[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR0119287B1 - Synthetic method of positive electrode material in lithium secondary batteries - Google Patents

Synthetic method of positive electrode material in lithium secondary batteries

Info

Publication number
KR0119287B1
KR0119287B1 KR1019940032656A KR19940032656A KR0119287B1 KR 0119287 B1 KR0119287 B1 KR 0119287B1 KR 1019940032656 A KR1019940032656 A KR 1019940032656A KR 19940032656 A KR19940032656 A KR 19940032656A KR 0119287 B1 KR0119287 B1 KR 0119287B1
Authority
KR
South Korea
Prior art keywords
acid
sol
lithium secondary
secondary battery
lico
Prior art date
Application number
KR1019940032656A
Other languages
Korean (ko)
Other versions
KR960027035A (en
Inventor
강성구
장순호
Original Assignee
양승택
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 양승택, 한국전자통신연구원 filed Critical 양승택
Priority to KR1019940032656A priority Critical patent/KR0119287B1/en
Priority to JP7315695A priority patent/JPH08264184A/en
Publication of KR960027035A publication Critical patent/KR960027035A/en
Application granted granted Critical
Publication of KR0119287B1 publication Critical patent/KR0119287B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

A fabrication method of an anode activation material for lithium secondary battery is provided to improve electrode properties by sol-gel method using an organic acid. The anode activation materials are used of LiCoO2 and LiCoyNi1-yO2 compound and made of sol-gel method using an organic acid. The organic acid is one selected from the group of citric acid, succnic acid, malic acid, oxalic acid, and tartaric acid. The pH of the citrate sol is range from 3 to 4. The citrate sol is fabricated in 10-20 mmHg, at 90-95 deg C and for 18-20 hours.

Description

리튬 이차전지용 양극물질 제조방법Manufacturing method of positive electrode material for lithium secondary battery

제1도는 LiCoO2화합물의 구조를 나타낸 도면.1 is a diagram showing the structure of a LiCoO 2 compound.

제2도는 우기산을 이용한 졸-겔법에 의해 LiCoO2와 LiCoyNi1-yO2을 제조하는 방법에 관한 도식.2 is a schematic of a method for producing LiCoO 2 and LiCo y Ni 1-y O 2 by a sol-gel method using an organic acid.

제3도는 유기산을 이용한 졸-겔법과 고온고상법에 의해 제조한LiCoyNi1-yO2(y=0.3)의 X-선 회절분석피크 비교도.3 is a comparison of X-ray diffraction peaks of LiCo y Ni 1-y O 2 (y = 0.3) prepared by a sol-gel method using an organic acid and a high temperature solid state method.

제4도는 유기산을 이용한 졸-겔법에 의해 제조한 LiCoO2와 LiCoyNi1-yO2(0y1) 화합물의 I101/I3비교도.4 is a comparison of I 101 / I 3 between LiCoO 2 and LiCo y Ni 1-y O 2 (0y1) compounds prepared by a sol-gel method using an organic acid.

제5도는 유기산을 이용한 졸-겔법에 의해 제조한 LiCoyNi1-yO2(y=0.3) 화합물의 1차 충반전 곡선.5 is a primary charge and inversion curve of the LiCo y Ni 1-y O 2 (y = 0.3) compound prepared by the sol-gel method using an organic acid.

본 발명은 리튬 이차전지의 개선에 관계된 것으로, 특히 양극 활성물질인 LiCoO2와 LiCoyNi1-yO2화합물의 개선에 관한 것이다.The present invention relates to the improvement of a lithium secondary battery, and more particularly, to the improvement of LiCoO 2 and LiCo y Ni 1-y O 2 compounds which are positive electrode active materials.

LiCoO2와 LiCoyNi1-yO2화합물의 이상적인 구조는 제1도에 나타낸 것과 같이 Li이 온과 Co(또는 Ni)이온이 완벽한 질서화 배열을 하고 있는 것이다. 그러나 Li층에 Co(또는 Ni)이온이 들어가게 되면 이차원적구조가 삼차원적 구조로 바뀌어 전극특성을 떨어뜨리게 되며, 이는 X-선 회절분석 패턴에서 (003) 피크의 상대 세기가 감소하는 것으로 부터 쉽게 확인할 수 있다.The ideal structure of LiCoO 2 and LiCo y Ni 1-y O 2 compounds is that Li and Co (or Ni) ions are in perfect ordered arrangement as shown in FIG. However, when the Co (or Ni) ion enters the Li layer, the two-dimensional structure is changed to a three-dimensional structure, which degrades the electrode characteristics, which is easy from the decrease of the relative intensity of the (003) peak in the X-ray diffraction pattern. You can check it.

상기 LiCoO2와 LiCoyNi1-yO2같은금속 산화물을 합성하는 방법에는 고온 고상법과 액상에 의한 방법이 있다.The method of synthesizing a metal oxide such as LiCoO 2 and LiCo y Ni 1-y O 2 includes a high temperature solid state method and a liquid phase method.

액상에 의한 합성법에는 공침법과 졸-겔(Sol-Gel)법이 있는데, 공침법의 경우 합성하고자하는 화합물이 공침되는 pH영역이 있어야 가능하지만, 졸-겔법은 출발물질이 모두 용해되는 용해되는 용매와 이를 겔화시켜줄 수 있는 첨가제(예를들면, 구연산(citric acid), 호박산(succnic acid), 사과산(malic acid), 수산(oxalic acid), 주석산(tartaric acid)등과 같은 유기산)만 있으면 가능하고 미세한 분말을 얻을 수 있으므로 초미세 분말재료의 합성에 많이 이용되고 있다.There are coprecipitation method and sol-gel method in the liquid phase synthesis method. In the case of the coprecipitation method, it is possible to have a pH range in which the compound to be synthesized is coprecipitated, but the sol-gel method dissolves all of the starting materials. All you need is a solvent and an additive that can gel it (for example, citric acid, succnic acid, malic acid, malic acid, oxalic acid, tartaric acid, etc.). Since fine powders can be obtained, they are widely used for the synthesis of ultrafine powder materials.

이러한 졸-겔법을 이용하여 리튬 이차전지의 양극 활성물질인 LiCoO2와 LiCoyNi1-yO2화합물을 합성하면 기존의 고온 고상법에 의해 합성한 것보다 이차원적 구조가 잘 발달되고, 입자크기도 작은 화합물을 합성할 수 있어서 전극 특성이 개선된다.Synthesis of LiCoO 2 and LiCo y Ni 1-y O 2 compounds, which are positive electrode active materials of lithium secondary batteries, using the sol-gel method results in better two-dimensional structures than those synthesized by conventional high-temperature solid-state methods. Smaller compounds can be synthesized to improve electrode properties.

따라서, 본 발명은 유기산을 이용한 졸-겔법에 의해서 리튬이차전지의 양극활성물질인 LiCoO2와 LiCoyNi1-yO2(0y1)화합물을 제조하는 새로운 방법을 제안한다.Accordingly, the present invention proposes a new method for preparing LiCoO 2 and LiCo y Ni 1-y O 2 (0y1) compounds which are cathode active materials of a lithium secondary battery by a sol-gel method using an organic acid.

구연산과 호박산(succinic acid)을 이용한 졸-겔법에 의해서 LiCoO2와 LiCoyNi1-yO2(0y1)를 제조하는 과정은 아래와 같다.The process for preparing LiCoO 2 and LiCo y Ni 1-y O 2 (0y1) by sol-gel method using citric acid and succinic acid is as follows.

LiCoO2는 LiCO3, Co(NO3)2·6H2O, C6H8O7(또는 C4H6O4)을 1:1:2의 몰비로 섞고, LICoyNi1-yO2(0y1)의 경우에는 Li2CO3, Co(NO3)2·6H2O, Ni(NO3)2· 6H2O, C6H8O7(또는 C4H6O4)을 1:y:(1-y):3의 몰비로 섞은 후 증류수에 녹여 용액을 만든다.LiCoO 2 is a mixture of LiCO 3 , Co (NO 3 ) 2 · 6H 2 O, C 6 H 8 O 7 (or C 4 H 6 O 4 ) in a molar ratio of 1: 1: 2, LICo y Ni 1-y O In the case of 2 (0y1), Li 2 CO 3 , Co (NO 3 ) 2 · 6H 2 O, Ni (NO 3 ) 2 , 6H 2 O, C 6 H 8 O 7 (or C 4 H 6 O 4 ) Mix in a molar ratio of 1: y: (1-y): 3 and dissolve in distilled water to form a solution.

이용액을 aq. NH4OH를 사용하여 pH3~4로 조절하면 구연산염 졸(citrate sol)(또는 호박산염 졸(succinate sol))이 된다.AQ. PH using NH 4 OH Adjusting to 3-4 results in a citrate sol (or succinate sol).

이 구연산염 졸(또는 호박산염 졸)을 진공하(10~20mmHg)에서 80~95℃의 온도로 18~20시간 가열하면 용매가 증발되어 구연산염 졸은 겔화를 거쳐 고체상의 유기금속착물이 된다.When this citrate sol (or succinate sol) is heated under vacuum (10-20 mmHg) to a temperature of 80-95 ° C. for 18-20 hours, the solvent is evaporated, and the citrate sol is gelled to form a solid organic metal complex.

이 유기금속착물을 300~350℃에서 3~4시간 가열하여 유기물을 분해하여 LiCoO2와 LiCoyNi1-yO2을(0y1) 화합물의 전구물질(precursor)을 얻는다.The organometallic complex is heated at 300 to 350 ° C. for 3 to 4 hours to decompose the organic material to obtain precursors of the compounds LiCoO 2 and LiCo y Ni 1-y O 2 (0y1).

이 전구물질을 600~650℃에서 6시간 하소한 후 840~860℃에서 20시간 어닐링하여 LiCoO2와 LiCoyNi1-yO2을(0y1) 화합물을 얻는다.This precursor was calcined at 600-650 ° C. for 6 hours and then annealed at 840-860 ° C. for 20 hours to obtain LiCoO 2 and LiCo y Ni 1-y O 2 (0y1).

제2도에서는 상기 제조방법을 도식화하여 놓았다.In FIG. 2, the manufacturing method is illustrated.

제3도에는 상기 졸-겔법에 의해서 합성한 화합물들과 고온 고상법에 의해서 합성한LiCoyNi1-yO20(y=0.3) 화합물의 X-선 회절분석 패턴을 비교하여 나타내었다.3 shows the X-ray diffraction patterns of the compounds synthesized by the sol-gel method and the LiCo y Ni 1-y O 2 0 (y = 0.3) compound synthesized by the high temperature solid state method.

상기 도면에서 보듯이 졸-겔법에 의해서 합성한 화합물의 (003) 피크의 상대 세기가 고온 고상법으로 합성한 화합물의 (003) 피크의 상대 세기가 고온 고상법으로 합성한 화합물의 (003)피크의 상대 세기보다큼을 알 수가 있는데, 이는 상기한 바와 같이 졸-겔법에 의해 합성한 화합물이 고온 고상법으로 합성한 혼합물보다 층상구조가 잘 발달되었음을 의미하며, 제4도에 유기산을 이용한 졸-겔법과 고온 고상법에 의해 제조한 LiCoO2와 LiCoyNi1-yO2(0y1) 화합물들의 I101/I003비를 비교 요약해 놓았다.As shown in the drawings, the relative intensity of the (003) peak of the compound synthesized by the sol-gel method is the peak of the compound synthesized by the high temperature solid state method. It can be seen that the relative strength of is greater than that, which means that the compound synthesized by the sol-gel method is better developed than the mixture synthesized by the high temperature solid state method as described above, and the sol-gel method using the organic acid in FIG. The I 101 / I 003 ratios of LiCoO 2 and LiCo y Ni 1-y O 2 (0y1) compounds prepared by the high temperature solid phase method are summarized.

상기한 바와 같이 졸-겔법에 의해 합성한 화합물에 대해서 전극 특성을 알아보기 위해서 양극은 상기 화합물, 음극은 Li 금속을 전해질은 PC(propylene carbonate)+DEC(diethyl carbonate)에 LiBF6를 1M녹인 용액을 사용하여 Cell을 구성하고, 전류밀도 200μA/cm2의 전류를 흘려주면서 충방전 특성을 측정하였다.As described above, in order to examine the electrode characteristics of the compound synthesized by the sol-gel method, a solution in which 1 M of LiBF 6 was dissolved in PC (propylene carbonate) + DEC (diethyl carbonate) in the anode was the compound, the cathode was Li metal, and the electrolyte was Cells were constructed using the same, and charging / discharging characteristics were measured while flowing a current having a current density of 200 μA / cm 2 .

제5도는 상기 졸-겔법에 의해서 합성한 LiCoyNi1-yO2(y=0.3) 화합물의 1차 충방전 곡선을 나타내었다.5 shows the primary charge and discharge curves of the LiCo y Ni 1-y O 2 (y = 0.3) compound synthesized by the sol-gel method.

제5도에서는 보듯이 상기 화합물은 3.5V 이상의 고전압을 유지하고 있으며, 첨가량(intercalation rate)의 차도 적고 전압의 평탄성도 우수함을 알수 있다.As shown in FIG. 5, the compound maintains a high voltage of 3.5V or more, and there is little difference in intercalation rate and excellent voltage flatness.

Claims (6)

리듐 이차전지의 양극 활성물질인 LiCoO2와 LiCoyNi1-yO2(0y1) 화합물의 제조에 있어서, 유기산을 이용한 졸-겔법에의해 제조하는 리튬 이차전지용 양극물질 제조방법.A method for producing a cathode material for a lithium secondary battery, which is prepared by a sol-gel method using an organic acid in the production of LiCoO 2 and LiCo y Ni 1 -yO 2 (0y1) compounds as positive electrode active materials of a lithium secondary battery. 제1항에 있어서, 사용하는 유기산은 구연산(citric acid), 호박산(succnic acid), 사과산(malic acid), 수산(oxalic acid), 주석산(tartaric acid)중 하나인 것을 특징으로 하는 리튬 이차전지용 양극물질 제조방법.The method of claim 1, wherein the organic acid to be used is one of citric acid, citric acid, sucnic acid, malic acid, malic acid, oxalic acid, tartaric acid, and the like. Material preparation method. 제1항에 있어서, pH3~4의 영역에서 유기금속착물 용액(citrate sol, succinatesol)을 제조하는 것을 특징으로 하는 리튬 이차전지용 양극물질 제조방법.The method of claim 1 wherein the pH Method for producing a cathode material for a lithium secondary battery, characterized in that for preparing an organometallic complex solution (citrate sol, succinatesol) in the region of 3 ~ 4. 제1항에 있어서, 상기 유기금속착물 용액의 용매를 전공하(10~20mmHg)에서 90~95℃의 온도로 18~20시간 가열하여 유기금속착물을 얻는 것을 특징으로 하는 리튬 이차전지용 양극물질 제조방법.The cathode material for lithium secondary battery according to claim 1, wherein the solvent of the organometallic complex solution is heated at a temperature of 90 ° C. to 95 ° C. for 18 to 20 hours under a major (10-20 mmHg) to obtain an organometallic complex. Way. 제1항에 있어서, 상기 유기금속착물을 300~350℃에서 3~4시간 가열하여 유기물을 분해하는 것을 특징으로 하는 리튬 이차전지용 양극물질 제조방법.The method of claim 1, wherein the organic metal complex is heated at 300 to 350 ° C. for 3 to 4 hours to decompose an organic material. 제1항에 있어서, 상기 전구물질을 600~650℃에서 6시간 하소한 후 840~860℃에서 20시간 어닐링하여 LiCoO2와 LiCoyNi1-yO2(0y1) 화합물을 얻는 것을 특징으로 하는 리튬 이차전지용 양극물질 제조방법.The method of claim 1, wherein the precursor is calcined at 600 ~ 650 ℃ 6 hours and then annealed at 840 ~ 860 ℃ 20 hours to obtain a LiCoO 2 and LiCo y Ni 1-y O 2 (0y1) compound, characterized in that Method for manufacturing a cathode material for a lithium secondary battery.
KR1019940032656A 1994-12-03 1994-12-03 Synthetic method of positive electrode material in lithium secondary batteries KR0119287B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019940032656A KR0119287B1 (en) 1994-12-03 1994-12-03 Synthetic method of positive electrode material in lithium secondary batteries
JP7315695A JPH08264184A (en) 1994-12-03 1995-12-04 Electrode substance preparation for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940032656A KR0119287B1 (en) 1994-12-03 1994-12-03 Synthetic method of positive electrode material in lithium secondary batteries

Publications (2)

Publication Number Publication Date
KR960027035A KR960027035A (en) 1996-07-22
KR0119287B1 true KR0119287B1 (en) 1997-10-04

Family

ID=19400217

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940032656A KR0119287B1 (en) 1994-12-03 1994-12-03 Synthetic method of positive electrode material in lithium secondary batteries

Country Status (2)

Country Link
JP (1) JPH08264184A (en)
KR (1) KR0119287B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448272B1 (en) * 2002-02-25 2004-09-10 한국지질자원연구원 Method for recycling of spent lithium ion battery

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914094A (en) * 1995-12-19 1999-06-22 Samsung Display Devices Co., Ltd. Process for preparing cathode active material by a sol-gel method
KR100393194B1 (en) * 1996-12-05 2003-11-01 삼성에스디아이 주식회사 A process for preparing LixMn2O4 Powder used for cathode of lithium secondary battery
WO1998029914A1 (en) * 1996-12-25 1998-07-09 Mitsubishi Denki Kabushiki Kaisha Anode active material, method for manufacturing the same, and lithium ion secondary cell using the same
US6383235B1 (en) 1997-09-26 2002-05-07 Mitsubishi Denki Kabushiki Kaisha Cathode materials, process for the preparation thereof and secondary lithium ion battery using the cathode materials
KR100388633B1 (en) * 2000-09-04 2003-06-25 윤원섭 Cathode Active Material Using Sol-gel Method, Preparing Method Thereof and The Composite Cathode Using the Same
JP2006016257A (en) * 2004-07-01 2006-01-19 Ministry Of National Defense Chung Shan Inst Of Science & Technology Method of producing lithium cobaltate powder
JP4979319B2 (en) * 2005-09-29 2012-07-18 Agcセイミケミカル株式会社 Method for producing lithium-containing composite oxide
JP6485232B2 (en) * 2014-11-27 2019-03-20 日立金属株式会社 Method for producing positive electrode active material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448272B1 (en) * 2002-02-25 2004-09-10 한국지질자원연구원 Method for recycling of spent lithium ion battery

Also Published As

Publication number Publication date
KR960027035A (en) 1996-07-22
JPH08264184A (en) 1996-10-11

Similar Documents

Publication Publication Date Title
KR101017079B1 (en) Fabrication method for electrode active material and lithium battery comprising electrode active material fabricated therefrom
KR100274236B1 (en) Cathode active material for lithium secondary battery and method for producing the same
KR100805910B1 (en) Olivine type positive active material for lithium battery, method for preparing the same, and lithium battery comprising the same
DE19751552C2 (en) Active material for the cathode of a lithium ion battery and method of manufacture
KR20180006837A (en) Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same
KR20010047099A (en) Positive active material for lithium secondary battery a method of preapring the same
EP0734085B1 (en) Spinel-type lithium manganese oxide as a cathode active material for nonaqueous electrolyte lithium secondary batteries
KR0119287B1 (en) Synthetic method of positive electrode material in lithium secondary batteries
KR100490613B1 (en) A positive active material for a lithium secondary battery and a method of preparing the same
KR20180015045A (en) Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same
KR20180015046A (en) Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same
CN114715957B (en) Niobium-coated nickel-cobalt-manganese ternary precursor, and preparation method and application thereof
KR100872370B1 (en) Spinel type Cathode Active Material for Lithium Secondary Batteries and Manufacturing Method for the Same
JPH11149926A (en) Lithium manganese oxide fine powder, production lithium manganese fine powder, and lithium ion secondary battery employing positive electrode containing lithium manganese fine powder as active material
KR100262852B1 (en) A positive active material lixmymn-2-yo4 and its manufacturing method
KR20170136779A (en) A process for preparing lithium iron phosphorus based composite oxide carbon complex doped nikel oxide
JP3289256B2 (en) Method for producing positive electrode active material for lithium battery
JPH11213999A (en) Positive electrode active material for lithium battery lithium battery using it, and manufacture of positive electrode active material for lithium battery
Periasamy et al. Electrochemical performance behavior of combustion-synthesized LiNi0. 5Mn0. 5O2 lithium-intercalation cathodes
KR20150008006A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP4234334B2 (en) Lithium manganese composite oxide for secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
US20030047717A1 (en) Multi-doped nickel oxide cathode material
CN114665086A (en) Lithium-rich manganese-based positive electrode material and preparation method thereof
KR101963251B1 (en) Cathode active material, preparation method thereof, and secondary battery comprising the same
KR100198997B1 (en) Synthetic method of cathode material for lithium secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090702

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee