[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR100291067B1 - Pre-lithiation method of carbon electrodes and its application to assembling lithium secondary batteries - Google Patents

Pre-lithiation method of carbon electrodes and its application to assembling lithium secondary batteries Download PDF

Info

Publication number
KR100291067B1
KR100291067B1 KR1019980019243A KR19980019243A KR100291067B1 KR 100291067 B1 KR100291067 B1 KR 100291067B1 KR 1019980019243 A KR1019980019243 A KR 1019980019243A KR 19980019243 A KR19980019243 A KR 19980019243A KR 100291067 B1 KR100291067 B1 KR 100291067B1
Authority
KR
South Korea
Prior art keywords
carbon
carbon electrode
electrode
lithium
lithium secondary
Prior art date
Application number
KR1019980019243A
Other languages
Korean (ko)
Other versions
KR19990086308A (en
Inventor
윤경석
조병원
조원일
백지흠
김형선
김운석
Original Assignee
박호군
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박호군, 한국과학기술연구원 filed Critical 박호군
Priority to KR1019980019243A priority Critical patent/KR100291067B1/en
Publication of KR19990086308A publication Critical patent/KR19990086308A/en
Application granted granted Critical
Publication of KR100291067B1 publication Critical patent/KR100291067B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: Provided are method for completely treating carbon electrode with lithium which is used for enhancing a capacity and a cycle life of the carbon electrode, and a method for producing lithium secondary cell using the same. CONSTITUTION: The method for completely treating carbon electrode with lithium comprises the steps of (i) treating a carbon electrode with lithium by varying a temperature and ionic conductivity under the state which carbon electrode and lithium metal are connected or contacted with each other by resistance, (ii) stabilizing the treated carbon electrode at the predetermined temperature for the predetermined period to form a stable film on the surface of carbon electrode, thereby enhancing a reversibility in charging/discharging.

Description

카본 전극의 전리튬화 방법과 이를 이용한 리튬 이차전지 제조방법{PRE-LITHIATION METHOD OF CARBON ELECTRODES AND ITS APPLICATION TO ASSEMBLING LITHIUM SECONDARY BATTERIES}Pre-lithiation method of carbon electrode and manufacturing method of lithium secondary battery using same {PRE-LITHIATION METHOD OF CARBON ELECTRODES AND ITS APPLICATION TO ASSEMBLING LITHIUM SECONDARY BATTERIES}

본 발명은 카본 전극의 전리튬화 방법과 이를 이용한 리튬 이차전지 제조방법에 관한 것으로 카본 전극의 전리튬화는 카본 전극과 리튬 금속을 저항으로 연결하거나 직접 접촉시킨 상태에서 온도와 전해질의 이온전도도를 변화시켜서 카본 전극이 리튬화 되는 속도와 양을 조절하고, 리튬화 후에 일정 온도에서, 일정 시간동안 안정화 시킴으로써 카본 전극 표면상에 안정한 피막을 형성하여 카본 전극의 가역성을 향상시키고, 리튬화된 카본 전극으로 리튬 이차전지를 제조하여, 초기 충전시 나타나는 카본 전극에서의 비가역용량에 의한 용량저하를 방지함으로써 용량증가를 가져오고, 또한 충방전시 충방전 효율 문제로 인하여 소모되는 리튬의 양을 보충해줌으로써 싸이클 수명을 향상시키는 카본 전극의 전리튬화 방법과 이를 이용한 리튬 이차전지 제조방법에 관한 것이다.The present invention relates to a method of prelithiation of a carbon electrode and a method of manufacturing a lithium secondary battery using the same. The prelithiation of a carbon electrode is characterized in that the temperature and the ion conductivity of the electrolyte in the state in which the carbon electrode and the lithium metal are directly connected or directly contacted By changing the rate and amount of lithiation of the carbon electrode, and stabilizing the carbon electrode at a constant temperature for a certain time after lithiation to form a stable film on the surface of the carbon electrode, thereby improving the reversibility of the carbon electrode, and lithiated carbon electrode. By manufacturing a lithium secondary battery, by increasing the capacity by preventing the capacity decrease due to irreversible capacity in the carbon electrode appearing during the initial charge, and also by replenishing the amount of lithium consumed due to charge and discharge efficiency problems during charging and discharging All-lithiation method of carbon electrode to improve cycle life and lithium secondary battery using same It relates to a process for producing the same.

종래의 리튬 이차전지는 양극으로 LiCoO2, LiMn2O4등 리튬이 삽입되어 있는 화합물을 사용하기 때문에 음극으로 사용되는 카본 전극에 리튬이 삽입되어 있지 않는 상태로 전지가 제조되고 있다. 카본 전극인 경우는 초기 충전시 카본 전극 표면상에 부동태 피막이 형성되는데, 이 피막은 카본 격자층 사이로 유기용매가 삽입되지 않도록 방해하여 유기용매의 분해반응을 억제함으로써 카본 구조의 안정화 및 카본 전극의 가역성을 향상시켜 리튬 이차전지용 음극으로의 사용을 가능케 한다. 그러나 이러한 피막형성 반응은 비가역적 반응이기 때문에 리튬 이온의 소모를 가져와 전지의 용량을 감소시키는 역효과도 있다. 또한 카본 전극 및 양극은 충방전 효율이 완전히 100%가 아니기 때문에 싸이클수가 진행됨에 따라 리튬 이온의 소모가 발생하게 되어 전극용량의 감소를 일으키므로 결국 싸이클 수명이 저하하게 된다. 따라서 본 발명에서처럼 전리튬화된 카본 전극을 음극으로 사용하면 초기 충전시 나타나는 피막형성 반응을 미리 시켰기 때문에 용량의 저하 없이 고용량의 리튬 이차전지를 제조할 수 있을 뿐만 아니라 싸이클수가 증가함에 따라서 나타나는 리튬 이온의 소모를 보충해 주기 때문에 싸이클 수명을 대폭 향상시킬 수 있다.Since a conventional lithium secondary battery uses a compound containing lithium, such as LiCoO 2 and LiMn 2 O 4 , as a positive electrode, a battery is manufactured in a state in which lithium is not inserted into a carbon electrode used as a negative electrode. In the case of the carbon electrode, a passivation film is formed on the surface of the carbon electrode during initial charging, which prevents the organic solvent from intercalating between the carbon lattice layers and suppresses decomposition reaction of the organic solvent, thereby stabilizing the carbon structure and reversibility of the carbon electrode. It can be used as a negative electrode for a lithium secondary battery. However, since the film forming reaction is an irreversible reaction, there is also an adverse effect of reducing the capacity of the battery by the consumption of lithium ions. In addition, since the charge and discharge efficiency of the carbon electrode and the positive electrode is not 100% completely, as the number of cycles progresses, consumption of lithium ions occurs, which leads to a decrease in electrode capacity, resulting in a decrease in cycle life. Therefore, when the pre-lithiated carbon electrode is used as a negative electrode as in the present invention, since the film formation reaction during initial charging is performed in advance, not only a lithium secondary battery having a high capacity can be manufactured without a decrease in capacity but also lithium ions appearing as the number of cycles increases. The cycle life can be significantly improved by replenishing the consumption of.

종래의 카본 전극의 전리튬화 방법은 카본 활물질을 물리화학적인 방법으로 리튬화 시킨 후 전극을 제조하는 방법 (K. Zaguib, R. Yazami and M. Broussely, 8th International Meeting on Lithium Batteries, 192(1996))과 카본 전극을 전기화학적으로 전리튬화 하는 방법 (X. Y. Song and K. Kinoshita, J. Electrochem. Soc., 143, L120(1996), L L Olsen and R. Koksbang, US Pat. 5,595,837(1997))이 있는데 물리화학적 방법은 고온에서 실시하여야 하기 때문에 화재 및 폭발 등의 위험성이 내포되어 있다. 이에 반하여 전기화학적 방법은 상온에서 실시할 수 있는 장점이 있으나, 공정 상에 다소 어려운 점이 있다. 본 발명과의 차별화를 위해 기존의 전기화학적 방법의 문제점을 살펴보면 전원을 사용하여 전류를 조정함으로써 리튬화 반응속도를 조정하므로서 전원을 설치하고 제어해야 하는 단점이 있고, 안정화 과정이 없기 때문에 카본 전극 내에서 리튬이 골고루 분산되지 못하여 전지특성, 특히 싸이클 수명 특성이 불량하게 나타나는 단점이 있다.The conventional method of prelithiation of a carbon electrode is a method of preparing an electrode after lithiating a carbon active material by a physicochemical method (K. Zaguib, R. Yazami and M. Broussely, 8th International Meeting on Lithium Batteries, 192 (1996). And electrochemically prelithiation of carbon electrodes (XY Song and K. Kinoshita, J. Electrochem. Soc., 143, L120 (1996), LL Olsen and R. Koksbang, US Pat. 5,595,837 (1997) There are risks such as fire and explosion because the physicochemical method must be carried out at high temperature. In contrast, the electrochemical method has an advantage that can be carried out at room temperature, but there are some difficulties in the process. Looking at the problems of the conventional electrochemical method for differentiation from the present invention has the disadvantage of having to install and control the power supply by adjusting the lithiation reaction rate by adjusting the current using the power supply, there is no stabilization process in the carbon electrode Lithium is not evenly dispersed in the battery characteristics, in particular the cycle life characteristics have a disadvantage that appears poor.

따라서, 본 발명은 상기와 같은 문제점을 감안하여 안출한 것으로, 온도와 전해질의 이온전도도를 변화시켜 카본 전극이 리튬화 되는 속도와 양을 조절하고, 카본 전극의 가역성을 향상시킨 리튬화된 카본 전극으로 리튬 이차전지를 제조하여, 용량증가와 싸이클 수명의 향상가능한 카본 전극의 전리튬화 방법과 이를 이용한 리튬 이차전지 제조방법을 제공하는 것을 그 목적으로 한다.Accordingly, the present invention has been made in view of the above problems, and the lithiated carbon electrode which changes the temperature and ion conductivity of the electrolyte to control the rate and amount of lithiation of the carbon electrode and improves the reversibility of the carbon electrode. The purpose of the present invention is to provide a lithium secondary battery, and to provide a lithium secondary battery manufacturing method using the same and a lithium secondary battery that can increase capacity and improve cycle life.

도 1은 본 발명에 의한 카본 전극의 전리튬화 방법-1을 나타낸 그래프이다.1 is a graph showing a method of prelithiation of a carbon electrode according to the present invention.

도 2는 본 발명에 의한 카본 전극의 전리튬화 방법-2를 나타낸 그래프이다.2 is a graph showing a method of prelithiation of a carbon electrode according to the present invention.

도 3은 본 발명에 의한 카본 전극으로 제조한 리튬 이차전지의 실시예 1과 비교예 1에 대한 충방전 특성을 나타낸 그래프이다.3 is a graph showing charge and discharge characteristics of Example 1 and Comparative Example 1 of a lithium secondary battery manufactured by a carbon electrode according to the present invention.

도 4는 본 발명에 의한 카본 전극으로 제조한 리튬 이차전지와 비교예 1의 전극용량 및 수명 시험결과를 나타낸 그래프이다.4 is a graph showing the electrode capacity and the life test results of the lithium secondary battery manufactured by the carbon electrode according to the present invention and Comparative Example 1.

본 발명에서는 카본 전극의 전리튬화 방법과 이를 이용한 리튬 이차전지 제조방법에 있어서, 카본 전극과 리튬 금속을 저항으로 연결하거나 직접 접촉시킨 상태에서 온도와 전해질의 이온전도도를 변화시켜 카본 전극이 리튬화되는 반응속도를 일정하게 조절하고, 또한 리튬화 후 일정 온도 하에서 일정 시간동안 안정화시킴으로써 리튬이 카본 전극내 골고루 분산되도록 함으로써 전지의 용량 및 싸이클 수명을 대폭 향상시켰다.In the present invention, in the method of prelithiation of a carbon electrode and a method of manufacturing a lithium secondary battery using the same, the carbon electrode is lithiated by changing the temperature and the ion conductivity of the electrolyte in a state in which the carbon electrode and the lithium metal are connected or connected in direct contact with each other. By controlling the reaction rate to be constant and stabilizing for a certain period of time after lithiation, lithium is evenly dispersed in the carbon electrode, thereby greatly improving the battery capacity and cycle life.

이하에서는 첨부도면에 의거하여 본 발명을 보다 상세하게 설명하고자 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 의한 카본 전극의 전리튬화 방법은 크게 두가지로 나눌 수 있는데, 첫 번째는 도 1과 같이 저항으로 조절하여 리튬화 시키고 안정화시키는 방법과, 둘째로는 도 2와 같이 직접 접촉시켜서 리튬화 하고 안정화시키는 방법이 있다. 우선 도 1의 저항으로 하는 방법을 구체적으로 살펴보면 초기에는 1∼5kΩ/g(carbon) 정도의 고저항체를 연결하여 리튬화되는 속도를 느리게 함으로써 카본 전극 표면에 안정한 부동태 피막을 형성하게 하고, 그 후에 50∼500Ω/g(carbon) 정도의 저저항체를 연결하여 반응속도를 빠르게 함으로써 카본격자 사이로 리튬이온이 삽입되도록 하는 것이다. 특히 초기의 피막형성 반응시에는 온도를 낮게 하면 부동태 피막을 더욱 치밀하게 할 수 있는 장점이 있다. 리튬화 반응 후에는 연결을 차단한 상태로 30∼100℃의 온도에서 하루 정도 안정화시켜 리튬화가 전극 활물질에 골고루 이루어지도록 한다. 리튬 금속은 접착력 및 가공성이 우수하므로 압연 롤러 상에 압착하여 피복시켜 리튬 전극으로 사용하였으며, 그 위에 분리막을 감싸주어 이 분리막이 카본 전극과 리튬 전극 사이의 단락을 방지하고 유기용매 전해질을 함침하게하여 전류가 흐르도록 하였다. 도 2의 직접 접촉시켜 리튬화 하는 방법은 카본 전극과 리튬 금속을 직접 접촉시키는 방법으로 단순히 접촉만 시키면 초기에 리튬화 속도가 빠르게 일어나고, 시간 경과에 따라서 점차적으로 리튬화 속도가 감소한다. 그러나 초기에 리튬화 속도가 빠르면 부동태 피막형성 반응과 카본 격자 안으로의 리튬 삽입반응이 동시에 일어나기 때문에 카본 구조의 파괴가 일어나게 된다. 따라서 본 발명에서는 초기에 안정한 부동태 피막형성이 이루어지고 나중에 리튬 삽입반응이 잘 이루어지도록 적절한 온도와 전해질의 이온전도도를 조절하였다. 구체적으로 설명하면 1단계에서는 저온(-10∼15℃)과 이온전도도가 낮은 전해질(∼10-3S/cm) 하에서 리튬화 반응을 실시하여 리튬화 반응이 서서히 일어나도록하여 부동태 피막이 잘 형성되도록 하고 2 단계에서는 상온과 이온전도도가 높은 전해질(∼10-2S/cm) 하에서 리튬화 반응을 시켜 카본격자 내로 리튬이 삽입되도록 하였다. 리튬화 반응 후에는 리튬 금속을 떼어내고 30∼100℃의 온도에서 12∼36 시간 사이의 일정시간 하에서 안정화시켜 리튬화가 전극 활물질에 골고루 이루어지도록 하였다.The method of prelithiation of a carbon electrode according to the present invention can be broadly divided into two methods. First, a method of controlling lithium by adjusting the resistance as shown in FIG. 1 and stabilizing it, and second, by direct contact as shown in FIG. There is a way to stabilize. First, the method of using the resistor of FIG. 1 will be described in detail. Initially, by connecting a high resistor of about 1 to 5 kΩ / g (carbon) to slow the lithiation rate, a stable passivation film may be formed on the surface of the carbon electrode. By connecting a low-resistance of about 50 ~ 500Ω / g (carbon) to increase the reaction rate is to insert lithium ions between the carbon grid. In particular, during the initial film formation reaction, lowering the temperature has the advantage of making the passivation film more dense. After the lithiation reaction is stabilized for about one day at a temperature of 30 ~ 100 ℃ in a state in which the connection is blocked so that the lithiation is evenly made on the electrode active material. Since lithium metal has excellent adhesion and workability, it is compressed and coated on a rolling roller to be used as a lithium electrode. The separator is wrapped thereon to prevent short circuit between the carbon electrode and the lithium electrode and to impregnate the organic solvent electrolyte. An electric current was made to flow. The method of lithiation by direct contact of FIG. 2 is a method of directly contacting a carbon electrode and a lithium metal. If only the contact is performed, the lithiation rate is initially increased, and the lithiation rate gradually decreases with time. However, if the lithiation rate is high initially, the passivation film formation reaction and the lithium insertion reaction into the carbon lattice simultaneously occur, resulting in the destruction of the carbon structure. Therefore, in the present invention, a stable passivation film is formed at an initial stage, and a proper temperature and ionic conductivity of the electrolyte are controlled so that a lithium insertion reaction is performed well later. Specifically, in the first step, lithiation reaction is performed under low temperature (-10-15 ° C.) and low ion conductivity electrolyte (˜10 -3 S / cm) so that lithiation reaction occurs gradually so that the passivation film is well formed. In step 2, lithium was reacted under an electrolyte having high temperature and ion conductivity (˜10 −2 S / cm) to allow lithium to be inserted into the carbon grid. After the lithiation reaction, the lithium metal was removed and stabilized at a temperature of 30 to 100 ° C. for 12 to 36 hours to allow lithiation to be uniformly applied to the electrode active material.

다음은 본 발명의 제조방법을 사용하여 카본 전극 및 리튬 이차전지를 제조하고 성능시험을 실시한 실시예 및 비교예로써, 이에 의하여 본 발명을 보다 명확하게 이해할 수 있을 것이다.The following are examples and comparative examples in which a carbon electrode and a lithium secondary battery were manufactured using the manufacturing method of the present invention and performance tests were performed, whereby the present invention may be more clearly understood.

비교예에 대한 바람직한 실시예Preferred Example for Comparative Example

실시예 1Example 1

카본 음극은 Gr. 6g, AB 0.3g, PVdF 0.4g의 조성을 적당량의 NMP 및 아세톤에 혼합한 후 적당한 점도가 얻어졌을 때 구리박판 위에 캐스팅하여 건조시킨 후 압연하여 전극을 얻는다. 도 1과 같이 이 전극의 양쪽에 분리막을 대고 그 바깥쪽에 리튬 금속을 댄 다음 1M LiPF6가 용해된 EC-DEC 용액을 적신 후 2.5kΩ/g(carbon) 정도의 고저항체를 연결하여 2시간 정도 리튬화 시킨다. 그 후에 저항체를 250Ω/g(carbon) 정도의 저저항체로 교체 연결하여 3시간 정도 리튬화 시킨다. 리튬화된 카본전극을 50℃에서 하루정도 방치하여 안정화시킨다. LiCoO2양극은 LiCoO25.7g, AB 0.6g, PVdF 0.4g의 조성을 적당량의 NMP 및 아세톤에 혼합한 후 적당한 점도가 얻어졌을 때 알루미늄 박판 위에 캐스팅하여 건조시킨 후 압연하여 전극을 얻는다. 리튬 이차전지는 리튬화된 카본 음극, PP 분리막, LiCoO2양극을 적층하여 구성하고 1M LiPF6가 용해된 EC-DEC 용액을 주입한 후 충방전율 C/3로 양극을 기준으로 한 전극용량 및 싸이클 수명을 조사하였다.The carbon cathode is Gr. 6g, 0.3g of AB, 0.4g of PVdF are mixed with an appropriate amount of NMP and acetone, and then cast on a copper foil, dried and rolled to obtain an electrode when a suitable viscosity is obtained. As shown in FIG. 1, a separator was placed on both sides of the electrode, and lithium metal was applied to the outside thereof. Then, a 1M LiPF 6 -dissolved EC-DEC solution was wetted, and a high resistance of about 2.5 kΩ / g (carbon) was connected. Lithiate. After that, the resistor is replaced with a low resistor of 250Ω / g (carbon) and lithiated for about 3 hours. The lithiated carbon electrode is left to stabilize at 50 ° C. for one day. The LiCoO 2 positive electrode is mixed with a composition of 5.7 g of LiCoO 2 , 0.6 g of AB, and 0.4 g of PVdF in an appropriate amount of NMP and acetone, and then cast on an aluminum sheet, dried, and rolled to obtain an electrode when an appropriate viscosity is obtained. Lithium secondary battery is composed by stacking lithiated carbon anode, PP separator and LiCoO 2 positive electrode, injecting EC-DEC solution in which 1M LiPF 6 is dissolved, and then charging / discharging rate C / 3 based on positive electrode capacity and cycle. The lifetime was investigated.

비교예 1Comparative Example 1

카본 음극은 Gr. 6g, AB 0.3g, PVdF 0.4g의 조성을 적당량의 NMP 및 아세톤에 혼합한 후 적당한 점도가 얻어졌을 때 구리박판 위에 캐스팅하여 건조시킨 후 압연하여 전극을 얻는다. LiCoO2양극은 LiCoO25.7g, AB 0.6g, PVdF 0.4g의 조성을 적당량의 NMP 및 아세톤에 혼합한 후 적당한 점도가 얻어졌을 때 알루미늄 박판 위에 캐스팅하여 건조시킨 후 압연하여 전극을 얻는다. 리튬 이차전지는 카본 음극, PP 분리막, LiCoO2양극을 적층하여 구성하고 1M LiPF6가 용해된 EC-DEC 용액을 주입한 후 층방전율 C/3로 양극을 기준으로 한 전극용량 및 싸이클 수명을 조사하였다.The carbon cathode is Gr. 6g, 0.3g of AB, 0.4g of PVdF are mixed with an appropriate amount of NMP and acetone, and then cast on a copper foil, dried and rolled to obtain an electrode when a suitable viscosity is obtained. The LiCoO 2 positive electrode is mixed with a composition of 5.7 g of LiCoO 2 , 0.6 g of AB, and 0.4 g of PVdF in an appropriate amount of NMP and acetone, and then cast on an aluminum sheet, dried, and rolled to obtain an electrode when an appropriate viscosity is obtained. Lithium secondary battery is composed by stacking carbon negative electrode, PP separator, LiCoO 2 positive electrode and injecting EC-DEC solution in which 1M LiPF 6 is dissolved. Investigate electrode capacity and cycle life based on positive electrode with layer discharge rate C / 3. It was.

실시예 2Example 2

카본 음극은 Gr. 6g, AB 0.3g, PVdF 0.4g의 조성을 적당량의 NMP 및 아세톤에 혼합한 후 적당한 점도가 얻어졌을 때 구리박판 위에 캐스팅하여 건조시킨 후 압연하여 전극을 얻는다. 도 2와 같이 이 전극의 양쪽에 리튬 금속을 댄 후 분위기 온도를 0℃로 하고 1M LiPF6가 용해된 EC-DEC 용액을 적셔 2시간 정도 리튬화 시킨다. 그 후에 분위기 온도를 25℃로하여 3시간 정도 리튬화 시킨다. 리튬화된 카본전극을 50℃에서 하루정도 방치하여 안정화시킨다. LiCoO2양극은 LiCoO25.7g, AB 0.6g, PVdF 0.4g의 조성을 적당한 NMP 및 아세톤에 혼합한 후 적당한 점도가 얻어졌을 때 알루미늄 박판 위에 캐스팅하여 건조시킨 후 압연하여 전극을 얻는다. 리튬 이차전지는 리튬화된 카본 음극, PP 분리막, LiCoO2양극을 적층하여 구성하고 1M LiPF6가 용해된 EC-DEC 용액을 주입한 후 충방전율 C/3로 양극을 기준으로 한 전극용량 및 싸이클 수명을 조사하였다.The carbon cathode is Gr. 6g, 0.3g of AB, 0.4g of PVdF are mixed with an appropriate amount of NMP and acetone, and then cast on a copper foil, dried and rolled to obtain an electrode when a suitable viscosity is obtained. As shown in FIG. 2, lithium metal was placed on both sides of the electrode, and the ambient temperature was 0 ° C., followed by soaking the EC-DEC solution in which 1M LiPF 6 was dissolved. Thereafter, the mixture is lithiated for about 3 hours at an ambient temperature of 25 ° C. The lithiated carbon electrode is left to stabilize at 50 ° C. for one day. The LiCoO 2 positive electrode is mixed with a composition of 5.7 g of LiCoO 2 , 0.6 g of AB, and 0.4 g of PVdF to a suitable NMP and acetone, and then cast on an aluminum sheet, dried, and rolled to obtain an electrode when a suitable viscosity is obtained. Lithium secondary battery is composed by stacking lithiated carbon anode, PP separator and LiCoO 2 positive electrode, injecting EC-DEC solution in which 1M LiPF 6 is dissolved, and then charging / discharging rate C / 3 based on positive electrode capacity and cycle. The lifetime was investigated.

실시예 3Example 3

카본 음극은 Gr. 6g, AB 0.3g, PVdF 0.4g의 조성을 적당량의 NMP 및 아세톤에 혼합한 후 적당한 점도가 얻어졌을 때 구리박판 위에 캐스팅하여 건조시킨 후 압연하여 전극을 얻는다. 도 2와 같이 이 전극의 양쪽에 리튬 금속을 댄 후 분위기 온도를 10℃로 하고 0.1M LiPF6가 용해된 EC-DEC 용액을 적셔 2시간 정도 리튬화 시킨다. 그 후에 분위기 온도를 25℃로하여 1M LiPF6가 용해된 EC-DEC 용액을 추가로 주입한 후 3시간 정도 리튬화 시킨다. 리튬화된 카본 전극을 50℃에서 하루정도 방치하여 안정화 시킨다. LiCoO2양극은 LiCoO25.7g, AB 0.6g, PVdF 0.4g의 조성을 적당량의 NMP 및 아세톤에 혼합한 후 적당한 점도가 얻어졌을 때 알루미늄 박판 위에 캐스팅하여 건조시킨 후 압연하여 전극을 얻는다. 리튬 이차전지는 리튬화된 카본 음극, PP 분리막, LiCoO2양극을 적층하여 구성하고 1M LiPF6가 용해된 EC-DEC 용액을 주입한 후 충방전율 C/3로 양극을 기준으로 한 전극용량 및 싸이클 수명을 조사하였다.The carbon cathode is Gr. 6g, 0.3g of AB, 0.4g of PVdF are mixed with an appropriate amount of NMP and acetone, and then cast on a copper foil, dried and rolled to obtain an electrode when a suitable viscosity is obtained. As shown in FIG. 2, lithium metal was placed on both sides of the electrode, and the ambient temperature was 10 ° C., and the resultant solution was lithiated for 2 hours with an EC-DEC solution in which 0.1M LiPF 6 was dissolved. Thereafter, the mixture was further infused with an EC-DEC solution in which 1M LiPF 6 was dissolved at an atmospheric temperature of 25 ° C. and then lithiated for about 3 hours. The lithiated carbon electrode is left to stabilize at 50 ° C. for one day. The LiCoO 2 positive electrode is mixed with a composition of 5.7 g of LiCoO 2 , 0.6 g of AB, and 0.4 g of PVdF in an appropriate amount of NMP and acetone, and then cast on an aluminum sheet, dried, and rolled to obtain an electrode when an appropriate viscosity is obtained. Lithium secondary battery is composed by stacking lithiated carbon anode, PP separator and LiCoO 2 positive electrode, injecting EC-DEC solution in which 1M LiPF 6 is dissolved, and then charging / discharging rate C / 3 based on positive electrode capacity and cycle. The lifetime was investigated.

상기의 방법대로 제조한 리튬 이차전지(실시예 1, 비교예 1)의 충방전 특성을 조사한 결과 도 3과 같이 나타났는데, 본 발명의 전지는 초기의 비가역 반응이 나타나지 않고 충방전 효율이 거의 100%이었으며, 전극용량도 크게 나타났다. 이에 반하여 기존의 방법인 비교예 1은 비가역 반응이 나타나서 층방전 효율과 전극용량이 낮게 나타났다. 도 4는 상기의 방법대로 제조한 리튬 이차전지들의 전극용량(LiCoO2활물질 기준) 및 싸이클 특성을 나타낸 것으로 본 발명의 방법으로 제조한 전지들은 전극용량 및 싸이클 수명 특성이 우수하게 나타났으나, 비교예 1의 방법으로 제조한 전지는 전극용량 및 싸이클 수명 특성이 다소 나쁘게 나타났다.The charge and discharge characteristics of the lithium secondary battery (Example 1, Comparative Example 1) prepared according to the above method was as shown in Figure 3, the battery of the present invention does not show an initial irreversible reaction, the charge and discharge efficiency is almost 100 %, The electrode capacity was also large. In contrast, Comparative Example 1, a conventional method, showed an irreversible reaction, resulting in low layer discharge efficiency and electrode capacity. 4 shows the electrode capacity (based on LiCoO 2 active material) and the cycle characteristics of the lithium secondary batteries manufactured according to the above method, the batteries produced by the method of the present invention showed excellent electrode capacity and cycle life characteristics, but the comparison The battery prepared by the method of Example 1 showed a slightly poor electrode capacity and cycle life characteristics.

본 발명에 따라 카본 전극과 리튬 금속을 저항으로 연결하거나 직접 접촉시킨 상태에서 온도와 전해질의 이온전도도를 변화시켜 카본 전극이 리튬화되는 반응속도를 일정하게 조절하고, 또한 리튬화 후 일정 온도 하에서 일정 시간동안 안정화시킴으로써 리튬이 카본 전극내 골고루 분산되도록 함으로써 전지의 용량 및 싸이클 수명을 대폭 향상시킬 수 있다.According to the present invention, the reaction rate at which the carbon electrode is lithiated is constantly controlled by changing the temperature and the ionic conductivity of the electrolyte in a state in which the carbon electrode and the lithium metal are connected with resistance or in direct contact with each other. Stabilization over time allows lithium to be evenly dispersed in the carbon electrode, thereby significantly improving battery capacity and cycle life.

Claims (8)

카본 전극과 리튬 금속을 저항으로 연결하거나 직접 접촉시킨 상태에서 온도와 전해질의 이온 전도도를 변화시켜서 카본 전극을 리튬화시키고, 리튬화된 카본 전극을 일정온도에서 일정시간 동안 안정화시킴으로써 카본 전극 표면 상에 안정한 피막을 형성하여 충방전시 가역성을 향상시키는 것을 특징으로 하는 리튬이차전지용 카본 전극의 전리튬화 방법.On the surface of the carbon electrode, the carbon electrode is lithiated by changing the temperature and the ionic conductivity of the electrolyte while the carbon electrode and the lithium metal are connected by resistance or in direct contact with each other, and the lithiated carbon electrode is stabilized at a constant temperature for a predetermined time. A method of prelithiation of a carbon electrode for a lithium secondary battery, characterized by forming a stable film to improve reversibility during charging and discharging. 제 1 항에 있어서, 상기 저항으로 연결하는 전리튬화는 1단계에서는 1∼5kΩ/g(carbon)의 고저항체를 연결하여 실시하고, 2단계에서는 50∼500Ω/g(carbon) 의 저저항체를 연결하여 실시하는 것을 특징으로 하는 카본 전극의 전리튬화 방법.The method of claim 1, wherein the prelithiation connected by the resistor is performed by connecting a high resistance of 1 to 5 kΩ / g (carbon) in the first step, and a low resistance of 50 to 500 Ω / g (carbon) in the second step. A method of prelithiation of a carbon electrode, characterized in that the connection is carried out. 제 1 항에 있어서, 상기 직접 접촉시킨 전리튬화는 1 단계에서는 -10∼15℃의 저온, 그리고/혹은 ∼10-3 S/cm 의 저이온전도도 전해질 하에서 실시하고, 2단계에서는 상온과 ∼10-2 S/cm 의 리튬이온 전지용 전해질 하에서 실시하는 것을 특징으로 하는 카본 전극의 전리튬화 방법.The method of claim 1, wherein the direct contact lithiation is carried out under a low temperature of -10 to 15 ° C and / or a low ion conductivity of -10-3 S / cm in the first step, and in the second step at room temperature and- A method of prelithiation of a carbon electrode, which is carried out under a 10-2 S / cm electrolyte for lithium ion batteries. 제 1 항에 있어서, 상기 안정화는 30∼100℃ 사이의 일정 온도와 12∼36시간 사이의 일정시간 하에서 실시하는 것을 특징으로 하는 카본 전극의 전리튬화 방법.The method of claim 1, wherein the stabilization is performed under a constant temperature between 30 and 100 ° C and a constant time between 12 and 36 hours. 제 1 항에 있어서, 상기 리튬화를 두 단계로 실시하는데, 제 1 단계는 1∼5시간 실시하고, 제 2 단계는 2∼10시간 실시하는 것을 특징으로 하는 카본 전극의 전리튬화 방법.The method of claim 1, wherein the lithiation is carried out in two stages, wherein the first stage is carried out for 1 to 5 hours and the second stage is carried out for 2 to 10 hours. 제 1 항에 있어서, 상기 카본 전극은 흑연, 코크스, 하드카본 등의 활물질로 제조하고 이를 전리튬화 시키는 것을 특징으로 하는 카본 전극의 전리튬화 방법.The method of claim 1, wherein the carbon electrode is made of an active material such as graphite, coke, hard carbon, and the like to be prelithiated. 제 1 항 내지 제 6 항 중 어느 한 항에 따른 방법으로 제조되는 리튬이차전지용 카본 음극, 리튬을 탈삽입시킬 수 있는 물질을 양극활물질로 함유하는 양극 및 전해질을 포함하는 리튬이차전지.A lithium secondary battery comprising a carbon negative electrode for a lithium secondary battery manufactured by the method according to any one of claims 1 to 6, a positive electrode and an electrolyte containing a material capable of removing lithium as a positive electrode active material. 제 7 항에 있어서, 상기 리튬을 탈삽입시킬 수 있는 물질이 LiCoO2 또는 LiMn2O4인 것을 특징으로 하는 방법.8. The method of claim 7, wherein the material capable of intercalating lithium is LiCoO2 or LiMn2O4.
KR1019980019243A 1998-05-27 1998-05-27 Pre-lithiation method of carbon electrodes and its application to assembling lithium secondary batteries KR100291067B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980019243A KR100291067B1 (en) 1998-05-27 1998-05-27 Pre-lithiation method of carbon electrodes and its application to assembling lithium secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980019243A KR100291067B1 (en) 1998-05-27 1998-05-27 Pre-lithiation method of carbon electrodes and its application to assembling lithium secondary batteries

Publications (2)

Publication Number Publication Date
KR19990086308A KR19990086308A (en) 1999-12-15
KR100291067B1 true KR100291067B1 (en) 2001-06-01

Family

ID=37525961

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980019243A KR100291067B1 (en) 1998-05-27 1998-05-27 Pre-lithiation method of carbon electrodes and its application to assembling lithium secondary batteries

Country Status (1)

Country Link
KR (1) KR100291067B1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016482A1 (en) * 2013-07-30 2015-02-05 주식회사 엘지화학 Method for pre-lithiating anode electrode
KR20150014877A (en) * 2013-07-30 2015-02-09 주식회사 엘지화학 Pre-lithiation Method of Anode Electrodes
US9985326B2 (en) 2011-02-11 2018-05-29 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Method for manufacturing a lithiated metal-carbon composite electrode, lithiated metal-carbon composite electrode manufactured thereby, and electrochemical device including the electrode
KR20190017149A (en) 2017-08-10 2019-02-20 주식회사 엘지화학 Pre-lithiation Method of Anode Electrodes for secondary battery
WO2020149686A1 (en) 2019-01-18 2020-07-23 주식회사 엘지화학 Method for manufacturing secondary battery anode
WO2020153790A1 (en) 2019-01-25 2020-07-30 주식회사 엘지화학 Method for manufacturing anode for secondary battery
WO2020159263A1 (en) 2019-02-01 2020-08-06 주식회사 엘지화학 Method for manufacturing anode for secondary battery
CN111886722A (en) * 2019-01-31 2020-11-03 株式会社Lg化学 Method for prelithiating negative electrode of secondary battery
KR20200129908A (en) 2019-05-10 2020-11-18 주식회사 엘지화학 Method for manufacturing negative electrode
KR20200129907A (en) 2019-05-10 2020-11-18 주식회사 엘지화학 Method for manufacturing negative electrode
KR20200132432A (en) 2019-05-17 2020-11-25 주식회사 엘지화학 Apparatus for manufacturing negative electrode and method for manufacturing negative electrode
WO2021006629A1 (en) 2019-07-08 2021-01-14 주식회사 엘지화학 Method for manufacturing anode
KR20210095504A (en) 2020-01-23 2021-08-02 주식회사 엘지에너지솔루션 Method for manufacturing negative electrode
WO2021172857A1 (en) 2020-02-28 2021-09-02 주식회사 엘지에너지솔루션 Method for manufacturing secondary battery
WO2021194205A1 (en) 2020-03-27 2021-09-30 주식회사 엘지에너지솔루션 Method for manufacturing negative electrode
KR20210137291A (en) * 2020-05-07 2021-11-17 재단법인 포항산업과학연구원 Negative electrode for lithium secondary battery, method of preparing the saem, and lithium secondary battery using the same
KR20210142384A (en) 2020-05-18 2021-11-25 주식회사 엘지에너지솔루션 Method for manufacturing negative electrode
WO2021235818A1 (en) 2020-05-18 2021-11-25 주식회사 엘지에너지솔루션 Method for manufacturing secondary battery
KR20210143019A (en) 2020-05-19 2021-11-26 주식회사 엘지에너지솔루션 Method for manufacturing secondary battery
KR20220025321A (en) 2020-08-24 2022-03-03 주식회사 엘지에너지솔루션 Method of pre-lithiation and method of manufacturing a secondary battery including the same
KR20220055222A (en) 2020-10-26 2022-05-03 주식회사 엘지에너지솔루션 Method for manufacturing negative electrode
US11329312B2 (en) 2017-04-03 2022-05-10 Lg Energy Solution, Ltd. Pre-lithiation apparatus, method of producing negative electrode unit and negative electrode unit

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108741A2 (en) * 2011-02-11 2012-08-16 한양대학교 산학협력단 Method for manufacturing a lithiated metal/carbon composite electrode, lithiated metal/carbon composite electrode manufactured by the method, and electrochemical device comprising the electrode
KR101483332B1 (en) * 2011-04-19 2015-01-15 주식회사 엘지화학 Electrode assembly and electrochemical device comprising the same
KR101783447B1 (en) * 2015-02-02 2017-10-23 주식회사 엘지화학 Secondary Battery Comprising Anode with High Capacity and Manufacturing Method thereof
KR102265214B1 (en) 2017-05-19 2021-06-16 (주)엘지에너지솔루션 Pre-lithiation Method of Silicon oxide Anode Electrodes for secondary battery
US11799085B2 (en) 2018-09-12 2023-10-24 Lg Energy Solution, Ltd. Method of manufacturing negative electrode for lithium secondary battery and lithium secondary battery
KR20200067434A (en) 2018-12-04 2020-06-12 주식회사 엘지화학 Method for preparing negative electrode of lithium secondary battery
KR20210057604A (en) * 2019-11-12 2021-05-21 주식회사 엘지에너지솔루션 Pre-lithiated anode electrodes, and secondary battery comprising the same
WO2021167353A1 (en) * 2020-02-17 2021-08-26 주식회사 엘지에너지솔루션 Method for pre-lithiation of negative electrode, pre-lithiated negative electrode, and lithium secondary battery comprising same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950010159A (en) * 1993-09-30 1995-04-26 고사이 아키오 Lithium secondary battery
KR970031048A (en) * 1995-11-17 1997-06-26 서두칠 Lithium / Manganese Battery Manufacturing Method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950010159A (en) * 1993-09-30 1995-04-26 고사이 아키오 Lithium secondary battery
KR970031048A (en) * 1995-11-17 1997-06-26 서두칠 Lithium / Manganese Battery Manufacturing Method

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9985326B2 (en) 2011-02-11 2018-05-29 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Method for manufacturing a lithiated metal-carbon composite electrode, lithiated metal-carbon composite electrode manufactured thereby, and electrochemical device including the electrode
WO2015016482A1 (en) * 2013-07-30 2015-02-05 주식회사 엘지화학 Method for pre-lithiating anode electrode
KR20150014877A (en) * 2013-07-30 2015-02-09 주식회사 엘지화학 Pre-lithiation Method of Anode Electrodes
CN105190958A (en) * 2013-07-30 2015-12-23 株式会社Lg化学 Method for pre-lithiating anode electrode
KR101594784B1 (en) * 2013-07-30 2016-02-17 주식회사 엘지화학 Pre-lithiation Method of Anode Electrodes
JP2016522547A (en) * 2013-07-30 2016-07-28 エルジー・ケム・リミテッド Prelithiation method for negative electrode
KR101820463B1 (en) * 2013-07-30 2018-01-19 주식회사 엘지화학 Pre-lithiation Method of Anode Electrodes
US11329312B2 (en) 2017-04-03 2022-05-10 Lg Energy Solution, Ltd. Pre-lithiation apparatus, method of producing negative electrode unit and negative electrode unit
CN110178252A (en) * 2017-08-10 2019-08-27 株式会社Lg化学 The prelithiation method of cathode for secondary cell
CN110178252B (en) * 2017-08-10 2022-04-15 株式会社Lg化学 Prelithiation method for negative electrode of secondary battery
KR20190017149A (en) 2017-08-10 2019-02-20 주식회사 엘지화학 Pre-lithiation Method of Anode Electrodes for secondary battery
US11183683B2 (en) 2017-08-10 2021-11-23 Lg Chem, Ltd. Pre-lithiation method of negative electrode for secondary battery
KR20200089813A (en) 2019-01-18 2020-07-28 주식회사 엘지화학 Method for manufacturing negative electrode for secondary battery
WO2020149686A1 (en) 2019-01-18 2020-07-23 주식회사 엘지화학 Method for manufacturing secondary battery anode
US12015143B2 (en) 2019-01-18 2024-06-18 Lg Energy Solution, Ltd. Method of manufacturing negative electrode for secondary battery
WO2020153790A1 (en) 2019-01-25 2020-07-30 주식회사 엘지화학 Method for manufacturing anode for secondary battery
KR20200092643A (en) 2019-01-25 2020-08-04 주식회사 엘지화학 Method for manufacturing negative electrode for secondary battery
US12068470B2 (en) 2019-01-25 2024-08-20 Lg Energy Solution, Ltd. Method of producing negative electrode for secondary battery
CN111886722A (en) * 2019-01-31 2020-11-03 株式会社Lg化学 Method for prelithiating negative electrode of secondary battery
CN111886722B (en) * 2019-01-31 2023-06-13 株式会社Lg新能源 Method for pre-lithiating negative electrode of secondary battery
US12021217B2 (en) 2019-02-01 2024-06-25 Lg Energy Solution, Ltd. Method of manufacturing negative electrode for secondary battery
WO2020159263A1 (en) 2019-02-01 2020-08-06 주식회사 엘지화학 Method for manufacturing anode for secondary battery
KR20200095713A (en) 2019-02-01 2020-08-11 주식회사 엘지화학 Method for manufacturing negative electrode for secondary battery
US12113194B2 (en) 2019-05-10 2024-10-08 Lg Energy Solution, Ltd. Method of producing negative electrode
WO2020231088A1 (en) 2019-05-10 2020-11-19 주식회사 엘지화학 Method for manufacturing anode
WO2020231087A1 (en) 2019-05-10 2020-11-19 주식회사 엘지화학 Method for manufacturing anode
KR20200129907A (en) 2019-05-10 2020-11-18 주식회사 엘지화학 Method for manufacturing negative electrode
KR20200129908A (en) 2019-05-10 2020-11-18 주식회사 엘지화학 Method for manufacturing negative electrode
US12009502B2 (en) 2019-05-10 2024-06-11 Lg Energy Solution, Ltd. Method of producing negative electrode
US12113195B2 (en) 2019-05-17 2024-10-08 Lg Energy Solution, Ltd. Device for producing negative electrode and method of producing negative electrode
WO2020235841A1 (en) 2019-05-17 2020-11-26 주식회사 엘지화학 Negative electrode manufacturing device and negative electrode manufacturing method
KR20200132432A (en) 2019-05-17 2020-11-25 주식회사 엘지화학 Apparatus for manufacturing negative electrode and method for manufacturing negative electrode
KR20210006103A (en) 2019-07-08 2021-01-18 주식회사 엘지화학 Method for manufacturing negative electrode
WO2021006629A1 (en) 2019-07-08 2021-01-14 주식회사 엘지화학 Method for manufacturing anode
KR20210095504A (en) 2020-01-23 2021-08-02 주식회사 엘지에너지솔루션 Method for manufacturing negative electrode
WO2021172857A1 (en) 2020-02-28 2021-09-02 주식회사 엘지에너지솔루션 Method for manufacturing secondary battery
KR20210109896A (en) 2020-02-28 2021-09-07 주식회사 엘지에너지솔루션 Method for manufacturing secondary battery
WO2021194205A1 (en) 2020-03-27 2021-09-30 주식회사 엘지에너지솔루션 Method for manufacturing negative electrode
KR20210120685A (en) 2020-03-27 2021-10-07 주식회사 엘지에너지솔루션 Method for manufacturing negative electrode
KR102560652B1 (en) * 2020-05-07 2023-07-28 재단법인 포항산업과학연구원 Negative electrode for lithium secondary battery, method of preparing the saem, and lithium secondary battery using the same
KR20210137291A (en) * 2020-05-07 2021-11-17 재단법인 포항산업과학연구원 Negative electrode for lithium secondary battery, method of preparing the saem, and lithium secondary battery using the same
WO2021235816A1 (en) 2020-05-18 2021-11-25 주식회사 엘지에너지솔루션 Method for manufacturing negative electrode
KR20210142384A (en) 2020-05-18 2021-11-25 주식회사 엘지에너지솔루션 Method for manufacturing negative electrode
WO2021235818A1 (en) 2020-05-18 2021-11-25 주식회사 엘지에너지솔루션 Method for manufacturing secondary battery
KR20210142485A (en) 2020-05-18 2021-11-25 주식회사 엘지에너지솔루션 Method for preparing secondary battery
KR20210143019A (en) 2020-05-19 2021-11-26 주식회사 엘지에너지솔루션 Method for manufacturing secondary battery
KR20220025321A (en) 2020-08-24 2022-03-03 주식회사 엘지에너지솔루션 Method of pre-lithiation and method of manufacturing a secondary battery including the same
WO2022092740A1 (en) 2020-10-26 2022-05-05 주식회사 엘지에너지솔루션 Method for manufacturing anode
KR20220055222A (en) 2020-10-26 2022-05-03 주식회사 엘지에너지솔루션 Method for manufacturing negative electrode

Also Published As

Publication number Publication date
KR19990086308A (en) 1999-12-15

Similar Documents

Publication Publication Date Title
KR100291067B1 (en) Pre-lithiation method of carbon electrodes and its application to assembling lithium secondary batteries
US9985326B2 (en) Method for manufacturing a lithiated metal-carbon composite electrode, lithiated metal-carbon composite electrode manufactured thereby, and electrochemical device including the electrode
CN102694158A (en) Silicon-containing lithium cathode, preparation method thereof and lithium sulfur battery with silicon-containing lithium cathode
KR20160036482A (en) Lithium-ion battery
JP2008503865A (en) Negative electrode for lithium ion battery
US6146791A (en) Hydrogenated fullerenes as an additive to carbon anode for rechargeable lithium-ion batteries
US6949314B1 (en) Carbon-carbon composite anode for secondary non-aqueous electrochemical cells
US20180316044A1 (en) Method for producing a sodium-ion battery
EP4071875A1 (en) Solid-state battery, battery module, battery pack, and related device thereof
CN112635917A (en) High-strength functional diaphragm for alkali metal-based battery, preparation method of high-strength functional diaphragm and alkali metal-based battery
KR100535290B1 (en) Gel Electrolyte Secondary Cell
US6818354B2 (en) Nonaqueous electrolyte secondary cell
KR100373835B1 (en) A Lithium-Sulfur Secondary Battery
CN114006033A (en) Solid electrolyte surface salt-coated polymer interface protective layer and preparation method thereof
JPH11120993A (en) Nonaqueous electrolyte secondary battery
CA2477065C (en) Electrochemical cell with carbonaceous material and molybdenum carbide as anode
Doh et al. A study on the irreversible capacity of initial doping/undoping of lithium into carbon
KR100432669B1 (en) Negative active material for rechargeable lithium batteries and preparing for same
CN113422002A (en) Metallic lithium cathode, preparation method of metallic lithium cathode and application of metallic lithium cathode
KR100398468B1 (en) Sulfur positive electrode for lithium battery and it's fabrication method
KR100346552B1 (en) A Lithium Sulfur secondary batteries
KR100370289B1 (en) Lithium-Sulfur batteries
JP2000058065A (en) Nonaqueous electrolyte secondary battery
CN118553910A (en) Negative electrode slurry, negative electrode plate, lithium ion battery and electric equipment
KR20230068765A (en) Electrode for secondary battery including electroconductive flame retardant layer and secondary battery including same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080229

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee