[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR100206353B1 - Bearing steel for high-clean carburizing and manufacturing method thereof - Google Patents

Bearing steel for high-clean carburizing and manufacturing method thereof Download PDF

Info

Publication number
KR100206353B1
KR100206353B1 KR1019960020130A KR19960020130A KR100206353B1 KR 100206353 B1 KR100206353 B1 KR 100206353B1 KR 1019960020130 A KR1019960020130 A KR 1019960020130A KR 19960020130 A KR19960020130 A KR 19960020130A KR 100206353 B1 KR100206353 B1 KR 100206353B1
Authority
KR
South Korea
Prior art keywords
steel
range
molten steel
ladle
lecturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
KR1019960020130A
Other languages
Korean (ko)
Other versions
KR980002274A (en
Inventor
김동식
이승룡
Original Assignee
전선기
기아특수강주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전선기, 기아특수강주식회사 filed Critical 전선기
Priority to KR1019960020130A priority Critical patent/KR100206353B1/en
Publication of KR980002274A publication Critical patent/KR980002274A/en
Application granted granted Critical
Publication of KR100206353B1 publication Critical patent/KR100206353B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

본 발명은 고내피로성을 필요로 하는 고청정 침탄용 베어링강의 제조방법을 개시한다. 우선, 중량%로, C : 0.20∼060%, Si : 0.001∼0.05%, Mn : 0.01∼0.20%, Cr : 0.01∼0.05%, P : 0.001∼0.02%, S : 0.001∼0.0040%를 함유하고 나머지는 Fe 및 통상적으로 함유되는 불순물을 포함하는 용강을 제조하는 단계 : 조재제을 용강 톤당 7∼10Kg의 범위로 투입하여 슬래그의 염기도(CaO/SiO₂)를 2.0∼2.5의 범위로 제어하는 단계; 용강속에 산소를 용강 톤당 15∼25Nm³의 범위로 취입하는 단계; 출강을 실시하며, 출강중에 탈산제를 투입하는 출강단계; 레이들하부에서 불활성가스를 150∼250ℓ/min의 속도로 강교반하고, 조재제를 투입하여 염기도가 5∼7범위가 되도록 하는 환원정련단계; 진공도 3 mbar이하에서 15분이상의 진공탈가스공정을 실시하는 단계; 강괴주조 또는 연속주조를 실시하는 단계; 1,050∼1,250℃의 온도로 가열하여 총성형단련비 8S이상의 통상적인 열간압연을 실시하는 단계; 열처리로에서 850∼950℃의 온도에서 노르말라이징 처리를 한 후, 공냉하는 단계로 이루어진다.The present invention discloses a method for producing a high-carburization bearing steel requiring high fatigue resistance. First, the steel sheet contains, by weight%, 0.20 to 0.60% of C, 0.001 to 0.05% of Si, 0.01 to 0.20% of Mn, 0.01 to 0.05% of Cr, 0.001 to 0.02% of P and 0.001 to 0.0040% of S (CaO / SiO2) in the range of 2.0 to 2.5; adding a reducing agent in a range of 7 to 10 Kg per ton of molten steel to control the basicity (CaO / SiO2) of the slag; Introducing oxygen into the molten steel in the range of 15 to 25 Nm < 3 > per molten steel; A lecturing step of lecturing and inputting a deoxidizing agent during lecture; Stirring the inert gas at a rate of 150 to 250 L / min in the lower part of the ladle, adding a coagulant to bring the basicity into the range of 5 to 7; Performing a vacuum degassing process at a vacuum degree of 3 mbar or less for 15 minutes or more; Casting or continuous casting; Heating at a temperature of 1,050 to 1,250 占 폚 to perform ordinary hot rolling at a total shaping annealing ratio of 8S or more; Followed by normalizing treatment at a temperature of 850 to 950 캜 in a heat treatment furnace, followed by air cooling.

Description

고청정 침탄용 베어링강의 제조방법Manufacturing Method of High-Carbon Bearing Steel for Carburizing

제1도는 본 발명강과 종래강의 비금속 개재물량을 비교한 그래프.FIG. 1 is a graph comparing the amounts of nonmetal inclusions of the present invention steel and conventional steel.

제2도는 본 발명강과 종래강의 산소함량에 따른 회전접촉 피로수명을 비교한 그래프.FIG. 2 is a graph comparing rotational contact fatigue life according to the oxygen content of the present invention steels and conventional steels.

[발명의 분야][0001]

일반적으로, 침탄 베어링강은 자동차 및 각종 산업기계의 룰러 베어링의 부품으로 널리 사용되고 있는 구조용 합금강이며, 자동차의 휠 또는 기계의 구동 부위에서 사용될 때, 이러한 부품들은 지속적인 하중을 받으며 작동되므로, 재질의 특성상 내피로성과 내마모성의 확보가 중요시 되고 있다.In general, carburized bearing steels are structural alloy steels widely used as parts of ruler bearings of automobiles and various industrial machines. When these are used at the driving parts of an automobile wheel or machine, these parts are operated under a constant load, It is important to secure endurance and abrasion resistance.

이러한 침탄용 베어링강의 내피로성 및 내마모성은 침탄 열처리에 의하여 향상될 수 있지만, 동일 조건에서 침탄처리를 한 후에도 침탄 부품의 특성은 본래의 강재 재질에 크게 의존하므로, 베어링의 요구특성을 향상시키기 위한 측면에서 침탄용 베어링강의 제조과정은 매우 중요하다.Although the fatigue resistance and the wear resistance of such carburizing bearing steel can be improved by the carburizing heat treatment, even after the carburizing treatment under the same conditions, the characteristics of the carburizing part largely depend on the original steel material, The manufacturing process of bearing steel for carburizing is very important.

침탄용 베어링강은 제강과정에서 결정되는 강의 청정도와 화학성분 및 열처리에 따른 조직과 기계적으로 성질등의 인자에 따라 회전접촉 피로수명이 달라지게 되며, 인자중에서도 청정도, 즉, 침탄용 베어링강에 함유되는 불순물과 비금속 개재물에 따라 침탄용 베어링강으로 제조된 베어링의 피로수명은 크게 좌우된다.Bearing steels for carburizing have different rotational contact fatigue life depending on factors such as the cleanliness of the steel determined during steelmaking, chemical composition and mechanical properties such as chemical composition and heat treatment. Among the factors, cleanliness, ie, The fatigue life of a bearing made of bearing steel for carburization depends largely on the impurities contained and nonmetallic inclusions.

[발명이 이루고자 하는 과제][PROBLEMS TO BE SOLVED BY THE INVENTION]

그러나, 종래의 침탄용 베어링강은 표1에서 도시된 바와 같이, 불순물에 대하여 제1종래강, 제2종래강이 각각 O는 14.8ppm, 8.3ppm이 함유되고, S는 0.015wt%, 0.020wt%를 함유하며, P는 0.018wt%, 0.020wt%를 Ti은 0.0027wt%, 0.0054wt%를 함유한다. 이러한 양의 불순물을 함유하는 침탄용 베어링강으로 제조된 베어링은 기계의 회전부위에서 높은 하중을 지속적으로 받으며 동작되므로, 베어링의 내부 및 외부 궤도륜과 볼 또는 전동체 사이에 인가되는 반복적인 접촉응력이 베어링 진동체 또는 궤도륜 표면에 존재하는 비금속 개재물과 미소결함에 집중되고, 이러한 응력집중 현상에 의하여 비금속 개재물 또는 결함부위에 발생되는 미소균열이 스펄링(Spalling)으로 발전되어 결국 피로 한계점에 도달하여 파괴된다는 문제점이 있었다.However, as shown in Table 1, the conventional conventional bearing steel for carburization contains 14.8 ppm of O and 8.3 ppm of O, and 0.015 wt% of O, 0.020 wt% of S, %, P contains 0.018 wt%, 0.020 wt%, Ti contains 0.0027 wt%, and 0.0054 wt%. Bearings made of bearing steel for carburizing containing such impurities are operated to continuously receive a high load at the rotating part of the machine, so that the repetitive contact stress applied between the inner and outer raceways of the bearing and the balls or rolling elements The non-metallic inclusions or micro-cracks generated at the defective portions are developed into spalling due to the stress concentration phenomenon and finally reach the fatigue limit point So that it is destroyed.

따라서, 본 발명의 목적은 비금속 개재물 또는 결함부위에 응력이 집중되는 것을 방지하여 피로수명이 향상된 고청정 침탄용 베어링강의 제조방법을 제공하는 데 있다.Accordingly, an object of the present invention is to provide a method for manufacturing a bearing steel for high-clean carburization, in which stress concentration is prevented from concentrating on nonmetallic inclusions or defective parts, thereby improving fatigue life.

[발명의 구성 및 작용][Structure and operation of the invention]

상기 목적을 달성하기 위한 본 발명의 고청정 침탄용 베어링강의 제조방법은, 먼저, 중량%로, C : 0.1∼0.3%, Si : 0.1∼0.5%, Mn : 0.5∼1.0%, Cr : 0.5∼1.5%, Al : 0.005∼0.05%를 함유하고, 불순물로서 S:0.01%이하, P : 0.02%이하, Ti : 0.003%이하, 및 O : 0.0012%이하를 함유하고 , 잔부는 Fe 및 불가피한 불순물로 이루어진 강을 강괴 주조 또는 연속 주조방법으로 열간압연한다. 그런 다음, 노르말라이징 처리하고 공냉한다.In order to achieve the above object, the present invention provides a method of manufacturing a bearing steel for high-clean carburization, comprising the steps of: 0.1 to 0.3% of C, 0.1 to 0.5% of Si, 0.5 to 1.0% of Mn, Of Al, 0.005 to 0.05% of Al, 0.01% or less of S, P, 0.02% or less of Ti, 0.003% or less of Ti and 0.0012% or less of O as impurities and the balance being Fe and unavoidable impurities The formed steel is hot-rolled by cast ingot or continuous casting method. Then, normalizing and air-cooling.

이하, 본 발명의 공청정 침탄용 베어링강에 첨가되는 화학성분과 성분의 한정 이유를 설명한다.Hereinafter, the reasons for limiting the chemical components and components added to the inventive bearing steel for carburizing carburization will be described.

C : 0.1%이하로 첨가되면, 침탄처리후 필요한 소정의 강도와 경화능을 얻을 수 없고, 0.3%이상이 첨가되면, 인성이 저하되므로 그 첨가범위가 0.1∼0.3%로 제한된다.When C is added in an amount of 0.1% or less, the required strength and curability required after carburization can not be obtained. When 0.3% or more is added, the toughness is lowered, and therefore the addition range is limited to 0.1 to 0.3%.

Si는 탈산원소로서, 용강제조시 탈산목적으로 0.1%이상이 첨가되지만, 0.5%이상이 첨가되면, 인성의 열화를 야기하고 강중의 O와 반응하여 탈산생성물인 SiO2가 과다하게 강중에 존재되어 비금속개재물의 요인이 되기 때문에 그 첨가범위가 0.1∼0.5%로 제한된다.Si is a deoxidizing element and 0.1% or more is added for the purpose of deoxidation in the production of molten steel. However, when 0.5% or more is added, SiO is deteriorated due to degradation of toughness and reaction with O in steel, The addition range is limited to 0.1 to 0.5%.

Mn은 탈산 및 탈황원소로서, 강의 경화능과 표면경도를 확보하면서 용강의 탈산과 탈황을 목적으로 0.5%이상이 첨가되고, 1%이상 과잉 첨가되면, 경화능의 제어가 어렵고 특히 베어링강에서 유해한 비금속 개재물이 강재에 과다 분포하게 되어 피로수명을 저하시키므로 첨가범위는 0.5∼1.0%로 제한된다.Mn is an element of deoxidation and desulfurization which is added at a content of 0.5% or more for the purpose of deoxidation and desulfurization of molten steel while securing the hardenability and surface hardness of the steel, and when it is added in excess of 1%, hardening control is difficult, Since the nonmetallic inclusions are over-distributed in the steel, the fatigue life is lowered, so the addition range is limited to 0.5 to 1.0%.

Cr은 탈화물을 석출시켜 침탄처리후 침탄층의 경도를 상승시키는 원소이며, 0.5%이하에서는 싱부경도를 얻을 수 없고, 1.5%이상 첨가되면 결정입계에 망상탄화물이 형성되어 강도저하가 초래되므로 Cr 함유량은 0.5∼1.5%로 제한된다.Cr is an element which precipitates a deoxidizer to increase the hardness of the carburized layer after carburizing. If it is 0.5% or less, it is impossible to obtain a Singe diameter. When 1.5% or more is added, a crumbly carbide is formed at grain boundaries, The Cr content is limited to 0.5 to 1.5%.

Al은 탈산원소로서, 정련과정에서 O와 반응되어 탄산생성물인 Al2O3로 만들어져 계외로의 부상제거시킬 목적과 강종의 N와 반응되어 AlN로 석출되므로써 강재의결정립을 미세화시킬 목적으로 0.005%이상 첨가된다. 그러나, 0.05%이상 첨가되면, 강중에서 계외로 부상제거되지 못하고 용강에 잔류하게 되고, 베어링강에서 가장 해악한 Al2O3개재물로 작용되어 피로수명을 현저하게 저하시키는 요인이 되기 때문에 그 첨가범위는 0.005~0.05%로 제한된다.Al is a deoxidizing element which is reacted with O in the refining process and is made of Al2O3, which is a carbonic acid product, and is added to the AlN to react with N of the steel type and to precipitate out of the system, thereby adding 0.005% or more for the purpose of refining the crystal grains of the steel . However, if it is added in an amount of 0.05% or more, it can not be lifted off from the steel in the steel and remains in the molten steel, and acts as the most harmful Al 2 O 3 inclusion in the bearing steel, thereby remarkably lowering the fatigue life. Is limited to 0.005 to 0.05%.

O는 불순물로서, 용강중에 존재되어 탄산원소인 Mn, Si, Al과 반응되고, 각각 MnO, SiO2, Al2O3로 형성되어 피로수명을 저하시키는 비금속개재물로 작용하게 되므로, 0.0012%이하로 최소화된다.O is an impurity, which is present in the molten steel and reacts with Mn, Si and Al, which are carbonic acid elements, and is formed of MnO, SiO 2 and Al 2 O 3 , respectively, Is minimized.

S은 불순물로서, 주로 Mn과 결합하여 유해 개재물인 MnS로 되어 피로수명을 저하시키는 요인이 되고, 또한 중심편석의 형태로 존재하게 되면 베어링작동시 응력집중의 요인이 되어 균열을 일으키므로, 0.01%이하로 최소화된다.S is an impurity which mainly binds to Mn to form MnS which is a noxious inclusion, which causes fatigue life degradation, and when present in the form of center segregation, it causes cracks due to stress concentration during operation of the bearing, ≪ / RTI >

P은 불순물로서, 편석을 일으키기 쉽고, 불건전한 주조조직이 만들어지기 쉬우므로 0.02%이하로 최소화된다.P is an impurity, which is apt to cause segregation, and it is minimized to 0.02% or less since unhealthy cast structure is likely to be produced.

Ti는 불순물로서, 강중의 N과 반응되어 피로수명에 해악한 TiN개재물이 형성되므로 0.003%이하로 최소화된다.Ti is an impurity, which reacts with N in the steel to form TiN inclusions that are deteriorated in fatigue life, so that the TiN content is minimized to 0.003% or less.

[실시예][Example]

이하, 실시예를 통하여 본 발명을 자세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

본 발명의 고청정 침탄용 베어링강은 중량%씩, C : 0.1∼0.3%, Si : 0.1∼0.5%, Mn : 0.5∼1.0%, Cr : 0.5∼1.5%, Al : 0.005∼0.05%, 불순물로서 S:0.01%이하, P : 0.02% 이하, Ti : 0.003%이하, 및 O : 0.0012%이하를 함유하고 , 잔부는 Fe 및 불가피한 불순물을 포함한다.The bearing steel for high-carburnt carburization according to the present invention is characterized in that it contains 0.1 to 0.3% of C, 0.1 to 0.5% of Si, 0.5 to 1.0% of Mn, 0.5 to 1.5% of Cr, 0.005 to 0.05% of Al, , S: not more than 0.01%, P: not more than 0.02%, Ti: not more than 0.003%, and O: not more than 0.0012%, and the balance includes Fe and unavoidable impurities.

본 발명의 고청정 침탄용 베어링강의 제조방법은 다음과 같다.A method of manufacturing a bearing steel for high-clean carburization of the present invention is as follows.

우선, 고철을 일정기준에 의해 설별하여 전기로(60톤)에 장입하고 전기 아아크에 의해 완전용해하여 용강을 제조한다. 즉, 고철을 완전용해한 용락단계를 실시한다. 여기서 고철을 완전용해한 용락상태에서의 용강은 중량%로, C : 0.20∼060%, Si : 0.001∼0.05%, Mn : 0.01∼0.20%, Cr : 0.01∼0.05%, P : 0.001∼0.02%, S : 0.001∼0.0040%이고, 유해 불순물로서 Cu : 0.20%이하, Sn : 0.025%이하, As : 0.02%이하, Sb : 0.02%이하, Pb : 0.002%이하, Ti : 0.002%이하를 함유하고 나머지는 Fe 및 통상적으로 함유되는 미량의 불순물로 이루어진다.First, scrap iron is charged to an electric furnace (60 tons) by a certain standard, and molten steel is manufactured by completely dissolving it by electric arc. In other words, an electrolytic step in which the scrap iron is completely dissolved is carried out. Here, the molten steel in the molten state in which the scrap iron is completely dissolved contains, by weight, 0.20 to 0.60% of C, 0.001 to 0.05% of Si, 0.01 to 0.20% of Mn, 0.01 to 0.05% of Cr, 0.001 to 0.02% of P, , 0.001 to 0.0040% of S, and 0.20% or less of Cu, 0.025% or less of Sn, 0.02% or less of As, 0.02% or less of Sb, 0.002% or less of Pb and 0.002% or less of Ti as harmful impurities, Is made of Fe and a trace amount of impurities normally contained.

이어서, 용락단계후, 인 등의 불순물과 비금속개재물을 전기로 상부층의 슬래그로 흡수, 제거하기 위해, 조재제인 생석회를 용강 톤당 7∼10Kg의 범위로 투입하여 슬래그를 형성한다. 이 때, 슬래그의 염기도, 즉 CaO/SiO₂의 비를 2.0∼2.5의 범위로 제어한다.Subsequently, in order to absorb and remove impurities such as phosphorus and non-metallic inclusions by slag in the upper layer of the electric furnace, the quick lime as a conditioning agent is added in a range of 7 to 10 Kg per ton of molten steel to form slag. At this time, the basicity of the slag, that is, the ratio of CaO / SiO2 is controlled in the range of 2.0 to 2.5.

이후, 산화정련단계를 실시한다. 즉, 용강속에 산소를 용강 톤당 15∼25Nm³의 범위로 취입하여 불순물을 산화반응에 의해 산화물로 만든 후 슬래그로 부상시켜 제거한다.Thereafter, the oxidation refining step is carried out. That is, oxygen is blown into the molten steel in the range of 15 to 25 Nm³ per ton of molten steel, the impurities are converted into oxides by the oxidation reaction, and then they are flashed by slag.

그리고 나서 출강단계를 실시한다. 즉, 출강시 용강중에 잔존하는 산소를 제거 하기 위해 Al보다 약한 탄산도를 가진 합금철 Mn, Si을 목표 합금조성에 따라 출강초기에 먼저 투입한 후, 주 탄산원소인 Al를 용강 톤당 0.5∼1.5 Kg을 출강말기에 투입하며, 전기로 하부의 노즐스토퍼를 이용, 출강후 레이들정련에 악영향을 미치는 전기로슬래그의 레이들로의 유출을 방지한다.Then, perform the lecture step. That is, in order to remove remaining oxygen in molten steel at the time of steel making, alloying iron Mn and Si having a degree of carbonate lower than Al are firstly introduced at the beginning of the ladle according to the target alloy composition, and then Al, which is the main carbonic acid element, Kg is injected at the end of the line and the nozzle stopper under the electric furnace is used to prevent leakage of the electric furnace slag to the ladle which adversely affects the ladle refining.

출강단계이후에, 레이들에서 환원정련을 실시한다. 즉, 출강시 Al의 투입으로 형성된 탄산생성물을 슬래그로 충분히 부상, 제거시키기 위해 레이들하부에서 불활성가스, 예를 들면 Ar가스를 150∼250ℓ/min의 속도로 강교반하고, 조재제로 생석회와 형석을 4∼5:1의 비율로 생석회의 경우, 용강 톤당 6∼8Kg을 투입하여 염기도가 5∼7 범위이고, 슬래그조성이 저융점인 고염기도의 슬래그를 제어하는 환원정련단계를 행한다.After the lecture stage, the lathes are subjected to reduction refinement. That is, in order to sufficiently float and remove the carbonated product formed by the addition of Al at the time of excavation, the inert gas such as Ar gas is stirred at a rate of 150 to 250 L / min under the ladle, In the case of quicklime at a rate of 4 to 5: 1, 6 to 8 kg per ton of molten steel is charged to carry out a reduction refining step for controlling the slag of high-salt air with a basicity ranging from 5 to 7 and having a low melting point of the slag composition.

상기 환원정련단계이후에 탈가스공정을 행한다. 즉, 환원정련완료후, 진공도 3 mbar이하에서 15분이상의 진공탈가스시킨다. 이 진공탈가스공정을 통하여 불순물성분과 비금속개재물을 최소화하여 고청정도를 확보할 수 있다.After the reduction refining step, a degassing step is performed. That is, vacuum degassing is performed for 15 minutes or more at a vacuum level of 3 mbar or less after completion of reduction and refining. Through this vacuum degassing process, impurity components and nonmetallic inclusions can be minimized and high cleanliness can be ensured.

상기의 공정을 거친 합금의 조성을 분석하여 보면, 중량 %로, C : 0.10∼0.30%, Si : 0.1∼0.5%, Mn : 0.5∼1.0%, Cr : 0.5∼1.5%, Al : 0.005∼0.05%, P : 0.02%이하, S : 0.01%이하, Ti : 0.003%이하, O : 0.0012%이하를 함유하고 , 잔량은 Fe 및 불가피한 불순물로 이루어져 있다는 것을 알 수 있다.When the composition of the alloy subjected to the above-described processes is analyzed, it is preferable that the composition contains 0.10 to 0.30% of C, 0.1 to 0.5% of Si, 0.5 to 1.0% of Mn, 0.5 to 1.5% of Cr, 0.005 to 0.05% , P: not more than 0.02%, S: not more than 0.01%, Ti: not more than 0.003%, and O: not more than 0.0012%, and the balance being Fe and unavoidable impurities.

상기와 같은 단계를 거쳐서 비금속개재물량을 최소화한 후, 강괴주조 또는 연속주조를 실시한다.After the amount of the non-metal intervening material is minimized through the above steps, the steel ingot casting or continuous casting is performed.

그리고나서, 보다 경제적이며 관리가 쉽고 작업성이 우수한 1,050∼1,250℃의 온도로 가열하여 총성형단련비 8S이상의 통상적인 열간압연을 실시한다.Then, it is heated at a temperature of 1,050 to 1,250 ° C., which is more economical, easy to manage, and excellent in workability, and is subjected to ordinary hot rolling at a total forming hardening ratio of 8 S or more.

열간압연을 실시한 후, 비교적 제조원가가 낮고 생산성이 우수한 연속식 열처리로에서 850∼950℃의 온도에서 노르말라이징 처리를 한 후, 공냉시켜 고청정 침탄용 베어링강을 제조한다.After hot rolling, normalizing treatment is carried out at a temperature of 850 to 950 캜 in a continuous heat treatment furnace with a relatively low production cost and excellent productivity, followed by air cooling to produce a bearing steel for high-clean carburization.

하기 표 1은 본 발명강과 종래강의 공정재에 대한 화학성분과 O함량을 각각 나타낸 것이고, 표 2는 레이들 정련후 슬래그의 조성을 표기한 것이다. 표3은 표면결함의 척도인 소지흠길이별 개수를 표기한 것이고, 표4는 ASTM E 45 A방법에 의해 측정된 비금속개재물량과 베어링의 회전접촉 피로수명값(L10수명)을 나타낸 것이다.Table 1 below shows the chemical composition and O content of the steels of the present invention and conventional steels, respectively. Table 2 shows the composition of the slag after ladle refining. Table 3 shows the number of surface cracks as a measure of the number of base cracks, and Table 4 shows the amount of nonmetal inclusions measured by ASTM E 45 A method and the rotational contact fatigue life (L 10 life) of the bearings.

먼저, 표 1에서 A,B,C,D강은 본 발명강이고 E강은 기존에 당사의 제조공정에서 개발된 침탄용 베어링강이며, F강은 기존에 국내에서 사용되어 왔던 외국산 베어링강이다.First, in Table 1, A, B, C, and D steel are inventive steel, E steel is a carburizing steel developed in our manufacturing process, and F steel is a foreign bearing steel that has been used in domestic .

본 발명강인 A,B,C,D강은 제강시 고청정 제강법을 채택하였으며, 고청정 제강법은 기존의 저산소 제강법을 바탕으로 하여 불순물을 극저화시키는 제강방법으로, 이 방법에 의해 불순물 원소를 저감시킨 결과를 요약하면 다음과 같다.The steel of the present invention adopts the high-clean steelmaking process for the steels A, B, C, and D, and the high-clean steelmaking method is a steelmaking method for extremely reducing impurities based on the existing hypoxic steelmaking method. The results are summarized as follows.

불순물 P와 Ti을 저감하기 위해, 먼저 스크랩 및 합금철 자체에 포함되어 있는 불순물을 억제하였으며, 전기로 용락후, 조재제를 첨가하여 염기도(CaO/SiO2)가 2∼2.5인 염기성 슬래그를 만들고, 용강온도를 낮춘 상태에서 산화정련을 효율적으로 실시한 후, 전기로 산성슬래그를 출강후에 100% 제거하여 P, Ti 함량을 최소화하였다.In order to reduce the impurities P and Ti, the impurities contained in the scrap and the ferroalloy itself were first suppressed, and after the electric furnace was crushed, a basic agent was added to make a basic slag having a basicity (CaO / SiO2) of 2 to 2.5, After oxidizing and refining efficiently in the state where the temperature of the molten steel was lowered, the electro-acidic slag was removed by 100% after excavation to minimize P and Ti contents.

또한, 불순물인 O의 경우는 출강시 Al 단독 투입하는 기존의 탈산방법을 O와 친화력이 약한 순으로 Mn, Si, Al을 복합 투입하는 방법을 실시하여 저감시켰다. 아울러, O와 S함량을 저감시키기 위해 용강의 교반강도를 증대시킨 상태에서 진공탈가스를 보다 충분히 실시한 후, 용강의 재산화를 최대한 억제하였으며, 레이들 정련중의 슬래그조성을 하기 표2와 같이, 고염기성의 조융점 조성으로 제어함으로써, 탈산과 탈황 반응효율을 최적화시켜 O, S함량을 최소화하였다.In the case of O, which is an impurity, the existing deoxidation method which only Al is injected at the time of excavation is reduced by applying a combination of Mn, Si and Al in the order of weak affinity with O. Further, in order to reduce the content of O and S, after the vacuum degassing was sufficiently performed in the state where the stirring strength of the molten steel was increased, the reoxidization of the molten steel was suppressed to the maximum, and the slag composition during the ladle refining was evaluated as shown in Table 2 below. O and S contents were minimized by optimizing the deoxidation and desulfurization reaction efficiency by controlling the composition of the high basicity coarse melting point.

상기와 같은 방법으로 불순물 원소인 O,S,P,Ti 함량과, 이들 원소로 인한 비금속개재물을 최소화한 후, 강괴주조 또는 연속주조하고, 가열을 1,050∼1,250℃ 하여, 총 성형단련비 8S이상의 분괴압연 및 제품압연을 하고, 연속식 열처리로에서 850∼950℃ 온도로 노르말라이징 처리를 실시한 후, 공냉하여 고청정 침탄용 베어링강을 제조하였다.In the same manner as above, the O, S, P and Ti impurity elements and the nonmetal inclusions due to these elements are minimized, and then the steel ingot is cast or continuously cast, and the heating is performed at 1,050 to 1,250 ° C., Rolled and rolled products were subjected to a normalizing treatment at a temperature of 850 to 950 占 폚 in a continuous heat treatment furnace and then air-cooled to produce a bearing steel for high-cleaned carburization.

본 발명에 따라 제조된 베어링강의 품질평가시험을 위하여 노르말라이징처리된 강재를 공시재로 하고, 1/2R부위에서 8개의 시험편을 채취하여 불순물을 포한 화학성분을 분석하고 O함량 및 비금량을 측정하였다.For the quality evaluation test of the bearing steel manufactured according to the present invention, the normalized steel material was made into a specimen and eight specimens were taken from the 1 / 2R region to analyze chemical components containing impurities and to measure the content and amount of O Respectively.

또한, 베어링강의 용도특성인 회전접촉 피로수명을 평가하기 위해 노르말라이징 처리된 강재를 900∼950℃도에서 침탄한 후, 800∼900℃도에서 소입하고, 150∼200℃도에서 소려한 침탄열처리된 강재를 공시재로 하고 직경 60mm, 두께 10mm로 가공하여 피로시험편으로 하였다. 베어링의 피로시험은 트러스트형(thrusttype) 회전접촉 피로시험기를 이용하여 스피넬(spinel) #60 윤활유를 주입하면서, 직경이 3/8인치인 강구 3개를 통해 피로시험편상에서 일정한 궤도를 회전시키면서 593Kg의 축하중을 가하고, 1,000rpm의 회전속도로 축을 회전시키면서 피로시험을 하였다.In order to evaluate the rolling contact fatigue life, which is the application characteristic of the bearing steel, the normalized steel is carburized at a temperature of 900 to 950 ° C., then calcined at a temperature of 800 to 900 ° C., The specimens were processed to 60 mm in diameter and 10 mm in thickness to make fatigue test specimens. The fatigue test of the bearings was carried out using a thrusttype rotary contact fatigue tester, while spinel # 60 lubricating oil was injected, while rotating a constant orbit on the fatigue test piece through three steel spheres having a diameter of 3/8 inch, An axial load was applied, and a fatigue test was conducted while rotating the shaft at a rotation speed of 1,000 rpm.

피로수명의 기준은 피로시험중에 궤도륜과 전동체사이의 반복적인 접촉압력으로 열화되어 피로에 도달할 때까지의 회전수를 계산하여 피로수명값으로 하였다.The fatigue life criterion was defined as the fatigue life value by calculating the number of revolutions until fatigue was reached by repeated contact pressure between the raceway wheel and rolling elements during the fatigue test.

본 시험에서는 베어링의 수명을 대표할 수 있는 값으로 평균수명보다 신뢰도가 뛰어나 현재 널리 사용되고 있는 L수명(시험편수의 10%가 피로파괴를 일으키는 경우를 가정했을 때의 피로수명)을 취하였다.In this test, it is possible to represent the life of the bearing. It is more reliable than the average lifetime, and the widely used L life (fatigue life when 10% of test number causes fatigue fracture) is taken.

측정결과, 발명강 A,B,C,D의 경우 표1에서와 같이 화학성분중 불순물인 S,P,Ti함량과 가스성분인 O함량이 기존강E에 비하여 크게 감소되었고, 외국산 F보다도 불순물이 낮게 나타났다.As shown in Table 1, S, P, and Ti, which are impurities in the chemical components, and the O content, which are gas components, were significantly decreased as compared with the conventional steel E, and impurities Respectively.

또한, 강재의 표면결함을 야기시키는 요인이 되고 있는 소지흠은 본 발명강의 경우, 고청정 제강법을 적용하여 강중의 알루미나(AlO)개재물과 거대 산화물계 개재물이 제강 정련공정에서 충분히 부상제거됨으로써 상기 표 3에 나타낸 바와 같이, 종래강 E와는 달리 소지흠이 발생하지 않았다.In addition, in the case of the steel of the present invention, since the alumina (AlO) inclusions and macro oxide inclusions in the steel are sufficiently lifted and removed in the steelmaking refining process by applying the high-clean steelmaking method, As shown in Fig. 3, unlike the conventional steel E, no scratches were generated.

※강의 비금속 개재물 시험방법(ASTM E 45 A)※ Nonmetallic inclusion test method of steel (ASTM E 45 A)

제1도는 표 4에 나타낸 본 발명강의 평균 비금속개재물량을 기존강, 비교강과 함께 도시한 것으로, 비금속개재물이 황화물(sulfide), 실리케이트(silicate)인 것을 C, 구상산화물(globular oxide)인 것을 D로 나타내었고, 그 각각에 대하여 Thin은 thin상태, Heay는 heavy상태를 의미한다.FIG. 1 shows the average nonmetal inclusions in the steels according to the present invention shown in Table 4 together with existing steels and comparative steels. It is assumed that the nonmetallic inclusions are sulfide, silicate and C, and globular oxide is D Respectively, and for each of them, Thin means a thin state and Heay means a heavy state.

본 발명강은 특히 황화물계와 산화물계 개재물이 기존강 E보다 현저하게 저감되었고, 외국산 F에 비해서는 황화물계가 낮게 나타났다. 이는 불순물인 O,S의 감소에 따라 강중의 개재물량도 상대적으로 크게 저감된 결과이며, 전반적으로 본 발명의 경우가 외국산보다 우수하였다.In particular, sulfide-based inclusions and oxide inclusions of the present invention were remarkably reduced compared to the conventional steel E, and the sulfide content was lower than that of foreign F. This is a result that the amount of interstitials in the steel was also largely reduced due to the decrease of the impurities O and S, and overall the present invention was superior to the foreign acid.

이와같은 베어링강의 청정도 향상 즉, 강중의 불순물인 O,S,P,Ti함량과 비금개재물량을 최소화함으로써 베어링의 요구특성인 피로수명은 표4 및 제2도에서와 같이 본 발명강이 기존강에 비해 크게 향상되었으며, 외국산보다 우수한 피로수명을 나타내었다.As shown in Table 4 and FIG. 2, the fatigue life, which is the required characteristic of the bearing, is minimized by minimizing the amounts of O, S, P, and Ti impurities in the steel, It showed a much better fatigue life than steel.

[발명의 효과][Effects of the Invention]

이상에서 설명한 바와 같이, 본 발명강은 제강공정시 고청정 제강법으로 불순물량과 비금속 개재물량을 최대한 감소시켜 청정성을 확보한 후, 고청정 제강법으로 제조된 강을 주조 및 비교적 경제적이고 관리가 용이한 통상의 열간압연을 한 후, 제조비용이 저렴한 연속식 열처리로에서 노르말라이징 처리함으로써, 통상의 침탄열처리 후에 나타나는 베어링강의 회전접촉 피로수명이 7.5×106사이클이상이며, 소지흠 발생과 거대 개재물 존재에 의한 표면결함이 극히 억제한 높은 수명의 고청정 침탄용 베어링강을 얻을 수 있다.As described above, the steel according to the present invention is manufactured by a high-clean steelmaking process to reduce the amount of impurities and non-metallic materials to a minimum, to ensure cleanliness, to cast steel produced by the high-clean steelmaking process, The rolling contact fatigue life of the bearing steel after the ordinary carburizing heat treatment is not less than 7.5 x 10 < 6 > cycles by performing the normalizing treatment in the continuous heat treatment furnace with low manufacturing cost after the ordinary hot rolling, It is possible to obtain a high-quality carburizing steel for carburization having a high life-span that is extremely suppressed from surface defects due to the above-mentioned problems.

Claims (2)

중량%로, C : 0.20∼060%, Si : 0.001∼0.05%, Mn : 0.01∼0.20%, Cr : 0.01∼0.05%, P : 0.001∼0.02%, S : 0.001∼0.0040%이고, 유해 불순물로서 Cu : 0.20%이하, Sn : 0.025%이하, As : 0.02%이하, Sb : 0.02%이하, Pb : 0.002%이하, Ti : 0.002%이하를 함유하고 나머지는 Fe 및 통상적으로 함유되는 미량의 불순물을 포함하는 용강을 제조하는 단계 : 조재제을 용강 톤당 7∼10Kg의 범위로 투입하여 슬래그의 염기도(CaO/SiO₂)를 2.0∼2.5의 범위로 제어하는 단계; 용강속에 산소를 용강 톤당 15∼25Nm³의 범위로 취입하는 단계; 출강을 실시하며, 출강중에 탈산제를 투입하는 출강단계; 레이들하부에서 불활성가스를 150∼250ℓ/min의 속도로 강교반하고, 조재제를 투입하여 염기도가 5∼7범위가 되도록 하는 환원정련단계; 진공도 3 mbar이하에서 15분이상의 진공탈가스공정을 실시하는 단계; 강괴주조 또는 연속주조를 실시하는 단계; 1,050∼1,250℃의 온도로 가열하여 총성형단련비 8S이상의 통상적인 열간압연을 실시하는 단계; 열처리로에서 850∼950℃의 온도에서 노르말라이징 처리를 한 후, 공냉하는 단계로 이루어지는 고청정 베어링강의 제조방법.The steel sheet according to any one of claims 1 to 3, wherein the steel sheet contains 0.20 to 0.60% of C, 0.001 to 0.05% of Si, 0.01 to 0.20% of Mn, 0.01 to 0.05% of Cr, 0.01 to 0.05% of Cr, 0.001 to 0.02% of P and 0.001 to 0.0040% Cu, at most 0.02% of Cu, at most 0.02% of Sn, at most 0.02% of As, at most 0.02% of Sb, at most 0.002% of Pb and at most 0.002% of Ti and the balance of Fe and trace amounts of impurities (CaO / SiO2) in the range of 2.0 to 2.5 by adding the crude agent in the range of 7 to 10 Kg per ton of molten steel; Introducing oxygen into the molten steel in the range of 15 to 25 Nm < 3 > per molten steel; A lecturing step of lecturing and inputting a deoxidizing agent during lecture; Stirring the inert gas at a rate of 150 to 250 L / min in the lower part of the ladle, adding a coagulant to bring the basicity into the range of 5 to 7; Performing a vacuum degassing process at a vacuum degree of 3 mbar or less for 15 minutes or more; Casting or continuous casting; Heating at a temperature of 1,050 to 1,250 占 폚 to perform ordinary hot rolling at a total shaping annealing ratio of 8S or more; A step of subjecting the steel sheet to a normalizing treatment at a temperature of 850 to 950 占 폚 in a heat treatment furnace followed by air cooling. 제1항에 있어서, 상기 출강단계에서, 출강초기에는 Mn, Si의 탈산제를 투입하고 출강말기에는 Al를 투입하는 것을 특징으로 하는 고청정 베어링강의 제조방법.The method according to claim 1, wherein in said ladle step, deoxidizing agents of Mn and Si are introduced at the beginning of the ladle and Al is introduced at the end of the ladle.
KR1019960020130A 1996-06-05 1996-06-05 Bearing steel for high-clean carburizing and manufacturing method thereof Expired - Lifetime KR100206353B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960020130A KR100206353B1 (en) 1996-06-05 1996-06-05 Bearing steel for high-clean carburizing and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960020130A KR100206353B1 (en) 1996-06-05 1996-06-05 Bearing steel for high-clean carburizing and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR980002274A KR980002274A (en) 1998-03-30
KR100206353B1 true KR100206353B1 (en) 1999-07-01

Family

ID=19460967

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960020130A Expired - Lifetime KR100206353B1 (en) 1996-06-05 1996-06-05 Bearing steel for high-clean carburizing and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR100206353B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104328250A (en) * 2014-11-27 2015-02-04 王俐帧 Heat treatment process of bearing steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100423436B1 (en) * 1999-12-27 2004-03-19 주식회사 포스코 A Method for Manufacturing Bearing Steels Having Excellent Fatigue Property

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104328250A (en) * 2014-11-27 2015-02-04 王俐帧 Heat treatment process of bearing steel

Also Published As

Publication number Publication date
KR980002274A (en) 1998-03-30

Similar Documents

Publication Publication Date Title
CN107904492B (en) Low-silicon high-carbon chromium bearing steel and hot rolling production method thereof
EP0236505B1 (en) Case-hardening steel and process for its production
CN110983178A (en) Steel for ball screw bearing and manufacturing method thereof
CN112981236B (en) Steel for inner raceway of constant velocity universal joint and production method thereof
JP5803824B2 (en) Method of melting carburized bearing steel
CN108611562B (en) Sulfur-aluminum-containing killed non-quenched and tempered steel and sulfide morphology control method thereof
JPH045742B2 (en)
JP4630075B2 (en) High carbon chromium bearing steel and manufacturing method thereof
CN116574967B (en) A carburized bearing steel for a cycloidal wheel of a robot RV reducer and a production method thereof
JP2024502743A (en) Steel for Zeppa type universal joint retainer and its manufacturing method
CN110484837A (en) A kind of ball-screw steel and its manufacturing method
JPH01168848A (en) Universal free cutting steel for automobile parts and its production
CN109680122B (en) Steel for hub bearing and manufacturing method thereof
EP0825270B2 (en) Bearing material
CN109930063B (en) Steel for engineering machinery crawler chassis wheel body and production method thereof
CN109852872B (en) Steel for ball cage of automobile driving system and production method thereof
CN117127122B (en) Fatigue-resistant spring steel wire, wire rod and production method of wire rod
KR100206353B1 (en) Bearing steel for high-clean carburizing and manufacturing method thereof
CN112981228A (en) Steel bar with good cold forging performance for transmission gear shaft and manufacturing method
JPS6263650A (en) Bearing steel and its production
CN113151744B (en) Steel S48C for engineering machinery slewing bearing and production method thereof
JPH0585629B2 (en)
WO2021256158A1 (en) Method for manufacturing high-cleanliness steel
EP1496132A1 (en) Steel for case hardening bearing excellent in toughness and rolling fatigue life in quasi-high temperature region
CN114717474A (en) Steel for worm of worm crank pin type steering gear and manufacturing method thereof

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19960605

A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19960919

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 19960605

Comment text: Patent Application

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 19981026

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 19990318

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 19990408

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 19990409

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20011015

Start annual number: 4

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20050406

Start annual number: 7

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20080311

Start annual number: 10

End annual number: 12

FPAY Annual fee payment

Payment date: 20110224

Year of fee payment: 15

PR1001 Payment of annual fee

Payment date: 20110224

Start annual number: 13

End annual number: 15

FPAY Annual fee payment

Payment date: 20140409

Year of fee payment: 18

PR1001 Payment of annual fee

Payment date: 20140409

Start annual number: 16

End annual number: 18

EXPY Expiration of term
PC1801 Expiration of term