 이들 화합물의 첨가 및 용해는 20 내지 25℃에서 수행하였다. 생성된 혼합물을 교반시키 면서 110℃에서 1시간동안 가열한 다음, 뜨거운 상태로 여과하였다. 생성된 고형물을 24ml의 클로로벤젠에 용해된 94ml의 사염화티탄의 용액에 가하여 실온에서 슬러리를 형성시켰다. 이어서, 0.9g의 프탈로일 디클로라이드를 74ml의 클로로벤젠에 용해시킴으로써 얻은 용액을 실온에서 슬러리에 가한 다음, 30 분동안 교반시키면서 110℃로 가열하였다. 생성된 혼합물을 뜨거운 상태에서 여과하여, 고형물을 얻었다.A 250 ml-volume round flask thoroughly washed with nitrogen and equipped with a stirrer was charged with a solution of 1.4 ml of titanium tetrachloride dissolved in 74 ml of chlorobenzene, followed by 3.6 ml of diisobutyl phthalate and 11.8 g of diethoxy magnesium Was added. To the resulting solution was added a solution of 94 ml titanium tetrachloride dissolved in 24 ml chlorobenzene. Addition and dissolution of these compounds were carried out at 20-25 ° C. The resulting mixture was heated at 110 ° C. for 1 hour with stirring and then filtered hot. The resulting solid was added to a solution of 94 ml titanium tetrachloride dissolved in 24 ml chlorobenzene to form a slurry at room temperature. The solution obtained by dissolving 0.9 g of phthaloyl dichloride in 74 ml of chlorobenzene was then added to the slurry at room temperature and then heated to 110 ° C. with stirring for 30 minutes. The resulting mixture was filtered while hot to give a solid.

24ml의 클로로벤젠에 용해된 94ml의 사염화티탄의 용액을 상기 제조된 고형물에 실온에서 가하여, 슬러리를 형성시켰다. 슬러리에 74ml의 클로로벤젠을 실온에서 추가로 가하고, 이어서, 교반시키면서 110℃에서 30분동안 가열하였다. 생성된 혼합물을 뜨거운 상태에서 여과하여 고형물을 얻었다. 생성된 고형물을 사용하여 상기된 공정을 반복하여 고형물을 얻었다. 이어서, 생성된 고형물을 25℃의 100ml 헵탄으로 10회 세척하였다. 그렇게 하여 고형의 촉매성분(A-6)을 얻었다. 고체-액체 분리방법으로 분리된 고형의 촉매성분(A-6)의 고형물은 2.63%의 티탄을 함유하는 것으로 밝혀졌다.A solution of 94 ml titanium tetrachloride dissolved in 24 ml chlorobenzene was added to the solid prepared above at room temperature to form a slurry. 74 ml of chlorobenzene was further added to the slurry at room temperature, and then heated at 110 ° C. for 30 minutes with stirring. The resulting mixture was filtered while hot to give a solid. The solids were obtained by repeating the above process using the resulting solids. The resulting solid was then washed 10 times with 100 ml heptane at 25 ° C. Thus, solid catalyst component (A-6) was obtained. The solids of the solid catalyst component (A-6) separated by the solid-liquid separation method were found to contain 2.63% titanium.

촉매시스템의 제조 및 중합:Preparation and Polymerization of Catalytic Systems:

고형의 촉매성분(A-6)를 사용함을 제외하고는 실시예 2에서와 동일한 방법으로 프로필렌을 중합시켰다. 반응 결과를 표 2에 나타낸다.Propylene was polymerized in the same manner as in Example 2 except that the solid catalyst component (A-6) was used. The reaction results are shown in Table 2.

비교예 4Comparative Example 4

사이클로헥실사이클로펜틸디메톡시실란을 사이클로헥실메틸디메특시실란으로 대체함을 제외하고는 실시예 6에서와 동일한 방법으로 프로필렌을 중합시켰다. 반응 결과를 표 2에 나타낸다.Propylene was polymerized in the same manner as in Example 6 except that cyclohexylcyclopentyldimethoxysilane was replaced with cyclohexylmethyldimethoxysilane. The reaction results are shown in Table 2.

비교예 5Comparative Example 5

사이클로헥실사이클로펜틸디메톡시실란을 사이클로헥실메틸디메톡시실란으로 대체함을 제외하고는 실시예 7에서와 동일한 방법으로 프로필렌을 중합시켰다. 반응 결과를 표 2에 나타낸다.Propylene was polymerized in the same manner as in Example 7, except that cyclohexylcyclopentyldimethoxysilane was replaced with cyclohexylmethyldimethoxysilane. The reaction results are shown in Table 2.

실시예 8Example 8

고형의 촉매성분의 제조:Preparation of solid catalyst components:

내부가 질소가스로 완전히 대체되고 교반기가 장착된 200-ml의 환저 플라스크에 10g의 디에톡시마그네슘 및 80ml의 톨루엔을 충전시켰다. 충전물을 교반시켜 현탁액을 얻었다. 이 현탁액에 20ml의 사염화티탄을 가하였다. 혼합물을 가열하고, 이의 온도가 62℃에 도달했을 때, 1.0ml의 디에틸 프탈레이트를 가하였다. 이어서, 이 혼합물을 가열하고, 이의 온도가 110℃에 도달했을 때, 3.4ml의 디옥틸 프탈레이트를 가하였다. 생성 혼합물을 112℃로 가열하고, 그 온도에서 1.5시간동안 교반시켜 반응을 진행시켰다. 반응이 완결된 후에, 반응물을 90℃에서 가열된 100ml의 톨루엔으로 2회 세척하였다. 세척된 반응물에 20ml의 사염화티탄 및 80ml의 톨루엔을 가하였다. 이 혼합물을 100℃로 가열하고 2시간동안 교반시켜 반응을 진행시켰다. 반응이 완결된 후에, 반응물을 40℃에서 가온된 100ml의 n-헵탄으로 10회 세척하여 고형의 촉매성분을 얻었다. 고형의 촉매성분의 티탄함량을 측정하였고, 티탄 함량이 2.46중량%임을 밝혀냈다.A 200-ml round bottom flask equipped with an agitator completely replaced with nitrogen gas was charged with 10 g of diethoxy magnesium and 80 ml of toluene. The charge was stirred to give a suspension. 20 ml of titanium tetrachloride was added to this suspension. The mixture was heated and when its temperature reached 62 ° C., 1.0 ml of diethyl phthalate was added. This mixture was then heated and when its temperature reached 110 ° C., 3.4 ml of dioctyl phthalate was added. The resulting mixture was heated to 112 ° C. and stirred at that temperature for 1.5 hours to proceed with reaction. After the reaction was completed, the reaction was washed twice with 100 ml of toluene heated at 90 ° C. To the washed reaction was added 20 ml of titanium tetrachloride and 80 ml of toluene. The mixture was heated to 100 ° C. and stirred for 2 hours to proceed with the reaction. After the reaction was completed, the reaction was washed 10 times with 100 ml of n-heptane warmed at 40 ° C. to obtain a solid catalyst component. The titanium content of the solid catalyst component was measured and found to be 2.46% by weight titanium.

중합용 촉매의 제조 및 올레핀의 중합:Preparation of Polymerization Catalyst and Polymerization of Olefin:

내부가 질소가스로 충분히 대체되고 교반기가 장착된 2.0ℓ 압력용기에 1.32mmol의 트리에틸알루미늄, 0.13mmol의 사이클로헥실사이클로펜틸디메톡시실란, 및 티탄 원자의 양으로 0.0066mmo1의 고형의 촉매성분을 충전시켰다. 그렇게 하여 중합용 촉매를 형성시켰다. 그런후에, 1.8ℓ의 수소개스 및 1.4ℓ의 액화 프로필렌 을 충전시켜 70℃에서 30분동안 중합을 수행시켰다. 전체 결정상 중합체의 수율은 98.3%였다, 수득한 중합체의 융점은 164.0℃였다. 반응 결과를 표 2에 나타낸다.A 2.0 liter pressure vessel equipped with a stirrer sufficiently filled with nitrogen gas inside was charged with 1.66 mmol of triethylaluminum, 0.13 mmol of cyclohexylcyclopentyldimethoxysilane, and a solid catalyst component of 0.0066 mmol in terms of titanium atoms. I was. Thus, a catalyst for polymerization was formed. Thereafter, 1.8 L of sucrose and 1.4 L of liquid propylene were charged to carry out the polymerization at 70 DEG C for 30 minutes. The yield of the whole crystalline polymer was 98.3%, and the melting point of the obtained polymer was 164.0 ° C. The reaction results are shown in Table 2.

상기된 바와 같이, 올레핀 중합용 촉매의 한 성분으로 작용하는 전자 공여체로 사용되는 경우에, 본 발명의 유기실리콘 화합물은 통상적으로 공지된 고-성능 촉매 와 동일하거나 보다 높은 촉매활성을 유지하며 높은 입체적 규칙성의 중합체를 수득시키면서, 광범위한 분자량 분포 및 고결정성을 지닌 폴리올레핀을 생성시킨다. 따라서 유기실리콘 화합물은 견고성 및 성형성이 우수한 일반적인 용도의 폴 리올레핀을 저가로 제조할 수 있게 한다. 또한, 본 발명의 유기실리콘 화합물은, 예를들어, 실란 결합제, 및 수지 변형제등으로 유용할 수 있다.As described above, when used as an electron donor serving as a component of the catalyst for olefin polymerization, the organosilicon compound of the present invention typically maintains the same or higher catalytic activity as known high-performance catalysts and has high steric dimensionality. While obtaining a regular polymer, polyolefins with a wide range of molecular weight distribution and high crystallinity are produced. Thus, the organosilicon compound enables the production of low cost polyolefins for general use with excellent rigidity and moldability. In addition, the organosilicon compound of the present invention may be useful as, for example, a silane binder, a resin modifier, or the like.

또한, 본 발명에 따른 올레핀 중합용의 지글러-나타 촉매는 특정의 고형 촉매성분(A), 유기알루미늄 화합물(B), 및 사이클로헥실 그룹 또는 이의 유도체 및 사이클로펜틸 그룹 또는 이의 유도체를 함유하는 비대칭 유기실리콘 화합물(C)를 포함한다. 본 발명의 촉매의 존재하에 올레핀을 중합시키면 높은 입체규칙성 및 광범위한 분자량 분포를 지닌 올레핀 중합체가 고수율로 생성된다.Further, the Ziegler-Natta catalyst for olefin polymerization according to the present invention is asymmetric organic containing a specific solid catalyst component (A), an organoaluminum compound (B), and a cyclohexyl group or derivative thereof and a cyclopentyl group or derivative thereof. Silicone compound (C) is included. Polymerization of olefins in the presence of the catalyst of the present invention yields olefin polymers with high stereoregularity and broad molecular weight distribution in high yield.

본 발명을 상세히 특정의 실시예를 참조하여 설명하고 있지만, 본 기술분야의 전문가라면 본 발명이 본 발명의 목적 및 범위내에서 다양하게 변화되고 변형될 수 있다는 것을 인지할 수 있을 것이다.Although the present invention has been described in detail with reference to specific embodiments, those skilled in the art will recognize that the present invention may be variously changed and modified within the spirit and scope of the present invention.

Claims (12)

화학식(1)의 유기실리콘 화합물Organosilicon Compounds of Formula (1) 상기식에서,In the above formula, R1및 R2는 동일하거나 상이할 수 있으며 각각 탄소수 1 내지 3의 알킬그룹이고,R 1 and R 2 may be the same or different and each is an alkyl group having 1 to 3 carbon atoms, R3및 R4는 동일하거나 상이할 수 있으며 각각 탄소수 1 내지 3의 알킬그룹 또는 할로겐원자이며,R 3 and R 4 may be the same or different and each is an alkyl group or halogen atom having 1 to 3 carbon atoms, m 및 n은 각각 0, 또는 정수 1 또는 2이다.m and n are 0 or the integer 1 or 2, respectively. 제 1항에 있어서, 상기 유기 실리콘 화합물은 사이클로헥실사이클로펜틸디메톡시실란, 사이클로헥실사이클로펜틸디에톡시실란, 사이클로헥실사이클로펜틸디-n-프로폭시실란, 또는 사이클로헥실사이클로펜틸디이소프로폭시실란임을 특징으로 하는 유기실리콘 화합물.The method of claim 1, wherein the organosilicon compound is cyclohexylcyclopentyldimethoxysilane, cyclohexylcyclopentyldiethoxysilane, cyclohexylcyclopentyldi-n-propoxysilane, or cyclohexylcyclopentyldiisopropoxysilane An organosilicon compound characterized by the above-mentioned. 올레핀 중합용 지글러-나타 촉매로서,As a Ziegler-Natta catalyst for olefin polymerization, (A) 마그네슘 화합물, 티탄 할라이드 화합물, 및 전자 공여체 화합물을 접촉시킴으로써 제조되는, 마그네슘, 티탄, 전자 공여체 화합물 및 할로겐을 필수성분으로 함유하는 고형의 촉매성분;(A) a solid catalyst component containing magnesium, titanium, an electron donor compound and a halogen as essential components prepared by contacting a magnesium compound, a titanium halide compound, and an electron donor compound; (B) 유기알루미늄 화합물; 및(B) an organoaluminum compound; And (C) 전자공여체로서 하기 화학식 (1)로 표현되는 유기실리콘 화합물;(C) an organosilicon compound represented by the following general formula (1) as an electron donor; 을 포함함을 특징으로 하는 올레핀 중합용 지글러-나타 촉매:Ziegler-Natta catalyst for olefin polymerization, comprising: [화학식 1][Formula 1] 상기식에서,In the above formula, R1 및 R2는 서로 동일하거나 상이할 수 있으며 각각 탄소수 1 내지 3의 알킬그룹이고,R1 and R2 may be the same as or different from each other, and each is an alkyl group having 1 to 3 carbon atoms, R3 및 R4는 서로 동일하거나 상이할 수 있으며 각각 탄소수 1 내지 3의 알킬그룹 또는 할로겐원자이며,R3 and R4 may be the same or different from each other and are each an alkyl group having 1 to 3 carbon atoms or a halogen atom, m 및 n은 각각 0, 또는 정수 1 또는 2이다.m and n are 0 or the integer 1 or 2, respectively. 제 3항에 있어서, 고형의 촉매성분(A)를 제조하는데 사용된 마그네슘 화합물이 디알콕시마그네슘임을 특징으로 하는 올레핀 중합용 지글러-나타 촉매.4. The Ziegler-Natta catalyst for olefin polymerization according to claim 3, wherein the magnesium compound used to prepare the solid catalyst component (A) is dialkoxy magnesium. 제 3항에 있어서, 고형의 촉매성분(A)를 제조하는데 사용된 마그네슘 화합물이 디에톡시마그네슘임을 특징으로 하는 올레핀 중합용 지글러-나타 촉매.4. The Ziegler-Natta catalyst for olefin polymerization according to claim 3, wherein the magnesium compound used to prepare the solid catalyst component (A) is diethoxy magnesium. 제 3항에 있어서, 고형의 촉매성분(A)를 제조하는데 사용된 마그네슘 화합물이 구형 입자 형태의 디에톡시마그네슘임을 특징으호 하는 올레핀 중합용 지글러-나타 촉매.4. The Ziegler-Natta catalyst for olefin polymerization according to claim 3, wherein the magnesium compound used to prepare the solid catalyst component (A) is diethoxy magnesium in the form of spherical particles. 제 3항에 있어서, 고형의 촉매성분(A)를 제조하는데 사용된 티탄 할라이드 화합물이 일반식 Ti(OR5)nX4-n(여기서, R5는 탄소수 1 내지 4의 알킬 그룹이고, X는 염소, 브롬, 또는 요오드 원자이며, n은 0, 또는 정수 1, 2 또는 3이다)의 티탄 할라이드 또는 알콕시티탄 할라이드임을 특징으로 하는 올레핀 중합용 지글러-나타 촉매.4. The titanium halide compound according to claim 3, wherein the titanium halide compound used to prepare the solid catalyst component (A) is of the general formula Ti (OR 5 ) n X 4-n , wherein R 5 is an alkyl group having 1 to 4 carbon atoms, Is a chlorine, bromine, or iodine atom, and n is 0, or an integer of 1, 2 or 3), a Ziegler-Natta catalyst for olefin polymerization, characterized in that the titanium halide or alkoxytitanium halide. 제 3 항에 있어서, 고형의 측매성분(A)를 제조하는데 사용된 전자 공여체 화합물은 에스테르 잔기가 탄소수 1 내지 10의 알킬 그룹인 프탈산의 디에스테르임을 특징으로 하는 올레핀 중합용 지글러-나타 촉매.4. The Ziegler-Natta catalyst for olefin polymerization according to claim 3, wherein the electron donor compound used to prepare the solid side-solving component (A) is a diester of phthalic acid whose ester moiety is an alkyl group having 1 to 10 carbon atoms. 제 3 항에 있어서, 유기알루미늄 화합물(B)가 일반식 R7 yAlY3-y(여기서, R7은탄소수 1 내지 4의 알킬 그룹이고, Y는 수소, 염소, 브롬 또는 요오드 원자이며, y는 정수 1, 2 또는 3이다)의 화합물임을 특징으로 하는 올레핀 중합용 지글러-나타 촉매.The organoaluminum compound (B) according to claim 3, wherein the organoaluminum compound (B) is of the general formula R 7 y AlY 3-y , wherein R 7 is an alkyl group having 1 to 4 carbon atoms, Y is hydrogen, chlorine, bromine or iodine atom, y Is an integer 1, 2 or 3) Ziegler-Natta catalyst for olefin polymerization. 제 3 항에 있어서, 유기실리콘 화합물(C)가 사이클로헥실사이클로펜틸디메톡시실란, 사이클로헥실사이클로펜틸디에톡시실란, 3-메틸사이클로헥실사이클로펜틸디메톡시실란, 4-메틸사이클로헥실사이클로펜틸디메톡시실란 및 3,5-디메틸사이클로헥실사이클로펜틸디메톡시실란으로 이루어진 군에서 선택된 적어도 하나임을 특징으로 하는 올레핀 중합용 지글러-나타 촉매.The organosilicon compound (C) according to claim 3, wherein the organosilicon compound (C) is cyclohexylcyclopentyldimethoxysilane, cyclohexylcyclopentyl diethoxysilane, 3-methylcyclohexylcyclopentyldimethoxysilane, 4-methylcyclohexylcyclopentyldimethoxysilane And 3,5-dimethylcyclohexylcyclopentyldimethoxysilane; and a Ziegler-Natta catalyst for olefin polymerization, characterized in that at least one selected from the group consisting of 3,5-dimethylcyclohexylcyclopentyldimethoxysilane. 마그네슘 화합물, 티탄 할라이드 화합물, 및 전자 공여체 화합물을 접촉시킴으로써 제조되는, 마그네슘, 티탄, 전자 공여체 화합물 및 할로겐을 필수성분으로 함유하는 고형의 촉매성분(A), 유기알루미늄 화합물(B) 및 전자공여체로서 화학식(1)의 유기실리콘 화합물(C)를 포함하는 올레핀 중합용 촉매의 존재하에 올레핀을 호모- 또는 공중합함을 특징으로 하는 올레핀의 중합방법:As solid catalyst components (A), organoaluminum compounds (B) and electron donors which contain magnesium, titanium, electron donor compounds and halogens as essential components, prepared by contacting magnesium compounds, titanium halide compounds, and electron donor compounds A process for the polymerization of olefins, wherein the olefins are homo- or copolymerized in the presence of a catalyst for olefin polymerization comprising the organosilicon compound (C) of formula (1): 상기식에서,In the above formula, R1및 R2는 동이하거나 상이할 수 있으며 각각 탄소수 1 내지 3의 알킬그룹이고,R 1 and R 2 may be the same or different and each is an alkyl group having 1 to 3 carbon atoms, R3및 R4는 동일하거나 상이할 수 있으며 각각 탄소수 1 내지 3의 알킬그룹 또는 할로겐원자이며,R 3 and R 4 may be the same or different and each is an alkyl group or halogen atom having 1 to 3 carbon atoms, m 및 n은 각각 0, 또는 정수 1 또는 2이다.m and n are 0 or the integer 1 or 2, respectively. 제 11 항에 있어서, 올레핀이 프로필렌 또는 프로필렌과 에틸렌의 복합물임을 특징으로하는 올레핀의 중합방법.12. The process according to claim 11, wherein the olefin is propylene or a composite of propylene and ethylene.
KR1019960706084A 1994-04-28 1995-04-27 Organosilicon compound, Ziegler-Natta catalyst containing the same and process for polymerization of olefins KR100347077B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP6113754A JPH07292029A (en) 1994-04-28 1994-04-28 Catalyst and method for polymerizing olefin
JP6-113754 1994-04-28
JP6-309962 1994-11-18
JP30996294A JPH08143580A (en) 1994-11-18 1994-11-18 Organic silicon compound and electron donor
PCT/JP1995/000847 WO1995029939A1 (en) 1994-04-28 1995-04-27 Organosilicon compound, ziegler-natta catalyst containing the same and process for polymerization of olefins

Publications (1)

Publication Number Publication Date
KR100347077B1 true KR100347077B1 (en) 2002-11-13

Family

ID=26452686

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960706084A KR100347077B1 (en) 1994-04-28 1995-04-27 Organosilicon compound, Ziegler-Natta catalyst containing the same and process for polymerization of olefins

Country Status (3)

Country Link
KR (1) KR100347077B1 (en)
BR (1) BR9507522A (en)
WO (1) WO1995029939A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104297A1 (en) * 2005-03-29 2006-10-05 Samsung Total Petrochemicals Co., Ltd. Method for producing a propylene polymer having a very high melt flowability

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430978B1 (en) * 2000-12-29 2004-05-12 삼성아토피나주식회사 Method for producing supported catalyst for producing ethylene polymer and ethylene/alpha-olefin copolymer
CN112574341B (en) * 2020-12-17 2022-11-01 沧州利和科技发展有限责任公司 Catalyst component for synthesizing high-rigidity polypropylene, catalyst and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0576411A1 (en) * 1992-06-08 1993-12-29 Fina Technology, Inc. An improved catalyst system for the polymerization of olefins

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2723137B2 (en) * 1988-06-17 1998-03-09 三井化学株式会社 Olefin polymerization method and olefin polymerization catalyst
ES2052004T5 (en) * 1988-06-17 2002-05-16 Mitsui Chemicals Inc POLYOLEFINE PREPARATION PROCEDURE AND POLYMERIZATION CATALYST.
US5248803A (en) * 1991-10-16 1993-09-28 Tonen Corporation Silane compound and processes for the preparation thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0576411A1 (en) * 1992-06-08 1993-12-29 Fina Technology, Inc. An improved catalyst system for the polymerization of olefins

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104297A1 (en) * 2005-03-29 2006-10-05 Samsung Total Petrochemicals Co., Ltd. Method for producing a propylene polymer having a very high melt flowability

Also Published As

Publication number Publication date
BR9507522A (en) 1997-09-16
WO1995029939A1 (en) 1995-11-09

Similar Documents

Publication Publication Date Title
US5498770A (en) Catalyst for the polymerization of olefins and process for the polymerization of olefins
JP5158856B2 (en) Aminosilane compound, catalyst component for polymerization of olefins and catalyst, and method for producing olefin polymers using the same
US6156690A (en) Solid catalyst component and catalyst for polymerization of olefins
US6228793B1 (en) Solid catalyst component for olefin polymerization and catalyst
EP1921092A1 (en) Catalyst component and catalyst for olefin polymerization and method for producing olefin polymer using those
WO2004020480A1 (en) Solid catalyst component for olefin polymerization and catalyst
EP0665243B1 (en) Catalyst for polymerization of olefins and process for polymerization of olefins using the same
JP2004501239A (en) Method for producing ethylene polymer and copolymer
CA2046239C (en) Catalyst for the polymerization of alpha-olefins containing trifluoro-propyl substituted silane compounds
CN108148153B (en) Solid catalyst and method for preparing propylene polymer or copolymer using the same
JP3444730B2 (en) Solid catalyst components and catalysts for olefin polymerization
WO2008050883A1 (en) Process for production of ethylene-propylene block copolymer
KR100347077B1 (en) Organosilicon compound, Ziegler-Natta catalyst containing the same and process for polymerization of olefins
KR100531544B1 (en) Polymerization catalyst for olefins and process for polymerization of olefins
JP3455023B2 (en) Method for producing olefin polymer
JP2003261612A (en) Solid catalyst component for polymerizing olefins and catalyst
JP3578374B2 (en) Olefin polymerization catalyst
JP7181424B2 (en) Method for producing solid catalyst component for olefin polymerization, method for producing catalyst for olefin polymerization, and method for producing olefin polymer
JP2002069118A (en) Solid catalyst component for olefins polymerization, catalyst and electron donor
JP2006299069A (en) Solid catalyst component for olefin polymerization, olefin polymerization catalyst and method for producing olefin polymer
JP3745982B2 (en) Solid catalyst components and catalysts for olefin polymerization
JP2003147014A (en) Catalyst for polymerizing olefins
JPH1129611A (en) Solid catalyst component for olefin polymerization and catalyst
JP2007224098A (en) Catalyst for polymerizing olefins and method for producing olefin polymer with the same
JP2003147013A (en) Catalyst for polymerizing olefins