KR100260612B1 - A process for preparing alpha-glycosidase inhibitors from silkworm urine - Google Patents
A process for preparing alpha-glycosidase inhibitors from silkworm urine Download PDFInfo
- Publication number
- KR100260612B1 KR100260612B1 KR1019970074866A KR19970074866A KR100260612B1 KR 100260612 B1 KR100260612 B1 KR 100260612B1 KR 1019970074866 A KR1019970074866 A KR 1019970074866A KR 19970074866 A KR19970074866 A KR 19970074866A KR 100260612 B1 KR100260612 B1 KR 100260612B1
- Authority
- KR
- South Korea
- Prior art keywords
- glycosidase
- methanol
- column chromatography
- exchange column
- silkworm
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/56—Materials from animals other than mammals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/26—Selective adsorption, e.g. chromatography characterised by the separation mechanism
- B01D15/36—Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
- B01D15/361—Ion-exchange
- B01D15/362—Cation-exchange
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/26—Selective adsorption, e.g. chromatography characterised by the separation mechanism
- B01D15/36—Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
- B01D15/361—Ion-exchange
- B01D15/363—Anion-exchange
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Plant Substances (AREA)
Abstract
Description
본 발명은 누에오줌으로부터 α-글리코시다제(glycosidase) 억제물질을 제조하는 방법에 관한 것이다. 좀 더 구체적으로, 본 발명은 누에오줌을 동결건조하고, 알코올 침전과 일련의 이온 교환 컬럼 크로마토그래피를 실시하여, α-글리코시다제 억제작용이 탁월한 물질들인 1-디옥시노지리마이신(deoxynojirimycin), 파고민(fagomine) 및 1,4-다이디옥시-1,4-이미노-디-아라비노톨(1,4-dideoxy-1,4-imino-D-aravinitol)을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing α-glycosidase inhibitor from silkworm urine. More specifically, the present invention is freeze-dried silkworm urine, alcohol precipitation and a series of ion exchange column chromatography, 1-deoxynojirimycin which are excellent substances for inhibiting α- glycosidase (deoxynojirimycin) , A method for preparing fagomine and 1,4-didioxy-1,4-imino-di-arabinitol (1,4-dideoxy-1,4-imino-D-aravinitol) will be.
건강인의 인슐린 분비 양상은 포도당 부하시 처음에 빠른 속도로 인슐린이 혈액 중으로 유리된 후, 서서히 한시간에 걸쳐 인슐린이 유리되는 양상을 띠는 반면, 당뇨 환자의 치료 목적으로 투여되는 인슐린이나 인슐린 분비촉진 약물들은 이러한 정상적인 인슐린 분비 반응을 흉내내는데 한계가 있어, 약물 부작용으로 저혈당과 고인슐린증 등이 종종 나타나는 문제를 안고 있다.Insulin secretion in healthy people is characterized by the fact that insulin is released into the blood at a rapid rate during glucose loading, and then insulin is released gradually over an hour, while promoting insulin or insulin secretion administered for the treatment of diabetics. Drugs have limitations in mimicking the normal insulin secretory reaction, and thus, side effects such as hypoglycemia and hyperinsulinemia are often encountered.
이와 같은 식후 상승된 혈당과 혈액중 인슐린 함량간에 불일치 문제를 해결할 수 있는 방법으로, 이제까지는 약물 투여시간의 조절, 새로운 약물 투여경로의 개발 및 약물 흡수를 촉진시키는 새로운 제형의 개발 등 수많은 방법들이 시도되어 왔으나, 아직까지 만족한 만한 결과를 얻지 못하고 있다.As a way to solve such discrepancies between elevated blood sugar and insulin content after eating, numerous methods have been tried, including the adjustment of drug administration time, the development of new drug routes and the development of new formulations to promote drug absorption. It has been, but not yet satisfactory.
한편, 제킨스(Jekins)는 음식물에 펙틴(pectin) 등 식이섬유를 많이 포함시키거나, 또는 음식물의 조성을 전분 등의 서서히 흡수되는 형태의 탄수화물을 가능한 한 많이 함유토록 권장하는 “lente carbohydrate concept”를 활용함으로써, 식후 고혈당 문제를 부분적으로 해결할 수 있다고 제안하였다(참조: Jenkins, D., Lente carbohydrate: A new approach to the diary management of diabetes, Diabetes Care, 5: 634(1982)). 그러나, 이와 같은 섭생은 초식주의자가 되지 않고서는 사실상 불가능한 일이다. 또한, 식후 상승되는 고혈당 문제를 해결할 수 있는 여러 방법들이 개발되는 과정 중, 소장에서 포도당의 흡수를 지연시키는 활성을 나타내는 α-글리코시다제 억제물질을 이용하는 방안이 강구되었고, 수많은 동물 및 임상실험을 통해 그 약효가 입증되기에 이르렀다. 이와 같이, 소장내 α-글리코시다제 억제물질을 투여하게 되면, 식후 급격히 상승하는 혈당을 조절할 수 있고, 당뇨환자에게 흔히 보여지는 큰 폭의 혈당상승 및 저하 현상을 해결할 수 있음은 물론, 불필요한 인슐린의 유리도 억제되어 고인슐린증으로 인한 다른 순환계 합병증의 발병을 예방하는데 일조할 수 있다.Meanwhile, Jekins recommends a “lente carbohydrate concept,” which includes foods that contain a lot of dietary fiber, such as pectin, or contain as much carbohydrates as possible in the form of foods, such as starch. It has been suggested that this may partially solve the post-prandial hyperglycemic problem (Jenkins, D., Lente carbohydrate: A new approach to the diary management of diabetes, Diabetes Care, 5: 634 (1982)). However, such a regime is virtually impossible without becoming a herbivorous. In addition, during the development of various methods to solve the post-prandial hyperglycemic problem, a method of using an α-glycosidase inhibitor, which has an activity of delaying glucose absorption in the small intestine, has been devised. The drug was proved through. As such, administration of the α-glycosidase inhibitor in the small intestine can control blood sugar levels that rise rapidly after meals, and can solve a large increase in blood sugar levels and decreases that are commonly seen in diabetics. The release of can also be suppressed, which may help prevent the development of other circulatory complications caused by hyperinsulinemia.
한편, 본 발명자들은 이미 누에관련 물질들이 식후 혈당상승에 커다란 억제효과가 있으며, 이는 기존의 당뇨 치료제인 아카보즈(acarbose)와 마찬가지로 소장에서 탄수화물 소화에 관여하는 효소인 α-글리코시다제 억제작용에 기인한다는 사실을 밝힌 바 있다(참조: 이주선 등, 약학회지, 39(4): 367-372(1995); 정성현 등, 경희약대논문집, 24: 95-100(1996)). 그러나, 누에의 어떠한 성분이 α-글리코시다제의 억제물질로서 작용하는 지는 알려져 있지 않다.On the other hand, the present inventors already have a significant inhibitory effect on the blood sugar rise after the silkworm-related substances, which, like acarbose (acarbose), which is an existing diabetic drug, inhibits α-glycosidase, an enzyme involved in carbohydrate digestion in the small intestine. (Jeong-sun Lee et al., Journal of Pharmacy, 39 (4): 367-372 (1995); Chung Sung-hyun et al., Kyung Hee Pharmacy Thesis, 24: 95-100 (1996)). However, it is not known which component of the silkworm acts as an inhibitor of α-glycosidase.
이에, 본 발명자들은 누에오줌으로부터 α-글리코시다제 억제물질을 제조하고자 예의 노력한 결과, α-글리코시다제 억제작용이 탁월한 물질들인 1-디옥시노지리마이신, 파고민 및 1,4-다이디옥시-1,4-이미노-D-아라비노톨을 분리할 수 있음을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have made diligent efforts to prepare α-glycosidase inhibitors from silkworm urine. As a result, 1-dioxynojirimycin, pagomin and 1,4-didie are excellent substances for inhibiting α-glycosidase. It was confirmed that oxy-1,4-imino-D-arabinol could be separated, and the present invention was completed.
결국, 본 발명의 목적은 누에오줌으로부터 일련의 α-글리코시다제 억제물질을 제조하는 방법을 제공하는 것이다.After all, it is an object of the present invention to provide a method for producing a series of α-glycosidase inhibitors from silkworm urine.
제1도는 앰벌라이트(Amberlite) 활성분획의 시험관내에서 α-글리코시다제 억제활성의 기질특이성을 나타내는 그래프.1 is a graph showing substrate specificity of α-glycosidase inhibitory activity in vitro of Amberlite activity fractions.
제2도는 앰벌라이트 활성분획의 용량에 따른 α-글리코시다제 억제활성 정도를 혈당량으로 나타내는 그래프.2 is a graph showing blood glucose levels of α-glycosidase inhibitory activity according to the dose of the Amberlite active fraction.
제3도는 앰벌라이트 활성분획의 기질에 따른 α-글리코시다제 억제활성 정도를 나타내는 그래프.3 is a graph showing the degree of α-glycosidase inhibitory activity according to the substrate of the Amberlite active fraction.
제4도는 앰벌라이트 활성분획의 시간에 따른 α-글리코시다제 억제활성 정도를 나타내는 그래프.4 is a graph showing the degree of α- glycosidase inhibitory activity over time of the Amberlite activity fraction.
제5도는 앰벌라이트 활성분획의 알록산 유도 고혈당 마우스에서 α-글리코시다제 억제활성 정도를 나타내는 그래프.FIG. 5 is a graph showing the degree of α-glycosidase inhibitory activity in alloxane-induced hyperglycemic mice of the Amberlite activity fraction.
이하, 본 발명을 보다 구체적으로 설명하고자 한다.Hereinafter, the present invention will be described in more detail.
본 발명의 발명자들은 α-글리코시다제 억제물질을 분리제조하기 위하여, 우선, 누에오줌을 동결건조하여, 분말상태로 만든 후, 이에 메탄올을 가하였다. 이어, 메탄올 가용부를 음이온 교환 컬럼 크로마토그래피를 실시하여, α-글리코시다제 억제활성을 갖는 분획을 얻었다. 전기, 활성분획에 함께 포함된 무기물을 제거하기 위하여, 메탄올을 가하여 메탄올 가용부와 비가용부를 나누었다. 그런 다음, 메탄올 가용부에서 다시 소량의 물과 아세토니트릴을 가하여 아세토니트릴층과 물층으로 분획한 후, 물층을 농축하여 양이온 교환 컬럼 크로마토그래피를 실시하여 A, B 및 C 세 분획을 얻었다. 이 분획 중 A 분획을 감압 농축하고 메탄올을 가하여 백색 결정인 화합물 I를 얻었다. 한편, 메탄올 가용부는 다시 감압농축하여 양이온/음이온 교환 크로마토그래피를 실시하고, 히드록실아민으로 용출하여 활성분획을 얻었다. 이어, 활성분획을 메탄올로 재결정하여 화합물 II를 얻었다. 이어, 히드록실아민으로 용출한 C 분획에 에탄올을 가하여 가용부와 비가용부로 나누고, 에탄올 비가용부를 메탄올로 재결정하여 화합물 IV를 수득하며, 에탄올 가용부는 양이온/음이온 교환 컬럼 크로마토그래피를 실시하고, 히드록실아민으로 용출하여 화합물 V와 화합물 VI를 얻었다.The inventors of the present invention, in order to isolate and manufacture the α-glycosidase inhibitor, first, silkworm urine was lyophilized, powdered, and methanol was added thereto. Subsequently, the methanol soluble portion was subjected to anion exchange column chromatography to obtain a fraction having α-glycosidase inhibitory activity. Methanol was added to separate the methanol soluble part and the insoluble part in order to remove the inorganic substances included in the electricity and the active fraction. Then, a small amount of water and acetonitrile were further added in the methanol soluble portion, and the mixture was partitioned into an acetonitrile layer and a water layer. A fraction of this fraction was concentrated under reduced pressure, and methanol was added to give compound I as white crystals. On the other hand, the methanol soluble portion was further concentrated under reduced pressure, subjected to cation / anion exchange chromatography, eluted with hydroxylamine to obtain an active fraction. The active fraction was then recrystallized from methanol to give compound II. Subsequently, ethanol was added to the C fraction eluted with hydroxylamine to divide the soluble part and the insoluble part, and the ethanol insoluble part was recrystallized with methanol to obtain Compound IV, and the ethanol soluble part was subjected to cation / anion exchange column chromatography, Elution with hydroxylamine gave compound V and compound VI.
한편, 누에오줌 분획의 글리코시다제에 대한 억제활성을 조사하기 위하여, 누에오줌 활성분획의 시험관내 및 생체 내에서의 α-글리코시다제 억제활성을 조사한 결과, 누에오줌 활성분획이 α-글리코시드(glycosidic) 결합에 대해 기질 특이성을 갖고 있으며, 기존의 당뇨 치료제인 아카보즈와 거의 동일한 α-글리코시다제 억제활성도를 갖는다는 것을 확인하였다.On the other hand, in order to investigate the inhibitory activity of the silkworm urine fraction on glycosidase, the silkworm urine active fraction showed that α-glycoside was found in vitro and in vivo. It was confirmed that it has a substrate specificity for (glycosidic) binding and has the same α-glycosidase inhibitory activity as that of acarbose, a conventional diabetes treatment.
또한, 최종적으로 분리제조된 화합물 I 내지 VI의 글리코시다제 억제활성도를 조사하기 위하여, 다양한 글리코시다제에 대해 시험한 결과, 화합물 IV, V, 및 VI가 가장 우수한 α-글리코시다제 억제활성을 갖는다는 것을 확인하였고, 화합물 IV, V, 및 VI의 화학구조를 동정하기 위하여, Rf치, 녹는 점, 분자량을 조사하고, NMR, FABMS 및 TLC를 실행하여 분석한 결과, 화합물 IV는 1-디옥시노지리마이신, 화합물 V는 파고민, 그리고 화합물 VI는 1,4-다이디옥시-1,4-이미노-D-아라비노톨임을 확인하였다.In addition, in order to investigate the glycosidase inhibitory activity of the finally prepared compounds I to VI, various glycosidase inhibitors were tested to show that compounds IV, V, and VI exhibit the highest α-glycosidase inhibitory activity. In order to identify the chemical structures of compounds IV, V, and VI, Rf values, melting points, molecular weights were examined and analyzed by NMR, FABMS and TLC. Oxynojirimycin, compound V was identified as pagomin, and compound VI as 1,4-didioxy-1,4-imino-D-arabinol.
이하, 본 발명의 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to the following examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those of ordinary skill in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .
[실시예 1]Example 1
[누에오줌으로부터 α-글리코시다제 억제물질의 제조][Preparation of α-glycosidase inhibitor from silk urine]
누에오줌을 동결건조하여 분말상태로 만든 후, 이에 메탄올을 가하였다. 이어, 누에오줌을 메탄올 가용부 250g을 음이온 교환수지(Dowex 1X2-400) 컬럼 크로마토그래피(3x45cm, Cl-form)를 실시하여, 활성분획 8.3g을 얻었다. 활성분획에서 함께 포함된 누에오줌 중의 무기물을 제거하기 위해서, 메탄올 가용부와 비가용부를 나누었다. 이어, 메탄올 가용부에 소량의 물과 아세토니트릴을 가하여 아세트니트릴(0.5g)층과 물층(3.6g)으로 분획한 후, 물층을 농축하여 양이온 교환수지(Amberlite IRC-50) 컬럼 크로마토그래피(3x45cm, H+form)를 실시하였다. 그런 다음, 물로 용출하여 분획번호 21-45(분획 크기: 10ml, 320mg)에서 A 분획을, 분획번호 57-58(13mg)에서 B 분획을 각각 얻고, 이어 0.5M 히드록실아민(NH4OH)으로 용출하여 분획번호 98-100(900mg)을 취한 C 분획을 얻었다(이하, A, B, C 세 분획을 합한 것을 “앰벌라이트 활성분획”이라 한다).Silkworm urine was lyophilized to a powder and methanol was added thereto. Subsequently, 250 g of the silk soluble portion of the silkworm urine was subjected to anion exchange resin (Dowex 1 × 2-400) column chromatography (3 × 45 cm, Cl − form) to obtain 8.3 g of an active fraction. In order to remove the inorganic matter contained in the urine urine contained in the active fraction, methanol soluble part and insoluble part were divided. Subsequently, a small amount of water and acetonitrile were added to the methanol soluble portion, and the mixture was partitioned into an acetonitrile (0.5 g) layer and a water layer (3.6 g), and then the water layer was concentrated. , H + form). Then eluted with water to obtain A fraction in fractions 21-45 (fraction size: 10 ml, 320 mg) and B fractions in fractions 57-58 (13 mg), respectively, followed by 0.5 M hydroxylamine (NH 4 OH). Elution was performed to obtain a C fraction having a fraction No. 98-100 (900 mg) (hereinafter, the three fractions of A, B, and C were combined to be called “amberlight active fraction”).
이어, 전기 A 분획을 감압농축하고 메탄올을 가하여 백색 결정인 화합물 I(40mg, 수득률: 0.01%)을 얻었다. 한편, 메탄올 가용부는 다시 감압농축하여 양이온/음이온 교환(Amberlite MB-1) 컬럼 크로마토그래피를 실시하고, 0.1M 히드록실아민으로 용출하여 활성분획(분획번호 81-93, 분획크기 2.5ml)을 얻었다. 이어, 활성분획을 메탄올로 재결정하여 화합물 II(16mg, 수득률: 0.004%)를 얻었다.The A fraction was then concentrated under reduced pressure and methanol was added to give compound I (40 mg, yield: 0.01%) as white crystals. Meanwhile, the methanol soluble portion was further concentrated under reduced pressure, subjected to cation / anion exchange (Amberlite MB-1) column chromatography, and eluted with 0.1 M hydroxylamine to obtain an active fraction (fraction number 81-93, fraction size 2.5 ml). . The active fractions were then recrystallized from methanol to give compound II (16 mg, yield: 0.004%).
또한, B분획을 에탄올로 세척하여 화합물 III(13mg, 수득률 0.0036%)를 얻었다.The B fraction was also washed with ethanol to give compound III (13 mg, yield 0.0036%).
한편, C 분획에 에탄올을 가하여 가용부와 비가용부로 나누었다. 비가용부를 메탄올로 재결정하여 화합물 IV(500mg, 수득률: 0.13%)를 얻었으며, 에탄올 가용부는 양이온/음이온 교환(Amberlite MB-1) 컬럼 크로마토그래피를 실시하고, 0.1M 히드록실아민으로 용출하였다. 이때, 두 개의 활성피크를 얻고, 이를 각각 화합물 V(13mg, 수득률: 0.003%)와 화합물 VI(11mg, 수득률: 0.002%)로 하였다.On the other hand, ethanol was added to the C fraction and divided into an soluble part and an insoluble part. The insoluble part was recrystallized with methanol to obtain Compound IV (500 mg, yield: 0.13%), and the ethanol soluble part was subjected to cation / anion exchange (Amberlite MB-1) column chromatography and eluted with 0.1 M hydroxylamine. At this time, two active peaks were obtained, which were Compound V (13 mg, yield: 0.003%) and Compound VI (11 mg, yield: 0.002%), respectively.
[실시예 2]Example 2
[α-글리코시다제 억제활성 조사][Investigation of α-glycosidase inhibitory activity]
실시예 1의 누에오줌에서부터 α-글리코시다제 억제활성 분획을 분리하는 과정에서 α-글리코시다제 억제활성은 다음과 같은 방법으로 조사하였다.The α-glycosidase inhibitory activity in the process of separating the α-glycosidase inhibitory activity fraction from the silkworm urine of Example 1 was investigated by the following method.
50mM PIPES 완충용액(pH 6.8), 10mM 맥아당, 소량의 α-글리코시다제 및 활성을 조사하려는 시료를 첨가하여 반응액의 총 부피가 60㎕가 되도록 하였다. 이어, 37℃에서 30분간 반응시키고, 트린더(Trinder)시약 1ml을 가한 후, 실온에서 18분간 방치하고, 505nm에서 흡광도를 측정하여 α-글리코시다제 억제활성을 조사하였다.50 mM PIPES buffer (pH 6.8), 10 mM maltose, a small amount of α-glycosidase and the sample to be examined were added to make the total volume of the reaction solution 60 μl. Subsequently, the reaction was carried out at 37 ° C. for 30 minutes, 1 ml of TRINDER reagent was added, and then left at room temperature for 18 minutes, and the absorbance was measured at 505 nm to investigate α-glycosidase inhibitory activity.
[실시예 3]Example 3
[앰벌라이트 활성분획의 시험관내 α-글리코시다제 억제활성 조사]Investigation of In Vitro α-Glycosidase Inhibitory Activity of Amberlite Activity Fractions
실시예 1에서 얻은 앰벌라이트 활성분획 2x10-3g, 50mM PIPES 완충용액(pH 6.8), 소량의 α-글리코시다제 및 인공기질인 p-니트로페닐-α-D-글루코피라노시드(p-nitrophenyl-α-D-glucopyranoside), p-니트로페닐-β-D-글루코피라노시드(p-nitrophenyl-β-D-glucopyranoside) 또는 p-니트로페닐-β-D-갈락토피라노시드(p-nitrophenyl-β-D-galactopyranoside) 3mM을 첨가하여 반응액의 총 부피가 0.5ml가 되도록 하고, 이 반응액을 37℃에서 30분간 반응시켰다. 이어, 에틸렌디아민(thylenediamine) 1ml을 가하여 반응을 종결시킨 후, 400nm에서 흡광도를 측정하였다. 그 결과, p-니트로페닐-α-D-글루코피라노시드, p-니트로페닐-β-D-그루코피라노시드 및 p-니트로페닐-β-D-갈락토피라노시드에 대해서 각각 82%, 4%, 13%의 α-글리코시다제 억제작용을 나타내었다(참조: 제1도). 제1도에서 PNPαGcl는 p-니트로페닐-α-D-글루코피라노시드, PNPβGlc는 p-니트로페닐-β-D-글루코피라노시드, PNPβGal은 p-니트로페닐-β-D-갈락토피라노시드를 각각 기질로 사용한 경우를 나타내며, (▒) 그래프는 앰벌라이트 활성분획을 2x10-2g 사용한 경우이고, (□) 그래프는 앰벌라이트 활성분획을 2x10-3g, (■) 그래프는 앰벌라이트 활성분획을 2x10-4g을 각각 사용한 경우를 나타낸 것이다.2x10 -3 g of Amberlite active fraction obtained in Example 1, 50 mM PIPES buffer solution (pH 6.8), a small amount of α-glycosidase and artificial substrate p-nitrophenyl-α-D-glucopyranoside (p- nitrophenyl-α-D-glucopyranoside), p-nitrophenyl-β-D-glucopyranoside or p-nitrophenyl-β-D-galactopyranoside (p -nitrophenyl-β-D-galactopyranoside) was added to make the total volume of the reaction solution 0.5 ml, and the reaction solution was reacted at 37 ° C for 30 minutes. Subsequently, 1 ml of ethylenediamine was added to terminate the reaction, and the absorbance was measured at 400 nm. As a result, 82% for p-nitrophenyl-α-D-glucopyranoside, p-nitrophenyl-β-D-glucopyranoside and p-nitrophenyl-β-D-galactopyranoside, respectively. , 4%, 13% showed α-glycosidase inhibitory activity (see FIG. 1). In FIG. 1, PNPαGcl is p-nitrophenyl-α-D-glucopyranoside, PNPβGlc is p-nitrophenyl-β-D-glucopyranoside, PNPβGal is p-nitrophenyl-β-D-galactopy It shows the case of using the ranoside as a substrate, (▒) graph is the 2x10 -2 g of the Amberlite active fraction, (□) graph is 2x10 -3 g, (■) graph is the Amber 2 x 10 -4 g of light active fractions are shown.
한편, 실시예 1에서 얻은 그래프는 앰벌라이트 활성분획을 2x10-2g, 2x10-3g 또는 2x10-4g 50mM PIPES 완충용액(pH 6.8), 천연 기질인 맥아당, 이소맥아당 1mM 및 소량의 α-글리코시다제를 첨가하여 반응액의 총 부피가 60㎕가 되도록 하였다. 이어, 37℃에서 30분간 반응시키고, 트린더(Trinder) 시약 1ml을 가한 후, 실온에서 18분간 방치하고, 505nm에서 흡광도를 측정하여 α-글리코시다제 억제활성을 조사하였다. 그결과, 모든 농도의 앰벌라이트 활성분획에서, 천연기질인 맥아당, 이소맥아당에 대해 α-글리코시다제 억제작용을 나타내었다(참조: 제1도). 이 결과로부터, 누에오줌 활성분획은 α-글리코시드결합(α-glycosidic bond)을 가수분해시키는 α-글리코시다제를 선택적으로 저해함을 알 수 있었다.On the other hand, the graph obtained in Example 1 shows that the Amberlite activity fraction is 2x10 -2 g, 2x10 -3 g or 2x10 -4 g 50 mM PIPES buffer solution (pH 6.8), natural substrate maltose, isomalt sugar 1mM and a small amount Glycosidase was added to bring the total volume of the reaction solution to 60 μl. Subsequently, the reaction was carried out at 37 DEG C for 30 minutes, 1 ml of a TRINDER reagent was added, and then left at room temperature for 18 minutes, and the absorbance was measured at 505 nm to investigate α-glycosidase inhibitory activity. As a result, all concentrations of the Amberlite active fractions showed α-glycosidase inhibitory action against natural substrate maltose and isomaltose (see FIG. 1). From this result, it was found that the silkworm urine active fraction selectively inhibited α-glycosidase which hydrolyzed α-glycosidic bond.
[실시예 4]Example 4
[앰벌라이트 활성분획의 생체내 α-글리코시다제 억제활성 조사][In vivo α-Glycosidase Inhibitory Activity of Amberlite Activity Fractions]
앰벌라이트 활성분획의 용량에 따른 α-글리코시다제 억제활성 정도를 조사하기 위하여, 정상 쥐를 14시간 절식시킨 후, 실시예 1에서 수득한 앰벌라이트 활성분획-40, 60, 80mg/kg과 맥아당 2g/kg을 함께 경구투여하고, 혈당을 측정하였다. 제2도에서 보듯이, 맥아당만을 경구투여한 경우의 혈당량을 기준으로하여 혈당량의 상대치를 조사한 결과, 앰벌라이트 활성분획의 용량에 따라 각각 46%, 52%, 70%의 유의성 있는 용량의존적 혈당상승 억제효과를 나타내었다. 제2도에서 ‘V’라 표시한 것은 활성분획과 맥아당 대신에 생리식염수인 0.9% 염화나트륨을 경구투여한 경우, 맥아당은 맥아당 2g/kg만을 경구투여한 경우, ‘+Aca’는 맥아당 2g/kg과 대조약물인 아카보즈 50mg/kg을 함께 경구투여한 경우를 나타낸다. 또한, 제2도에서 ‘+A’, ‘+B’, 및 ‘+c’라 표시한 것은 맥아당 2g/kg과 앰벌라이트 활성분획 40mg/kg, 60mg/kg 및 80mg/kg을 함께 경구투여한 경우를 각각 나타낸다.To investigate the degree of α-glycosidase inhibitory activity according to the dose of the Amberlite active fraction, the rats were fasted for 14 hours, and then the Amberlite active fractions 40, 60, 80 mg / kg and maltose obtained in Example 1 were fasted. 2 g / kg was orally administered together and blood glucose was measured. As shown in FIG. 2, the relative values of blood glucose levels based on blood glucose levels obtained by oral administration of maltose alone showed 46%, 52%, and 70% of significant dose-dependent increase in blood glucose, depending on the dose of Amberlite active fraction, respectively. Inhibitory effect was shown. In FIG. 2, 'V' indicates that oral administration of 0.9% sodium chloride, physiological saline instead of active fraction and maltose, oral administration of only 2g / kg of maltose, and '+ Aca' means 2g / kg of maltose. And oral administration of 50 mg / kg of acarbose, a control drug. In addition, in FIG. 2, '+ A', '+ B', and '+ c' are indicated by oral administration of 2 g / kg malt sugar and 40 mg / kg, 60 mg / kg, and 80 mg / kg of Amberlite active fraction. Each case is shown.
한편, 기질에 따른 α-글리코시다제 억제활성 정도를 조사하기 위하여, 정상쥐를 14시간 절식시킨 후, 실시예 1에서 수득한 앰벌라이트 활성분획 60mg/kg과 당류(맥아당, 젖당, 설탕, 전분 및 포도당) 2g/kg을 함께 경구투여하고, 혈당을 측정하였다. 제3도에서 보듯이, 맥아당만을 경구투여한 경우의 혈당량을 기준으로하여 혈당량의 상대치를 조사한 결과, 앰벌라이트 활성분획은 맥아당에 대해 50%, 젖당 27%, 설탕 25%, 전분 42%의 혈당상승 억제효과를 나타내었다. 제3도에서 (▒) 그래프는 생리 식염수인 0.9% 염화나트륨만을 투여한 경우, (□) 그래프는 당만을 투여한 경우, (▥) 그래프는 당류와 아카보즈 50mg/kg을 함께 투여한 경우, (■) 그래프는 당류와 앰벌라이트 활성분획을 함께 투여한 경우를 각각 나타낸다.On the other hand, in order to investigate the degree of α-glycosidase inhibitory activity according to the substrate, after fasting normal mice for 14 hours, 60 mg / kg of the Amberlite active fraction obtained in Example 1 and sugars (maltose, lactose, sugar, starch) And glucose) 2 g / kg orally together and blood glucose was measured. As shown in FIG. 3, the relative value of blood glucose was measured based on the blood glucose level by oral administration of maltose alone. As a result, Amberlite active fraction showed 50% of maltose, 27% of lactose, 25% of sugar, and 42% of starch. It showed a synergistic inhibitory effect. In FIG. 3, the (▒) graph shows only 0.9% sodium chloride, which is a physiological saline solution, the (□) graph shows a sugar only, and the (그래프) graph shows a 50 mg / kg of sugar and acarbose together, ( ■) The graph shows the case where the saccharide and the Amberlite active fractions were administered together.
또한, 시간에 따른 앰벌라이트 활성분획의 α-글리코시다제 억제활성 정도를 조사하기 위하여, 정상 쥐를 14시간 절식시킨 후, 실시예 1에서 수득한 앰벌라이트 활성분획 60mg/kg과 맥아당 2g/kg을 함께 경구투여하고, 18분, 35분, 60분, 90분 및 120분 경과후 혈당을 측정하였다. 제4도에서 보듯이, 맥아당만을 경구투여한 경우의 혈당량을 기준으로하여 혈당량의 상대치를 조사한 결과, 투여 후 18분과 35분에서 각각 50%, 51%의 혈당상승 억제효과를 나타내었다. 제4도에서 (◇)는 맥아당만을 투여한 경우, (○)는 맥아당과 아카보즈 50mg/kg을 함께 투여한 경우, (▲)는 맥아당과 앰벌라이트 활성분획을 함께 투여한 경우, (■)는 생리식염수인 0.9% 염화나트륨만을 투여한 경우를 각각 나타낸다.In addition, to investigate the degree of α-glycosidase inhibitory activity of the Amberlite activity fraction over time, after fasting for 14 hours in normal rats, 60mg / kg of Amberlite active fraction obtained in Example 1 and 2g / kg malt per malt Were orally administered together and blood glucose was measured after 18, 35, 60, 90 and 120 minutes. As shown in FIG. 4, the relative values of blood glucose levels were examined based on blood glucose levels when oral administration of maltose alone showed 50% and 51% inhibition of blood glucose increase at 18 and 35 minutes after administration. In Figure 4 (◇) is administered only maltose, (○) is administered together with maltose and acarbose 50mg / kg, (▲) is administered together with maltose and Amberlite active fraction, (■) Are the cases where only 0.9% sodium chloride, the physiological saline, was administered.
끝으로, 알록산(alloxan) 유도 고혈당 마우스에서 앰벌라이트 활성분획의 α-글리코시다제 억제활성 정도를 살펴보기 위해, 정상 쥐를 14시간 절식시킨 후, 75mg/kg 알록산을 정맥투여하여 고혈당 마우스를 유도하고, 48시간 뒤 혈당을 측정하여 혈당치가 250-400mg/dl인 마우스를 선별하였다. 이렇게 선별된 고혈당 마우스를 16시간 절식시킨 후, 실시예 1에서 수득한 앰벌라이트 활성분획 120mg/kg과 맥아당 2g/kg을 함께 경구투여하고, 35분 뒤 혈당을 측정하였다. 제5도에서 보듯이, 맥아당만을 경구투여한 경우의 혈당량을 기준으로하여 혈당량의 상대치를 조사한 결과, 앰벌라이트 활성분획은 61%의 혈당상승 억제효과가 있었고, 대조약물로 사용한 아카보즈는 100mg/kg 용량에서 68%의 혈당상승 억제효과를 나타내었으므로, 두 그룹간의 큰 차이가 없다는 것을 알 수 있었다. 제6도에서 V라 표시된 것은 생리 식염수인 0.9% 염화나트륨만을 투여한 경우, 맥아당은 맥아당 2g/kg만을 투여한 경우, 아카보즈는 맥아당 2g/kg과 아카보즈 100mg/kg을 함께 투여한 경우, 활성분획은 맥아당과 앰벌라이트 활성분획을 함께 투여한 경우를 각각 나타낸다.Finally, to investigate the α-glycosidase inhibitory activity of the Amberlite active fraction in alloxan-induced hyperglycemic mice, fasting normal mice for 14 hours, and then intravenously administering 75 mg / kg alloxan to hyperglycemic mice. 48 hours later, blood glucose was measured, and mice having a blood glucose level of 250-400 mg / dl were selected. The selected high blood glucose mice were fasted for 16 hours, and 120 mg / kg of the Amberlite active fraction obtained in Example 1 and 2 g / kg of maltose were orally administered together, and blood glucose was measured 35 minutes later. As shown in FIG. 5, the relative values of blood glucose levels were investigated based on blood glucose levels by oral administration of maltose alone. As a result, the Amberlyte fraction showed an inhibitory effect on blood glucose increase of 61%. Inhibition of blood glucose increase by 68% at the dose of kg, there was no significant difference between the two groups. In FIG. 6, V denoted only when physiological saline was administered only 0.9% sodium chloride, maltose was administered only 2g / kg malt, and acarbose was administered when 2g / kg malt sugar and 100mg / kg acarbose were administered. The fraction represents the case where maltose and Amberlite active fraction were administered together.
[실시예 5]Example 5
[화합물 I-VI의 글리코시다제 억제활성][Glycosidase Inhibitory Activity of Compound I-VI]
50mM PIPES 완충용액(pH 6.8), 10mM 맥아당, 소량의 글리코시다제 및 활성을 조사하려는 시료를 첨가하여 반응액의 총 부피가 60㎕가 되도록 하였다. 이어, 37℃에서 30분간 반응시키고, 트린더(Trinder)시약 1ml을 가한 후, 실온에서 18분간 방치하고, 505nm에서 흡광도를 측정하여, 실시예 1에 분리된 각 화합물의 글리코시다제 억제활성을 조사하였다. 하기 표 1에서 보듯이, 화합물 IV와 VI은 쥐 소장 말토즈-글루코아밀라제(maltose-glucoamylase)에 대해 가장 큰 억제작용이 있었으며(IC50: 0.2㎛, 2.38㎛). 화합물 V는 상대적으로 약하지만 α-글리코시다제에 대한 선택적인 저해작용이 있었다. 화합물 I는 다른 화합물에 비해 β-글리코시다제에 대해 억제작용이 상대적으로 컸다. 화합물 II는 여러 글리코시다제에 비해 100㎛이하에서는 억제작용이 없었으며, 화합물 I-VI 모두 쥐 간 소포체 α-글리코시다제, 쥐 간 리소좀 α-만노시다제(mannosidase), β-만노시다제에 대해서는 저해하지 않았다.50 mM PIPES buffer (pH 6.8), 10 mM maltose, a small amount of glycosidase and the sample to be examined were added to make the total volume of the reaction solution 60 μl. Subsequently, the reaction was carried out at 37 ° C. for 30 minutes, 1 ml of TRINDER reagent was added thereto, and then left at room temperature for 18 minutes, and the absorbance was measured at 505 nm. The glycosidase inhibitory activity of each compound isolated in Example 1 was measured. Investigate. As shown in Table 1 below, Compounds IV and VI had the greatest inhibitory effects on mouse small intestine maltose-glucoamylase (IC 50 : 0.2 μm, 2.38 μm). Compound V was relatively weak but had a selective inhibitory action on α-glycosidase. Compound I had a greater inhibitory effect on β-glycosidase than other compounds. Compound II had no inhibitory effect at less than 100 μm compared to several glycosidases, and Compound I-VI had no hepatic vesicle α-glycosidase, mouse liver lysosomal α-mannosidase, β-mannosidase. It did not inhibit for.
아사노(Asano) 등은 1-디옥시노지리마이신이 쥐 간 소포체 글로코시다제(glucosidase) II 및 리소좀 글리코시다제에 대해서도 강력한 억제작용이 있다고 보고하였는데(IC50: 4.6㎛, 0.4㎛) 이는 본 실험의 결과와는 차이가 있었다. 또한 1,4-다이디옥시-1,4-이미노-디-아라비니톨(1,4-dideoxy-1,4-imino-D-aravinitol) 역시 쥐 간 리소좀 α-만노시다제에 대해서 약한 억제작용이 있다고(IC50: 110㎛) 보고하였으나, 본 실험에서는 억제작용이 관찰되지 않았다.Asano et al. Reported that 1-dioxynozirimycin had potent inhibitory effects on rat liver vesicles glucosidase II and lysosomal glycosidase (IC 50 : 4.6 μm, 0.4 μm). The results of this experiment were different. In addition, 1,4-didioxy-1,4-imino-di-aravinitol is also weak against rat liver lysosomal α-mannosidase. Reported that there is an inhibitory activity (IC 50 : 110㎛), but no inhibitory activity was observed in this experiment.
[표 1]TABLE 1
*: IC50이 1000㎛ 이상인 경우에는 글리코시다제에 대한 억제활성이 없는 것으로 보고, NI라 표시하였다. 여기서, IC50은 효소활성도의 50%를 감소시키기 위해 필요한 효소활성 억제제의 농도를 의미한다.*: Not less than the IC 50 has 1000㎛ reports that the inhibitory activity against glycosidase, expressed NI la. Here, IC 50 means the concentration of the enzyme activity inhibitor necessary to reduce 50% of the enzyme activity.
[실시예 6]Example 6
[화합물 I-IV의 쥐 소장 α-글리코시다제에 대한 억제활성][Inhibitory Activity of Compound I-IV on Rat Small Intestine α-glycosidase]
글리코시다제의 활성억제는 실시예 6과 동일한 방법으로 측정하였다. 하기 표 2에서 보듯이, 화합물 I는 여러 α-글리코시다제 중 말타아제(maltase)에 대해서 선택적 억제작용을 나타내었으며(IC50: 4㎛), 수크라아제(sucrase), 이소말타아제(isomaltes), 락타아제(lactase)에 대해서는 억제활성이 약했고, 트레할라아제(trehalase), 셀루비오아제(cellubioase)에 대해서는 저해작용이 없었다. 화합물 II와 III는 쥐소장 글리코시다제에 대한 억제 작용이 1000㎛이하에서는 관찰되지 않았으나, 높은 농도에서는 역시 저해작용이 있었다. 화합물 IV는 α-글리코시다제인 말타아제, 수크라아제, 이소말타아제에 대해 강력한 억제 작용이 있었으머, 예외로 트레할라아제와 세루비오아제에 대해서는 저해작용이 약하거나 없었다. 화합물 V는 α-글리코시다제에 대해 억제작용이 있었으며, 화합물 VI는 α-글리코시다제 중 말타아제에 대해 선택적인 억제작용이 있었고, 화합물 IV와 VI은 강력한 α-글리코시다제 억제작용이 있으나 기질 선택성은 떨어짐을 확인할 수 있었다.Inhibition of glycosidase activity was measured in the same manner as in Example 6. As shown in Table 2 below, Compound I showed selective inhibitory action against maltase among various α-glycosidases (IC 50 : 4 μm), sucrase, isomaltase, The inhibitory activity was weak against lactase, and there was no inhibitory activity against trehalase and cellubioase. Compounds II and III showed no inhibitory effect on rat small intestinal glycosidase at less than 1000 μm, but also at high concentrations. Compound IV had a potent inhibitory action on α-glycosidase, maltase, sucrase, and isomaltase, except for weak or no inhibitory activity on trehalase and cerubiase. Compound V had an inhibitory effect on α-glycosidase, Compound VI had a selective inhibitory effect on maltase among α-glycosidase, and compounds IV and VI had potent α-glycosidase inhibitory activity but substrate Selectivity was found to be inferior.
[표 2]TABLE 2
*: IC50이 100㎛ 이상인 경우에는 글리코시다제에 대한 억제활성이 없는 것으로 보고, NI라 표시하였다. 여기서, IC50은 효소활성도의 50%를 감소시키기 위해 필요한 효소활성 억제제의 농도를 의미한다.*: Not less than the IC 50 has 100㎛ reports that the inhibitory activity against glycosidase, expressed NI la. Here, IC 50 means the concentration of the enzyme activity inhibitor necessary to reduce 50% of the enzyme activity.
[실시예 7]Example 7
[화합물 IV, V, VI의 화학구조 결정][Chemical structure determination of compound IV, V, VI]
실시예 5와 실시예 6의 결과, α-글리코시다제 억제활성이 가장 우수한 것으로 확인된 화합물 IV, V, VI에 대해서 다음과 같이 화학구조를 결정하였다.As a result of Example 5 and Example 6, the chemical structure was determined as follows for the compounds IV, V, VI confirmed to have the best α- glycosidase inhibitory activity.
(1) 화합물 IV: 백색침상 결정, Rf=0.42, 녹는 점 200℃, 분자량 163(1) Compound IV: White needle crystal, Rf = 0.42, Melting point 200 ° C, Molecular weight 163
Rf치는 TLC 상에서 원점으로부터 시료가 움직인 거리를 전개용매가 최종적으로 이동한 거리에 대한 상대율로 표시한 것이다. 한편, 녹는 점은 녹는 점 측정기구(Mel-temp II, Laboratory Devices, U. S. A.)를 이용하여 결정이 녹는 순간의 온도를 측정함으로써 정하였다.Rf value shows the distance which the sample moved from the origin on TLC as a relative ratio with respect to the distance which the developing solvent finally moved. On the other hand, the melting point was determined by measuring the temperature at the time of melting the crystal using a melting point measuring instrument (Mel-temp II, Laboratory Devices, U. S. A.).
화합물 IV의 NMR(Bruker, AMX 500, Germany), FABMS(VG Analytical, VG, 70-USEQ, U. S. A.) 원소분석 결과는 다음과 같다:Elemental analysis of NMR (Bruker, AMX 500, Germany), FABMS (VG Analytical, VG, 70-USEQ, U. S. A.) of Compound IV is as follows:
이상의 NMR, FABMS 데이터와 문헌에 기재된 1-디옥시노지리마이신(1-deoxynojirimycin)의 데이터가 일치하였고, 1-디옥시노지리마이신 표준물질과 TLC 상에서 Rf치가 일치하였으므로, 화합물 IV를 1-디옥시노지리마이신으로 동정하였다.Since the NMR and FABMS data and the data of 1-deoxynojirimycin described in the literature were in agreement, and Rf values were consistent with the 1-deoxynojirimycin standard and TLC, Compound IV was 1-di. It was identified as oxynojirimycin.
(2) 화합물 V: 백색의 침상 결정, Rf=0.28, 녹는점 186℃, 분자량 147, 물에는 잘 녹으나 메탄올에는 녹지 않았다.(2) Compound V: White needle crystal, Rf = 0.28, melting point 186 ° C, molecular weight 147, well soluble in water but insoluble in methanol.
Rf치와 녹는점의 측정방법은 상술한 화합물 IV의 측정방법과 동일하다.The measurement method of Rf value and melting point is the same as the measurement method of compound IV mentioned above.
화합물 V의 NMR, FABMS 원소분석 결과는 다음과 같다:The NMR and FABMS elemental analysis of Compound V is as follows:
이상의 NMR, FABMS 데이터와 문헌에 기재된 파고민(fagomine)의 데이터가 일치하였고, 표준물질과 TLC상에서 Rfcl가 일치하였으므로 화합물 V를 파고민으로 동정하였다.The compound N was identified as pagomin because the NMR and FABMS data and the pagomine data described in the literature were in agreement, and the Rfcl was in agreement with the standard.
(3) 화합물 VI: 백색의 침상결정, Rf=0.72, 녹는점 115℃, 분자량 133(3) Compound VI: White acicular crystal, Rf = 0.72, Melting point 115 ° C, Molecular weight 133
Rfcl와 녹는 점의 측정방법은 상술한 화합물 IV의 측정방법과 동일하다.The measurement method of Rfcl and melting point is the same as the measurement method of compound IV mentioned above.
화합물 VI의 NMR, FABMS 원소분석 결과는 다음과 같다.The NMR and FABMS elemental analysis of Compound VI is as follows.
이상의 NMR, FABMS 데이터와 문헌에 기재된 1,4-다이디옥시-1,4-이미노-디-아라비니톨(1,4-dideoxy-1,4-imino-D-aravinitol)의 데이터가 일치하였고, 표준물질과 Rf치가 일치하였으므로 화합물 VI를 1,4-다이디옥시-1,4-이미노-디-아라비니톨로 동정하였다.The above-mentioned NMR and FABMS data and the 1,4-didioxy-1,4-imino-di-arabinitol (1,4-dideoxy-1,4-imino-D-aravinitol) described in the literature match Compound VI was identified as 1,4-didioxy-1,4-imino-di-arabinitol because the standard and Rf value were identical.
이상에서 상세히 설명하고 입증하였듯이, 본 발명은 누에오줌으로부터 α-글리코시다제 억제물질을 제조하는 방법을 제공한다. 본 발명의 α-글리코시다제 억제물질을 분리제조하는 방법은 종전까지 전부 폐기되었던 누에오줌으로부터 α-글리코시다제 억제활성이 우수한 물질을 분리하는 방법으로서 α-글리코시다제 억제물질은 기존의 당뇨 치료제인 아카보즈와 거의 동일한 α-글리코시다제 억제활성도를 갖고 있는 것이 확인되었다. 따라서, 본 발명의 방법에 의해 제조된 물질을 당뇨병 치료제로 개발하는 경우, 농가의 소득증대 및 국민건강의 증진에 기여할 것으로 기대된다.As described and demonstrated in detail above, the present invention provides a method for producing an α-glycosidase inhibitor from silkworm urine. The method for separating and producing the α-glycosidase inhibitor of the present invention is a method for separating a substance having excellent α-glycosidase inhibitory activity from silkworm urine which has been completely discarded before. It was confirmed that it had the same alpha-glycosidase inhibitory activity as the therapeutic agent acarbose. Therefore, when the substance produced by the method of the present invention is developed as an antidiabetic agent, it is expected to contribute to increase of income of farmers and improvement of national health.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970074866A KR100260612B1 (en) | 1997-12-27 | 1997-12-27 | A process for preparing alpha-glycosidase inhibitors from silkworm urine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970074866A KR100260612B1 (en) | 1997-12-27 | 1997-12-27 | A process for preparing alpha-glycosidase inhibitors from silkworm urine |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19990054967A KR19990054967A (en) | 1999-07-15 |
KR100260612B1 true KR100260612B1 (en) | 2000-07-01 |
Family
ID=19528879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019970074866A KR100260612B1 (en) | 1997-12-27 | 1997-12-27 | A process for preparing alpha-glycosidase inhibitors from silkworm urine |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100260612B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101606936B (en) * | 2008-06-20 | 2011-12-28 | 中南大学 | Medicinal composition for treating diabetes |
-
1997
- 1997-12-27 KR KR1019970074866A patent/KR100260612B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR19990054967A (en) | 1999-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080287344A1 (en) | Use of Amino Acids for Making Medicines for Treating Insulin Resistance | |
EP0336851A1 (en) | Pharmaceutical composition for oral administration containing a diphosphonic acid derivative | |
Badian et al. | Absolute bioavailability of glimepiride (Amaryl®) after oral administration | |
US20100292178A1 (en) | Method of treating non-insulin dependent diabetes mellitus and related complications | |
CN108289905A (en) | A acyl cytosine arabinoside conjugate for cancer therapy | |
US20160101122A1 (en) | Compositions and methods for treating spinocerebellar ataxia | |
US4985248A (en) | Pharmaceutical composition containing a safe extracts of fruits and vegetables for the treating and preventing of diabetes | |
CN101095670A (en) | Luteolin phospholipid complexes and method for preparing the same and application thereof | |
Catenazzo et al. | Bioavailability of digoxin in a new soluble pharmaceutical formulation in capsules | |
EP2172206A1 (en) | The method for a sequoyitol-containing extract obtaining from the genus of trifolium, sobyean and ginkgo biloba and use thereof | |
JPS63284126A (en) | Antidiabetic | |
KR100260612B1 (en) | A process for preparing alpha-glycosidase inhibitors from silkworm urine | |
EP0154523A2 (en) | A pharmaceutical formulation containing azapropazone | |
US6531461B1 (en) | Medicament for the treatment of diabetes | |
DE60106246T2 (en) | MALTO OLIGOSACCHARIDES AND ITS USE | |
US6475520B1 (en) | Pharmaceutical composition with low toxicity for anti-inflammation and anti-exudation | |
CN1636581A (en) | Safflower medicine composition and its prepn process and use | |
JPH06504278A (en) | How to lower high blood sugar levels in humans | |
EP0479874B1 (en) | Use of norverapamil and norgallopamil as anti-arteriosclerosis drugs | |
de Leiva et al. | Serotoninergic activation and inhibition: effects on carbohydrate tolerance and plasma insulin and glucagon | |
CN111704622B (en) | Flavanol-menthane heterozygote, pharmaceutical composition thereof, preparation method and application thereof | |
KR20070086137A (en) | Medicinal composition containing fbpase inhibitor | |
KR100396986B1 (en) | A process for preparing α-glycosidase inhibitor derived from powdery silkworm | |
DE69214180T2 (en) | Use of bis (p-hydroxyphenylthio) methane derivatives to inhibit the progressive development of insulin-dependent diabetes mellitus | |
JP2835547B2 (en) | Diabetes treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E701 | Decision to grant or registration of patent right | ||
LAPS | Lapse due to unpaid annual fee | ||
FPAY | Annual fee payment |
Payment date: 20160808 Year of fee payment: 20 |
|
EXPY | Expiration of term |