[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR100333364B1 - Method for planarizing semiconductor device - Google Patents

Method for planarizing semiconductor device Download PDF

Info

Publication number
KR100333364B1
KR100333364B1 KR1019950012608A KR19950012608A KR100333364B1 KR 100333364 B1 KR100333364 B1 KR 100333364B1 KR 1019950012608 A KR1019950012608 A KR 1019950012608A KR 19950012608 A KR19950012608 A KR 19950012608A KR 100333364 B1 KR100333364 B1 KR 100333364B1
Authority
KR
South Korea
Prior art keywords
oxide layer
apcvd
oxide film
semiconductor device
pecvd
Prior art date
Application number
KR1019950012608A
Other languages
Korean (ko)
Other versions
KR960043023A (en
Inventor
여태정
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1019950012608A priority Critical patent/KR100333364B1/en
Publication of KR960043023A publication Critical patent/KR960043023A/en
Application granted granted Critical
Publication of KR100333364B1 publication Critical patent/KR100333364B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76819Smoothing of the dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: A method for planarizing a semiconductor device is provided to improve reliability by preventing the problems arising from moisture penetrating a lower layer in a spin-on-glass(SOG) coating process and a curing process. CONSTITUTION: A metal interconnection is formed on an underlying layer having a base electrode of the semiconductor device. A plasma enhanced chemical vapor deposition(PECVD) oxide layer(21) is formed on the metal interconnection. A low density ozone atmospheric pressure chemical vapor deposition(APCVD) oxide layer(22) is formed on the PECVD oxide layer. A high density ozone APCVD oxide layer(23) is formed. The thickness of the PECVD oxide layer is from 1000 angstrom to 2000 angstrom. The thickness of the low density ozone APCVD oxide layer is from 500 angstrom to 1000 angstrom.

Description

반도체 소자의 평탄화 방법Planarization method of semiconductor device

본 발명은 반도체 소자의 평탄화 방법에 관한 것으로, 특히 종래의 SOG막을 사용하는 대신에 절연막의 다단계 증착 기법을 이용함으로써 평탄화를 이룩하루 수 있는 반도체 소자의 평탄화 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a planarization method of a semiconductor device, and more particularly to a planarization method of a semiconductor device capable of achieving planarization by using a multi-step deposition technique of an insulating film instead of using a conventional SOG film.

최근 반도체 소자의 고집적화 경향으로 배선 설계가 자유롭고 용이하며 배선 저항 및 전류용량등의 설정을 여유있게 할 수 있는 다층 배선 기술에 관한 연구가 활발히 진행되고 있다.Recently, due to the high integration trend of semiconductor devices, research on a multilayer wiring technology that enables free and easy wiring design and allows setting of wiring resistance and current capacity has been actively conducted.

다층 배선 기술에서는 하층 배선의 표면 요철 때문에 발생하는 상층의 단선문제, 배선사이에 쇼트 문제를 최소화 하기 위하여 SOG(spin on glass), 또는 BPSG(boron-phosporus silicate glass), PSG(phosporus silicate glass)와 같은 복합 수지 물질을 플로우(flow)시켜 다층 금속층의 층간 절연물로써 평탄화를 이룰 수 있었다.In the multilayer wiring technology, in order to minimize the disconnection problem of the upper layer caused by the surface irregularities of the lower layer wiring and the short problem between the wirings, the spin on glass (SOG), the boron-phosporus silicate glass (BPSG), and the phosporus silicate glass (PSG) The same composite resin material was flowed to achieve planarization with the interlayer insulator of the multilayer metal layer.

첨부한 도면 제 1 도는 종래의 SOG막을 이용하여 금속 패턴간의 평탄화 방법을 나타낸 요부단면도로서, 이를 살펴보면, 금속배선(10) 상부에 절연을 목적으로한 금속 층간 절연막(IMO)을 증착한 후, 상기 금속 배선간에 SOG막을 코팅, 경화하여 금속 배선간의 공간부를 충진시키므로서 하부의 기복을 무마하였다.1 is a cross-sectional view illustrating a planarization method between metal patterns using a conventional SOG film. Referring to FIG. 1, after depositing a metal interlayer insulating film (IMO) for insulation purposes on the metal wiring 10, The SOG film was coated and cured between the metal wirings to fill the space between the metal wirings to smooth the ups and downs of the bottom.

그러나, 상기와 같이 금속 배선간에 SOG막을 충진하는 방법은 다음과 같은 문제점이 있었다.However, the method of filling the SOG film between the metal wirings as described above has the following problems.

우선, SOG 막질상에 존재하는 고질적인 문제점으로서,First of all, as a chronic problem existing on SOG film quality,

첫째, SOG 막은 다량의 수분을 함유하고 있어 콘택 공정시 금속 배선부에 수분이 유입되어 저항 성분이 증가되고, 이로 인하여 배선의 오류를 유발한다는 점과,First, the SOG film contains a large amount of water, so that moisture is introduced into the metal wiring part during the contact process, thereby increasing the resistance component, thereby causing a wiring error.

둘째, SOG 막이 보유하는 수분에 의해 실리콘 기판으로 수분이 확산되어 필드 인버젼을 일으켜 누설 전류에 의해 소자의 특성을 저하시키는 점과,Secondly, moisture is diffused into the silicon substrate by the moisture retained by the SOG film, causing field inversion, and deteriorating the characteristics of the device by leakage current;

세째, SOG막을 코팅하고 경화시키는 단계에서 막의 축소에 의한 크랙 및 보이드등이 발생한다는 점과,Third, in the step of coating and curing the SOG film, cracks and voids are generated by shrinking the film,

네째, 금속간 산화막 증착시 콘택홀의 바닥 모서리 두께가 상부 모서리의 두께보다 얇아 SOG 막의 수분이 바닥 모서리쪽으로 더욱 쉽게 침투하여 급속 배선층을 부식시키는 문제가 발생하였다.Fourth, the thickness of the bottom edge of the contact hole is thinner than the thickness of the top edge during the deposition of the intermetallic oxide film, so that the moisture of the SOG film penetrates more easily toward the bottom edge, thereby causing corrosion of the rapid wiring layer.

또한, 에치백 공정에서 발생하는 SOG 막에 의한 문제는 내부 금속층의 증착시 콘택 홀의 상부 모서리 지역에 네가티브 슬롭(negative slop)이 형성되어 SOG 막 사용은 필수적인데 에치백 공정을 실시하여도 SOG 막이 소량 남게 되므로, 수분에 의한 비아 콘택 저항 증가 문제 및 누설 전류 문제는 여전히 남아 있게 된다.In addition, the problem caused by the SOG film in the etch back process is that a negative slop is formed in the upper corner region of the contact hole during the deposition of the internal metal layer, so the use of the SOG film is essential. As it remains, the problem of increased via contact resistance and leakage current due to moisture still remains.

따라서 본 발명은 종래의 SOG 코팅 및 경화시 하부층으로 침투하는 수분에 의해 야기되는 상기 문제점들 방지하여 소자의 신뢰성을 향상시키는 것을 목적으로 한다.Accordingly, the present invention aims to improve the reliability of the device by preventing the above problems caused by moisture penetrating into the underlying layer during conventional SOG coating and curing.

이하, 본 발명의 일실시예를 첨부한 도면을 참고로 하여 설명하면 다음과 같다:Hereinafter, with reference to the accompanying drawings an embodiment of the present invention will be described as follows:

제 2 도는 본 발명의 다층 금속 배선의 평탄화 공정을 순차적으로 나타낸 요부단면도이다.2 is a cross-sectional view of principal parts sequentially showing the planarization process of the multi-layered metal wiring of the present invention.

우선, 제 2 도(가)에서와 같이, 하지층 상부에 소자의 전기적 연결을 위해 금속 배선층(20)을 형성한다.First, as shown in FIG. 2A, a metal wiring layer 20 is formed on the base layer for electrical connection of the device.

이어서, 제 2 도(나)에서와 같이, 상기 금속 배선층(20) 상부에 PECVD 방식으로 증착된 얇은 플라즈마 SiO2산화막(21)을 1,000 Å 내지 2,000 Å의 두께로 증착한다. 상기 PECVD 산화막(21)은 기판 표면을 균질화시키고 후속 공정시 수분 통과를 방지하기 위한 장벽 역할을 한다.Subsequently, as shown in FIG. 2B, a thin plasma SiO 2 oxide film 21 deposited by PECVD is deposited on the metal wiring layer 20 to a thickness of 1,000 kPa to 2,000 kPa. The PECVD oxide film 21 serves as a barrier to homogenize the surface of the substrate and to prevent the passage of moisture in subsequent processes.

그 후, 제 2 도(다)에서와 같이, 상기 PECVD 산화막(21) 상부에 APCVD 방식에 의해 저농도 오존 TEOS / 오존 산화막(22)을 500 Å 내지 1,000 Å 두께로 증착한다. 이렇게하여 플라즈마 산화막 표면의 선택비를 보장하여 후속 공정시 표면의 영향을 최소화 할 수 있다. APCVD 방식으로 고농도 오존 TEOS / 오존 산화막(23)을 증착하여 상기 금속 배선(20)간의 갭을 평탄화시킨다. 이때 상기 APCVD 방식으로 고농도 오존 TEOS / 오존 산화막(23) 두께 범위는 후속 에치백되는 두께에 의해 유동적으로 증착 가능하다.Thereafter, as shown in FIG. 2C, a low concentration ozone TEOS / ozone oxide film 22 is deposited on the PECVD oxide film 21 by APCVD to a thickness of 500 kPa to 1,000 kPa. This ensures the selectivity of the surface of the plasma oxide film, thereby minimizing the influence of the surface during subsequent processing. A high concentration ozone TEOS / ozone oxide film 23 is deposited by APCVD to planarize the gap between the metal lines 20. At this time, the thickness range of the high concentration ozone TEOS / ozone oxide layer 23 may be fluidly deposited by the thickness which is subsequently etched back by the APCVD method.

이상, 본 발명은 미세마이크론급 이하의 다층 금속 구조를 갖는 반도체소자 제조시 SOG 막 대신에 3 단계 증착 기법을 이용하여 평탄화를 시킴으로써 SOG 막에 의해 야기되는 상기 문제점들을 해결하고 신뢰성이 높은 반도체 소자를 제조할 수 있게 된다.The present invention solves the problems caused by the SOG film by planarization by using a three-step deposition technique instead of the SOG film when manufacturing a semiconductor device having a multi-layered metal structure of the submicron level or less to provide a highly reliable semiconductor device. It becomes possible to manufacture.

제 1 도는 종래의 평탄화 공정에 따른 다층 금속 배선의 요부단면도.1 is a cross-sectional view of principal parts of a multi-layered metal wiring according to a conventional planarization process.

제 2 도는 본 발명의 다층 금속 배선의 평탄화 공정을 순차적으로 나타낸 요부단면도.2 is a sectional view of principal parts showing a planarization process of a multilayer metal wiring of the present invention in sequence.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

10, 20 : 금속배선층 11, 11' : 금속간 산화막10, 20: metal wiring layer 11, 11 ': intermetallic oxide film

12 : SOG 막 21 : PECVD 산화막12: SOG film 21: PECVD oxide film

22 : 저농도 오존 산화막 23 : 고농도 오존 산화막22: low concentration ozone oxide film 23: high concentration ozone oxide film

Claims (5)

반도체 소자의 기본 전극을 구비한 하지층 상부에 금속 배선을 형성하는 단계;Forming a metal wiring on the base layer including the basic electrode of the semiconductor device; 상기 금속 배선 상부에 PECVD 산화막을 형성하는 단계;Forming a PECVD oxide layer on the metal wiring; 상기 PECVD 산화막 상부에 저농도 오존 APCVD 산화막을 형성하는 단계; 및 고농도 오존 APCVD 산화막을 연속적으로 형성하는 단계로 이루어지는 것을 특징으로 하는 반도체 소자의 평탄화 방법.Forming a low concentration ozone APCVD oxide layer on the PECVD oxide layer; And continuously forming a high concentration ozone APCVD oxide film. 제 1 항에 있어서, 상기 PECVD 산화막의 두께는 1,000 Å 내지 2,000 Å임을 특징으로 하는 반도체 소자의 평탄화 방법.The method of claim 1, wherein the PECVD oxide film has a thickness of 1,000 GPa to 2,000 GPa. 제 1 항에 있어서, 상기 저농도 오존 APCVD 산화막의 두께는 500 내지 1,000 Å 인 것을 특징으로 하는 반도체 소자의 평탄화 방법.The planarization method of a semiconductor device according to claim 1, wherein the low concentration ozone APCVD oxide film has a thickness of 500 to 1,000 GPa. 제 1 항에 있어서, 상기 저농도 오존 APCVD 산화막은 저농도 오존 TEOS 산화막임을 특징으로 하는 반도체 소자의 평탄화 방법.The method of claim 1, wherein the low concentration ozone APCVD oxide film is a low concentration ozone TEOS oxide film. 제 1 항에 있어서, 상기 고농도 오존 APCVD 산화막은 고농도 오존 TEOS 산화막임을 특징으로 하는 반도체 소자의 평탄화 방법.The method of claim 1, wherein the high concentration ozone APCVD oxide film is a high concentration ozone TEOS oxide film.
KR1019950012608A 1995-05-19 1995-05-19 Method for planarizing semiconductor device KR100333364B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950012608A KR100333364B1 (en) 1995-05-19 1995-05-19 Method for planarizing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950012608A KR100333364B1 (en) 1995-05-19 1995-05-19 Method for planarizing semiconductor device

Publications (2)

Publication Number Publication Date
KR960043023A KR960043023A (en) 1996-12-21
KR100333364B1 true KR100333364B1 (en) 2002-09-04

Family

ID=37479596

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950012608A KR100333364B1 (en) 1995-05-19 1995-05-19 Method for planarizing semiconductor device

Country Status (1)

Country Link
KR (1) KR100333364B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100315446B1 (en) * 1999-03-25 2001-11-28 황인길 Shallow trench manufacturing method for isolating semiconductor devices

Also Published As

Publication number Publication date
KR960043023A (en) 1996-12-21

Similar Documents

Publication Publication Date Title
KR950002948B1 (en) Insulating film forming method between the metal layer of semiconductor device
KR0160338B1 (en) Fabrication of semiconductor device
CN100470787C (en) Semiconductor device and mfg. method thereof
KR100390322B1 (en) Method for manufacturing semiconductor device and semiconductor device
US5930677A (en) Method for reducing microloading in an etchback of spin-on-glass or polymer
JPH05144811A (en) Thin film semiconductor device and manufacture thereof
KR100333364B1 (en) Method for planarizing semiconductor device
KR100818108B1 (en) Method for forming multi layer metal wiring of semiconductor device using damascene process
KR100258044B1 (en) Semiconductor device and manufacturing method
KR19990054912A (en) Method of forming interlayer insulating film of semiconductor device
KR100240269B1 (en) Method of manufacturing semiconductor device
KR20050050875A (en) Semiconductor device and manufacturing method thereof
KR100241516B1 (en) Method of forming interlayer insulating film of semiconductor device
KR0171318B1 (en) Method of forming planation insulating film of semiconductor device
KR100315455B1 (en) a semiconductor device and a manufacturing method thereof
US8227922B2 (en) Semiconductor device having a multilayer interconnection structure that includes an etching stopper film
KR20030000728A (en) Method for forming the metal line in semiconductor device
KR100197126B1 (en) Forming method for metal wiring in semiconductor divice
KR100315026B1 (en) Metal wiring formation method of semiconductor device
KR100427539B1 (en) Method of forming multilayer metal of semiconductor device using improved intermetal dielectric
KR100410810B1 (en) Method for forming multilayer metal line of semiconductor device
KR100333651B1 (en) Method for forming via hole in semiconductor device
KR100277867B1 (en) Method for forming metal line of semiconductor device
KR100943499B1 (en) Method for manufacturing semi-conductor device
KR100380281B1 (en) Method for forming via hole in semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110325

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee