KR100225342B1 - Method for preparing titanium oxide photocatalyst - Google Patents
Method for preparing titanium oxide photocatalystInfo
- Publication number
- KR100225342B1 KR100225342B1 KR1019970045692A KR19970045692A KR100225342B1 KR 100225342 B1 KR100225342 B1 KR 100225342B1 KR 1019970045692 A KR1019970045692 A KR 1019970045692A KR 19970045692 A KR19970045692 A KR 19970045692A KR 100225342 B1 KR100225342 B1 KR 100225342B1
- Authority
- KR
- South Korea
- Prior art keywords
- titanium oxide
- sol
- aluminum
- coating
- film
- Prior art date
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 60
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 title claims abstract description 51
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims description 31
- 239000011248 coating agent Substances 0.000 claims abstract description 27
- 238000000576 coating method Methods 0.000 claims abstract description 27
- 238000010438 heat treatment Methods 0.000 claims abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 16
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 claims abstract description 11
- 238000001035 drying Methods 0.000 claims abstract description 7
- 239000000919 ceramic Substances 0.000 claims abstract description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000011521 glass Substances 0.000 claims abstract description 4
- 239000000741 silica gel Substances 0.000 claims abstract description 4
- 229910002027 silica gel Inorganic materials 0.000 claims abstract description 4
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 8
- 239000002904 solvent Substances 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- -1 hydroxide ions Chemical class 0.000 abstract description 24
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 abstract description 13
- 230000001699 photocatalysis Effects 0.000 abstract description 9
- 238000000354 decomposition reaction Methods 0.000 abstract description 6
- 239000002957 persistent organic pollutant Substances 0.000 abstract description 6
- 239000002245 particle Substances 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- 239000012071 phase Substances 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 7
- 239000000356 contaminant Substances 0.000 description 6
- 235000019645 odor Nutrition 0.000 description 6
- 238000013032 photocatalytic reaction Methods 0.000 description 6
- 239000011247 coating layer Substances 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- 229910003089 Ti–OH Inorganic materials 0.000 description 3
- 239000007792 gaseous phase Substances 0.000 description 3
- 239000005416 organic matter Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000006864 oxidative decomposition reaction Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910000413 arsenic oxide Inorganic materials 0.000 description 1
- 229960002594 arsenic trioxide Drugs 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- KTTMEOWBIWLMSE-UHFFFAOYSA-N diarsenic trioxide Chemical compound O1[As](O2)O[As]3O[As]1O[As]2O3 KTTMEOWBIWLMSE-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
Abstract
본 발명은 수산화이온 및 물분자의 농도를 증가시켜 유기오염물질에 대한 광촉매 분해효율을 증진시키기 위하여 친수성의 산화알루미늄을 막 표면에 균일하게 분산시켜서 산화티타늄 광촉매막을 제조하는 방법을 제공하기 위한 것이다.The present invention is to provide a method for producing a titanium oxide photocatalyst film by uniformly dispersing hydrophilic aluminum oxide on the film surface in order to increase the concentration of hydroxide ions and water molecules to enhance the photocatalytic decomposition efficiency of organic pollutants.
본 발명의 산화티타늄 광촉매막은, 산화티타늄 졸에 알루미늄 염을 용해시켜서 코팅용 졸을 제조하고, 상기 코팅용 졸을 유리제품, 실리카겔, 다공성 세라믹스 및 비다공성 세라믹스 중 어느 하나의 담체 표면에 얇게 코팅한 후 건조 및 열처리하여서 제조한다.The titanium oxide photocatalyst film of the present invention is prepared by dissolving an aluminum salt in a titanium oxide sol to produce a coating sol, and coating the coating sol thinly on the surface of any one of a glass product, silica gel, porous ceramics and non-porous ceramics. It is prepared by drying and heat treatment.
Description
본 발명은 산화티타늄 광촉매막의 제조방법에 관한 것이다. 더욱 상세하게는 수산화이온 및 물분자의 농도를 증가시켜 유기오염물질에 대한 광촉매 분해효율을 증진시키기 위하여 친수성의 산화알루미늄을 막 표면에 균일하게 분산시켜서 되는 산화티타늄 광촉매막의 제조방법에 관한 것이다.The present invention relates to a method for producing a titanium oxide photocatalyst film. More particularly, the present invention relates to a method for producing a titanium oxide photocatalyst film by uniformly dispersing hydrophilic aluminum oxide on the surface of a film in order to increase the concentration of hydroxide ions and water molecules to enhance photocatalytic decomposition efficiency of organic pollutants.
본 발명에 따라 제조된 산화알루미늄이 균일하게 분산된 광촉매막은 순수 산화티타늄 막에 비해 강력한 산화력을 가진 수산화라티칼(·OH)을 더 많이 생성할 수 있기 때문에 액상 및 기상의 유기오염물질을 보다 효과적으로 분해할 수 있는 장점이 있다.The uniformly dispersed photocatalytic film prepared by the aluminum oxide according to the present invention is capable of producing more organic hydroxides with strong oxidizing power (· OH) compared to pure titanium oxide films, so that organic pollutants in liquid and gaseous phases are more effectively produced. It has the advantage of being decomposed.
광촉매 산화반응이란 띠 간격 에너지(bandgap energy) 이상의 빛에너지를 광촉매에 조사하였을 때 전자와 양공이 발생하고, 이들에 의해 생성되는 수산화라티칼(·OH)의 강력한 산화력으로 광촉매 표면에 흡착된 기상 또는 액상의 유기물이 분해되는 반응을 일컫는다.The photocatalytic oxidation reaction refers to a gaseous phase adsorbed on the surface of the photocatalyst due to the strong oxidation power of the radical hydroxide (· OH) generated when electrons and holes are generated when the photocatalyst is irradiated with light energy above the bandgap energy. It refers to a reaction in which a liquid organic matter is decomposed.
즉, 광촉매 물질이 광여기되었을 때 갖는 강력한 산화력으로 환경오염물질을 산화분해하는 것이다. 이러한 광촉매 반응을 유도하는 물질로서 산화티타늄(TiO2), 산화지르코늄(ZrO2), 산화비소(Sb2O4), 산화아연(ZnO), 산화주석(SnO2), 산화세륨(CeO2), 산화텅스텐(WO3) 그리고 산화철(Fe2O3) 등이 알려져 있으며 [미국특허 제 5,045,288호], 이 중 산화티타늄이 가장 많이 사용되고 있다.That is, oxidative decomposition of environmental pollutants by the strong oxidizing power that photocatalyst materials have when photoexcitation is carried out. Titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), arsenic oxide (Sb 2 O 4 ), zinc oxide (ZnO), tin oxide (SnO 2 ), cerium oxide (CeO 2 ) , Tungsten oxide (WO 3 ) and iron oxide (Fe 2 O 3 ), and the like are known [US Pat. No. 5,045,288], among which titanium oxide is most frequently used.
기상이나 액상의 환경오염물질을 처리하는 방법은 이미 여러 가지가 실용화되어 있으나, 이들은 대부분 단순히 물질전달과정인 경우가 많다. 즉, 유독성 유기오염물질들이 완전 무해화 되는 것이 아니라 액상에서 기상이나 고상으로 또는 기상에서 액상이나 고상으로 그 상태가 변화될 뿐이다. 이러한 처리법은 또다른 공해를 유발하며, 유독성 유기오염물질을 재처분 해야 한다는 문제점을 안고 있다.There are many ways to treat environmental pollutants in the gas or liquid phase, but most of them are simply material transfer processes. That is, toxic organic pollutants are not completely harmless, but only change their state from the liquid phase to the gas phase or solid phase or from the gas phase to the liquid phase or solid phase. This treatment causes another pollution and poses the problem of re-disposal of toxic organic pollutants.
반면, 광촉매 산화반응에서는 오염물질을 단순히 상변화시키는 것이 아니라 이산화탄소와 물로 완전분해하는 것이 가능하다. 오염물질을 완전분해하는 공정으로서 광촉매 반응 외에 과산화수소(H2O2)나 오존을 이용하는 산화공정들이 개발중이기는 하나, 광촉매 반응에서는 과산화수소나 오존 등의 약품첨가 없이 산소공급만으로 충분히 유기물 저감효과를 갖고 있기 때문에 경제적으로 매우 유리한 처리법으로 주목을 받고 있다.On the other hand, in photocatalytic oxidation, it is possible to completely decompose contaminants into carbon dioxide and water instead of simply changing the phase. In addition to photocatalytic reactions, oxidation processes using hydrogen peroxide (H 2 O 2 ) or ozone are being developed as a process for completely degrading contaminants, but in photocatalytic reactions, it is possible to sufficiently reduce organic matters by supplying oxygen without addition of hydrogen peroxide or ozone As a result, it is attracting attention as a very advantageous treatment method economically.
기존의 광촉매 산화공정 개발은 주로 폐수 중 유기물을 분해하는데 치중되어 왔으며, 분말형태의 산화티타늄(TiO2)을 폐수내에 현탁시킨 후 광을 조사하는 방식이 많이 사용되고 있다[김승희, TiO2광촉매 산화시스템의 기술소개 및 적용결과. 첨단환경기술, pp130-135, 1995년 8월호] 이 경우 공정상에 몇가지 문제점이 발생하게 된다. 즉, 유입 오염물질을 연속적으로 처리하고자 할 때, 폐수내 산화티타늄 입자를 부상시키는 데 동력이 소요된다는 점과 입자의 분리 및 회수에 추가의 후처리 공정이 요구된다는 점이다. 광촉매 반응에 사용되는 산화티타늄 입자의 크기가 수㎛ 이하로 매우 작기 때문에 회수를 위해 재래식 침전법을 쓸 수 없으며 원심분리를 사용할 경우 비용이 많이 들게 된다. 또한 광촉매 반응조내에 산화티타늄 입자를 가두어 두기 위해 유출구에 분리막을 설치하여 폐수와 산화티타늄 입자를 분리하기도 하는데, 이러한 방식은 분리막 표면에 쌓인 입자층을 탈리시키기 위해 별도의 공정이 필요하다는 단점을 가지고 있다.Existing photocatalytic oxidation process has been mainly focused on decomposing organic matter in the wastewater, and the method of irradiating light after suspending powdered titanium oxide (TiO 2 ) in the wastewater is widely used [Kim, Seung-Hee, TiO 2 photocatalytic oxidation system Technology introduction and application results. Advanced Environmental Technology, pp130-135, August 1995] In this case, some problems occur in the process. That is, when it is desired to continuously treat the incoming contaminants, power is required to float the titanium oxide particles in the waste water and additional post-treatment processes are required for the separation and recovery of the particles. Since the size of the titanium oxide particles used for the photocatalytic reaction is very small, several micrometers or less, conventional precipitation methods cannot be used for recovery, and the use of centrifugal separation is expensive. In addition, in order to trap the titanium oxide particles in the photocatalyst, a separator is installed at the outlet to separate the wastewater and the titanium oxide particles. This method has a disadvantage in that a separate process is required to detach the particle layer accumulated on the membrane surface.
이와 같은 문제점을 해결하기 위하여 고안된 방법이 담체에 부착된 광촉매막에 광을 조사하여 오염물질을 분해시키는 산화분해 공정이다. 담체에 광촉매 막을 부착시켜 처리를 할 경우, 앞서 언급한 산화티타늄 입자의 부상 및 회수에 필요한 동력을 줄일 수 있으며 조사되는 광의 산란을 극소화하여 분해효율을 크게 증진시킬 수 있는 장점이 있다. 또한, 종래의 현탁식 처리법으로는 처리할 수 없었던 악취를 포함한 대기오염물질을 기상상태에서 직접 처리하는 것이 가능해 진다.A method devised to solve such a problem is an oxidative decomposition process of decomposing contaminants by irradiating light to a photocatalyst film attached to a carrier. When the photocatalyst film is attached to the carrier, it is possible to reduce the power required for the floating and recovery of the above-mentioned titanium oxide particles, and to minimize the scattering of the irradiated light, thereby greatly improving the decomposition efficiency. In addition, it is possible to directly treat air pollutants including odors which cannot be treated by the conventional suspension treatment method in a gaseous state.
광촉매막 표면에서의 유기물의 분해는 주로 수산화라티칼의 산화력에 기인하며, 산화티타늄 표면에서 수산화라티칼의 생성과정은 다음과 같다.The decomposition of organic matter on the surface of the photocatalytic film is mainly due to the oxidation power of the radical hydroxide, and the production process of the radical hydroxide on the titanium oxide surface is as follows.
TiO2+hv→ e-+ h+(1) TiO 2 + hv → e - + h + (1)
Ti-H2O + h+→ Ti-OH·+ H+(2)Ti-H 2 O + h + → Ti-OH + H + (2)
Ti-OH-+ h+→ Ti-OH· (3) Ti-OH - + h + → Ti-OH · (3)
산화티타늄에 3eV(파장 400 nm 이하) 이상의 광이 조사되면 (1)에서와 같이 전자와 양공이 생성되고, 이때 생성된 양공은 표면에 흡착된 물(2)이나 수산화이온(3)과 반응하여 강력한 산화력을 갖는 표면 수산화라티칼(·OH)을 형성한다. 상기과정을 보면 산화티타늄 표면에 수산화이온이나 물이 많이 존재할수록 수산화라티칼이 많이 생성됨을 알 수 있다. 그러나, 산화티타늄은 그 특성상 소수성향(hydrophobic property)을 가지고 있기 때문에 친수성향(hydrophilic property) 을 가진 산화알루미늄(AI2O3) 보다 표면 수산화이온 및 수분의 양이 적다. 따라서 표면 수산화라티칼의 양을 증가시켜 광촉매 반응을 증진시키기 위해서는 광촉매인 산화티타늄 표면에 보다 많은 수산화이온(OH-)과 수분(H2O)을 형성시키는 것이 필요하다. 특히 폐수처리와 달리 악취물질과 같은 기상의 오염물질을 처리하는데 있어서는 광촉매 표면에 대한 수분의 공급이 악취기체에 포함된 수증기에 의존하는 경우가 많기 때문에 표면 수산화이온의 농도를 증가시키는 것은 매우 중요하다.When titanium oxide is irradiated with light of 3eV (wavelength: 400 nm or less) or more, electrons and holes are generated as in (1), and the generated holes react with water (2) or hydroxide ions (3) adsorbed on the surface. It forms surface radical hydroxide (.OH) which has strong oxidation power. Looking at the above process it can be seen that the more the presence of hydroxide ions or water on the surface of titanium oxide, the more radical hydroxide is produced. However, since titanium oxide has a hydrophobic property in its characteristics, the amount of surface hydroxide ions and moisture is smaller than that of aluminum oxide (AI 2 O 3 ) having a hydrophilic property. Therefore, it is necessary to form more hydroxide ions (OH − ) and water (H 2 O) on the surface of titanium oxide, which is a photocatalyst, in order to increase the amount of surface hydroxide to enhance the photocatalytic reaction. In particular, unlike wastewater treatment, it is very important to increase the concentration of surface hydroxide ions because the supply of water to the surface of the photocatalyst is often dependent on the water vapor contained in the odor gas in treating gaseous contaminants such as odorous substances. .
본 발명은 기상 및 액상의 오염물질에 대한 광촉매 분해효율을 증진시키기 위하여 산화티타늄 막표면에 수산화이온의 양을 증가시키는 방법에 대한 것이다. 담체에 광촉매막을 형성시키기 위해 산화티타늄 졸을 유리(미국 특허 제 4,892,712호, 제 5,032,241호, 제 5,035,784호, 제 5,256,616호), 실리카겔, 또는 다공성/비다공성 세라믹스 등의 담체 외부표면에 코팅하는 방법이 많이 사용된다. 이때 코팅된 산화티타늄 막에 산화알루미늄을 일정량 분산시키면, 산화알루미늄의 친수성향 때문에 코팅층 표면에 수산화이온과 수분의 양을 증가시킬 수 있다.The present invention relates to a method of increasing the amount of hydroxide ions on the titanium oxide film surface in order to improve the photocatalytic decomposition efficiency of the gaseous and liquid contaminants. A method of coating a titanium oxide sol on a carrier outer surface such as glass (US Pat. Nos. 4,892,712, 5,032,241, 5,035,784, 5,256,616), silica gel, or porous / non-porous ceramics to form a photocatalyst film on the carrier It is used a lot. In this case, by dispersing a predetermined amount of aluminum oxide in the coated titanium oxide film, it is possible to increase the amount of hydroxide ions and moisture on the surface of the coating layer because of the hydrophilicity of the aluminum oxide.
따라서 본 발명에서는 산화티타늄 막에 산화알루미늄을 분산시켜 코팅용 졸을 만들고 이것을 담체에 코팅하여서 되는 산화티타늄 광촉매막의 제조방법을 제공하고자 한다.Therefore, the present invention is to provide a method for producing a titanium oxide photocatalyst film by dispersing aluminum oxide in a titanium oxide film to form a coating sol and coating it on a carrier.
본 발명은 산화 티타늄 막 표면에 미세한 산화 알루미늄 입자를 균일하게 분산시키는 방법으로서, 산화 티타늄 졸에 염화 알루미늄(AlCl3·6H2O), 질화 알루미늄(Al(NO3)3·9H2O), 또는 황산 알루미늄(Al2(SO4)3·14~18H2O) 등의 알루미늄 염을 녹여 최종 코팅용 졸을 제조하여 담체에 코팅하여서 되는 것을 특징으로 한다.The present invention is a method for uniformly dispersing fine aluminum oxide particles on the surface of the titanium oxide film, aluminum chloride (AlCl 3 · 6H 2 O), aluminum nitride (Al (NO 3 ) 3 · 9H 2 O), Alternatively, aluminum salts such as aluminum sulfate (Al 2 (SO 4 ) 3 · 14 to 18H 2 O) may be dissolved to prepare a final coating sol, and then coated on a carrier.
상기의 졸을 담체에 코팅하여 적당한 온도에서 열처리를 실시하면 알루미늄 염으로부터 친수 성향을 가진 산화 알루미늄이 생성된다. 특히, 알루미늄 염은 졸에 용해되어 있는 상태이기 때문에 졸로 부터 제조된 광촉매 막에는 산화 알루미늄이 매우 균일하게 분산되게 되며, 이에 따라 수산화 이온과 물 분자 역시 광촉매 표면에 균일하게 존재하게 된다.When the sol is coated on a carrier and subjected to heat treatment at an appropriate temperature, aluminum oxide having hydrophilicity is produced from the aluminum salt. In particular, since the aluminum salt is dissolved in the sol, aluminum oxide is very uniformly dispersed in the photocatalyst film prepared from the sol. Accordingly, hydroxide ions and water molecules are also uniformly present on the surface of the photocatalyst.
용액 상태에서 한 종류의 입자들 사이에 다른 종류의 입자를 균일하게 분산하기 위해 서로 다른 두가지 종류의 졸을 물리적으로 혼합하거나(미국 특허 제 5,591,380호), 출발 물질인 두종류의 알콕사이드(alkoxide)를 용매에 동시에 용해시켜 졸을 제조하는 방법(미국 특허 제 4,176,089호) 등이 이미 제안되어 있다. 그러나, 일반적으로 두가지 종류의 졸을 혼합할 경우 졸의 안정성이 저하되어 짧은 시간내에 겔화되어 버리며, 코팅시 코팅막이 두꺼워져 열처리후에 담체로부터 탈리될 우려가 있다. 또한, 출발 물질을 동시에 용해하여 졸입자를 분산(peptization)시킬 경우, 제조 조건을 정밀하게 조절해야 하기 때문에 공정이 복잡해진다는 단점이 있다.Physically mix two different types of sol (US Pat. No. 5,591,380) to uniformly disperse the different types of particles between the different types of particles in solution, or use two starting alkoxides. Methods of preparing sols by simultaneous dissolving in a solvent (US Pat. No. 4,176,089) and the like have already been proposed. However, in general, when two kinds of sol are mixed, the stability of the sol decreases and gels within a short time, and there is a possibility that the coating film becomes thick during coating and detaches from the carrier after heat treatment. In addition, when dissolving the sol particles by simultaneously dissolving the starting materials, there is a disadvantage that the process is complicated because the manufacturing conditions must be precisely controlled.
반면 본 발명에서는 제조된 졸에 단순히 염을 일정량 녹임으로써 코팅층에 서로 다른 종류의 산화물을 균일하게 분산시킬수 있으므로 상기의 방법들에 비해 쉽고 경제적으로 원하는 목적을 달성할 수 있다.On the other hand, in the present invention, by simply dissolving a predetermined amount of salt in the prepared sol, it is possible to uniformly disperse different kinds of oxides in the coating layer, thereby achieving the desired purpose more easily and economically than the above methods.
산화 티타늄 졸에 알루미늄 염을 용해시키는 과정은 다음과 같다.The procedure for dissolving aluminum salt in titanium oxide sol is as follows.
일반적으로 졸을 제조할 때 출발물질인 알콕사이드에 대한 용매로서 물이나 알콜을 사용하는데, 앞서 언급한 염화 알루미늄, 질화 알루미늄 및 황산 알루미늄 등의 알루미늄 염들은 물에 대한 용해성이 좋으므로 물을 용매로 한 졸에 모두 가능하다. 또한, 염화 알루미늄과 질화 알루미늄은 알콜에 대한 용해성도 우수하여 알콜용매 졸에 대해서도 적용할 수 있으나, 황산 알루미늄은 알콜에 잘 녹지 않으므로 이 경우에는 사용하지 않는 것이 좋다.Generally, water or alcohol is used as a solvent for alkoxide, which is a starting material, in preparing a sol. Since aluminum salts such as aluminum chloride, aluminum nitride, and aluminum sulfate have good solubility in water, water is used as a solvent. It's all possible to sol. In addition, aluminum chloride and aluminum nitride are also excellent in solubility in alcohol and can be applied to alcohol solvent sol, but aluminum sulfate is not soluble in alcohol, so it is not recommended to use in this case.
최종 코팅용 졸은 산화 티타늄 졸에 알루미늄 염을 일정량 투입하고 교반함으로써 제조된다. 이때 알루미늄 염 첨가량은 산화 티타늄에 대한 알루미늄 이온의 몰비(Al3/TiO2)로 0.05 이상 0.5이하로 한다. 만일 알루미늄 이온/산화티타늄(Al3/TiO2) 몰비를 0.05 미만으로 할 경우에는 코팅 및 열처리 후 알루미늄이 산화티타늄 기질(matrix)의 입계에만 존재하고 산화 알루미늄 결정상(Al2O3)으로 성장하지 못하는 문제가 있게 된다. 반대로 상기 몰비가 0.5를 초과할 경우에는 상대적으로 코팅층 내에 산화 티타늄의 함량이 상대적으로 감소하여 광촉매의 효율이 오히려 감소하게 된다.The final coating sol is prepared by adding a predetermined amount of aluminum salt to the titanium oxide sol and stirring. In this case, the amount of aluminum salt added is 0.05 or more and 0.5 or less as the molar ratio (Al 3 / TiO 2 ) of aluminum ions to titanium oxide. If the molar ratio of aluminum ions / titanium oxide (Al 3 / TiO 2 ) is less than 0.05, aluminum is present only at the grain boundary of the titanium oxide matrix after coating and heat treatment, and does not grow into the aluminum oxide crystal phase (Al 2 O 3 ). There is no problem. On the contrary, when the molar ratio exceeds 0.5, the content of titanium oxide in the coating layer is relatively decreased, thereby decreasing the efficiency of the photocatalyst.
본 발명에서는 상기의 방법으로 제조된 졸을 담체에 코팅하는 방법으로서 침지 코팅법(dip coating menthod)을 사용하며, 담체로서 유리제품, 실리카겔, 그리고 다공성 또는 비다공성 세라믹스를 이용할 수 있다. 광촉매 반응은 광이 침투할 수 있는 범위의 얇은 코팅층에서만 이루어지기 때문에 두꺼운 코팅막을 형성시킬 필요는 없다. 오히려 코팅층이 너무 두꺼워지면 열처리 후에 담체로부터 탈리될 우려가 있기 때문에 담체표면에 될 수 있는 대로 얇고 안정한 막을 부착시키는 것이 중요하다.In the present invention, a dip coating method is used as a method of coating the sol prepared by the above method on a carrier, and glass, silica gel, and porous or non-porous ceramics may be used as the carrier. It is not necessary to form a thick coating film because the photocatalytic reaction is performed only in a thin coating layer in which light can penetrate. Rather, it is important to attach a thin and stable film as much as possible to the surface of the carrier since the coating layer may become too thick to detach from the carrier after heat treatment.
일반적으로 졸의 안정성은 pH와 밀접한 관련이 있으며 pH가 등전점(IEP ;Iso-ElectricPoint)에 접근하면 졸 입자간의 전기적 반발력이 감소하여 불안정한 졸이 된다. 불안정한 졸로부터 코팅막을 제조하면 코팅막이 두꺼워지는 경향이 있으며, 이에 따라 열처리 후 막이 탈리될 확률이 커지므로 가능한한 코팅시 졸의 pH를 등전점에서 멀게 조절하는 것이 유리하다.In general, the stability of the sol is closely related to the pH and the pH is the isoelectric point; if access to the (I IEP so- E lectric P oint) reduces the electrical repulsion between the sol particles become unstable sol. When the coating film is prepared from the unstable sol, the coating film tends to be thick, and thus, the possibility of the film being detached after the heat treatment increases, so that it is advantageous to control the pH of the sol as far away from the isoelectric point as possible.
산화티타늄 졸의 등전점은 pH 4.0정도이며 알칼리성 용액에서 보다는 산성용액에서 더 안정한 것으로 알려져 있다. 따라서 본 발명에서는 졸의 코팅 pH를 2.5이하로 하며, 산화티타늄 졸의 제조방법이나 담체의 종류에 따라 코팅 pH를 2.5이하에서 변화시키는 것이 가능하다.The isoelectric point of titanium oxide sol is pH 4.0 and is known to be more stable in acidic solution than in alkaline solution. Therefore, in the present invention, the coating pH of the sol may be 2.5 or less, and the coating pH may be changed to 2.5 or less according to the method of preparing the titanium oxide sol or the type of carrier.
코팅 후 열처리 전에 막 내에 존재하는 물 또는 알콜 등의 용매를 건조시키기 위한 건조과정이 필요한데, 이는 열처리 중 급격한 용매의 증발에 의해 막이 손상되는 것을 미연에 방지하고자 하는 것이다. 건조는 상온 또는 60 내지 80℃ 및 상압에서 실시하며 건조시간은 산화 티타늄 졸의 제조방법이나 담체의 종류에 따라 다르게 하는 것이 바람직하다.A drying process is required to dry a solvent such as water or alcohol present in the film before the heat treatment after coating, which is intended to prevent the film from being damaged by the rapid evaporation of the solvent during the heat treatment. Drying is carried out at room temperature or 60 to 80 ℃ and atmospheric pressure and the drying time is preferably different depending on the method of preparing the titanium oxide sol or the type of carrier.
열처리 온도를 정하는데 있어서 고려해야 할 점은 열처리된 막을 구성하는 산화 티타늄의 상이다. 문헌[M.Formenti,et.al.,J. Coll.Interf.Sci.,39,79(1972)]에 따르면, 산화 티타늄 막의 광촉매 반응효율이 금홍석(金紅石) 상(phase)에서 보다 예추석(銳錐石) 상인 경우에 더 효율적인 것으로 보고되어 있다. 일반적으로 금홍석 상은 500℃ 이상에서 생성되며 그 이하의 온도에서는 예추석 상을 유지한다. 또한 열처리 온도가 낮으면 담체와 코팅막간의 접착력이 떨어지므로 충분히 높은 온도에서 열처리를 실시하는 것이 필요하다.One consideration in determining the heat treatment temperature is the phase of titanium oxide constituting the heat treated film. M. Formenti, et. Al., J. Coll. Interf. Sci., 39, 79 (1972) ] reported that the photocatalytic reaction efficiency of titanium oxide films is more efficient in the anatase phase than in the rutile phase. have. Rutile phase is generally produced above 500 ° C. and maintains anatase phase at temperatures below that. In addition, since the adhesion between the carrier and the coating film is lowered when the heat treatment temperature is low, it is necessary to perform heat treatment at a sufficiently high temperature.
열처리 온도외에 승온 속도도 막의 안정성을 결정하는 중요한 변수이다. 즉, 승온 속도가 너무 빠르면 열충격에 의해 코팅막이 손상될 우려가 있으므로 가능한한 천천히 승온하여 주는 것이 유리하다. 따라서 본 발명에서는 산화 티타늄이 예추석 상을 가지면서 막이 담체와 충분한 부착력을 가질 수 있도록 하기 위하여 광촉매 막의 열처리온도를 300 내지 450℃, 승온 속도를 2℃/분 이하, 그리고 열처리시간을 1시간 이상으로 한다.In addition to the heat treatment temperature, the rate of temperature rise is also an important parameter in determining the stability of the film. In other words, if the temperature increase rate is too fast, the coating film may be damaged by thermal shock, so it is advantageous to increase the temperature as slowly as possible. Therefore, in the present invention, in order for the titanium oxide to have an anatase phase and the film has sufficient adhesion to the carrier, the heat treatment temperature of the photocatalyst film is 300 to 450 ° C., the temperature increase rate is 2 ° C./min or less, and the heat treatment time is 1 hour or more. It is done.
이하 본 발명을 실시예에 의거하여 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to Examples.
실시예 1Example 1
산화티타늄 졸은 물을 용매로 사용하는 졸로서 이미 문헌상에 발표된 방법[Q.Xu, Physical-Chemical Factors Affecting the Synthesis and Charateristics of Transition Metal Oxide Membranes, Ph. D. Thesis, University of Wisconsin-Madison, USA(1991)]에 의거하여 제조하였다. 즉, pH가 1.0정도인 질산수용액(HNO3/H2O 부피 비율 = 0.0065)에 일정량의 TIP(Titanium Iso-Propoxide, Ti(OC3H7)4)를 적하한 후 1일간 상온에서 급격히 교반시킨 다음 응축기를 부착한 상태에서 반응물을 하룻동안 끓여줌으로써 산화티타늄 졸을 제조하였다. 이때 졸 내 산화티타늄 농도는 0.25mol/ℓ가 되도록 조절하였다. 알루미늄 염으로써는 질화 알루미늄(Al(NO3)3·9H2O)을 사용하였으며, 알루미늄 이온/산화티타늄 몰비가 0.05 내지 0.5가 되도록 질화 알루미늄을 상기의 방법으로 제조된 산화티타늄 졸에 용해시켰다.Titanium oxide sol is a sol using water as a solvent [ Q. Xu, Physical-Chemical Factors Affecting the Synthesis and Charateristics of Transition Metal Oxide Membranes, Ph. D. Thesis, University of Wisconsin-Madison, USA (1991) . That is, a certain amount of TIP (Titanium Iso-Propoxide, Ti (OC 3 H 7 ) 4 ) is added dropwise to an aqueous solution of nitric acid (HNO 3 / H 2 O volume ratio = 0.0065) having a pH of about 1.0 and stirred rapidly at room temperature for 1 day. Titanium oxide sol was prepared by boiling the reaction for one day with the condenser attached thereto. At this time, the concentration of titanium oxide in the sol was adjusted to 0.25 mol / l. Aluminum nitride (Al (NO 3 ) 3 .9H 2 O) was used as the aluminum salt, and aluminum nitride was dissolved in the titanium oxide sol prepared by the above method so that the aluminum ion / titanium oxide molar ratio was 0.05 to 0.5.
이렇게 제조된 코팅용 졸로부터 생성되는 광촉매 막의 특성을 분석하기 위해 졸을 플라스틱 재질의 용기에 소량 분취한 후 장시간 상온에서 건조하여 얻어진 비지지막(unsupported membrance)을 0.5℃/분의 승온속도로 400℃에서 2시간 동안 열처리하였다. 질화 알루미늄 투입량에 따른 비지지막의 특성변화를 표 1에 나타내었다.In order to analyze the characteristics of the photocatalyst film produced from the coating sol thus prepared, an unsupported membrance obtained by collecting a small amount of the sol in a plastic container and drying at room temperature for a long time was 400 ° C. at a heating rate of 0.5 ° C./min. Heat treatment for 2 hours at. Table 1 shows the characteristics change of the unsupported membrane according to the aluminum nitride input amount.
실시예 2Example 2
실시예 1의 졸로부터 제조된 광촉매 막의 분해효율을 평가하기 위하여 평균기공 크기가 0.16㎛이고 기공율이 40%인 로드(rod) 형의 다공성 알루미나 담체에 졸을 코팅하여 악취제거실험을 실시하였다. 코팅시 졸의 pH는 1.5였으며, 침지코팅시간은 1분이었다. 열처리 조건은 실시예 1에 기재된 바와 같다.In order to evaluate the decomposition efficiency of the photocatalyst membrane prepared from the sol of Example 1, odor was removed by coating a sol on a rod-type porous alumina carrier having an average pore size of 0.16 μm and a porosity of 40%. The pH of the sol upon coating was 1.5 and the immersion coating time was 1 minute. Heat treatment conditions are as described in Example 1.
악취처리장치는 미국 특허 제 5,045,288호에 공개된 것과 같은 것을 제작·사용하였으며, 악취가스인 암모니아(NH3)를 질소로 희석하여 반응조에 유입시켰다. 악취가스가 반응조내에서 체류하는 시간은 약 60초 정도였으며, 처리가스의 농도 및 처리율은 가스 크로마토그래프로 측정·분석되었다. 탈취된 후에 배출되는 가스 내 악취성분의 농도측정 결과를 표 2에 나타내었다.The odor treatment apparatus manufactured and used the same as that disclosed in US Pat. No. 5,045,288. The odor gas, ammonia (NH 3 ), was diluted with nitrogen and introduced into the reactor. The residence time of the malodorous gas in the reactor was about 60 seconds, and the concentration and the treatment rate of the processing gas were measured and analyzed by gas chromatograph. Table 2 shows the results of concentration measurement of malodorous components in the gas discharged after deodorization.
비교예 1Comparative Example 1
다공성 알루미나 담체에 알루미늄 염을 첨가하지 않은 졸을 코팅하여 광촉매 막을 제조한 후, 실시예 2에서와 동일한 방법으로 악취처리실험을 실시하였다. 상기장치에서 탈취된 후에 배출되는 가스 내 악취성분의 농도측정 결과는 표 2와 같다.After preparing a photocatalyst membrane by coating a sol having no aluminum salt added to the porous alumina carrier, an odor treatment experiment was conducted in the same manner as in Example 2. The concentration measurement results of the malodorous components in the gas discharged after being deodorized by the apparatus are shown in Table 2.
★EDX로 분석★★ ★ Analysis by EDX ★★
XRD로 분석Analyze with XRD
본 발명의 방법에 따라 제조된 산화티타늄 광촉매막은 친수성의 산화 알루미늄이 균일하게 분산되어 있어 빛 에너지가 광촉매막에 조사될 때 강력한 산화력을 가진 수산화이온 및 물 분자의 농도가 상당히 증가하게 되어 광촉매막 표면에 흡착되어 있는 액상 및 기상의 유기오염물질을 효과적으로 분해할 수 있게 된다.The titanium oxide photocatalyst film prepared according to the method of the present invention has a uniformly dispersed hydrophilic aluminum oxide, so that the concentration of hydroxide ions and water molecules with strong oxidizing power when light energy is irradiated on the photocatalyst film increases considerably. It is possible to effectively decompose the organic pollutants in the liquid and gaseous phase adsorbed on.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970045692A KR100225342B1 (en) | 1997-09-04 | 1997-09-04 | Method for preparing titanium oxide photocatalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970045692A KR100225342B1 (en) | 1997-09-04 | 1997-09-04 | Method for preparing titanium oxide photocatalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19990024538A KR19990024538A (en) | 1999-04-06 |
KR100225342B1 true KR100225342B1 (en) | 1999-10-15 |
Family
ID=19520800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019970045692A KR100225342B1 (en) | 1997-09-04 | 1997-09-04 | Method for preparing titanium oxide photocatalyst |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100225342B1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010062879A (en) * | 1999-12-20 | 2001-07-09 | 이기선 | Manufacturing method of titanium dioxide |
KR100308818B1 (en) * | 1999-04-01 | 2001-09-26 | 이계안 | Hydrophilic coating glass coated with porous thin layer of TiO2 |
KR100330627B1 (en) * | 1999-12-06 | 2002-03-29 | 곽영훈 | Producing method for Photocatalyst being coated Metal Oxide and Titanium Dioxide |
KR20020072855A (en) * | 2001-03-13 | 2002-09-19 | 주식회사 디.아이 | A sinter-ceramic and its manufacturing method for phosphorus decomposition |
KR101322153B1 (en) * | 2009-09-18 | 2013-10-25 | (주)엘지하우시스 | Porous ceramic structures, preparation methods thereof, humidifier comprising the same |
CN105032465A (en) * | 2015-07-21 | 2015-11-11 | 北京化工大学 | Metal oxide/carbon nitride composite material and preparation method and application thereof |
KR102196176B1 (en) | 2019-11-14 | 2020-12-29 | 최재완 | A method for permanently depositing titanium dioxide on the surface of a ceramic molding |
KR102237709B1 (en) | 2020-06-23 | 2021-04-08 | 최재석 | A method for permanently depositing titanium dioxide on an exterior surface and products thereof |
KR102298900B1 (en) | 2020-11-11 | 2021-09-09 | 최재완 | A method for permanently depositing titanium dioxide on an Interior-exterior material surface using coffee grounds and quicklime and products thereof |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100326897B1 (en) * | 1999-08-05 | 2002-03-06 | 채문식 | Titanium Dioxide-anchored Titanosilicalite Photocatalyst and its Preparation |
KR100353242B1 (en) * | 2000-02-28 | 2002-09-18 | 극동화학 주식회사 | A new type photocatalyst dopped and coated on silicagel and its method of preparation |
KR100406814B1 (en) * | 2000-08-02 | 2003-11-21 | (주)메이 | Photo-induced Hydrophilic Film and Method of Forming the Film |
KR20190047478A (en) | 2017-10-27 | 2019-05-08 | 센서클라우드주식회사 | Silica gel containing a photocatalyst for removing volatile organic compounds and a process for producing the same |
-
1997
- 1997-09-04 KR KR1019970045692A patent/KR100225342B1/en not_active IP Right Cessation
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100308818B1 (en) * | 1999-04-01 | 2001-09-26 | 이계안 | Hydrophilic coating glass coated with porous thin layer of TiO2 |
KR100330627B1 (en) * | 1999-12-06 | 2002-03-29 | 곽영훈 | Producing method for Photocatalyst being coated Metal Oxide and Titanium Dioxide |
KR20010062879A (en) * | 1999-12-20 | 2001-07-09 | 이기선 | Manufacturing method of titanium dioxide |
KR20020072855A (en) * | 2001-03-13 | 2002-09-19 | 주식회사 디.아이 | A sinter-ceramic and its manufacturing method for phosphorus decomposition |
KR101322153B1 (en) * | 2009-09-18 | 2013-10-25 | (주)엘지하우시스 | Porous ceramic structures, preparation methods thereof, humidifier comprising the same |
CN105032465A (en) * | 2015-07-21 | 2015-11-11 | 北京化工大学 | Metal oxide/carbon nitride composite material and preparation method and application thereof |
CN105032465B (en) * | 2015-07-21 | 2017-06-06 | 北京化工大学 | Metal oxide/nitridation carbon composite and its preparation method and application |
KR102196176B1 (en) | 2019-11-14 | 2020-12-29 | 최재완 | A method for permanently depositing titanium dioxide on the surface of a ceramic molding |
KR102237709B1 (en) | 2020-06-23 | 2021-04-08 | 최재석 | A method for permanently depositing titanium dioxide on an exterior surface and products thereof |
KR20210158293A (en) | 2020-06-23 | 2021-12-30 | 최재석 | A method for permanently depositing titanium dioxide on an exterior surface and products thereof |
KR102298900B1 (en) | 2020-11-11 | 2021-09-09 | 최재완 | A method for permanently depositing titanium dioxide on an Interior-exterior material surface using coffee grounds and quicklime and products thereof |
Also Published As
Publication number | Publication date |
---|---|
KR19990024538A (en) | 1999-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100225342B1 (en) | Method for preparing titanium oxide photocatalyst | |
JP3959213B2 (en) | Titanium oxide, photocatalyst body using the same, and photocatalyst body coating agent | |
KR100336662B1 (en) | Titanium oxide for photocatalyst and method of producing the same | |
KR100385301B1 (en) | Novel titania photocatalyst and its manufacturing method | |
JP2909403B2 (en) | Titanium oxide for photocatalyst and method for producing the same | |
US7011808B2 (en) | Titanium oxide and photocatalyst | |
JP2600103B2 (en) | Photocatalytic filter and method for producing the same | |
US20100075836A1 (en) | Deactivation resistant photocatalyst and method of preparation | |
JP2517874B2 (en) | Method for producing titanium oxide thin film photocatalyst | |
JPH0899041A (en) | Photocatalyst of titanium oxide porous thin film and preparation of the same | |
JP2007216223A (en) | Photocatalytic material having semiconductor properties, and its manufacturing method and use | |
Zang et al. | Photochemistry of semiconductor particles. Part 4.—effects of surface condition on the photodegradation of 2, 4-dichlorophenol catalysed by TiO2 suspensions | |
CN101757900A (en) | Superhydrophilic nano titanium dioxide photocatalysis composite membrane as well as preparation method and application thereof | |
US6365007B1 (en) | Photocatalysts for the degradation of organic pollutants | |
EP2276694A1 (en) | Production of tailored metal oxide materials using a reaction sol-gel approach | |
JP3567693B2 (en) | Method for producing immobilized photocatalyst and method for decomposing and removing harmful substances | |
JP4107512B1 (en) | Photocatalyst coating liquid and photocatalyst film forming method | |
US8343282B2 (en) | Photocatalytic auto-cleaning process of stains | |
JP2003055841A (en) | Titanium oxide fiber and photocatalyst body using the same | |
JPH09239277A (en) | Photocatalytic powder, photocatalyst using the powder and environment cleaning method using them | |
JPH105598A (en) | Photocatalyst powder, photocatalyst body using the same and their production, and environmental cleaning method using them | |
JP3567004B2 (en) | Photocatalyst and method for producing the same | |
JP3579082B2 (en) | Photocatalyst | |
KR100482649B1 (en) | Direct adhesion method of photocatalyst on substrate | |
CN110270343B (en) | Photocatalyst dispersion liquid, photocatalyst composite material and photocatalyst device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120720 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20130709 Year of fee payment: 15 |
|
FPAY | Annual fee payment |
Payment date: 20140721 Year of fee payment: 16 |
|
FPAY | Annual fee payment |
Payment date: 20150717 Year of fee payment: 17 |
|
FPAY | Annual fee payment |
Payment date: 20160615 Year of fee payment: 18 |
|
LAPS | Lapse due to unpaid annual fee |