KR100307165B1 - Positive active material composition for lithium secondary battery and lithium secondary battery comprising the same - Google Patents
Positive active material composition for lithium secondary battery and lithium secondary battery comprising the same Download PDFInfo
- Publication number
- KR100307165B1 KR100307165B1 KR1019990018803A KR19990018803A KR100307165B1 KR 100307165 B1 KR100307165 B1 KR 100307165B1 KR 1019990018803 A KR1019990018803 A KR 1019990018803A KR 19990018803 A KR19990018803 A KR 19990018803A KR 100307165 B1 KR100307165 B1 KR 100307165B1
- Authority
- KR
- South Korea
- Prior art keywords
- formula
- active material
- positive electrode
- lithium secondary
- secondary battery
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 41
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 33
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 29
- 239000007774 positive electrode material Substances 0.000 title claims description 52
- 239000006182 cathode active material Substances 0.000 claims abstract description 18
- 229910052751 metal Inorganic materials 0.000 claims abstract description 16
- 239000002184 metal Substances 0.000 claims abstract description 16
- 229910052752 metalloid Inorganic materials 0.000 claims abstract description 14
- 150000002738 metalloids Chemical class 0.000 claims abstract description 14
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 10
- 229910052796 boron Inorganic materials 0.000 claims abstract description 10
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 9
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 6
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- 229910013716 LiNi Inorganic materials 0.000 claims abstract description 5
- 239000000654 additive Substances 0.000 claims abstract description 5
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 4
- 229910013184 LiBO Inorganic materials 0.000 claims abstract description 4
- 229910015030 LiNiCoO Inorganic materials 0.000 claims abstract description 4
- 230000000996 additive effect Effects 0.000 claims abstract description 4
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 4
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 4
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 229910052747 lanthanoid Inorganic materials 0.000 claims abstract description 4
- 150000002602 lanthanoids Chemical class 0.000 claims abstract description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 4
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 4
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 4
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 4
- 239000000126 substance Substances 0.000 claims abstract description 4
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 4
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 4
- 150000003624 transition metals Chemical class 0.000 claims abstract description 4
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 7
- 229910001416 lithium ion Inorganic materials 0.000 claims description 7
- 238000009831 deintercalation Methods 0.000 claims description 2
- 239000007773 negative electrode material Substances 0.000 claims description 2
- 239000011255 nonaqueous electrolyte Substances 0.000 claims 1
- 239000000843 powder Substances 0.000 description 14
- 239000002002 slurry Substances 0.000 description 14
- 239000011230 binding agent Substances 0.000 description 13
- 239000006258 conductive agent Substances 0.000 description 13
- 239000003792 electrolyte Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 239000011888 foil Substances 0.000 description 10
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 8
- 239000011149 active material Substances 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- 229910003002 lithium salt Inorganic materials 0.000 description 6
- 159000000002 lithium salts Chemical class 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000011863 silicon-based powder Substances 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000000113 differential scanning calorimetry Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000002815 nickel Chemical class 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 2
- 229910014689 LiMnO Inorganic materials 0.000 description 2
- 229910016230 LiNi0.9Co0.1Sr0.002O2 Inorganic materials 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 150000001868 cobalt Chemical class 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- 150000002816 nickel compounds Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 229910020647 Co-O Inorganic materials 0.000 description 1
- 229910018871 CoO 2 Inorganic materials 0.000 description 1
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 description 1
- 229910020704 Co—O Inorganic materials 0.000 description 1
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000006183 anode active material Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- -1 chalcogenide compound Chemical class 0.000 description 1
- 229910021446 cobalt carbonate Inorganic materials 0.000 description 1
- 150000001869 cobalt compounds Chemical class 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- NVIVJPRCKQTWLY-UHFFFAOYSA-N cobalt nickel Chemical compound [Co][Ni][Co] NVIVJPRCKQTWLY-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- ZOTKGJBKKKVBJZ-UHFFFAOYSA-L cobalt(2+);carbonate Chemical compound [Co+2].[O-]C([O-])=O ZOTKGJBKKKVBJZ-UHFFFAOYSA-L 0.000 description 1
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229940078494 nickel acetate Drugs 0.000 description 1
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
리튬 이차 전지용 양극 활물질 조성물에 관한 것으로서, 이 양극 활물질 조성물은 하기 화학식 1-12로 이루어진 군에서 선택되는 양극 활물질; 및 Si, B, Ti, Ga, Ge 및 Al로 이루어진 군에서 선택되는 하나 이상의 준금속 첨가제를 포함한다.A cathode active material composition for a lithium secondary battery, the cathode active material composition comprising: a cathode active material selected from the group consisting of Chemical Formulas 1-12; And at least one metalloid additive selected from the group consisting of Si, B, Ti, Ga, Ge, and Al.
[화학식 1][Formula 1]
LiBA2 LiBA 2
[화학식 2][Formula 2]
LixBA2 Li x BA 2
[화학식 3][Formula 3]
LiBO2-zAz LiBO 2-z A z
[화학식 4][Formula 4]
LixBO2-zAz Li x BO 2-z A z
[화학식 5][Formula 5]
LiB1-yMyA2 LiB 1-y M y A 2
[화학식 6][Formula 6]
LixB1-yMyA2 Li x B 1-y M y A 2
[화학식 7][Formula 7]
LiNiCoA2 LiNiCoA 2
[화학식 8][Formula 8]
LixNiCoA2 Li x NiCoA 2
[화학식 9][Formula 9]
LiNiCoO2-zAz LiNiCoO 2-z A z
[화학식 10][Formula 10]
LixNiCoO2-zAz Li x NiCoO 2-z A z
[화학식 11][Formula 11]
LiNi1-y-zCoxMzA2 LiNi 1-yz Co x M z A 2
[화학식 12][Formula 12]
LixNi1-y-zCoxMyA2 Li x Ni 1-yz Co x M y A 2
(상기 식에서, 1.0 ≤ x ≤ 1.1, 0.01 ≤ y ≤ 0.1, 0.01 ≤ z ≤ 0.5이며, M은 Al, Cr, Mn, Fe, Mg, La, Ce, Sr 및 V로 이루어진 군에서 선택되는 전이 금속 또는 란타나이드 금속 중 적어도 하나 이상의 금속이고, A는 O, F, S 및 P로 이루어진 군에서 선택되고, B는 Ni 또는 Co이다.)(Wherein, 1.0 ≦ x ≦ 1.1, 0.01 ≦ y ≦ 0.1, 0.01 ≦ z ≦ 0.5, and M is a transition metal selected from the group consisting of Al, Cr, Mn, Fe, Mg, La, Ce, Sr and V) Or at least one metal of the lanthanide metal, A is selected from the group consisting of O, F, S and P, and B is Ni or Co.)
Description
[산업상 이용 분야][Industrial use]
본 발명은 리튬 이차 전지용 양극 활물질 조성물 및 그를 포함하는 리튬 이차 전지에 관한 것으로서, 상세하게는 장수명 특성을 갖는 리튬 이차 전지용 양극 활물질 조성물 및 그를 포함하는 리튬 이차 전지에 관한 것이다.The present invention relates to a positive electrode active material composition for a lithium secondary battery and a lithium secondary battery comprising the same, and more particularly, to a positive electrode active material composition for a lithium secondary battery having a long life characteristic and a lithium secondary battery including the same.
[종래 기술][Prior art]
리튬 이차 전지는 리튬 이온의 인터칼레이션(intercalation) 및 디인터칼레이션(deintercalation)이 가능한 물질을 음극 및 양극으로 사용하고, 상기 양극과음극 사이에 리튬 이온의 이동이 가능한 유기 전해액 또는 폴리머 전해액을 충전시켜 제조하며, 리튬 이온이 상기 양극 및 음극에서 인터칼레이션/디인터칼레이션 될 때의 산화, 환원 반응에 의하여 전기적 에너지를 생성한다.The lithium secondary battery uses a material capable of intercalation and deintercalation of lithium ions as a negative electrode and a positive electrode, and uses an organic electrolyte or polymer electrolyte capable of moving lithium ions between the positive electrode and the negative electrode. It is prepared by charging, and produces electrical energy by oxidation and reduction reaction when lithium ions are intercalated / deintercalated in the positive electrode and the negative electrode.
이러한 리튬 이차 전지의 음극(anode) 활물질로서 리튬 금속이 사용되기도 하였으나, 리튬 금속을 사용할 경우에는 전지의 충방전 과정 중 리튬 금속의 표면에 덴드라이트(dendrite)가 형성되어 전지 단락 및 전지 폭발의 위험성이 있다. 이와 같은 문제를 해결하기 위하여, 구조 및 전기적 성질을 유지하면서 가역적으로 리튬이온을 받아들이거나 공급할 수 있으며, 리튬 이온의 삽입 및 탈리시 반쪽 셀 포텐셜이 리튬 금속과 유사한 탄소계 물질이 음극 활물질로서 널리 사용되고 있다.Although lithium metal has been used as an anode active material of such a lithium secondary battery, in the case of using lithium metal, dendrite is formed on the surface of the lithium metal during the charge and discharge of the battery. There is this. In order to solve this problem, lithium ions can be reversibly accepted or supplied while maintaining their structural and electrical properties, and a carbon-based material similar to lithium metal in half cell potential when lithium ion is inserted and desorbed is widely used as a negative electrode active material. have.
리튬 이차 전지의 양극(cathode) 활물질로는 리튬 이온의 삽입과 탈리가 가능한 금속의 칼코겐화(chalcogenide) 화합물이 일반적으로 사용되며, 대표적으로는 LiCoO2,LiMn2O4, LiNiO2, LiNi1-xCoxO2(0<X<1), LiMnO2등의 복합 금속 산화물이 실용화되어 있다. 상기 양극 활물질 중 LiMn2O4, LiMnO2등의 Mn계 활물질은 합성이 용이하고, 값이 비교적 싸며, 환경 오염도 적은 장점이 있으나, 용량이 작은 단점이 있다. LiCoO2는 실온에서 10-2∼1 S/㎝ 정도의 양호한 전기 전도도와 높은 전지 전압 그리고 우수한 전극 특성을 보이며, 현재 Sony사 등에서 상업화되어 시판되고 있는 대표적인 양극 활물질이다. 또한, LiNiO2는 상기한 양극 활물질 중 가장 값이 싸며, 가장 높은 방전 용량의 전지 특성을 나타낸다. 그러나 LiCoO2및 LiNiO2는열적 안정성과 수명 특성이 우수하지 못한 문제점이 있다.As a cathode active material of a lithium secondary battery, a chalcogenide compound of a metal capable of inserting and detaching lithium ions is generally used. Representative examples thereof include LiCoO 2, LiMn 2 O 4 , LiNiO 2 , and LiNi 1-. Composite metal oxides such as x Co x O 2 (0 <X <1) and LiMnO 2 have been put to practical use. Among the cathode active materials, Mn-based active materials such as LiMn 2 O 4 and LiMnO 2 are easy to synthesize, have a relatively low value, and have less environmental pollution, but have a small capacity. LiCoO 2 exhibits good electrical conductivity, high battery voltage, and excellent electrode characteristics of about 10 −2 to 1 S / cm at room temperature, and is a representative cathode active material commercialized and commercialized by Sony. In addition, LiNiO 2 is the lowest of the above-described positive electrode active materials, and exhibits the battery characteristics of the highest discharge capacity. However, LiCoO 2 and LiNiO 2 have a problem in that thermal stability and lifespan characteristics are not excellent.
또한, LiCoO2또는 LiNiO2을 사용한 전지를 장시간 연속적으로 충방전시킬 경우 LiCoO2또는 LiNiO2의 표면에서 전해액과의 부반응이 발생하여 전지의 수명이 저하될 수 있다.Further, when the battery using LiCoO 2 or LiNiO 2 is continuously charged and discharged for a long time, a side reaction with the electrolyte may occur on the surface of LiCoO 2 or LiNiO 2 , and the life of the battery may be reduced.
본 발명은 상기한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 장수명 특성을 갖는 리튬 이차 전지용 양극 활물질 조성물을 제공하는 것이다.The present invention is to solve the above problems, an object of the present invention to provide a positive electrode active material composition for a lithium secondary battery having a long life characteristics.
본 발명의 다른 목적은 열적 안정성이 우수한 리튬 이차 전지용 양극 활물질 조성물을 제공하는 것이다.Another object of the present invention is to provide a positive electrode active material composition for a lithium secondary battery having excellent thermal stability.
본 발명의 또 다른 목적은 상기 리튬 이차 전지용 양극 활물질 조성물을 사용한 리튬 이차 전지를 제공하는 것이다.Still another object of the present invention is to provide a lithium secondary battery using the cathode active material composition for a lithium secondary battery.
도 1은 본 발명의 실시예 및 비교예의 방법에 따라 제조된 리튬 이차 전지용 양극의 충방전 수명 특성을 측정하여 나타낸 그래프.1 is a graph showing the charge and discharge life characteristics of the positive electrode for a lithium secondary battery manufactured according to the method of Examples and Comparative Examples of the present invention.
도 2는 본 발명의 실시예 및 비교예에 따라 제조된 리튬 이차 전지의 DSC 결과를 나타낸 그래프.Figure 2 is a graph showing the DSC results of the lithium secondary battery prepared according to the Examples and Comparative Examples of the present invention.
상기한 목적을 달성하기 위하여, 본 발명은 하기 화학식 1-12로 이루어진 군에서 선택되는 양극 활물질; 및 Si, B, Ti, Ga, Ge 및 Al로 이루어진 군에서 선택되는 하나 이상의 준금속 첨가제를 포함하는 리튬 이차 전지용 양극 활물질 조성물을 제공한다.In order to achieve the above object, the present invention is a positive electrode active material selected from the group consisting of Formula 1-12; And it provides a positive electrode active material composition for a lithium secondary battery comprising at least one metalloid additive selected from the group consisting of Si, B, Ti, Ga, Ge and Al.
[화학식 1][Formula 1]
LiBA2 LiBA 2
[화학식 2][Formula 2]
LixBA2 Li x BA 2
[화학식 3][Formula 3]
LiBO2-zAz LiBO 2-z A z
[화학식 4][Formula 4]
LixBO2-zAz Li x BO 2-z A z
[화학식 5][Formula 5]
LiB1-yMyA2 LiB 1-y M y A 2
[화학식 6][Formula 6]
LixB1-yMyA2 Li x B 1-y M y A 2
[화학식 7][Formula 7]
LiNiCoA2 LiNiCoA 2
[화학식 8][Formula 8]
LixNiCoA2 Li x NiCoA 2
[화학식 9][Formula 9]
LiNiCoO2-zAz LiNiCoO 2-z A z
[화학식 10][Formula 10]
LixNiCoO2-zAz Li x NiCoO 2-z A z
[화학식 11][Formula 11]
LiNi1-y-zCoxMzA2 LiNi 1-yz Co x M z A 2
[화학식 12][Formula 12]
LixNi1-y-zCoxMyA2 Li x Ni 1-yz Co x M y A 2
(상기 식에서, 1.0 ≤ x ≤ 1.1, 0.01 ≤ y ≤ 0.1, 0.01 ≤ z ≤ 0.5이며, M은 Al, Cr, Mn, Fe, Mg, La, Ce, Sr 및 V로 이루어진 군에서 선택되는 전이 금속 또는 란타나이드 금속 중 적어도 하나 이상의 금속이고, A는 O, F, S 및 P로 이루어진 군에서 선택되고, B는 Ni 또는 Co이다.)(Wherein, 1.0 ≦ x ≦ 1.1, 0.01 ≦ y ≦ 0.1, 0.01 ≦ z ≦ 0.5, and M is a transition metal selected from the group consisting of Al, Cr, Mn, Fe, Mg, La, Ce, Sr and V) Or at least one metal of the lanthanide metal, A is selected from the group consisting of O, F, S and P, and B is Ni or Co.)
이하 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명에서 사용한 양극 활물질은 양호한 전기 전도도와 높은 전지 전압 그리고 우수한 전극 특성을 보이는 LiCoO2등의 코발트계 양극 활물질과 높은 방전 용량의 특성을 나타내며 경제적인 LiNiO2등의 니켈계 양극 활물질이다. 본 발명에서 사용가능한 활물질로는 상기 화학식 1-6로 이루어진 군에서 선택되는 코발트 또는 니켈계 양극 활물질, 또는 상기 화학식 7-12로 이루어진 군에서 선택되는 코발트- 니켈계 양극 활물질을 포함한다.The positive electrode active material used in the present invention exhibit a good electrical conductivity and high cell voltage, and a cobalt-based positive electrode active material and the characteristics of the high discharge capacity of LiCoO 2, etc. with a good electrode characteristics is a nickel-based cathode active material such as LiNiO 2 economical. The active material usable in the present invention includes a cobalt or nickel-based positive electrode active material selected from the group consisting of Formula 1-6, or a cobalt-nickel-based positive electrode active material selected from the group consisting of Formula 7-12.
본 발명의 양극 활물질 조성물은 방전 용량(discharge capacity) 향상과, 고율 조건(High C-rate) 및 장수명의 특성을 향상, 특히 고온 조건에서의 수명 특성을 향상시키기 위하여, 준금속(semi-metal)을 더욱 포함한다. 이러한 준금속으로는 Si, B, Ti, Ga, Ge 및 Al로 이루어진 군에서 선택되는 준금속을 하나 이상 사용할 수 있으며, 그 양은 양극 활물질 조성물 중량의 0.1∼10 중량%이다. 준금속의 양이 0.1 중량% 미만인 경우에는 준금속을 첨가함에 따른 효과가 나타나지 않으며, 10 중량%를 초과하는 경우에는 과량의 준금속이 불순물로 작용하여 전지 반응에 역효과가 나타날 수 있다.The positive electrode active material composition of the present invention is a semi-metal in order to improve the discharge capacity, improve the properties of high C-rate and long life, and particularly improve the life characteristics at high temperature conditions. It further includes. As the metalloid, one or more metalloids selected from the group consisting of Si, B, Ti, Ga, Ge and Al may be used, and the amount thereof is 0.1 to 10% by weight of the positive electrode active material composition. If the amount of the metalloid is less than 0.1 wt%, the effect of adding the metalloid does not appear, and if it exceeds 10 wt%, the excess metal may act as an impurity and adversely affect the battery reaction.
본 발명의 양극 활물질 조성물은 이 양극 활물질 조성물이 도포되는 전류 집전체와의 결합력을 향상시키기 위하여 결합제(binder)를 더욱 포함한다. 결합제로는 일반적으로 양극 활물질 조성물에 사용되는 것은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로는 폴리비닐리덴 플루오라이드를 사용할 수 있다. 상기 전류 집전체로는 일반적으로 사용되는 알루미늄 포일(foil)이 사용될 수 있으나, 여기에 제한되는 것은 아니다. 또한, 본 발명의 양극 활물질 조성물은 도전성을 증가시키기 위한 도전제를 더욱 포함할 수 도 있다. 도전제로는 일반적으로 활물질 조성물의 도전성을 증가시킬 수 있는 것은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로 카본 블랙을 사용할 수 있다.The positive electrode active material composition of the present invention further includes a binder to improve the binding force with the current collector to which the positive electrode active material composition is applied. As the binder, any one generally used in the positive electrode active material composition may be used, and representative examples thereof may include polyvinylidene fluoride. As the current collector, an aluminum foil which is generally used may be used, but is not limited thereto. In addition, the cathode active material composition of the present invention may further include a conductive agent for increasing conductivity. In general, as the conductive agent, anything that can increase the conductivity of the active material composition may be used, and representative examples thereof may include carbon black.
상기한 구성을 갖는 본 발명의 리튬 이차 전지용 양극 활물질 조성물을 이용하여 양극을 제조하는 방법은 다음과 같다.The method of manufacturing a positive electrode using the positive electrode active material composition for lithium secondary batteries of this invention which has the above structure is as follows.
리튬염과 코발트, 니켈 화합물 또는 이들의 혼합물을 원하는 당량비대로 혼합한다. 상기 리튬염으로는 리튬 나이트레이트, 리튬 아세테이트, 리튬 하이드록사이드 등을 사용할 수 있다. 상기 코발트 화합물로는 코발트 하이드록사이드, 코발트 나이트레이트 또는 코발트 카보네이트 등을 사용할 수 있으며, 니켈 화합물로는 니켈 하이드록사이드, 니켈 나이트레이트 또는 니켈 아세테이트로 이루어진 그룹 중에서 선택되는 니켈염을 사용할 수 있다. 이때, 리튬염, 코발트염 및 니켈염의 반응을 촉진하기 위하여, 에탄올, 메탄올, 물, 아세톤 등 적절한 용매를 첨가하고 용매가 거의 없어질 때까지(solvent-free) 몰타르 그라인더 혼합(mortar grinder mixing)을 실시할 수도 있다.The lithium salt and cobalt, nickel compounds or mixtures thereof are mixed in the desired equivalent ratio. Lithium nitrate, lithium acetate, lithium hydroxide, etc. can be used as said lithium salt. The cobalt compound may be cobalt hydroxide, cobalt nitrate or cobalt carbonate, and the like, and the nickel compound may be a nickel salt selected from the group consisting of nickel hydroxide, nickel nitrate or nickel acetate. At this time, in order to promote the reaction of the lithium salt, the cobalt salt and the nickel salt, an appropriate solvent such as ethanol, methanol, water, acetone is added and mortar grinder mixing is performed until the solvent is almost free. You can also carry out.
이와 같은 공정을 통하여 제조된 리튬염, 코발트염 및 니켈염의 혼합물을 약 400∼600℃ 온도에서 1차 열처리하여 준 결정성(semi crystalline) 상태의 양극 활물질 전구체 분말을 제조한다. 또한 상기 1차 열처리하여 제조된 양극 활물질 전구체 분말을 건조시킨 후, 또는 상기 1차 열처리 과정 후에 건조 공기를 블로잉(blowing)하면서 양극 활물질 전구체 분말을 상온에서 재혼합(remixing)시켜 리튬 염을 균일하게 분포시킬 수도 있다.A mixture of lithium salt, cobalt salt, and nickel salt prepared through such a process is first heat-treated at about 400 to 600 ° C. to prepare a cathode active material precursor powder in a semi crystalline state. In addition, after drying the cathode active material precursor powder prepared by the primary heat treatment, or blowing the air after the primary heat treatment process (remixing) the cathode active material precursor powder at room temperature to uniformly mix the lithium salt It can also be distributed.
얻어진 준 결정성 전구체 분말을 700∼900℃ 온도로 약 12시간 동안 2차 열처리한다. 상기 2차 열처리 공정을 건조 공기 또는 산소를 블로잉하는(blowing) 조건에서 수행하면 더욱 균일한 결정성 활물질을 제조할 수 있으므로 바람직하다.The semi-crystalline precursor powder obtained is subjected to secondary heat treatment at a temperature of 700 to 900 ° C. for about 12 hours. When the secondary heat treatment process is performed under conditions of blowing dry air or oxygen, a more uniform crystalline active material may be prepared.
제조된 양극 활물질에 준금속 0.1∼10 중량%를 첨가한다. 양극 활물질은 상술한 방법으로 제조된 화학식 1 내지 12의 양극 활물질을 사용할 수 도 있고, 상업적으로 유통되는 화학식 1 내지 12의 양극 활물질을 사용할 수 도 있다. 상기 준금속으로는 Si, B, Ti, Ga, Ge 및 Al로 이루어진 군에서 선택되는 하나 이상의 준금속을 사용할 수 있다. 상기 준금속의 첨가량이 0.1 중량% 미만인 경우에는 준금속을 첨가함에 따른 효과가 미미하며, 10 중량%만 첨가하여도 충분한 효과를 얻을 수 있으므로, 10 중량%를 초과하여 첨가할 필요는 없다.0.1-10 wt% of the metalloid is added to the prepared cathode active material. As the cathode active material, a cathode active material of Formulas 1 to 12 prepared by the above-described method may be used, or a cathode active material of Formulas 1 to 12 that are commercially available may be used. As the metalloid, one or more metalloids selected from the group consisting of Si, B, Ti, Ga, Ge, and Al may be used. If the added amount of the metalloid is less than 0.1% by weight, the effect of adding the metalloid is insignificant, and since only 10% by weight can be obtained, it is not necessary to add more than 10% by weight.
상기 혼합물에 도전제, 결합제 및 N-메틸피롤리돈 등의 용매를 혼합하여 양극 활물질 슬러리 조성물을 제조한다. 이 양극 활물질 슬러리 조성물을 Al 포일(foil) 등의 전류 집전체 위에 테이프 캐스팅하여 양극을 제조한다. 제조된 양극을 이용하여 통상의 방법으로 리튬 이차 전지를 제조한다.A positive electrode active material slurry composition is prepared by mixing a conductive agent, a binder, and a solvent such as N-methylpyrrolidone with the mixture. The positive electrode active material is prepared by tape casting the positive electrode active material slurry composition on a current collector such as Al foil. A lithium secondary battery is manufactured by a conventional method using the manufactured positive electrode.
이와 같이, 본 발명의 리튬 이차 전지용 양극에 포함된 준금속은 HF와의 반응성이 우수한 물질이다. 일반적으로 리튬 이차 전지의 전해질은 무수 전해질을 사용하나, 소량의 물이 불순물로 포함되어 있을 수 도 있다. 이와 같이 불순물로 함유된 물은 전해질에 포함된 리튬염인 LiPF6등과 반응하여 HF 등의 강산을 제조하게 된다. 생성된 HF는 양극 활물질의 표면과 반응하여, 이로 인하여 전지의 수명이 저하되는 문제점을 야기할 수 도 있다. 이에 대하여, 본 발명의 리튬 이차 전지는 양극에 HF와의 반응성이 우수한 준금속을 포함함에 따라, 준금속이 전해질에서 생성되는 HF와 빠르게 반응하여 H2SiF6라는 화합물을 형성하면서, 양극 활물질과 반응할 HF를 제거하므로, 양극 활물질과 HF의 반응으로 인한 문제점을 방지할 수 있다.As described above, the metalloid included in the positive electrode for a lithium secondary battery of the present invention is a material having excellent reactivity with HF. In general, an electrolyte of a lithium secondary battery uses an anhydrous electrolyte, but a small amount of water may be included as an impurity. The water contained as an impurity reacts with LiPF 6 , which is a lithium salt contained in the electrolyte, to produce a strong acid such as HF. The generated HF may react with the surface of the positive electrode active material, thereby causing a problem that the life of the battery is reduced. On the contrary, the lithium secondary battery of the present invention reacts with the positive electrode active material while forming a compound called H 2 SiF 6 by rapidly reacting with the HF produced in the electrolyte, as the lithium secondary battery includes a semimetal having excellent reactivity with HF in the positive electrode. Since HF is removed, problems caused by the reaction between the positive electrode active material and HF can be prevented.
이와 같이, 본 발명의 리튬 이차 전지는 방전 용량(discharge capacity) 향상과, 고율 조건(High C-rate) 및 장수명의 특성이 우수하다.As described above, the lithium secondary battery of the present invention is excellent in improving discharge capacity, high C-rate, and long life.
이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기한 실시예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples and comparative examples of the present invention are described. However, the following examples are only one preferred embodiment of the present invention and the present invention is not limited to the following examples.
(실시예 1)(Example 1)
LiNi0.9Co0.1Sr0.002O2(Honjo사) 양극 활물질 분말과 Si 분말을 혼합하였다. 이 혼합물과 바인더(폴리비닐리덴 플루오라이드) 및 도전제(슈퍼 P)를 N-메틸피롤리돈 용매에 첨가하여 양극 활물질 슬러리 조성물을 제조하였다. 양극 활물질 분말, Si 분말, 바인더 및 도전제의 혼합 비율은 중량비로 94 : 1 : 3 : 3로 하였다.LiNi 0.9 Co 0.1 Sr 0.002 O 2 (Honjo) positive electrode active material powder and Si powder were mixed. This mixture, a binder (polyvinylidene fluoride) and a conductive agent (super P) were added to the N-methylpyrrolidone solvent to prepare a positive electrode active material slurry composition. The mixing ratio of the positive electrode active material powder, Si powder, binder, and conductive agent was set to 94: 1: 1: 3 by weight ratio.
제조된 양극 활물질 슬러리 조성물을 닥터 블레이드(doctor blade)를 이용하여 Al-포일 위에 도포하였다. 양극 활물질 슬러리 조성물이 도포된 Al-포일을 120℃ 오븐에서 3시간 동안 건조한 후 프레싱하여 코인 타입 전지용 양극을 제조하였다. 제조된 양극과 Li-금속을 대극으로 사용하고, 에틸렌 카보네이트와 디메틸 카보네이트 (1 : 1 부피비)의 혼합 유기 용매에 1M LiPF6가 용해된 전해질을 사용하여 코인 타입의 반쪽 전지를 제조하였다.The prepared positive electrode active material slurry composition was applied on an Al-foil using a doctor blade. The Al-foil coated with the positive electrode active material slurry composition was dried in an oven at 120 ° C. for 3 hours, and then pressed to prepare a positive electrode for a coin type battery. A coin-type half cell was manufactured by using a prepared positive electrode and a Li-metal as a counter electrode and using an electrolyte in which 1 M LiPF 6 was dissolved in a mixed organic solvent of ethylene carbonate and dimethyl carbonate (1: 1 volume ratio).
(실시예 2)(Example 2)
양극 활물질 분말, Si 분말, 바인더 및 도전제의 혼합 비율은 중량비로 94 : 5 : 3 : 3로 변경한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.The mixing ratio of the positive electrode active material powder, the Si powder, the binder, and the conductive agent was performed in the same manner as in Example 1 except that the ratio was changed to 94: 5: 3: 3 by weight ratio.
(비교예 1)(Comparative Example 1)
LiNi0.9Co0.1Sr0.002O2(Honjo) 양극 활물질 분말과 바인더(폴리비닐리덴 플루오라이드) 및 도전제(슈퍼 P)를 N-메틸피롤리돈 용매에 첨가하여 양극 활물질 슬러리 조성물을 제조하였다. 양극 활물질 분말, 바인더 및 도전제의 혼합 비율은 중량비로 94 : 3 : 3으로 하였다.LiNi 0.9 Co 0.1 Sr 0.002 O 2 (Honjo) positive electrode active material powder, a binder (polyvinylidene fluoride) and a conductive agent (super P) were added to the N-methylpyrrolidone solvent to prepare a positive electrode active material slurry composition. The mixing ratio of the positive electrode active material powder, the binder, and the conductive agent was 94: 3: 3 by weight ratio.
제조된 양극 활물질 슬러리 조성물을 닥터 블레이드(doctor blade)를 이용하여 Al-포일 위에 도포하였다. 양극 활물질 슬러리 조성물이 도포된 Al-포일을 120℃ 오븐에서 3시간 동안 건조한 후 프레싱하여 코인 타입 전지용 양극을 제조하였다. 제조된 양극과 Li-금속을 대극으로 사용하여 코인 타입의 반쪽 전지를 제조하였다.The prepared positive electrode active material slurry composition was applied on an Al-foil using a doctor blade. The Al-foil coated with the positive electrode active material slurry composition was dried in an oven at 120 ° C. for 3 hours, and then pressed to prepare a positive electrode for a coin type battery. A coin-type half cell was manufactured using the prepared positive electrode and Li-metal as counter electrodes.
(실시예 3)(Example 3)
LiCoO2(Nippon Chemical사, 상품명: C-10) 양극 활물질 분말과 Si 분말을 혼합하였다. 이 혼합물과 바인더(폴리비닐리덴 플루오라이드) 및 도전제(슈퍼 P)를 N-메틸피롤리돈 용매에 첨가하여 양극 활물질 슬러리 조성물을 제조하였다. 양극 활물질 분말, Si 분말, 바인더 및 도전제의 혼합 비율은 중량비로 94 : 1 : 3 : 3로 하였다.LiCoO 2 (Nippon Chemical, trade name: C-10) positive electrode active material powder and Si powder were mixed. This mixture, a binder (polyvinylidene fluoride) and a conductive agent (super P) were added to the N-methylpyrrolidone solvent to prepare a positive electrode active material slurry composition. The mixing ratio of the positive electrode active material powder, Si powder, binder, and conductive agent was set to 94: 1: 1: 3 by weight ratio.
제조된 양극 활물질 슬러리 조성물을 닥터 블레이드(doctor blade)를 이용하여 Al-포일 위에 도포하였다. 양극 활물질 슬러리 조성물이 도포된 Al-포일을 120℃ 오븐에서 3시간 동안 건조한 후 프레싱하여 코인 타입 전지용 양극을 제조하였다. 제조된 양극과 Li-금속을 대극으로 사용하고, 에틸렌 카보네이트와 디메틸 카보네이트 (1 : 1 부피비)의 혼합 유기 용매에 1M LiPF6가 용해된 전해질을 사용하여코인 타입의 반쪽 전지를 제조하였다.The prepared positive electrode active material slurry composition was applied on an Al-foil using a doctor blade. The Al-foil coated with the positive electrode active material slurry composition was dried in an oven at 120 ° C. for 3 hours, and then pressed to prepare a positive electrode for a coin type battery. A coin-type half cell was prepared by using a prepared positive electrode and a Li-metal as a counter electrode and using an electrolyte in which 1M LiPF 6 was dissolved in a mixed organic solvent of ethylene carbonate and dimethyl carbonate (1: 1 volume ratio).
(실시예 4)(Example 4)
양극 활물질 분말, Si 분말, 바인더 및 도전제의 혼합 비율은 중량비로 94 : 5 : 3 : 3로 변경한 것을 제외하고는 상기 실시예 3과 동일하게 실시하였다.The mixing ratio of the positive electrode active material powder, the Si powder, the binder, and the conductive agent was performed in the same manner as in Example 3 except that the ratio was changed to 94: 5: 3: 3 by weight ratio.
(비교예 2)(Comparative Example 2)
LiCoO2(Nippone Chemical사, 상품명: C-10) 양극 활물질 분말과 바인더(폴리비닐리덴 플루오라이드) 및 도전제(슈퍼 P)를 N-메틸피롤리돈 용매에 첨가하여 양극 활물질 슬러리 조성물을 제조하였다. 양극 활물질 분말, 바인더 및 도전제의 혼합 비율은 중량비로 94 : 3 : 3으로 하였다.LiCoO 2 (Nippone Chemical, trade name: C-10) positive electrode active material powder, a binder (polyvinylidene fluoride), and a conductive agent (super P) were added to an N-methylpyrrolidone solvent to prepare a positive electrode active material slurry composition. . The mixing ratio of the positive electrode active material powder, the binder, and the conductive agent was 94: 3: 3 by weight ratio.
제조된 양극 활물질 슬러리 조성물을 닥터 블레이드(doctor blade)를 이용하여 Al-포일 위에 도포하였다. 양극 활물질 슬러리 조성물이 도포된 Al-포일을 120℃ 오븐에서 3시간 동안 건조한 후 프레싱하여 코인 타입 전지용 양극을 제조하였다. 제조된 양극과 Li-금속을 대극으로 사용하여 코인 타입의 반쪽 전지를 제조하였다.The prepared positive electrode active material slurry composition was applied on an Al-foil using a doctor blade. The Al-foil coated with the positive electrode active material slurry composition was dried in an oven at 120 ° C. for 3 hours, and then pressed to prepare a positive electrode for a coin type battery. A coin-type half cell was manufactured using the prepared positive electrode and Li-metal as counter electrodes.
상기한 실시예 1 및 비교예 1의 방법으로 제조된 전지의 고온에서의 충방전 수명 특성 결과를 측정하여 그 결과를 도 1에 나타내었다. 각각의 전지를 4.3V∼3.0V 사이에서 0.1C↔0.1C(1회), 0.2C↔0.2C(3회), 0.5C↔0.5C(10회), 1C↔1C(51회)로 충방전 속도를 변화시키며 충방전하면서 전지의 용량 및 수명을 측정하였다. 도 1에 나타낸 것과 같이, 실시예 4의 전지는 1C 충전, 1C 방전의 고율충방전 조건에서 51 사이클 후에도 약 140mAh/g이던 용량이 약 약 115mAh/g로 거의 감소하지 않았다. 그 반면, 비교예 1의 전지는 1C 충전, 1C 방전의 고율 충방전 조건에서 51 사이클 후에는 약 140mAh/g이던 용량이 약 50mAh/g로 현저하게 감소하였다. 따라서, 본 발명의 활물질이 종래 활물질에 비하여 고율 충방전 조건에서 안정하며, 용량 감소가 적을 뿐만 아니라 수명특성이 우수함을 알 수 있다.The charge and discharge life characteristics at high temperatures of the batteries manufactured by the method of Example 1 and Comparative Example 1 were measured, and the results are shown in FIG. 1. Each battery is charged between 0.1C↔0.1C (1 time), 0.2C↔0.2C (3 times), 0.5C↔0.5C (10 times) and 1C↔1C (51 times) between 4.3V and 3.0V. The capacity and the life of the battery were measured while varying the discharge rate and charging and discharging. As shown in FIG. 1, the battery of Example 4 hardly decreased to about 115 mAh / g, which was about 140 mAh / g even after 51 cycles under high-rate charging / discharging conditions of 1C charging and 1C discharging. On the other hand, the battery of Comparative Example 1 significantly decreased its capacity from about 140 mAh / g to about 50 mAh / g after 51 cycles under high rate charge / discharge conditions of 1C charge and 1C discharge. Therefore, it can be seen that the active material of the present invention is more stable under high rate charge / discharge conditions than the conventional active material, and has a small capacity reduction and excellent life characteristics.
또한, 실시예 1 및 비교예 1의 방법으로 제조된 전지를 4.3V로 충전한 후, DSC(differential scanning calorimetry)를 측정하여, 그 결과를 도 2에 나타내었다. 도 2에 나타낸 것과 같이, Si이 첨가된 실시예 1의 전지의 발열 피크의 면적이 Si가 첨가되지 않은 비교예 1의 전지에 비하여 작음을 알 수 있다. 이러한 발열 피크는 활물질과 전해액이 반응할 때 발생되는 열에 의해 나타나는 것으로서, 발열 피크의 면적이 작을수록 활물질이 전해액과의 반응성이 작음을 의미하므로, 안정함을 알 수 있다. 또한, 실시예 1의 전지의 산소 분해 온도가 (218℃) 비교예 1의 전지(202℃)보다 높다. 일반적으로 충전 상태의 양극 활물질은 Li1-xCoO2구조를 가지며, 이러한 구조를 갖는 물질은 구조적으로 불안정하기 때문에 온도를 올리면 금속과 결합되어 있는 산소(Co-O)가 분해된다. 이렇게 분해된 산소는 전지 내부에서 전해액과 반응하여 폭발할 수 있으므로, 산소 분해 온도가 높을수록 전해액과의 반응성이 적으므로 전지의 폭발 위험이 적음을 알 수 있다. 따라서, 실시예 1의 전지에 사용된 양극 활물질이 열적 안정성이 우수함을 알 수 있다.In addition, after charging the battery prepared by the method of Example 1 and Comparative Example 1 at 4.3V, DSC (differential scanning calorimetry) was measured, the results are shown in FIG. As shown in FIG. 2, it can be seen that the area of the exothermic peak of the battery of Example 1 to which Si was added was smaller than that of the battery of Comparative Example 1 to which Si was not added. This exothermic peak is represented by heat generated when the active material and the electrolyte react, and as the area of the exothermic peak is smaller, the active material is less reactive with the electrolyte, and thus it is known that the exothermic peak is stable. Moreover, the oxygen decomposition temperature of the battery of Example 1 is (218 degreeC) higher than the battery (202 degreeC) of Comparative Example 1. In general, the positive electrode active material in a charged state has a Li 1-x CoO 2 structure, and since the material having such a structure is structurally unstable, when the temperature is raised, oxygen (Co-O) bonded to the metal is decomposed. The decomposed oxygen can be exploded by reacting with the electrolyte in the battery, and the higher the oxygen decomposition temperature, the less the reactivity with the electrolyte. Therefore, it can be seen that the positive electrode active material used in the battery of Example 1 is excellent in thermal stability.
상술한 바와 같이, 본 발명의 리튬 이차 전지용 양극 활물질 조성물을 이용한 전지는 고온 수명 특성이 우수하다.As mentioned above, the battery using the positive electrode active material composition for lithium secondary batteries of this invention is excellent in high temperature lifetime characteristics.
Claims (3)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990018803A KR100307165B1 (en) | 1999-05-25 | 1999-05-25 | Positive active material composition for lithium secondary battery and lithium secondary battery comprising the same |
JP2000155373A JP4101435B2 (en) | 1999-05-25 | 2000-05-25 | Positive electrode active material composition for lithium secondary battery and method for producing positive electrode using the same |
CNB001063987A CN1181580C (en) | 1999-05-25 | 2000-05-25 | Positive active material composition of chargeable lithium cell and prepn. of plus plate using the composition thereof |
US09/579,576 US7608365B1 (en) | 1999-05-25 | 2000-05-25 | Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same |
US11/510,301 US7655358B2 (en) | 1999-05-25 | 2006-08-25 | Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990018803A KR100307165B1 (en) | 1999-05-25 | 1999-05-25 | Positive active material composition for lithium secondary battery and lithium secondary battery comprising the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000074691A KR20000074691A (en) | 2000-12-15 |
KR100307165B1 true KR100307165B1 (en) | 2001-09-28 |
Family
ID=19587546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019990018803A KR100307165B1 (en) | 1999-05-25 | 1999-05-25 | Positive active material composition for lithium secondary battery and lithium secondary battery comprising the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100307165B1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100464746B1 (en) * | 2001-01-23 | 2005-01-06 | 가부시끼가이샤 도시바 | Positive Electrode Active Material And Lithium Ion Secondary Cell |
JP5036100B2 (en) | 2001-03-30 | 2012-09-26 | 三洋電機株式会社 | Non-aqueous electrolyte secondary battery and manufacturing method thereof |
KR100959115B1 (en) * | 2002-03-08 | 2010-05-25 | 삼성에스디아이 주식회사 | Positive active material for lithium secondary battery and lithium secondary battery comprising the same |
KR100963977B1 (en) * | 2006-02-13 | 2010-06-15 | 주식회사 엘지화학 | Improved Lithium Secondary Battery of Improved Properties |
KR100814885B1 (en) | 2006-11-17 | 2008-03-20 | 삼성에스디아이 주식회사 | Rechargeable lithium battery |
KR20090063441A (en) | 2007-12-14 | 2009-06-18 | 삼성에스디아이 주식회사 | Lithium secondary battery |
KR101050333B1 (en) * | 2008-07-07 | 2011-07-19 | 삼성에스디아이 주식회사 | Lithium secondary battery |
US9093702B2 (en) | 2009-09-03 | 2015-07-28 | Samsung Sdi Co., Ltd. | Electrolytic solution for lithium battery, lithium battery employing the same and method for operating the lithium battery |
KR101288123B1 (en) * | 2011-05-27 | 2013-07-19 | 삼성에스디아이 주식회사 | Electrode active material, preparing method thereof, electrode for lithium secondary battery including the same, and lithium secondary battery using the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07235291A (en) * | 1993-12-27 | 1995-09-05 | Haibaru:Kk | Secondary battery |
JPH07320785A (en) * | 1994-05-26 | 1995-12-08 | Sony Corp | Nonaqueous electrolytic secondary battery |
US5631105A (en) * | 1995-05-26 | 1997-05-20 | Matsushita Electric Industrial Co., Ltd. | Non-aqueous electrolyte lithium secondary battery |
KR19990004384A (en) * | 1997-06-27 | 1999-01-15 | 성재갑 | A lithium battery positive electrode and its manufacturing method |
-
1999
- 1999-05-25 KR KR1019990018803A patent/KR100307165B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07235291A (en) * | 1993-12-27 | 1995-09-05 | Haibaru:Kk | Secondary battery |
JPH07320785A (en) * | 1994-05-26 | 1995-12-08 | Sony Corp | Nonaqueous electrolytic secondary battery |
US5631105A (en) * | 1995-05-26 | 1997-05-20 | Matsushita Electric Industrial Co., Ltd. | Non-aqueous electrolyte lithium secondary battery |
KR19990004384A (en) * | 1997-06-27 | 1999-01-15 | 성재갑 | A lithium battery positive electrode and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
KR20000074691A (en) | 2000-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7655358B2 (en) | Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same | |
KR100309773B1 (en) | Positive active material for lithium secondary battery and method of preparing the same | |
US5620812A (en) | Non-aqueous electrolyte secondary battery | |
KR100807970B1 (en) | The surface-coated cathode material for lithium secondary battery | |
EP2471134B1 (en) | Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling | |
US7473493B2 (en) | Process of preparing active material for battery and active material for battery prepared therefrom | |
KR100428616B1 (en) | Positive active material for lithium secondary battery and method of preparing same | |
US5783333A (en) | Lithium nickel cobalt oxides for positive electrodes | |
KR100326455B1 (en) | Positive active material for lithium secondary battery and method of preparing the same | |
JP3032757B1 (en) | Non-aqueous electrolyte secondary battery | |
JP3974420B2 (en) | Method for producing positive electrode active material for lithium secondary battery | |
JP2013511129A (en) | Cathode material with coating for lithium-ion battery | |
KR20050010131A (en) | Positive active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery comprising same | |
JP4879226B2 (en) | Positive electrode active material for lithium secondary battery and method for producing the same | |
JP5013386B2 (en) | Positive electrode active material for non-aqueous secondary battery and non-aqueous secondary battery using the same | |
JP4821023B2 (en) | Positive electrode for lithium secondary battery and lithium ion battery using the same | |
KR100307165B1 (en) | Positive active material composition for lithium secondary battery and lithium secondary battery comprising the same | |
JP2005158737A (en) | Positive electrode for lithium secondary battery, and lithium secondary battery | |
US7771875B2 (en) | Positive electrodes for rechargeable batteries | |
KR20010063879A (en) | Mn-based positive active material for Li-ion battery and method of preparing the same | |
KR100312689B1 (en) | Positive active material composition for lithium secondary battery and lithium secondary battery comprising the same | |
JP4479874B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery | |
JP2004356034A (en) | Positive active material and lithium ion secondary battery using it | |
EP1073136A2 (en) | Lithium secondary battery | |
KR100424638B1 (en) | Method of preparing positive active material for rechargeable lithium batteries and preparing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120720 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20130723 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20140730 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20150721 Year of fee payment: 15 |
|
FPAY | Annual fee payment |
Payment date: 20160721 Year of fee payment: 16 |
|
FPAY | Annual fee payment |
Payment date: 20170720 Year of fee payment: 17 |
|
FPAY | Annual fee payment |
Payment date: 20180718 Year of fee payment: 18 |
|
EXPY | Expiration of term |