[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR100230733B1 - Method for forming multi-layered metal interconnector of semicondcutor device - Google Patents

Method for forming multi-layered metal interconnector of semicondcutor device Download PDF

Info

Publication number
KR100230733B1
KR100230733B1 KR1019960077730A KR19960077730A KR100230733B1 KR 100230733 B1 KR100230733 B1 KR 100230733B1 KR 1019960077730 A KR1019960077730 A KR 1019960077730A KR 19960077730 A KR19960077730 A KR 19960077730A KR 100230733 B1 KR100230733 B1 KR 100230733B1
Authority
KR
South Korea
Prior art keywords
film
insulating oxide
oxide film
contact hole
forming
Prior art date
Application number
KR1019960077730A
Other languages
Korean (ko)
Other versions
KR19980058406A (en
Inventor
박상훈
Original Assignee
김영환
현대전자산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업주식회사 filed Critical 김영환
Priority to KR1019960077730A priority Critical patent/KR100230733B1/en
Publication of KR19980058406A publication Critical patent/KR19980058406A/en
Application granted granted Critical
Publication of KR100230733B1 publication Critical patent/KR100230733B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76816Aspects relating to the layout of the pattern or to the size of vias or trenches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

본 발명은 상부 도전막 패턴이 형성될 절연용 산화막 영역에 요홈을 형성한 후, 상기 요홈 내에 하부 도전막 패턴을 노출시키는 콘택홀을 형성하고, 이어서, 콘택홀을 포함하는 절연용 산화막의 소정 두께를 플라즈마 식각 공정을 통해 제거함으로써, 상ㆍ하부 금속 배선 사이의 접속 통로인 콘택홀의 단차비를 감소시켜 콘택홀에서의 접촉 불량 방지할 수 있으며, 이 결과, 다층 금속 배선의 신뢰성을 향상시킬 수 있는 반도체 소자의 다층 금속 배선 형성 방법을 제공한다.According to the present invention, after forming a recess in the insulating oxide region where the upper conductive layer pattern is to be formed, a contact hole for exposing the lower conductive layer pattern is formed in the recess, and then a predetermined thickness of the insulating oxide layer including the contact hole is formed. Is removed by a plasma etching process, thereby reducing the step ratio of the contact hole, which is a connection passage between the upper and lower metal wirings, thereby preventing contact failure in the contact holes. As a result, the reliability of the multilayer metal wiring can be improved. Provided is a method for forming a multilayer metal wiring of a semiconductor device.

Description

반도체 소자의 다층 금속 배선 형성 방법.A method of forming a multilayer metal wiring of a semiconductor device.

본 발명은 반도체 소자의 다층 금속 배선 형성 방법에 관한 것으로, 특히, 상ㆍ하부 도전막 패턴 사이의 연결 통로인 콘택홀의 단차비를 감소시키기 위한 기술에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a multi-layered metal wiring of a semiconductor device, and more particularly, to a technique for reducing a step ratio of a contact hole, which is a connection path between upper and lower conductive film patterns.

최근, 반도체 소자가 고집적화됨에 따라 배선 설계 및 제조 공정이 자유롭고 용이하며, 배선 저항 및 전류 용량 등의 설정을 여유있게 할 수 있는 다층 금속 배선 및 상호 접속에 관한 연구가 활발하게 진행되고 있으며, 상기 다층 금속 배선 제조 공정에서 반도체 소자의 금속 배선 재료로는 비교적 낮은 저항을 가지고 있는 알루미늄막 또는 그의 합금막이 널리 이용되고 있다.In recent years, as semiconductor devices have been highly integrated, studies on multilayer metal wiring and interconnection that can freely and easily perform wiring design and manufacturing processes and allow setting of wiring resistance and current capacity, etc., have been actively conducted. In the metal wiring manufacturing process, an aluminum film or an alloy film thereof having a relatively low resistance is widely used as a metal wiring material of a semiconductor device.

이하, 상기와 같은 금속막을 이용한 종래 기술에 따른 반도체 소자의 다층 금속 배선 형성 방법을 도1을 참조하여 설명하면 다음과 같다.Hereinafter, a method of forming a multilayer metal wiring of a semiconductor device according to the prior art using the metal film as described above will be described with reference to FIG. 1.

반도체 기판(1) 상에 공지의 방법으로 소자 분리막(2) 및 활성 영역(2')을 형성한 후, 소정의 하부 도전막 패턴(3a, 3b)을 형성하되, 소자 분리막(2) 상에 형성된 하부 도전막 패턴(3a)과 활성 영역(2')상에 형성된 하부 도전막 패턴(3b)이 단차를 갖도록 형성한다.After the device isolation film 2 and the active region 2 'are formed on the semiconductor substrate 1 by a known method, predetermined lower conductive film patterns 3a and 3b are formed, but on the device isolation film 2 The lower conductive film pattern 3a and the lower conductive film pattern 3b formed on the active region 2 'are formed to have a step difference.

그리고 나서, 전체 상부에 절연용 산화막(4) 형성한 후, 상기 각각의 하부 도전막 패턴(3a, 3b)이 노출되도록 절연용 산화막(4)을 사진식각하여 콘택홀(도시되지않음)을 형성하고, 상기 콘택홀이 매립되도록 전체 상부에 금속막을 증착 및 패터닝하여 상기 콘택홀을 통하여 하부 도전막 패턴(3a, 3b)과 접속되는 상부 도전막 패턴(5)을 형성한다.Then, after forming the insulating oxide film 4 on the entire upper portion, a contact hole (not shown) is formed by photo etching the insulating oxide film 4 so that the lower conductive film patterns 3a and 3b are exposed. In addition, a metal film is deposited and patterned on the entire upper portion of the contact hole to fill the upper conductive film pattern 5 that is connected to the lower conductive film patterns 3a and 3b through the contact hole.

그러나, 상기와 같은 종래 기술은, 콘택홀의 크기가 약 0.5㎛ 이하로 축소됨에 따라 콘택홀의 단차비(aspect ratio)가 현저하게 증가됨으로써, 콘택홀을 완전히 매립시키지 못하여 접촉 불량이 발생되는 문제점이 있다. 또한, 이러한 문제점을 해결하기 위한 방법으로써 높은 단차비를 갖는 콘택홀 내부를 텅스텐-플러그로 매립하는 방법이 실시되고 있으나, 이 경우, 텅스텐이 높은 산화 특성으로 인하여 상부 도전막 패턴을 형성하기 전에 얇은 산화막이 성장하게 됨으로써, 텅스텐-플러그와 상부 도전막 패턴 사이의 접촉 저항이 증대되는 또 다른 문제점이 있다.However, the prior art as described above has a problem in that the contact ratio is significantly increased as the size of the contact hole is reduced to about 0.5 μm or less, so that the contact hole is not completely filled and contact failure occurs. . In addition, as a method for solving this problem, a method of filling a contact hole having a high step ratio with a tungsten plug is implemented, but in this case, tungsten is thin before forming the upper conductive film pattern due to the high oxidation characteristics. As the oxide film grows, there is another problem that the contact resistance between the tungsten plug and the upper conductive film pattern is increased.

따라서, 본 발명은, 상부 도전막 패턴이 형성될 절연용 산화막 영역에 요홈을 형성한 후, 상기 요홈 내에 하부 도전막 패턴을 노출시키는 콘택홀을 형성하고, 이어서, 콘택홀을 포함하는 절연용 산화막의 소정 두께를 플라즈마 식각 공정을 통해 제거함으로써, 상ㆍ하부 금속 배선 사이의 접속 통로인 콘택홀의 단차비를 감소시켜 콘택홀에서의 접촉 불량 방지할 수 있으며, 이 결과, 반도체 소자의 신뢰성을 향상시킬 수 있는 반도체 소자의 다층 금속 배선 형성 방법을 제공하는 것을 목적으로 한다.Accordingly, in the present invention, after forming a recess in the insulating oxide region in which the upper conductive layer pattern is to be formed, a contact hole for exposing the lower conductive layer pattern is formed in the recess, and then the insulating oxide layer including the contact hole. By removing the predetermined thickness of the semiconductor layer through a plasma etching process, it is possible to reduce the step ratio of the contact hole, which is a connection passage between the upper and lower metal wirings, to prevent contact failure in the contact hole, thereby improving the reliability of the semiconductor device. It is an object of the present invention to provide a method for forming a multilayer metal wiring of a semiconductor device.

도1은 종래 기술에 따른 반도체 소자의 다층 금속 배선 형성 방법을 설명하기 위한 단면도.1 is a cross-sectional view for explaining a method for forming a multilayer metal wiring of a semiconductor device according to the prior art.

도2a내지 도2f는 본 발명에 따른 반도체 소자의 다층 금속 배선 형성 방법을 설명하기 위한 공정 단면도.2A to 2F are cross-sectional views for explaining a method for forming a multilayer metal wiring of a semiconductor device according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

11 : 반도체 기판 12 : 소자 분리막11 semiconductor substrate 12 device isolation film

12' : 활성 영역 13a : 제 1 하부 도전막 패턴12 ': active region 13a: first lower conductive film pattern

13b : 제 2 하부 도전막 패턴 14 : 반사 방지막13b: second lower conductive film pattern 14: antireflection film

15 : 절연용 산화막 16 : 질화막15 oxide film for insulation 16 nitride film

17 : 요홈 18a : 제 1 콘택홀17: groove 18a: first contact hole

18b : 제 2 콘택홀 19 : 장벽 금속막18b: second contact hole 19: barrier metal film

20 : 상부 도전막 21 : 상부 도전막 패턴20: upper conductive film 21: upper conductive film pattern

상기와 같은 목적은, 소자 분리막 및 활성 영역이 구비된 반도체 기판을 제공하는 단계; 상기 반도체 기판 상에 하부 도전막 패턴을 형성하는 단계; 상기 하부 도전막 패턴 상에 반사 방지막을 형성하는 단계; 전체 상부에 절연용 산화막을 형성하는 단계; 상기 절연용 산화막을 평탄화시키는 단계; 상기 평탄화된 절연용 산화막상에 소정 두께의 질화막을 증착하는 단계; 상기 질화막 및 절연용 산화막을 식각하여 소정 깊이를 갖는 요홈을 형성하는 단계; 상기 요홈내의 절연용 산화막을 사진식각하여 상기 하부 도전막 패턴을 노출시키는 콘택홀을 형성하는 단계; 상기 콘택홀을 포함하는 절연용 산화막의 소정 두께를 식각하는 단계; 전체 상부에 장벽 금속막 및 상기 도전막을 순차적으로 형성하는 단계; 및 상기 상부 도전막 및 장벽 금속막을 식각하여 상부 도전막 패턴을 형성하는 단계를 포함하는 것을 특징으로 하는 본 발명에 따른 반도체 소자의 다층 금속 배선 형성 방법에 의하여 달성된다.The above object is to provide a semiconductor substrate having a device isolation layer and an active region; Forming a lower conductive layer pattern on the semiconductor substrate; Forming an anti-reflection film on the lower conductive film pattern; Forming an insulating oxide film over the whole; Planarizing the insulating oxide film; Depositing a nitride film having a predetermined thickness on the planarized insulating oxide film; Etching the nitride film and the insulating oxide film to form grooves having a predetermined depth; Forming a contact hole exposing the lower conductive layer pattern by photo etching the insulating oxide layer in the groove; Etching a predetermined thickness of the insulating oxide film including the contact hole; Sequentially forming a barrier metal film and the conductive film over the entire surface; And etching the upper conductive layer and the barrier metal layer to form an upper conductive layer pattern.

본 발명에 따르면, 상ㆍ하부 도전막 패턴 사이의 접속 통로인 콘택홀의 단차비를 감소시킴으로써, 콘택홀에서의 접촉 불량을 방지할 수 있다.According to the present invention, the contact failure in the contact hole can be prevented by reducing the step ratio of the contact hole, which is the connection passage between the upper and lower conductive film patterns.

[실시예]EXAMPLE

이하, 도2a 내지 도2f를 참조하여 본 발명의 바람직한 실시예를 보다 상세하게 설명한다.Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to FIGS. 2A to 2F.

도2a를 참조하면, 반도체 기판(11) 상에 공지의 방법으로 소자 분리막(12)및 활성 영역(12')을 형성한 후, 소정의 제 1 및 제 2 하부 도전막 패턴(13a, 13b)을 형성하되, 제 1 하부 도전막 패턴(13a)과 제 2 하부 도전막 패턴(13b)이 단차를 갖도록 형성한다.Referring to FIG. 2A, after the device isolation layer 12 and the active region 12 ′ are formed on the semiconductor substrate 11 by a known method, predetermined first and second lower conductive layer patterns 13a and 13b are formed. The first lower conductive layer pattern 13a and the second lower conductive layer pattern 13b are formed to have a step difference.

이어서, 제 1 및 제 2 하부 도전막 패턴(13a, 13b) 상에 TiN막 또는 질산화막과 같은 산화막에 대한 식각 선택도(etching selectivity)가 높은 반사 방지막(14)을 약 500 내지 1,000Å 두께로 형성하고, 전체 상부에 절연용 산화막(15)을 약 15,000 내지 20,000Å 두께로 형성한다. 이때, 상기 절연용 산화막(15)은 PSG막, BPSG막, TEOS-O2막, TEOS-O3또는 무기계 SOG막과 같은 평탄화를 용이하게 달성할 수 있는 산화막 중에서 하나로 형성한다.Subsequently, on the first and second lower conductive film patterns 13a and 13b, an antireflection film 14 having a high etching selectivity with respect to an oxide film such as a TiN film or an oxynitride film is formed to a thickness of about 500 to 1,000 mW. The insulating oxide film 15 is formed to a thickness of about 15,000 to 20,000 에 on the entire upper portion. At this time, the insulating oxide film 15 is formed of one of oxide films that can easily achieve planarization such as a PSG film, a BPSG film, a TEOS-O 2 film, a TEOS-O 3, or an inorganic SOG film.

도2b를 참조하면, 상기 절연용 산화막(15)을 화학 기계적 연막법(chemical mechenical polishing)으로 연마 저지층의 사용없이 연마하되, 상기 소자 분리막(12)상에 형성된 제 1 하부 도전막 패턴(13a) 및 반사 방지막(14)상에 남는 절연용 산화막(15)의 두께가 약 8,000 내지 12,000Å이 되도록 연마한 후, 전체 상부에 약 300 내지 1,000Å 두께의 질화막(16)을 형성한다. 이때, 질화막(16) 대신에 질산화막을 형성하여도 동일한 효과를 얻는다.Referring to FIG. 2B, the insulating oxide film 15 is polished by using a chemical mechenical polishing without using a polishing stop layer, and the first lower conductive film pattern 13a formed on the device isolation layer 12 is formed. ) And the insulating oxide film 15 remaining on the anti-reflection film 14 is polished to have a thickness of about 8,000 to 12,000 kPa, and then a nitride film 16 having a thickness of about 300 to 1,000 kPa is formed over the entire surface. At this time, the same effect is obtained even if the nitride oxide film is formed instead of the nitride film 16.

도 2c를 참조하면, 사진식각법으로 상기 질화막(16) 및 절연용 산화막(15)을 식각하여 이후의 상부 도전막 배선이 형성될 패턴의 형태로 약 4,000 내지 8,000Å 깊이를 갖는 요홈(17)을 형성한다.Referring to FIG. 2C, a recess 17 having a depth of about 4,000 to 8,000 μs in the form of a pattern in which the nitride film 16 and the insulating oxide film 15 are etched by a photolithography method to form an upper conductive film wiring thereafter. To form.

도 2d를 참조하면, 요홈(17) 내의 절연용 산화막(15)의 소정 부분을 식각하여 제 1 및 제 2 하부 도전막 패턴(13a, 13b)을 노출시키는 제 1 및 제 2 콘택홀(18a, 18b)이 형성한다. 이때, 제 2 하부 도전막 패턴(13b)을 노출시키는 제 2 콘택홀(18b)의 폭이 제 1 하부 도전막 패턴(13a)를 노출시키는 제 1 콘택홀(18a)의 폭보다 약 0.05 내지 0.1㎛ 정도 크게 형성하여 후속의 식각 공정에서 반응 이온 식각 지연(reactive ion etching lag) 현상을 억제한다.Referring to FIG. 2D, first and second contact holes 18a exposing the first and second lower conductive layer patterns 13a and 13b by etching a predetermined portion of the insulating oxide film 15 in the recess 17 may be formed. 18b) forms. In this case, the width of the second contact hole 18b exposing the second lower conductive layer pattern 13b is about 0.05 to 0.1 greater than the width of the first contact hole 18a exposing the first lower conductive layer pattern 13a. It is formed to a large size to suppress the reactive ion etching lag phenomenon in the subsequent etching process.

한편, 상기 반사 방지막(14)은 산화막과의 식각 선택도 차이에 의해 소자 분리막(12) 상에 형성된 제 1 하부 도전막 패턴(13a)이 과도하게 식각되는 것을 방지하는 역할을 한다.Meanwhile, the anti-reflection film 14 prevents excessively etching the first lower conductive layer pattern 13a formed on the device isolation layer 12 due to the difference in etching selectivity from the oxide layer.

도2e를 참조하면, 제 1 및 제 2 콘택홀(18a, 18b)의 스텝 커버리지(step coverage)를 개선시키기 위하여 상기 질화막(16)을 식각 보호층으로 하는 NF3플라즈마에 의한 전면 식각을 실시하여 절연용 산화막(15)의 약 300 내지 800Å 정도를 제거한 후, 전체 상부에 소정 두께의 장벽 금속막(19) 및 상부 도전막(20)을 형성한다. 상기에서, NF3플라즈마에 의한 전면 식각 대신에 Ar 스퍼터링 식각을 실시하여도 동일한 효과를 얻게 된다.Referring to FIG. 2E, in order to improve step coverage of the first and second contact holes 18a and 18b, the entire surface is etched by NF 3 plasma using the nitride film 16 as an etch protective layer. After removing about 300-800 kPa of the insulating oxide film 15, the barrier metal film 19 and the upper conductive film 20 of predetermined thickness are formed in the whole upper part. In the above, the same effect can be obtained even if the Ar sputtering etching is performed instead of the entire surface etching by the NF 3 plasma.

도2f를 참조하면, 질화막(16)을 연마 저지층으로 하는 화학기계적 연마 공정으로 상기 상부 도전막(20) 및 장벽 금속막(19)을 연마하여 상부 도전막 패턴(21)을 형성한다.Referring to FIG. 2F, the upper conductive film 20 and the barrier metal film 19 are polished to form the upper conductive film pattern 21 by a chemical mechanical polishing process using the nitride film 16 as the polishing stop layer.

이상에서와 같이, 본 발명의 반도체 소자의 제조 방법은 고집적화된 반도체 소자에서 하부 도전막 패턴과 상부 도전막 패턴을 접속시키기 위한 0.5㎛ 이하의 크기를 갖는 콘택홀의 단차비를 감소시킴으로써, 다층 금속 배선의 제조 수율 및 신뢰성을 향상시킬 수 있다.As described above, the manufacturing method of the semiconductor device of the present invention is to reduce the step ratio of the contact hole having a size of 0.5㎛ or less for connecting the lower conductive film pattern and the upper conductive film pattern in the highly integrated semiconductor device, the multilayer metal wiring It is possible to improve the production yield and reliability of the.

한편, 여기에서는 본 발명의 특정 실시예에 대하여 설명하고 도시하였지만, 당업자에 의하여 이에 대한 수정과 변형을 할 수 있다. 따라서, 이하, 특허청구의 범위는 본 발명의 진정한 사상과 범위에 속하는 한 모든 수정과 변형을 포함하는 것으로 이해할 수 있다.Meanwhile, although specific embodiments of the present invention have been described and illustrated, modifications and variations can be made by those skilled in the art. Accordingly, the following claims are to be understood as including all modifications and variations as long as they fall within the true spirit and scope of the present invention.

Claims (18)

소자 분리막 및 활성 영역이 구비된 반도체 기판을 제공하는 단계; 상기 반도체 기판 상에 하부 도전막 패턴을 형성하는 단계; 상기 하부 도전막 패턴 상에 반사 방지막을 형성하는 단계; 전체 상부에 절연용 산화막을 형성하는 단계; 상기 절연용 산화막을 평탄화시키는 단계; 상기 평탄화된 절연용 산화막 상에 소정 두께의 질화막을 증착하는 단계; 상기 질화막 및 절연용 산화막을 식각하여 소정 깊이를 갖는 요홈을 형성하는 단계; 상기 요홈내의 절연용 산화막을 사진식각하여 상기 하부 도전막 패턴을 노출시키는 콘택홀을 형성하는 단계; 상기 콘택홀을 포함하는 절연용 산화막의 소정 두께를 식각하는 단계; 전체 상부에 장벽 금속막 및 상부 도전막을 순차적으로 형성하는 단계; 및 상기 상부 도전막 및 장벽 금속막을 식각하여 상부 도전막 패턴을 형성하는 단계를 포함하는 것을 특징으로 하는 반도체 소자의 다층 금속 배선 형성 방법.Providing a semiconductor substrate having a device isolation layer and an active region; Forming a lower conductive layer pattern on the semiconductor substrate; Forming an anti-reflection film on the lower conductive film pattern; Forming an insulating oxide film over the whole; Planarizing the insulating oxide film; Depositing a nitride film having a predetermined thickness on the planarized insulating oxide film; Etching the nitride film and the insulating oxide film to form grooves having a predetermined depth; Forming a contact hole exposing the lower conductive layer pattern by photo etching the insulating oxide layer in the groove; Etching a predetermined thickness of the insulating oxide film including the contact hole; Sequentially forming a barrier metal film and an upper conductive film over the entirety; And etching the upper conductive layer and the barrier metal layer to form an upper conductive layer pattern. 제1항에 있어서, 상기 하부 도전막 패턴은 소자 분리막 및 활성 영역 상에 각각 형성된 것을 특징으로 하는 반도체 소자의 다층 금속 배선 형성 방법.The method of claim 1, wherein the lower conductive layer pattern is formed on an isolation layer and an active region, respectively. 제2항에 있어서, 상기 소자 분리막 상에 형성된 하부 도전막 패턴과 활성영역 상에 형성된 하부 도전막 패턴을 단차를 갖는 것을 특징으로 하는 반도체 소자의 다층 금속 배선 형성 방법.The method of claim 2, wherein the lower conductive film pattern formed on the device isolation layer and the lower conductive film pattern formed on the active region have steps. 제1항에 있어서, 상기 반사 방지막은 TiN막 또는 질산화막 중에서 하나로 형성하는 것을 특징으로 하는 반도체 소자의 다층 금속 배선 형성 방법.2. The method of claim 1, wherein the anti-reflection film is formed of one of a TiN film or a nitric oxide film. 제1항 또는 제4항에 있어서, 상기 반사 방지막은 약 500 내지 1,000Å 두께로 형성하는 것을 특징으로 하는 반도체 소자의 다층 금속 배선 형성 방법.The method of claim 1 or 4, wherein the anti-reflection film is formed to a thickness of about 500 to 1,000 Å. 제1항에 있어서, 상기 절연용 산화막은 PSG막, BPSG막, TEOS-O2막, TEOS-O3또는 무기계 SOG막 중에서 선택되는 하나로 형성하는 것을 특징으로 하는 반도체 소자의 다층 금속 배선 형성 방법.The method of claim 1, wherein the insulating oxide film is formed of one selected from a PSG film, a BPSG film, a TEOS-O 2 film, a TEOS-O 3, and an inorganic SOG film. 제1항 또는 제6항에 있어서, 상기 절연용 산화막은 약 15,000 내지 20,000Å 두께로 형성하는 것을 특징으로 하는 반도체 소자의 다층 금속 배선 형성 방법.7. The method of claim 1 or 6, wherein the insulating oxide film is formed to a thickness of about 15,000 to 20,000 kPa. 제1항에 있어서, 상기 절연용 산화막을 평탄화하기 위하여 화학기계적 연마법을 실시하는 것을 특징으로 하는 반도체 소자의 다층 금속 배선 형성 방법.2. The method of claim 1, wherein a chemical mechanical polishing method is performed to planarize the insulating oxide film. 제8항에 있어서, 상기 화학기계적 연마 공정은 소자 분리막 상의 절연용 산화막의 두께가 약 8,000 내지 12,000Å이 되도록 연마하는 것을 특징으로 하는 반도체 소자의 다층 금속 배선 형성 방법.10. The method of claim 8, wherein the chemical mechanical polishing process is performed so that the thickness of the insulating oxide film on the device isolation film is about 8,000 to 12,000 kPa. 제1항에 있어서, 상기 질화막은 약 300 내지 1,000Å 두께로 형성하는 것을 특징으로 하는 반도체 소자의 다층 금속 배선 형성 방법.The method of claim 1, wherein the nitride film is formed to a thickness of about 300 to 1,000 kHz. 제1항에 있어서, 상기 질화막 대신에 질산화막을 형성하는 것을 특징으로 하는 반도체 소자의 다층 금속 배선 형성 방법.The method for forming a multilayer metal wiring of a semiconductor device according to claim 1, wherein a nitride oxide film is formed instead of the nitride film. 제1항에 있어서, 상기 요홈은 약4,000 내지 8,000Å 깊이를 갖도록 형성하는 것을 특징으로 하는 반도체 소자의 다층 금속 배선 형성 방법.The method of claim 1, wherein the recess is formed to have a depth of about 4,000 to about 8,000 μs. 제1항에 있어서, 상기 콘택홀의 폭은 소자 분리막 상에 형성되는 콘택홀의 폭보다 활성 영역 상에 형성되는 콘택홀의 폭이 더 넓은 것을 특징으로 하는 반도체 소자의 다층 금속 배선 형성 방법.The method of claim 1, wherein the width of the contact hole is greater than the width of the contact hole formed on the device isolation layer. 제13항에 있어서, 상기 활성 영역 상에 형성되는 콘택홀의 폭이 소자 분리막 상에 형성되는 콘택홀의 폭보다 0.05 내지 0.1㎛ 정도 더 크게 형성하는 것을 특징으로 하는 반도체 소자의 다층 금속 배선 형성 방법.The method of claim 13, wherein the width of the contact hole formed on the active region is about 0.05 to 0.1 μm larger than the width of the contact hole formed on the device isolation layer. 제1항에 있어서, 상기 콘택홀을 포함하는 절연용 산화막을 식각하기 위하여 NF3플라즈마에 의한 전면 식각 공정을 실시하는 것을 특징으로 하는 반도체 소자의 다층 금속 배선 형성 방법.The method of claim 1, wherein an entire surface etching process using an NF 3 plasma is performed to etch the insulating oxide film including the contact hole. 제15항에 있어서, 상기 절연용 산화막은 약 300 내지 800Å 두께가 식각되는 것을 특징으로 하는 반도체 소자의 다층 금속 배선 형성 방법.16. The method of claim 15, wherein the insulating oxide film is about 300 to 800 microns thick etched. 제1항에 있어서, 상기 절연용 산화막을 식각하기 위하여 Ar 스퍼터링 식각 공정을 이용하는 것을 특징으로 하는 반도체 소자의 다층 금속 배선 형성 방법.The method of claim 1, wherein an Ar sputtering etching process is used to etch the insulating oxide film. 제1항에 있어서, 상기 절연용 산화막의 식각시 질화막을 식각 보호층으로 사용하는 것을 특징으로 하는 반도체 소자의 다층 금속 배선 형성 방법.2. The method of claim 1, wherein a nitride film is used as an etch protective layer during etching of the insulating oxide film.
KR1019960077730A 1996-12-30 1996-12-30 Method for forming multi-layered metal interconnector of semicondcutor device KR100230733B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960077730A KR100230733B1 (en) 1996-12-30 1996-12-30 Method for forming multi-layered metal interconnector of semicondcutor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960077730A KR100230733B1 (en) 1996-12-30 1996-12-30 Method for forming multi-layered metal interconnector of semicondcutor device

Publications (2)

Publication Number Publication Date
KR19980058406A KR19980058406A (en) 1998-10-07
KR100230733B1 true KR100230733B1 (en) 1999-11-15

Family

ID=19492670

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960077730A KR100230733B1 (en) 1996-12-30 1996-12-30 Method for forming multi-layered metal interconnector of semicondcutor device

Country Status (1)

Country Link
KR (1) KR100230733B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100526870B1 (en) * 2003-06-04 2005-11-09 삼성전자주식회사 Method for forming local interconnection line for use in semiconductor device
KR100764054B1 (en) * 2006-08-22 2007-10-08 삼성전자주식회사 Interconnection and method for forming the same

Also Published As

Publication number Publication date
KR19980058406A (en) 1998-10-07

Similar Documents

Publication Publication Date Title
US6268283B1 (en) Method for forming dual damascene structure
JPH0834772B2 (en) Method for manufacturing semiconductor device
US7119006B2 (en) Via formation for damascene metal conductors in an integrated circuit
KR100419746B1 (en) A method for manufacturing a multi-layer metal line of a semiconductor device
US20020050645A1 (en) Method of forming dual damascene structure
KR100230733B1 (en) Method for forming multi-layered metal interconnector of semicondcutor device
US7112537B2 (en) Method of fabricating interconnection structure of semiconductor device
KR100474605B1 (en) Via first dual damascene process for copper metallization
US6340638B1 (en) Method for forming a passivation layer on copper conductive elements
KR100812298B1 (en) A method for forming a metal-insulator-metal capacitor
US6559542B1 (en) Semiconductor device and method of manufacturing the same
KR100772073B1 (en) Method for fabricating metal-insulator-metal capacitor
KR100450244B1 (en) Semiconductor device and fabrication method of thereof
KR100421278B1 (en) Fabricating method for semiconductor device
KR101036159B1 (en) Method for forming metal line used dual damascene
KR100226786B1 (en) Method for forming metal interconnection layer of semiconductor device
KR100395907B1 (en) Method for forming the line of semiconductor device
KR100383084B1 (en) Plug forming method of semiconductor devices
KR100198653B1 (en) Semiconductor device metallisation method
KR100414732B1 (en) Method for forming a metal line
KR100881082B1 (en) Method for forming line used dual damascene
KR20000056260A (en) Method of forming a contact in a semiconductor device
KR100244713B1 (en) Method of fabricating semiconductor device
JP2001284353A (en) Method of manufacturing semiconductor device
KR20010066112A (en) a manufacturing method for wires of semiconductor devices

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050718

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee