KR100298129B1 - PROCESS FOR THE PREPARATION OF (Ba, Sr)TiO3 THIN LAYER - Google Patents
PROCESS FOR THE PREPARATION OF (Ba, Sr)TiO3 THIN LAYER Download PDFInfo
- Publication number
- KR100298129B1 KR100298129B1 KR1019980052703A KR19980052703A KR100298129B1 KR 100298129 B1 KR100298129 B1 KR 100298129B1 KR 1019980052703 A KR1019980052703 A KR 1019980052703A KR 19980052703 A KR19980052703 A KR 19980052703A KR 100298129 B1 KR100298129 B1 KR 100298129B1
- Authority
- KR
- South Korea
- Prior art keywords
- formula
- compound
- thin film
- temperature
- precursor
- Prior art date
Links
- 229910052788 barium Inorganic materials 0.000 title claims abstract description 20
- 229910052712 strontium Inorganic materials 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims abstract description 16
- 229910010252 TiO3 Inorganic materials 0.000 title 1
- 239000010409 thin film Substances 0.000 claims abstract description 28
- 239000002243 precursor Substances 0.000 claims abstract description 26
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000002904 solvent Substances 0.000 claims abstract description 11
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 6
- 125000002524 organometallic group Chemical group 0.000 claims abstract description 5
- 150000003609 titanium compounds Chemical class 0.000 claims abstract description 4
- 150000001553 barium compounds Chemical class 0.000 claims abstract description 3
- 150000003438 strontium compounds Chemical class 0.000 claims abstract description 3
- 150000001875 compounds Chemical class 0.000 claims description 28
- 239000000758 substrate Substances 0.000 claims description 14
- 239000006200 vaporizer Substances 0.000 claims description 14
- 230000008016 vaporization Effects 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 230000001590 oxidative effect Effects 0.000 claims description 5
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- DEIVNMVWRDMSMJ-UHFFFAOYSA-N hydrogen peroxide;oxotitanium Chemical compound OO.[Ti]=O DEIVNMVWRDMSMJ-UHFFFAOYSA-N 0.000 claims 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 11
- 229910052799 carbon Inorganic materials 0.000 abstract description 11
- 230000002776 aggregation Effects 0.000 abstract description 7
- 238000005054 agglomeration Methods 0.000 abstract 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 239000010936 titanium Substances 0.000 description 7
- 238000004220 aggregation Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 230000009257 reactivity Effects 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 238000009834 vaporization Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000002744 anti-aggregatory effect Effects 0.000 description 1
- 229940043232 butyl acetate Drugs 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229940125782 compound 2 Drugs 0.000 description 1
- 229940126214 compound 3 Drugs 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- -1 methoxy ethoxy Chemical group 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/409—Oxides of the type ABO3 with A representing alkali, alkaline earth metal or lead and B representing a refractory metal, nickel, scandium or a lanthanide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F3/00—Compounds containing elements of Groups 2 or 12 of the Periodic Table
- C07F3/003—Compounds containing elements of Groups 2 or 12 of the Periodic Table without C-Metal linkages
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/28—Titanium compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
- C23C16/4481—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
- C23C16/4483—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material using a porous body
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S261/00—Gas and liquid contact apparatus
- Y10S261/65—Vaporizers
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
본 발명은 유기금속 화학 증착법을 이용한 (Ba, Sr)TiO3박막의 제조방법에 관한 것으로, 알콜 용매에 하기 화학식 1의 바륨 화합물, 화학식 2의 스트론튬 화합물및 화학식 3의 티탄 화합물을 용해시켜 얻은 용액을 전구체로 사용하는 것을 특징으로 하는 본 발명의 방법에 따르면 분자간의 뭉침현상이 없을 뿐만 아니라 탄소의 함량이 저하된 (Ba, Sr)TiO3형 박막을 수득할 수 있다.The present invention relates to a method for preparing a (Ba, Sr) TiO 3 thin film using an organometallic chemical vapor deposition method, a solution obtained by dissolving a barium compound of Formula 1, a strontium compound of Formula 2 and a titanium compound of Formula 3 in an alcohol solvent According to the method of the present invention, characterized in that the precursor is used to obtain a (Ba, Sr) TiO 3 type thin film having no agglomeration between molecules and having a reduced carbon content.
Description
본 발명은 유기금속 화학 증착법을 이용한 (Ba, Sr)TiO3박막의 제조방법에 관한 것으로, 전구체로서 특정의 Ba, Sr및 Ti화합물들을 이용함으로써 탄소의 함유량이 적은 알콜 용매를 사용해도 분자간 뭉침현상이 발생하지 않고, 최종 박막내의 탄소의 함량을 줄일 수 있는 (Ba, Sr)TiO3형 박막의 제조방법에 관한 것이다.The present invention relates to a method for preparing a (Ba, Sr) TiO 3 thin film using an organometallic chemical vapor deposition method, by using a specific Ba, Sr and Ti compounds as a precursor intermolecular aggregation even using an alcohol solvent with a low carbon content It does not occur, and relates to a method for producing a (Ba, Sr) TiO 3 type thin film which can reduce the content of carbon in the final thin film.
기존의 유기금속 화학 증착법에서는 전구체로서 Ba(tmhd)2, Sr(tmhd)2등을 사용하고, 여기에 배위가능한 분자를 첨가함으로써 분자간의 뭉침이 방지된 박막을 제조하였다(미국 특허 제 5,225,561 호 참조). 그러나, 이들 분자를 배위가능한 원자인 산소나 질소를 포함하는 용매에 녹일 경우, 용매가 분자의 뭉침을 방지하기 위해 첨가한 분자를 치환하여 이들의 분자 뭉침 방지 효과를 상실시키기 때문에, 알콜을 용매로 사용하는 것이 불가능하였다. 따라서, 부틸아세테이트(butylacetate)를 용매로 사용하여 왔는데, 이 경우 증착된 박막에 탄소가 다량 함유되는 문제가 있어왔다. 또한, 이 방법에서는 기화기(vaporizer)를 사용하여 반응물을 기체상태로 증기화시킬 때 분자간의 분리로 인해 기화기가 막히는 현상이 발생하여 대량 생산시 증착기구에 심각한 문제가 유발되었다.In conventional organometallic chemical vapor deposition, Ba (tmhd) 2 , Sr (tmhd) 2, and the like are used as precursors, and coordination molecules are added thereto to prepare thin films that prevent intermolecular aggregation (see US Patent No. 5,225,561). ). However, when these molecules are dissolved in a solvent containing oxygen or nitrogen, which is a coordinable atom, the solvent replaces the molecules added to prevent the aggregation of the molecules and thus loses their anti-aggregation effect. It was impossible to use. Therefore, butylacetate has been used as a solvent, in which case there has been a problem that a large amount of carbon is contained in the deposited thin film. In addition, in this method, vaporization of the reactants in a gaseous state using a vaporizer causes vaporization of the vaporizer due to intermolecular separation, which causes a serious problem in the deposition apparatus during mass production.
이에 본 발명자들은 증착된 박막내 탄소 함량을 줄일 수 있는 알콜을 용매로 사용하면서도 분자들간의 이상이 없는 (Ba, Sr)TiO3형 박막을 제조하는 방법을 개발하기 위해 계속 연구를 진행한 결과, 특정의 Ba, Sr및 Ti 화합물을 전구체로 사용함으로써 이를 해결할 수 있음을 발견하고 본 발명을 완성하였다.Therefore, the present inventors have continued to develop a method for producing a (Ba, Sr) TiO 3 type thin film having no abnormality between molecules while using alcohol as a solvent to reduce the carbon content in the deposited thin film. The present invention has been found to be solved by using certain Ba, Sr and Ti compounds as precursors.
본 발명의 목적은 박막내 탄소 함량이 적고, 분자간의 뭉침현상이 없는 (Ba, Sr)TiO3형 박막을 대량 제조할 수 있는 방법을 제공하는 것이다.An object of the present invention is to provide a method for mass production of (Ba, Sr) TiO 3 type thin film having low carbon content and no intermolecular aggregation.
도 1은 기화기(vaporizer)의 한 양태를 도식화한 것이고,1 is a schematic of one embodiment of a vaporizer,
도 2는 본 발명에 따른 전구체 용액과 알콜과의 반응을 나타낸 NMR 결과로서 (a)는 30℃에서의 반응성을, (b)는 60℃에서의 반응성을 나타낸 것이고,Figure 2 is a NMR result showing the reaction between the precursor solution and the alcohol according to the present invention (a) shows the reactivity at 30 ℃, (b) shows the reactivity at 60 ℃,
도 3는 Ba 및 Sr 화합물 용액의 기화기 온도에 따른 기화기 압력 변화를 나타낸 그래프이고,3 is a graph showing the vaporizer pressure change according to the vaporizer temperature of the Ba and Sr compound solution,
도 4은 본 발명에 따라 증착된 박막의 오제 전자 분광법(Auger Electron Spectroscopy) 분석에 따른 깊이 프로필을 나타낸 것이고,4 shows a depth profile according to Auger Electron Spectroscopy analysis of a thin film deposited according to the present invention.
도 5는 기판의 온도 변화에 따라 증착된 박막의 조성비를 나타낸 그래프이다.5 is a graph showing the composition ratio of the thin film deposited according to the temperature change of the substrate.
상기 목적을 달성하기 위해, 본 발명에서는 유기금속 화학 증착법을 이용하여 (Ba, Sr)TiO3형 박막을 제조하는데 있어서, 알콜 용매에 하기 화학식 1의 화합물, 화학식 2의 화합물및 화학식 3의 화합물을 용해시켜 얻은 용액을 전구체로 사용하는 것을 특징으로 하는 방법을 제공한다:In order to achieve the above object, in the present invention to prepare a (Ba, Sr) TiO 3 type thin film by using an organometallic chemical vapor deposition method, the compound of formula 1, the compound of formula 2 and the compound of formula 3 in the alcohol solvent Provided is a method characterized by using the solution obtained by dissolution as a precursor:
화학식 1Formula 1
화학식 2Formula 2
화학식 3Formula 3
이하 본 발명을 좀더 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명에 따른 (Ba, Sr)TiO3형 박막은, 상기 화학식 1의 화합물 (메톡시 에톡시 테트라메틸헵탄디오네이토 바륨; Ba(methd)2), 화학식 2의 화합물 (메톡시 에톡시 테트라메틸헵탄디오네이토 스트론튬; Sr(methd)2), 및 화학식 3의 화합물 (티타늄 메틸펜탄디옥시 테트라메틸헵탄디오네이토; Ti(tmhd)2(MPD))를 1-x:x:1+y(0≤x≤1, y≥0)의 몰비로 알콜 용매에 용해시킨 후, 이를 증기 상태로 운반하여 산화성 기체와 함께 기판과 접촉시킴으로써 간단히 제조될 수 있다.(Ba, Sr) TiO 3 type thin film according to the present invention, the compound of formula 1 (methoxy ethoxy tetramethylheptanedionate barium; Ba (methd) 2 ), the compound of formula 2 (methoxy ethoxy tetramethyl Heptanedioneto strontium; Sr (methd) 2 , and the compound of formula 3 (titanium methylpentanedioxy tetramethylheptanedionate; Ti (tmhd) 2 (MPD)) were added to 1-x: x: 1 + y (0). It can be prepared simply by dissolving in an alcohol solvent at a molar ratio of ≦ x ≦ 1, y ≧ 0) and then transporting it in a vapor state to contact the substrate with an oxidizing gas.
상기 기판으로는 당분야에서 통상적으로 사용되는 것은 모두 사용가능하다. 상기 전구체 화합물들과 알콜은 혼합시에 분자간 반응성이 없기 때문에 분자간 뭉침현상이 일어나지 않고 알콜의 탄소수가 적으므로 증착된 박막내 탄소 불순물의 함량을 감소시킬 수 있다.Any substrate commonly used in the art may be used as the substrate. Since the precursor compounds and the alcohol have no intermolecular reactivity during mixing, the intermolecular aggregation does not occur and the carbon number of the alcohol is low, thereby reducing the content of carbon impurities in the deposited thin film.
본 발명에 따르는 전구체 화합물의 기화는 200℃ 이상, 특히 240 내지 280℃의 온도에서 수행하는 것이 바람직하며, 240℃보다 낮은 경우에는 증기압이 낮아져 전구체의 기화가 일어나지 않고, 280℃보다 높은 경우에는 기화기의 압력이 상승하여 전구체의 분해가 일어날 수 있다. 예를 들면 도 1에 도식화된 다공성 금속 프릿(공극 0.4㎛)이 장착된 기화기를 사용하거나 통상의 방법에 따라 수행할 수 있다.The vaporization of the precursor compound according to the present invention is preferably carried out at a temperature of 200 ° C. or higher, particularly 240 to 280 ° C., and if it is lower than 240 ° C., the vapor pressure is lowered so that vaporization of the precursor does not occur. The pressure may increase and decomposition of the precursor may occur. For example, a vaporizer equipped with a porous metal frit (pore 0.4 μm) illustrated in FIG. 1 may be used or performed according to a conventional method.
전구체 용액의 기체는 운반기체로 아르곤(Ar)을 사용하여 기판이 있는 반응기까지 운반되는데, 운반기체의 온도를 기화기 온도와 유사하게 또는 더 높게 유지시킴으로써 기화기에서 반응기까지 분자의 고상화를 막을 수 있다.The gas in the precursor solution is transported to the reactor with the substrate using argon (Ar) as the carrier gas, which can prevent the solidification of molecules from the vaporizer to the reactor by keeping the temperature of the carrier gas at or near the vaporizer temperature. .
상기 산화성 기체로는 산소, N2O 또는 O3를 사용할 수 있고, 전구체 기체가 반응기로 유입되기 직전에 전구체 기체와 합쳐지게 하는 것이 바람직하며, 전구체 분자의 고상화를 막기 위해 산화기체를 가열하는 것이 바람직하다.As the oxidizing gas, oxygen, N 2 O or O 3 may be used, and the precursor gas is preferably combined with the precursor gas immediately before flowing into the reactor, and the oxidizing gas is heated to prevent solidification of the precursor molecules. It is preferable.
증착공정은 300 내지 650℃의 기판 온도 범위에서 수행할 수 있다. 화학증착시 기판의 온도가 300℃보다 낮은 경우에는 전구체가 분해되지 않아 박막 내에 많은 불순물, 특히 탄소가 잔존하게 되고, 650℃보다 높은 경우에는 더 이상의 증착효율의 증가가 관찰되지 않는다. 480℃ 이상의 온도에서는 화학식 1의 화합물, 화학식 2의 화합물및 화학식 3의 화합물을 1-x:x:1+y(0≤x≤1, y=0)의 몰비로 혼합하여 사용하는 것이 바람직하며, 특히 480℃ 미만의 온도에서는 화학식 3의 티탄 화합물의 사용량을 늘려야 목적하는 조성의 (Ba, Sr)TiO3박막을 얻을 수 있으므로, 화학식 1의 화합물, 화학식 2의 화합물및 화학식 3의 화합물을 1-x:x:1+y(0≤x≤1, y〉0)의 몰비로 혼합하여 사용하는 것이 바람직하다. 즉, 바륨, 스트론튬 및 티탄 전구체의 몰비는 박막 내에 유입되는 형태로부터 결정되는데, 480℃ 미만의 증착온도에서는 티탄이 잘 분해되지 않아 박막 내에 유입되기 어렵기 때문에 바륨 및 스트론튬보다 많은 양을 넣어주어야 한다.The deposition process may be performed in a substrate temperature range of 300 to 650 ℃. When the temperature of the substrate is lower than 300 ° C. during the chemical vapor deposition, the precursor does not decompose to leave many impurities, particularly carbon, in the thin film. When the temperature is higher than 650 ° C., no increase in deposition efficiency is observed. At a temperature of 480 ° C. or higher, it is preferable to use the compound of Formula 1, the compound of Formula 2, and the compound of Formula 3 in a molar ratio of 1-x: x: 1 + y (0 ≦ x ≦ 1, y = 0). In particular, at a temperature below 480 ° C., the amount of the titanium compound of formula 3 must be increased to obtain a (Ba, Sr) TiO 3 thin film having a desired composition. Thus, the compound of formula 1, compound 2 and compound 3 It is preferable to mix and use in the molar ratio of -x: x: 1 + y (0 <= x <= 1, y> 0). That is, the molar ratio of barium, strontium, and titanium precursors is determined from the type introduced into the thin film. At a deposition temperature of less than 480 ° C., titanium is hardly decomposed, and thus it is difficult to flow into the thin film. .
이하 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.
참 조 예 1Reference Example 1
알콜과 전구체 화합물의 혼합용액 제조시 안정성을 관찰하기 위해, 메탄올에 화학식 1의 바륨 화합물, 화학식 2의 스트론튬 화합물및 화학식 3의 티탄 화합물을 4:1:5 몰비로 첨가한 다음, 30℃ 및 60℃의 온도에서 각각 24 시간 동안 가열한 후 용매를 제거하고 NMR 분석을 수행하여 그 결과를 도 2에 나타내었다.In order to observe stability in preparing a mixed solution of an alcohol and a precursor compound, a barium compound of Formula 1, a strontium compound of Formula 2, and a titanium compound of Formula 3 were added in a 4: 1: 5 molar ratio to methanol, and then 30 ° C and 60 After heating at a temperature of 24 ° C. for 24 hours, the solvent was removed, and NMR analysis was performed. The results are shown in FIG. 2.
도 2에서 (a)는 30℃에서의 반응성을, (b)는 60℃에서의 반응성을 나타내며, 여기에서 보듯이, 알콜과 본 발명의 전구체 화합물들은 서로 반응성이 없음을 알 수 있다.In FIG. 2, (a) shows reactivity at 30 ° C., (b) shows reactivity at 60 ° C., and as shown here, it can be seen that the alcohol and the precursor compounds of the present invention are not reactive with each other.
참 조 예 2Reference Example 2
전구체 화합물 용액의 기화기 온도를 적정화하기 위해, 용액 유입전의 기화기의 압력을 1토르(torr)로 하고 Ba 및 Sr 전구체 화합물 각각의 메탄올 용액 200㎖를 도입한 후 기화기 온도를 350℃까지 상승시키면서 기화기의 압력 변화를 측정하였다.In order to optimize the vaporizer temperature of the precursor compound solution, the pressure of the vaporizer before the solution is introduced is 1 torr, and 200 ml of the methanol solution of each of the Ba and Sr precursor compounds are introduced, and the vaporizer temperature is raised to 350 ° C. Pressure change was measured.
그 결과를 도 3에 나타내었으며, 압력이 1 토르로 유지되는 부분은 잔여물이 없는 범위이다. 여기에서 보듯이, 기화기 온도가 200℃ 이상이면 증착이 가능하며 240 내지 280 ℃의 범위일 때 압력의 상승이 없어 바람직함을 알 수 있다.The results are shown in FIG. 3, where the pressure is maintained at 1 Torr in the range without residue. As shown here, vaporization temperature is 200 ℃ or more can be deposited and it can be seen that there is no increase in pressure in the range of 240 to 280 ℃ is preferable.
실 시 예 1Example 1
상기 화학식 1의 화합물, 화학식 2의 화합물 및 화학식 3의 화합물을 4:1:5의 비율로 용해시킨 메탄올 용액 200 ㎖를 도 1에 도식화한 기화기에 투입한 다음 기화기의 온도를 240℃로 상승시켰다.200 ml of a methanol solution in which the compound of Formula 1, the compound of Formula 2 and Formula 3 were dissolved at a ratio of 4: 1: 5 was added to the vaporizer illustrated in FIG. 1, and the temperature of the vaporizer was raised to 240 ° C. .
기화된 전구체를 280℃로 유지시키면서 반응기에 유입시켰다. 이 때, 운반기체로는 240℃로 유지된 아르곤(Ar)을 100sccm으로 유입하고, 산화제인 산소를 500sccm으로 반응기에 유입하였다. 반응기의 압력은 1토르로 하고, 기판의 온도는 500℃로하여 (Ba, Sr)TiO3형 박막을 증착하였다.The vaporized precursor was introduced into the reactor while maintaining at 280 ° C. At this time, argon (Ar) maintained at 240 ° C. was introduced at 100 sccm, and oxygen, which is an oxidant, was introduced at 500 sccm at the carrier gas. The pressure of the reactor was 1 Torr and the temperature of the substrate was 500 ° C. to deposit a (Ba, Sr) TiO 3 thin film.
도 4는 이상과 같이하여 증착된 박막의 오제 전자 분광법(Auger Electron Spectroscopy) 분석에 따른 깊이 프로필을 나타낸 것으로, 여기에서 보듯이 증착된 박막내에 탄소가 거의 함유되지 않았음을 알 수 있다.Figure 4 shows the depth profile according to the Auger Electron Spectroscopy analysis of the deposited thin film as described above, it can be seen that almost no carbon contained in the deposited thin film.
실 시 예 2Example 2
기판의 온도를 350 내지 600℃로 변화시키면서 상기 실시예 1과 동일한 방법으로 전구체 화합물의 증착을 수행하였다.The precursor compound was deposited in the same manner as in Example 1 while changing the temperature of the substrate to 350 to 600 ° C.
도 5는 기판의 온도 변화에 따라 증착된 박막의 조성비를 나타낸 그래프로서, 여기에서 보듯이 기판 온도가 약 480℃(753.16。K) 미만일 때는 증착된 박막내에 Ti의 양이 상당히 적음을 알 수 있다.5 is a graph showing the composition ratio of the deposited thin film according to the temperature change of the substrate. As shown here, it can be seen that the amount of Ti in the deposited thin film is considerably less when the substrate temperature is lower than about 480 ° C (753.16 ° K). .
본 발명의 방법에 따르면 알콜을 전구체 용액의 용매로 사용함으로써 분자간의 뭉침현상이 없을 뿐만 아니라 증착된 박막내 탄소의 함량이 저하된 (Ba, Sr)TiO3형 박막을 수득할 수 있다.According to the method of the present invention, by using an alcohol as a solvent of the precursor solution, it is possible to obtain a (Ba, Sr) TiO 3 type thin film having no intermolecular aggregation and a reduced carbon content in the deposited thin film.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980052703A KR100298129B1 (en) | 1998-11-30 | 1998-11-30 | PROCESS FOR THE PREPARATION OF (Ba, Sr)TiO3 THIN LAYER |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980052703A KR100298129B1 (en) | 1998-11-30 | 1998-11-30 | PROCESS FOR THE PREPARATION OF (Ba, Sr)TiO3 THIN LAYER |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000034765A KR20000034765A (en) | 2000-06-26 |
KR100298129B1 true KR100298129B1 (en) | 2002-11-18 |
Family
ID=19561102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019980052703A KR100298129B1 (en) | 1998-11-30 | 1998-11-30 | PROCESS FOR THE PREPARATION OF (Ba, Sr)TiO3 THIN LAYER |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100298129B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100468847B1 (en) * | 2002-04-02 | 2005-01-29 | 삼성전자주식회사 | Chemical vapor deposition method using alcohols for forming metal-oxide thin film |
-
1998
- 1998-11-30 KR KR1019980052703A patent/KR100298129B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR20000034765A (en) | 2000-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100530480B1 (en) | Alkane/polyamine solvent compositions for liquid delivery cvd | |
US5908947A (en) | Difunctional amino precursors for the deposition of films comprising metals | |
JP2002523634A (en) | Precursor chemistry for chemical vapor deposition of ruthenium or ruthenium oxide. | |
KR20010086219A (en) | Lewis base adducts of anhydrous mononuclear tris(beta-diketonate)bismuth compositions for deposition of bismuth-containing films, and method of making the same | |
JPH083171A (en) | Adduct, its production, and production of thin film | |
US20010007034A1 (en) | Tetrahydrofuran-adducted Group II beta-diketonate complexes as source reagents for chemical vapor deposition | |
WO1999055712A1 (en) | Group ii mocvd source reagents, and method of forming group ii metal-containing films utilizing same | |
JP5260148B2 (en) | Method for forming strontium-containing thin film | |
JP5214191B2 (en) | Thin film forming raw material and thin film manufacturing method | |
KR100298129B1 (en) | PROCESS FOR THE PREPARATION OF (Ba, Sr)TiO3 THIN LAYER | |
US5952047A (en) | CVD precursors and film preparation method using the same | |
JP5008379B2 (en) | Zinc compound, raw material for forming thin film containing zinc compound, and method for producing thin film | |
WO2004076712A1 (en) | Bismuth precursor solution for use in a cvd process and deposition process of a bismuth containing thin film using thereof | |
JP4823069B2 (en) | Metal compound, thin film forming raw material, and thin film manufacturing method | |
KR102562274B1 (en) | Organometallic precursor compounds | |
KR100399604B1 (en) | Formation of ru/ruo2 film | |
JPH10324970A (en) | Raw material for cvd and film-forming method using the same | |
JP2551860B2 (en) | Metal complex for thin film formation | |
JPH05117855A (en) | Organometallic compound solution for chemical vapor deposition | |
JP3379315B2 (en) | Raw materials for forming platinum thin films by metal organic chemical vapor deposition | |
JP4745137B2 (en) | Thin film forming raw material, thin film manufacturing method, and hafnium compound | |
KR100480501B1 (en) | Process for the formation of pzt thin film by metal-organic chemical vapor deposition | |
KR100613632B1 (en) | Solution for forming thin films and forming method | |
JP3106988B2 (en) | Thin film forming solution and thin film forming method | |
KR20010062628A (en) | Copper material for chemical vapor deposition and process for forming thin film using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20080529 Year of fee payment: 8 |
|
LAPS | Lapse due to unpaid annual fee |