KR100248488B1 - 박막형 광로 조절 장치의 제조 방법 - Google Patents
박막형 광로 조절 장치의 제조 방법 Download PDFInfo
- Publication number
- KR100248488B1 KR100248488B1 KR1019970016175A KR19970016175A KR100248488B1 KR 100248488 B1 KR100248488 B1 KR 100248488B1 KR 1019970016175 A KR1019970016175 A KR 1019970016175A KR 19970016175 A KR19970016175 A KR 19970016175A KR 100248488 B1 KR100248488 B1 KR 100248488B1
- Authority
- KR
- South Korea
- Prior art keywords
- layer
- photoresist
- forming
- lower electrode
- upper electrode
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0816—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
- G02B26/0833—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
- G02B26/0858—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by piezoelectric means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S359/00—Optical: systems and elements
- Y10S359/90—Methods
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S359/00—Optical: systems and elements
- Y10S359/904—Micromirror
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Micromachines (AREA)
Abstract
박막형 광로 조절 장치의 제조 방법이 개시되어 있다. 상기 방법은 일측 상부에 드레인 패드가 형성된 액티브 매트릭스를 제공하는 단계; 상기 액티브 매트릭스의 상부에 희생층을 형성하는 단계; 상기 희생층의 상부에 지지층을 형성하는 단계, 상기 지지층의 상부에 하부 전극을 형성하는 단계, 상기 하부 전극의 상부에 변형층을 형성하는 단계, 상기 변형층의 상부에 상부 전극을 형성하는 단계, 및 상기 변형층의 일측 상부로부터 상기 드레인 패드까지 수직하게 비어 컨택을 형성하는 단계를 포함하는 액츄에이터를 형성하는 단계; 상기 상부 전극, 변형층 및 하부 전극의 노출된 면을 완전히 덮도록 제1 포토레지스트를 도포하고, 상기 제1 포토레지스트를 안정화시키는 단계; 상기 안정화된 제1 포토레지스트의 상부에 제2 포토레지스트를 도포하고, 상기 제2 포토레지스트를 안정화시키는 단계; 그리고 상기 안정화된 제1 및 제2 포토레지스트를 마스크로 이용하여 상기 지지층을 식각하고 계속해서 상기 희생층을 식각하여 에어 갭을 형성하는 단계를 포함한다. 따라서, 지지층 및 희생층의 식각 공정시 마스크로 사용되는 포토레지스트의 두께를 증가시키고 이를 안정화시킴으로써, 플르오르화 수소 증기에 의한 식각 공정 중 포토레지스트가 리프트-오프되거나 변형층이 손상되는 것을 방지할 수 있다.
Description
본 발명은 AMA(Actuated Mirror Array)를 이용한 박막형 광로 조절 장치의 제조 방법에 관한 것으로, 보다 상세하게는 에어 갭(air gap)을 형성하기 위하여 플루오르화 수소(HF) 증기에 의한 식각 공정을 진행할 때 포토레지스트의 리프트-오프(lift-off) 및 변형층의 손상(attack)을 방지할 수 있는 박막형 광로 조절 장치의 제조 방법에 관한 것이다.
광학 에너지(optical energy)를 스크린 상에 투영하기 위한 광로 조절 장치 또는 공간적 광 변조기(spatial light modulator)는 광통신, 화상 처리, 그리고 정보 디스플레이 장치와 같은 다양한 분야에 응용될 수 있다. 통상적으로 이러한 장치들은 광학 에너지를 스크린 상에 표시하는 방법에 따라 직시형 화상 표시 장치(direct-view image display device)와 투사형 화상 표시 장치(projection-type image display device)로 구분된다.
직시형 화상 표시 장치의 예로서는 CRT(Cathode Ray Tube)를 들 수 있는데, 이러한 CRT 장치는 소위 브라운관으로 불리는 것으로서 화질은 우수하나 화면의 대형화에 따라 그 중량과 용적이 증가하여 제조 비용이 상승하게 되는 문제가 있다. 투사형 화상 표시 장치로는 액정 표시 장치(Liquid Crystal Display : LCD), DMD(Deformable Mirror Device), 그리고 AMA를 들 수 있다. 이러한 투사형 화상 표시 장치는 다시 그들의 광학적 특성에 따라 2 개의 그룹으로 나뉠 수 있다. 즉, LCD와 같은 장치는 전송 광 변조기(transmissive spatial light modulators)로 분류될 수 있는데 반하여, DMD 및 AMA는 반사 광 변조기(reflective spatial light modulators)로 분류될 수 있다.
LCD와 같은 전송 광 변조기는 광학적 구조가 매우 간단하므로, 얇게 형성하여 중량을 가볍게 할 수 있으며 용적을 줄이는 것이 가능하다. 그러나, 빛의 극성으로 인하여 광효율이 낮으며, 액정 재료에 고유하게 존재하는 문제, 예를 들면 응답 속도가 느리고 그 내부가 과열되기 쉬운 단점이 있다. 또한, 현존하는 전송 광 변조기의 최대 광효율은 1 내지 2 % 범위로 한정되며, 수용 가능한 디스플레이 품질을 제공하기 위해서 암실 조건을 필요로 한다. 따라서, 상술한 문제점들을 해결하기 위하여 DMD 및 AMA와 같은 광 변조기가 개발되었다.
DMD는 5% 정도의 비교적 양호한 광효율을 나타내지만, DMD에 채용된 힌지 구조물에 의해서 심각한 피로 문제가 발생할 뿐만 아니라, 매우 복잡하고 값비싼 구동 회로가 요구된다는 단점이 있다. AMA는 그 내부에 설치된 각각의 거울들이 광원으로부터 입사되는 빛을 소정의 각도로 반사하고, 상기 반사된 빛이 슬릿(slit)이나 핀홀(pinhole)과 같은 개구(aperture)를 통과하여 스크린에 투영되어 화상을 맺도록 광속을 조절할 수 있는 장치이다. 따라서, 그 구조와 동작 원리가 간단하며, LCD나 DMD에 비해 높은 광효율(10% 이상의 광효율)을 얻을 수 있다. 또한, 스크린에 투영되는 화상의 콘트라스트(contrast)가 향상되어 밝고 선명한 화상을 얻을 수 있다.
AMA의 각 액츄에이터는 인가되는 전기적인 화상 신호 및 바이어스 신호에 의하여 발생되는 전기장에 따라 변형을 일으킨다. 상기 액츄에이터가 변형을 일으킬 때 그 상부에 장착된 각각의 거울들이 경사지게 된다. 따라서, 상기 경사진 거울들은 광원으로부터 입사된 빛을 소정의 각도로 반사시켜 스크린 상에 화상을 맺을 수 있도록 한다. 상기 각각의 거울들을 구동하는 액츄에이터로서 PZT(Pb(Zr, Ti)O3), 또는 PLZT((Pb, La)(Zr, Ti)O3) 등의 압전 물질이 이용된다. 또한, PMN(Pb(Mg, Nb)O3) 등의 전왜 물질로서 상기 액츄에이터를 구성할 수도 있다.
이러한 AMA 장치는 크게 벌크형(bulk type)과 박막형(thin film type)으로 구분된다. 상기 벌크형 광로 조절 장치는 Gregory Um 등에게 허여된 미합중국 특허 제 5,085,497호에 개시되어 있다. 벌크형 광로 조절 장치는 다층 세라믹을 얇게 절단하여 내부에 금속 전극이 형성된 세라믹 웨이퍼를 트랜지스터가 내장된 액티브 매트릭스(active matrix)에 장착한 후, 쏘잉 방법으로 가공하고 그 상부에 거울을 설치함으로써 이루어진다. 그러나, 벌크형 광로 조절 장치는 설계 및 제조에 있어서 매우 높은 정밀도가 요구되며, 변형층의 응답이 느리다는 단점이 있다.
이에 따라, 반도체 제조 공정을 이용하여 제조할 수 있는 박막형 광로 조절 장치가 개발되었다. 상기 박막형 광로 조절 장치는 본 출원인이 1996년 9월 24일 대한민국 특허청에 특허 출원한 특허 출원 제96-42197호(발명의 명칭: 멤브레인의 스트레스를 조절할 수 있는 박막형 광로 조절 장치의 제조 방법)에 개시되어 있다.
도 1은 상기 선행 출원에 기재된 박막형 광로 조절 장치의 단면도이다.
도 1을 참조하면, 상기 박막형 광로 조절 장치는 액티브 매트릭스(1) 및 액츄에이터(60)를 포함한다. 그 내부에 M×N(M, N은 정수) 개의 MOS(Metal Oxide Semiconductor) 트랜지스터가 내장되고 일측 표면에 드레인 패드(5)가 형성된 액티브 매트릭스(1)는, 상기 액티브 매트릭스(1) 및 드레인 패드(5)의 상부에 적층된 보호층(10)과 보호층(10)의 상부에 적층된 식각 방지층(15)을 포함한다.
상기 액츄에이터(60)는, 상기 식각 방지층(15) 중에서 그 아래에 드레인 패드(5)가 형성된 부분에 일측이 접촉되며 타측이 에어 갭(25)을 개재하여 상기 식각 방지층(15)과 평행하도록 적층된 멤브레인(30), 상기 멤브레인(30)의 상부에 적층된 하부 전극(35), 상기 하부 전극(35)의 상부에 적층된 변형층(40), 상기 변형층(40)의 상부에 적층된 상부 전극(45), 상기 변형층(40)의 일측으로부터 하부 전극(35), 멤브레인(30), 식각 방지층(15) 및 보호층(10)을 통하여 상기 드레인 패드(5)까지 수직하게 형성된 비어 홀(50) 내에 하부 전극(35)과 드레인 패드(5)가 서로 전기적으로 연결되도록 형성된 비어 컨택(55)을 포함한다.
상기 상부 전극(45)의 일부에는 스트라이프(46)가 형성된다. 상기 스트라이프(46)는 상부 전극(45)을 균일하게 작동시켜 광원으로부터 입사되는 빛의 난반사를 방지한다.
이하, 상기 박막형 광로 조절 장치의 제조 방법을 도 2a 내지 2e를 참조하여 설명한다.
도 2a를 참조하면, M×N(M, N은 정수) 개의 트랜지스터(도시되지 않음)가 내장되고 그 일측 상부에 드레인 패드(5)가 형성된 액티브 매트릭스(1) 상에 인 실리케이트 유리(Phosphor-Silicate Glass : PSG)로 구성된 보호층(10)을 형성한다. 상기 보호층(10)은 화학 기상 증착(Chemical Vapor Deposition : CVD) 방법을 이용하여 1.0㎛ 정도의 두께를 갖도록 형성한다. 상기 보호층(10)은 후속 공정으로부터 액티브 매트릭스(1)를 보호한다.
상기 보호층(10) 상에는 질화물로 이루어진 식각 방지층(15)이 형성된다. 상기 식각 방지층(15)은 저압 화학 기상 증착(Low Pressure CVD : LPCVD) 방법을 이용하여 0.1∼1.0㎛ 정도의 두께를 갖도록 형성한다. 상기 식각 방지층(15)은 후속하는 식각 공정 동안에 보호층(10) 및 액티브 매트릭스(1)가 식각되는 것을 방지한다. 상기 식각 방지층(15) 상에는 희생층(20)이 형성된다. 상기 희생층(20)은 인(P)의 농도가 높은 인 실리케이트 유리를 대기압 화학 기상 증착(Atmospheric Pressure CVD : APCVD) 방법을 이용하여 1.0∼3.0㎛ 정도의 두께를 갖도록 형성한다. 이 경우, 희생층(20)은 트랜지스터가 내장된 액티브 매트릭스(1)의 상부를 덮고 있으므로, 그 표면의 평탄도가 매우 불량하다. 따라서, 희생층(20)의 표면을 스핀 온 글래스(Spin-On Glass : SOG)를 사용하는 방법 또는 화학 기계적 연마(Chemical Mechanical Polishing : CMP) 방법을 이용하여 평탄화시킨다. 이어서, 상기 희생층(20) 중 그 아래에 드레인 패드(5)가 형성되어 있는 부분을 식각하여 상기 식각 방지층(15)의 일부를 노출시킴으로써 액츄에이터의 지지부가 형성될 위치를 만든다.
도 2b를 참조하면, 상기 노출된 식각 방지층(15) 및 희생층(20) 상에 0.1∼ 1.0㎛ 정도의 두께로 멤브레인(30)을 형성한다. 멤브레인(30)은 질화물을 저압 화학 기상 증착(LPCVD) 방법을 이용하여 형성한다. 이때, 저압의 반응 용기 내에서 반응 가스의 비를 변화시키면서 멤브레인(30)을 형성함으로써, 멤브레인(30) 내의 응력(stress)을 조절한다.
상기 멤브레인(30) 상에는 백금(Pt) 또는 백금-탄탈륨(Pt-Ta) 등의 금속으로 구성된 하부 전극(35)이 형성된다. 상기 하부 전극(35)은 스퍼터링 방법을 이용하여 0.1∼1.0㎛ 정도의 두께를 갖도록 형성한다. 이어서, 상기 하부 전극(35)을 각각의 화소별로 분리하기 위하여 Iso-Cutting한다.
상기 하부 전극(35) 상에는 PZT 또는 PLZT로 구성된 변형층(40)이 형성된다. 변형층(40)은 졸-겔(sol-gel)법을 이용하여 0.1∼1.0㎛, 바람직하게는 0.4㎛ 정도의 두께를 갖도록 형성한 후, 급속 열처리(Rapid Thermal Annealing : RTA) 방법으로써 상변이시킨다. 상기 변형층(40)은 상부 전극(45)과 하부 전극(35) 사이에 발생하는 전기장에 의하여 변형을 일으킨다.
상기 상부 전극(45)은 변형층(40)의 상부에 형성된다. 상부 전극(45)은 알루미늄 또는 백금 등의 전기 전도성 및 반사성이 우수한 금속을 스퍼터링 방법을 이용하여 0.1∼1.0㎛ 정도의 두께를 갖도록 형성한다. 상부 전극(45)에는 외부로부터 공통 전극선(도시되지 않음)을 통하여 제2 신호(바이어스 신호)가 인가된다. 또한, 상기 상부 전극(45)은 광원으로부터 입사되는 빛을 반사하는 거울의 기능도 함께 수행한다.
도 2c를 참조하면, 상기 상부 전극(45)을 소정의 화소 형상으로 패터닝한다. 이때, 상기 상부 전극(45)의 일측 상부에 스트라이프(46)가 형성되도록 패터닝한다. 계속해서, 상기 변형층(40) 및 하부 전극(35)을 순차적으로 소정의 화소 형상으로 패터닝한 후, 변형층(40)의 일측 상부로부터 드레인 패드(5)의 상부까지 변형층(40), 하부 전극(35), 멤브레인(30), 식각 방지층(15) 및 보호층(10)을 순차적으로 식각함으로써 비어 홀(50)을 형성한다. 이어서, 텅스텐, 백금 또는 티타늄 등의 금속을 리프트-오프 방법으로 증착하여 상기 드레인 패드(5)와 하부 전극(35)을 전기적으로 연결시키는 비어 컨택(55)을 형성한다. 따라서, 비어 컨택(55)은 비어 홀(50) 내에서 하부 전극(35)으로부터 드레인 패드(5)의 상부까지 수직하게 형성된다. 그러므로, 외부로부터 인가된 제1 신호(화상 신호)는 액티브 매트릭스(1)에 내장된 트랜지스터, 드레인 패드(5) 및 비어 컨택(55)을 통하여 하부 전극(10)에 인가된다.
도 2d를 참조하면, 상기 비어 컨택(55)이 형성된 결과물 전면에 포토레지스트(57)를 도포하고 이를 패터닝하여 상기 멤브레인(30)을 노출시킨다. 이어서, 상기 포토레지스트(57)를 식각 마스크로 사용하여 상기 멤브레인(30)을 이방성 식각함으로써 소정의 화소 형상으로 패터닝한다. 이때, 상기 포토레지스트(57)가 어느 정도 손실되어 최초의 두께보다 얇아지게 된다(점선 부분 참조).
도 2e를 참조하면, 상기 포토레지스트(57)를 식각 마스크로 사용하여 49% 플루오르화 수소(HF) 증기에 의해 상기 희생층(20)을 등방성 식각함으로써 에어 갭(59)을 형성한다. 이어서, 상기 포토레지스트(57)를 제거하고, 세정 및 건조 공정을 실시함으로써 AMA 소자를 완성한다.
상술한 박막형 광로 조절 장치에 있어서, 제1 신호가 액티브 매트릭스(1)에 내장된 MOS 트랜지스터로부터 드레인 패드(5)와 비어 컨택(55)을 통하여 신호 전극인 하부 전극(35)에 인가된다. 또한, 공통 전극인 상부 전극(45)에는 제2 신호가 인가되어 상부 전극(45)과 하부 전극(35) 사이에 전기장이 발생한다. 이 전기장에 의하여 상부 전극(45)과 하부 전극(35) 사이에 적층되어 있는 변형층(40)이 변형을 일으킨다. 변형층(40)은 상기 전기장에 대하여 직교하는 방향으로 수축하며, 변형층(40)을 포함하는 액츄에이터(60)는 멤브레인(30)이 형성되어 있는 방향의 반대 방향으로 휘어진다. 따라서, 액츄에이터(60) 상부의 상부 전극(49)도 같은 방향으로 경사진다. 광원으로부터 입사되는 빛은 상부 전극(49)에 의해 소정의 각도로 반사된 후, 스크린에 투영되어 화상을 맺는다.
그러나, 상술한 박막형 광로 조절 장치에서는 희생층을 제거하기 위하여 플루오르화 수소 증기를 이용한 식각을 실시하며, 이때 사용되는 포토레지스트 마스크는 이전 단계에서 멤브레인을 화소 형상으로 식각할 때 사용된 포토레지스트이다. 즉, 멤브레인의 식각 및 희생층의 식각은 한 번의 포토레지스트 마스크를 이용하여 연속적으로 진행된다. 따라서, 멤브레인을 식각할 때 포토레지스트 역시 어느 정도 식각되기 때문에, 희생층을 식각할 때의 포토레지스트 두께는 최초의 포토레지스트 두께보다 얇아지게 되어 플루오르화 수소 증기를 이용한 식각 공정 중에 포토레지스트가 리프트-오프되는 문제가 발생한다.
또한, 49% 플루오르화 수소 용액은 포토레지스트를 침투하는 경향을 나타내는데, 이러한 플루오르화 수소 용액의 침투 성향은 포토레지스트에 핀홀(pin-hole) 및 결함(defect) 등이 존재하는 경우 더욱 강화된다. 이에 따라, 플루오르화 수소 증기를 이용한 식각 공정 중 상기 플루오르화 수소 증기가 포토레지스트를 투과하여 변형층을 손상시킴으로써, AMA 소자의 수율을 저하시키게 된다.
따라서, 본 발명의 목적은 에어 갭을 형성하기 위하여 플루오르화 수소 증기에 의한 식각 공정을 진행할 때 포토레지스트의 리프트-오프 및 변형층의 손상을 방지할 수 있는 박막형 광로 조절 장치의 제조 방법을 제공하는데 있다.
도 1은 본 출원인의 선행 출원에 기재된 박막형 광로 조절 장치의 단면도이다.
도 2a 내지 도 2e는 도 1에 도시한 장치의 제조 방법을 설명하기 위한 단면도들이다.
도 3은 본 발명에 따른 박막형 광로 조절 장치의 평면도이다.
도 4는 도 3에 도시한 장치를 A-A' 선으로 자른 단면도이다.
도 5a 내지 도 5g는 도 4에 도시한 장치의 제조 방법을 설명하기 위한 단면도들이다.
<도면의 주요 부분에 대한 부호의 설명>
131 : 액티브 매트릭스 133 : 액츄에이터
135 : 드레인패드 137 : 보호층
139 : 식각 방지층 141 : 희생층
143 : 지지층 145 : 하부 전극
147 : 변형층 149 : 상부 전극
151 : 스트라이프 153 : 비어 홀
155 : 비어 컨택 157 : 에어 갭
상술한 본 발명의 목적을 달성하기 위하여 본 발명은, 일측 상부에 드레인 패드가 형성된 액티브 매트릭스를 제공하는 단계; 상기 액티브 매트릭스의 상부에 희생층을 형성하는 단계; i) 상기 희생층의 상부에 지지층을 형성하는 단계, ii) 상기 지지층의 상부에 하부 전극을 형성하는 단계, iii) 상기 하부 전극의 상부에 변형층을 형성하는 단계, iv) 상기 변형층의 상부에 상부 전극을 형성하는 단계, 및 v) 상기 변형층의 일측 상부로부터 상기 드레인 패드까지 수직하게 비어 컨택을 형성하는 단계를 포함하는 액츄에이터를 형성하는 단계; 상기 상부 전극, 변형층 및 하부 전극의 노출된 면을 완전히 덮도록 제1 포토레지스트를 도포하고, 상기 제1 포토레지스트를 안정화시키는 단계; 상기 안정화된 제1 포토레지스트의 상부에 제2 포토레지스트를 도포하고, 상기 제2 포토레지스트를 안정화시키는 단계; 그리고 상기 안정화된 제1 및 제2 포토레지스트를 마스크로 이용하여 상기 지지층을 식각하고 계속해서 상기 희생층을 식각하여 에어 갭을 형성하는 단계를 포함하는 박막형 광로 조절 장치의 제조 방법을 제공한다.
상술한 본 발명의 박막형 광로 조절 장치에 있어서, 외부로부터 전달된 제1 신호(화상 신호)는 액티브 매트릭스에 내장된 MOS 트랜지스터, 드레인 패드 및 비어 컨택을 통하여 하부 전극에 인가된다. 동시에, 상부 전극에는 외부로부터 공통 전극선을 통하여 제2 신호(바이어스 신호)가 인가되어 상부 전극과 하부 전극 사이에 전기장이 발생한다. 이 전기장에 의하여 상부 전극과 하부 전극 사이에 적층되어 있는 변형층이 변형을 일으킨다. 변형층은 상기 전기장에 대하여 직교하는 방향으로 수축하며, 변형층을 포함하는 액츄에이터는 지지층(143)이 형성되어 있는 방향의 반대 방향으로 휘어진다. 따라서, 상기 액츄에이터 상부에서 거울의 기능도 수행하는 상부 전극도 같은 방향으로 경사진다. 이에 따라, 광원으로부터 입사되는 빛은 경사진 상부 전극에 의해 소정의 각도로 반사된 후, 슬릿을 통과하여 스크린에 투영됨으로써 화상을 맺게 된다.
본 발명에 따른 박막형 광로 조절 장치의 제조 방법에 의하면, 상부 전극, 변형층 및 하부 전극의 노출된 면을 완전히 덮도록 포토레지스트를 1회 도포하고 이를 전자 빔(E-beam) 처리 또는 자외선 처리(UV-curing)한 후, 다시 포토레지스트를 2회 도포하고 이를 전자 빔 또는 자외선 처리한다. 따라서, 상기 포토레지스트가 지지층의 식각시 어느 정도 손실되더라도, 후속의 플루오르화 수소 증기에 의한 식각 공정시 남아있게 되는 포토레지스트의 두께가 1회 도포한 포토레지스트의 두께보다 두껍게 된다. 그러므로, 플루오르화 수소 증기를 이용한 희생층의 식각 공정 중에 포토레지스트가 리프트-오프되는 것을 방지할 수 있다.
또한, 상기 포토레지스트를 각 도포 단계 후 전자 빔 처리 또는 자외선 처리에 의하여 안정화(stablization)시켜서 포토레지스트에 핀홀이나 결함 등을 제거한다. 따라서, 포토레지스트에서의 플루오르화 수소 증기의 침투 경로를 줄일 수 있으므로, 플루오르화 수소 증기에 의한 변형층의 손상을 방지할 수 있다.
이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 상세하게 설명한다.
도 3은 본 발명에 따른 박막형 광로 조절 장치의 평면도를 도시한 것이고, 도 4는 도 3에 도시한 장치를 A-A' 선으로 자른 단면도를 도시한 것이다.
도 3 및 도 4를 참조하면, 본 발명에 따른 박막형 광로 조절 장치는 액티브 매트릭스(131) 및 상기 액티브 매트릭스(131)의 상부에 형성된 액츄에이터(133)를 포함한다. 그 내부에 M×N(M, N은 정수) 개의 MOS 트랜지스터(도시되지 않음)가 내장되고 일측 표면에 드레인 패드(135)가 형성된 액티브 매트릭스(131)는, 상기 액티브 매트릭스(131) 및 드레인 패드(135)의 상부에 적층된 보호층(137), 그리고 상기 보호층(137)의 상부에 적층된 식각 방지층(139)을 포함한다.
상기 액츄에이터(133)는, 상기 식각 방지층(139) 중에서 그 아래에 드레인 패드(135)가 형성된 부분에 일측이 접촉되며 타측이 에어 갭(157)을 개재하여 상기 식각 방지층(139)과 평행하도록 적층된 단면을 갖는 지지층(143), 지지층(143)의 상부에 적층된 하부 전극(145), 하부 전극(145)의 상부에 적층된 변형층(147), 변형층(147)의 상부에 적층된 상부 전극(149), 그리고 상기 변형층(147)의 일측으로부터 하부 전극(145), 지지층(143), 식각 방지층(139) 및 보호층(137)을 통하여 상기 드레인 패드(135)까지 수직하게 형성된 비어 홀(153) 내에 하부 전극(145)과 드레인 패드(135)가 서로 전기적으로 연결되도록 형성된 비어 컨택(155)을 포함한다.
또한, 도 3을 참조하면 상기 지지층(143)의 평면은 그 일측이 중앙부에 사각형 형상의 오목한 부분을 가지며 이러한 오목한 부분이 양쪽 가장자리로 갈수록 계단형으로 넓어지는 형상으로 형성된다. 상기 지지층(143)의 타측은 상기 오목한 부분에 대응하여 중앙부로 갈수록 계단형으로 좁아지는 사각형 형상의 돌출부를 갖는다. 그러므로, 상기 지지층(143)의 오목한 부분에 인접한 액츄에이터의 지지층의 돌출부가 끼워지고, 상기 사각형 형상의 돌출부가 인접한 액츄에이터의 지지층의 오목한 부분에 끼워지게 된다. 상기 지지층(143)은 선행 출원에 기재된 박막형 광로 조절 장치 중 액츄에이터를 지지하는 멤브레인의 역할을 수행한다. 상기 상부 전극(149)의 일부에는 스트라이프(151)가 형성된다. 상기 스트라이프(151)는 상부 전극(149)을 균일하게 작동시켜 광원으로부터 입사되는 빛의 난반사를 방지한다.
이하, 본 발명의 바람직한 실시예에 따른 박막형 광로 조절 장치의 제조 방법을 도면을 참조하여 상세하게 설명한다.
도 5a 내지 도 5g는 도 4에 도시한 장치의 제조 방법을 설명하기 위한 단면도들이다. 도 5a 내지 도 5g에 있어서, 도 4와 동일한 부재들에 대해서는 동일한 참조 번호를 사용한다.
도 5a를 참조하면, M×N(M, N은 정수) 개의 MOS 트랜지스터(도시되지 않음)가 내장되고 그 일측 상부에 드레인 패드(135)가 형성된 액티브 매트릭스(131) 상에 보호층(137)을 형성한다. 상기 액티브 매트릭스(131)는 실리콘 등의 반도체로 이루어지거나 유리 또는 알루미나(Al2O3) 등의 절연 물질로 구성된다. 상기 보호층(137)은 인 실리케이트 유리(PSG)를 화학 기상 증착(CVD) 방법을 이용하여 1.0㎛ 정도의 두께를 갖도록 형성한다. 상기 보호층(137)은 후속 공정으로부터 액티브 매트릭스(131)에 내장된 트랜지스터가 손상되는 것을 방지한다.
이어서, 상기 보호층(137) 상에 식각 방지층(139)을 형성한다. 상기 식각 방지층(139)은 질화물을 저압 화학 기상 증착(LPCVD) 방법을 이용하여 0.1∼1.0㎛ 정도의 두께를 갖도록 형성한다. 상기 식각 방지층(139)은 후속하는 식각 공정 동안에 보호층(137) 및 트랜지스터가 내장된 액티브 매트릭스(131)가 식각되는 것을 방지한다.
이어서, 상기 식각 방지층(139) 상에 희생층(141)을 형성한다. 희생층(141)은 인(P)의 농도가 높은 인 실리케이트 유리(PSG)를 대기압 화학 기상 증착(APCVD) 방법을 이용하여 1.0∼3.0㎛ 정도의 두께를 갖도록 형성한다. 이 경우, 희생층(141)은 트랜지스터가 내장된 액티브 매트릭스(131)의 상부를 덮고 있으므로, 그 표면의 평탄도가 매우 불량하다. 따라서, 희생층(141)의 표면을 스핀 온 글래스(SOG)를 사용하는 방법 또는 화학 기계적 연마(CMP) 방법을 이용하여 평탄화시킨다. 이어서, 상기 희생층(141) 중 그 아래에 드레인 패드(135)가 형성되어 있는 부분을 식각하여 상기 식각 방지층(139)의 일부를 노출시킴으로써 액츄에이터의 지지부가 형성될 위치를 만든다.
도 5b를 참조하면, 상기 노출된 식각 방지층(139) 및 희생층(141) 상에 0.1∼1.0㎛ 정도의 두께로 지지층(143)을 형성한다. 상기 지지층(143)은 질화물을 저압 화학 기상 증착(LPCVD) 방법을 이용하여 형성한다. 이때, 저압의 반응 용기 내에서 반응 가스의 비를 변화시키면서 지지층(143)을 형성함으로써, 지지층(143) 내의 응력을 조절한다.
도 5c를 참조하면, 상기 지지층(143) 상에 백금(Pt) 또는 백금-탄탈륨(Pt-Ta) 등의 금속으로 구성된 하부 전극(145)을 형성한다. 상기 하부 전극(145)은 스퍼터링 방법 또는 화학 기상 증착 방법을 이용하여 0.1∼1.0㎛ 정도의 두께를 갖도록 형성한다. 신호 전극인 하부 전극(145)에는 외부로부터 제1 신호(화상 신호)가 액티브 매트릭스(131)에 내장된 트랜지스터 및 상기 드레인 패드(135)를 통하여 인가된다. 계속하여, 상기 하부 전극(145)을 각 화소별로 분리하기 위하여 Iso-Cutting한다.
상기 하부 전극(145) 상에는 PZT 또는 PLZT 등의 압전 물질로 구성된 변형층(147)을 형성한다. 상기 변형층(147)은 졸-겔(sol-gel)법, 스퍼터링 방법 또는 화학 기상 증착(CVD) 방법을 이용하여 0.1∼1.0㎛, 바람직하게는 0.4㎛ 정도의 두께를 갖도록 형성한 후, 변형층(147)을 구성하는 압전 물질을 급속 열처리(RTA) 방법으로써 상변이시키고 분극시킨다. 상기 변형층(147)은 상부 전극(149)과 하부 전극(145) 사이에 발생하는 전기장에 의하여 변형을 일으킨다.
이어서, 상부 전극(149)을 변형층(147)의 상부에 형성한다. 상부 전극(149)은 알루미늄(Al), 은(Ag) 또는 백금(Pt) 등의 전기 전도성 및 반사성이 우수한 금속을 스퍼터링 방법을 이용하여 0.1∼1.0㎛ 정도의 두께를 갖도록 형성한다. 상부 전극(149)에는 외부로부터 공통 전극선(도시되지 않음)을 통하여 제2 신호(바이어스 신호)가 인가되며, 동시에 상부 전극(149)은 광원으로부터 입사되는 빛을 반사하는 거울의 기능도 함께 수행한다.
계속해서, 상기 상부 전극(149), 변형층(147) 및 하부 전극(145)을 순차적으로 소정의 화소 형상으로 패터닝한다. 즉, 상부 전극(149) 위에 식각될 재료에 대해서 내성을 갖는 포토레지스트층(도시되지 않음)을 형성한 후, 상기 상부 전극(149)을 패터닝한다. 이때, 상기 상부 전극(149)의 일측 상부에 상부 전극(149)을 균일하게 동작시켜 광원으로부터 입사되는 빛의 난반사를 방지하는 스트라이프(151)가 형성되도록 상부 전극(149)을 패터닝한다. 이어서, 상기 패터닝된 상부 전극(149)과 변형층(147)의 상부에 다시 포토레지스트 보호층(도시되지 않음)을 형성한 후, 상기 변형층(147)을 소정의 화소 형상으로 패터닝한다. 이와 같은 방식으로 하부 전극(145) 역시 소정의 화소 형상으로 패터닝한다.
도 5d를 참조하면, 사진 식각 공정을 이용하여 상기 변형층(147) 중에서 그 아래에 드레인 패드(135)가 형성되어 있는 부분으로부터 상기 드레인 패드(135)의 상부까지 변형층(147), 하부 전극(145), 지지층(143), 식각 방지층(139) 및 보호층(137)을 순차적으로 식각함으로써 비어 홀(153)을 형성한다. 이어서, 텅스텐(W), 백금(Pt) 또는 티타늄(Ti) 등의 금속을 증착하여 상기 드레인 패드(135)와 하부 전극(145)을 전기적으로 연결시키는 비어 컨택(155)을 형성한다. 따라서, 상기 비어 컨택(155)은 비어 홀(153) 내에서 하부 전극(145)으로부터 드레인 패드(135)의 상부까지 수직하게 형성된다. 그러므로, 외부로부터 인가된 제1 신호는 액티브 매트릭스(131)에 내장된 트랜지스터, 드레인 패드(135) 및 비어 컨택(155)을 통하여 하부 전극(145)에 인가된다.
도 5e를 참조하면, 상기 비어 컨택(155)이 형성된 결과물 전면에 제1 포토레지스트층(160a)을 도포한 후, 전자 빔 처리 또는 자외선 처리를 실시하여 상기 제1 포토레지스트층(160a)을 안정화시킨다.
도 5f를 참조하면, 상기 안정화된 제1 포토레지스트층(160) 상에 제2 포토레지스트층(160b)을 도포한 후, 전자 빔 또는 자외선 처리를 실시하여 상기 제2 포토레지스트층(160b)을 안정화시킨다. 이어서, 상기 안정화된 제1 및 제2 포토레지스트층(160a, 160b)을 상부 전극(149)의 상부와 변형층(147) 및 하부 전극(145)의 측면을 완전히 덮도록 패터닝한다. 다음에, 상기 안정화된 제1 및 제2 포토레지스트층(160a, 160b)을 식각 마스크로 사용하여 상기 지지층(143)을 이방성 식각 공정에 의해 소정의 화소 형상으로 패터닝한다. 본 발명에서는 상술한 바와 같이 포토레지스트를 2회 도포하여 두께를 증가시키기 때문에, 지지층(143)의 식각시 포토레지스트가 어느 정도 손실된다 하더라도 후속의 플루오르화 수소 증기에 의한 식각 공정시 남아있게 되는 포토레지스트의 두께가 1회 도포한 포토레지스트의 두께보다 두껍게 된다.
도 5g를 참조하면, 상기 안정화된 제1 및 제2 포토레지스트층(160a, 160b)을 식각 마스크로 사용하여 49% 플루오르화 수소 증기에 의해 상기 희생층(141)을 등방성 식각함으로써 에어 갭(157)을 형성한다. 이어서, 상기 안정화된 제1 및 제2 포토레지스트층(160a, 160b)을 제거하고, 세정 및 건조하여 액츄에이터(133)를 형성한다. 계속해서, 남아 있는 식각 용액을 제거하기 위하여 헹굼 및 건조 처리를 수행하여 AMA 소자를 완성한다.
상술한 바와 같이 M×N 개의 박막형 AMA 소자를 완성한 후, 크롬(Cr), 니켈(Ni) 또는 금(Au) 등의 금속을 스퍼터링 방법 또는 증착(evaporation) 방법에 의해 상기 액티브 매트릭스(131)의 하단에 증착하여 오믹 컨택(ohmic contact)(도시되지 않음)을 형성한다. 다음에, 상부 전극(149)에 제2 신호를 인가하고 하부 전극(145)에 제1 신호를 인가하기 위한 TCP(Tape Carrier Package)(도시되지 않음) 본딩을 대비하여 통상의 사진 식각 공정을 이용하여 상기 액티브 매트릭스(131)를 소정의 두께까지 절단한다. 계속해서, TCP 본딩을 대비해 AMA 패널의 패드(도시되지 않음)가 충분한 높이를 갖도록 하기 위하여 AMA 패널의 패드 상부에 포토레지스트층(도시되지 않음)을 형성한다. 이어서, 상기 포토레지스트층 중에서 그 아래에 패드가 형성되지 않은 부분을 패터닝하여 AMA 패널의 패드를 노출시킨다. 다음에, 상기 포토레지스트층을 식각하고, 상기 액티브 매트릭스(131)를 소정의 형상으로 완전히 절단한 후 AMA 패널의 패드와 TCP의 패드를 일방향 전도성 수지(Anisotropic Conductive Film : ACF)(도시되지 않음)으로 연결하여 박막형 AMA 모듈의 제조를 완성한다.
상술한 본 발명의 박막형 광로 조절 장치에 있어서, 외부로부터 TCP의 패드 및 AMA 패널의 패드를 통하여 전달된 제1 신호는 액티브 매트릭스(131)에 내장된 MOS 트랜지스터, 드레인 패드(135) 및 비어 컨택(155)을 통하여 하부 전극(145)에 인가된다. 동시에, 상부 전극(149)에는 외부로부터 공통 전극선을 통하여 제2 신호가 인가되어 상부 전극(149)과 하부 전극(145) 사이에 전기장이 발생한다. 이 전기장에 의하여 상부 전극(149)과 하부 전극(145) 사이에 형성된 변형층(147)이 변형을 일으킨다. 변형층(147)은 상기 전기장에 대하여 직교하는 방향으로 수축하며, 변형층(147)을 포함하는 액츄에이터(133)는 지지층(143)이 형성되어 있는 방향의 반대 방향으로 휘어진다. 따라서, 상기 액츄에이터(133) 상부에서 거울의 기능도 수행하는 상부 전극(149)도 같은 방향으로 경사진다. 이에 따라, 광원으로부터 입사되는 빛은 경사진 상부 전극(49)에 의해 소정의 각도로 반사된 후, 슬릿을 통과하여 스크린에 투영됨으로써 화상을 맺게 된다.
또한, 도시하지는 않았으나 상부 전극을 제2 신호가 인가되는 바이어스 전극으로만 사용하고 상기 상부 전극의 상부에 광원으로부터 입사되는 빛을 반사시키기 위한 거울이 별도로 형성되는 박막형 광로 조절 장치에 본 발명을 적용할 수 있음은 물론이다. 이 경우, 상기 거울은 통상적으로 상기 상부 전극의 일측 상부에 접촉되는 지지부를 갖고 에어 갭을 개재하여 상기 상부 전극과 수평하게 'ㄱ'자 형상으로 형성된다.
상술한 바와 같이 본 발명에 따른 박막형 광로 조절 장치의 제조 방법에 의하면, 상부 전극, 변형층 및 하부 전극의 노출된 면을 완전히 덮도록 포토레지스트를 1회 도포하고 이를 전자 빔 처리 또는 자외선 처리한 후, 다시 포토레지스트를 2회 도포하고 이를 전자 빔 또는 자외선 처리한다. 따라서, 상기 포토레지스트가 지지층의 식각시 어느 정도 손실되더라도, 후속의 플루오르화 수소 증기에 의한 식각 공정시 남아 있게 되는 포토레지스트의 두께가 1회 도포한 포토레지스트의 두께보다 두껍게 된다. 그러므로, 플루오르화 수소 증기를 이용한 희생층의 식각 공정 중에 포토레지스트가 리프트-오프되는 것을 방지할 수 있다.
또한, 상기 포토레지스트를 각 도포 단계 후 전자 빔 처리 또는 자외선 처리에 의하여 안정화시켜서 포토레지스트에 핀홀이나 결함 등을 제거한다. 따라서, 포토레지스트에서의 플루오르화 수소 증기의 침투 경로를 줄일 수 있으므로, 플루오르화 수소 증기에 의한 변형층의 손상을 방지할 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
Claims (3)
- 일측 상부에 드레인 패드가 형성된 액티브 매트릭스를 제공하는 단계;상기 액티브 매트릭스의 상부에 희생층을 형성하는 단계;i) 상기 희생층의 상부에 지지층을 형성하는 단계, ii) 상기 지지층의 상부에 하부 전극을 형성하는 단계, iii) 상기 하부 전극의 상부에 변형층을 형성하는 단계, iv) 상기 변형층의 상부에 상부 전극을 형성하는 단계, 및 v) 상기 변형층의 일측 상부로부터 상기 드레인 패드까지 수직하게 비어 컨택을 형성하는 단계를 포함하는 액츄에이터를 형성하는 단계; 상기 상부 전극, 변형층 및 하부 전극의 노출된 면을 완전히 덮도록 제1 포토레지스트를 도포하고, 상기 제1 포토레지스트를 안정화시키는 단계; 상기 안정화된 제1 포토레지스트의 상부에 제2 포토레지스트를 도포하고, 상기 제2 포토레지스트를 안정화시키는 단계; 그리고 상기 안정화된 제1 및 제2 포토레지스트를 마스크로 이용하여 상기 지지층을 식각하고 계속해서 상기 희생층을 식각하여 에어 갭을 형성하는 단계를 포함하는 박막형 광로 조절 장치의 제조 방법.
- 제1항에 있어서, 상기 제1 포토레지스트를 안정화시키는 단계는 전자 빔 처리 또는 자외선 처리를 실시하여 이루어지는 것을 특징으로 하는 박막형 광로 조절 장치의 제조 방법.
- 제1항에 있어서, 상기 제2 포토레지스트를 안정화시키는 단계는 전자 빔 처리 또는 자외선 처리를 실시하여 이루어지는 것을 특징으로 하는 박막형 광로 조절 장치의 제조 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970016175A KR100248488B1 (ko) | 1997-04-29 | 1997-04-29 | 박막형 광로 조절 장치의 제조 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970016175A KR100248488B1 (ko) | 1997-04-29 | 1997-04-29 | 박막형 광로 조절 장치의 제조 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19980078606A KR19980078606A (ko) | 1998-11-16 |
KR100248488B1 true KR100248488B1 (ko) | 2000-03-15 |
Family
ID=19504300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019970016175A KR100248488B1 (ko) | 1997-04-29 | 1997-04-29 | 박막형 광로 조절 장치의 제조 방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100248488B1 (ko) |
-
1997
- 1997-04-29 KR KR1019970016175A patent/KR100248488B1/ko not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR19980078606A (ko) | 1998-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR19990004774A (ko) | 박막형 광로 조절 장치의 제조 방법 | |
KR100248488B1 (ko) | 박막형 광로 조절 장치의 제조 방법 | |
KR100237341B1 (ko) | 박막형 광로 조절 장치 및 그 제조 방법 | |
KR100248493B1 (ko) | 박막형 광로 조절 장치의 제조 방법 | |
KR100251114B1 (ko) | 박막형 광로 조절 장치의 제조방법 | |
KR100248992B1 (ko) | 박막형 광로 조절 장치의 제조 방법 | |
KR100251101B1 (ko) | 박막형 광로 조절 장치 및 그 제조 방법 | |
KR100233994B1 (ko) | 광효율을 향상시킬 수 있는 박막형 광로 조절장치 및 이의 제조 방법 | |
KR100261770B1 (ko) | 박막형 광로 조절장치 및 그 제조 방법 | |
KR100248995B1 (ko) | 박막형 광로 조절 장치 및 그 제조 방법 | |
KR100265951B1 (ko) | 박막형 광로 조절 장치 및 그 제조 방법 | |
KR100248989B1 (ko) | 박막형 광로 조절 장치 및 그 제조 방법 | |
KR100256870B1 (ko) | 박막형 광로 조절 장치의 제조 방법 | |
KR100248994B1 (ko) | 박막형 광로 조절 장치의 제조 방법 | |
KR100256869B1 (ko) | 박막형 광로 조절 장치의 제조 방법 | |
KR100248990B1 (ko) | 박막형 광로 조절 장치 및 그 제조 방법 | |
KR100270992B1 (ko) | 박막형 광로 조절 장치 및 그 제조 방법 | |
KR19990004772A (ko) | 박막형 광로 조절 장치의 제조방법 | |
KR19980085798A (ko) | 박막형 광로 조절 장치의 제조 방법 | |
KR19990004784A (ko) | 박막형 광로 조절 장치의 제조 방법 | |
KR19990019073A (ko) | 박막형 광로 조절 장치의 제조 방법 | |
KR19990002351A (ko) | 박막형 광로 조절 장치 및 그 제조 방법 | |
KR19980085797A (ko) | 박막형 광로 조절 장치 및 그 제조 방법 | |
KR19980061490A (ko) | 초기 휘어짐을 방지할 수 있는 박막형 광로 조절 장치 및 그 제조 방법 | |
KR19990058704A (ko) | 박막형 광로 조절 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |