[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR0152211B1 - Method of preparing photoelements for wave guide - Google Patents

Method of preparing photoelements for wave guide Download PDF

Info

Publication number
KR0152211B1
KR0152211B1 KR1019940010421A KR19940010421A KR0152211B1 KR 0152211 B1 KR0152211 B1 KR 0152211B1 KR 1019940010421 A KR1019940010421 A KR 1019940010421A KR 19940010421 A KR19940010421 A KR 19940010421A KR 0152211 B1 KR0152211 B1 KR 0152211B1
Authority
KR
South Korea
Prior art keywords
optical
electro
transmission loss
polymer
polymer medium
Prior art date
Application number
KR1019940010421A
Other languages
Korean (ko)
Other versions
KR950032076A (en
Inventor
김환규
이형종
이명현
원용협
Original Assignee
양승택
재단법인한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 양승택, 재단법인한국전자통신연구원 filed Critical 양승택
Priority to KR1019940010421A priority Critical patent/KR0152211B1/en
Publication of KR950032076A publication Critical patent/KR950032076A/en
Application granted granted Critical
Publication of KR0152211B1 publication Critical patent/KR0152211B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/011Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  in optical waveguides, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12069Organic material
    • G02B2006/12076Polyamide

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 열적으로 안정한 전기광학적 성질을 가지며, 광전송 손실이 아주 낮은 하기 일반식(Ⅰ)로 표현되는 비선형 광전자 화합물을 폴리머 매질에 분산시켜 얻은 물질을 이용하여 광소자를 제조함을 특징으로 하는 호스트-게스트(host-guest)계의 광도파로형 광소자의 제조방법에 관한 것으로, 고분자 매질과의 상용성이 우수하고 전기광학적 성질이 아주 우수하며 250℃ 이상의 온도에서도 열적 분해가 일어나지 않을 뿐만 아니라 승화되지 않고, 광전송 손실이 아주 낮은 비선형 광전자 화합물을 제조할 수 있다.The present invention provides a host device using a material obtained by dispersing a nonlinear optoelectronic compound represented by the following general formula (I) having a thermally stable electro-optic property and having a very low optical transmission loss in a polymer medium. The present invention relates to a method for manufacturing a host-guest optical waveguide optical device, which has excellent compatibility with a polymer medium, excellent electro-optic properties, does not thermally decompose at temperatures above 250 ° C, and does not sublimate. In addition, nonlinear optoelectronic compounds with very low optical transmission loss can be prepared.

상기식에서, R1및 R2는 C6∼C10의 알킬기이다.In the above formula, R 1 and R 2 are C 6 -C 10 alkyl groups.

Description

광도파로형 광소자의 제조방법Method of manufacturing optical waveguide optical device

제1도는 전자광학 계수를 측정하는 방법의 개략도이고,1 is a schematic diagram of a method of measuring an electro-optic coefficient,

제2도는 광전송 손실율을 측정하는 방법의 개략도이다.2 is a schematic diagram of a method of measuring the optical transmission loss rate.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 광원 2 : 편광자1: light source 2: polarizer

3 : SB보상기 4 : 분석자3: SB compensator 4: analyst

5 : 감지기 6 : 록크인증폭기5: detector 6: lock certified aeration

7 : 유리 8 : ITO7: glass 8: ITO

9 : 폴리머 10 : 금속전극9 polymer 10 metal electrode

11 : 고굴절율프리즘 12 : 광검지기11: high refractive index prism 12: photodetector

13 : 도파로 14 : 클래딩13: waveguide 14: cladding

15 : 기판15: substrate

본 발명은 열적으로 안정한 전기광학적 성질을 가지며, 광전송 손실이 아주 낮은 하기 일반식(Ⅰ)로 표현되는 비선형 광전자 화합물을 폴리머 매질에 분산시켜 얻은 물질을 이용하여 광소자를 제조함을 특징으로 하는 호스트-게스트(host-guest)계의 광도파로형 광소자의 제조방법에 관한 것이다.The present invention provides a host device using a material obtained by dispersing a nonlinear optoelectronic compound represented by the following general formula (I) having a thermally stable electro-optic property and having a very low optical transmission loss in a polymer medium. The present invention relates to a method for manufacturing an optical waveguide optical device of a host type.

상기식에서, R1및 R2는 C6∼C10의 알킬기이다.In the above formula, R 1 and R 2 are C 6 -C 10 alkyl groups.

정보통신에 사용되는 광교환 소자는 이제까지 주로 LiNbO3을 이용하여 제작되었다. LiNbO3를 이용한 광소자의 대역폭은 10GHz-cm 이하가 되기 때문에 차세대 정보통신을 위한 광소자로서 LiNbO3는 사용의 한계에 부딪칠 것으로 예상되며, LiNbO3의 한계점을 해결하고자 전기 광학적 성질을 가지는 유기고분자 물질을 이용한 광교환 소자의 연구가 전세계적으로 활발히 진행되고 있다.Photonic devices used for information communication have been manufactured using LiNbO 3 mainly. Because optical element bandwidth using a LiNbO 3 has become less than 10GHz-cm as an optical element for the next generation of information communication LiNbO 3 is expected to hit the limits of use of the organic polymer having the electro-optical properties in order to solve the limitation of the LiNbO 3 Research of light exchange devices using materials has been actively conducted worldwide.

유기 광전자 고분자 물질은 특히, 비선형 광학 성질이 아주 뛰어나 LiNbO3와 반도체 물질에 비하여 교환(switching) 속도가 아주 빠르고(50 picosec. vs. 2nanoseOrganic optoelectronic polymers, in particular, have very good nonlinear optical properties and are much faster to switch (50 picosec. Vs. 2nanose) than LiNbO 3 and semiconductor materials.

c.) 광대역 폭이 아주 높으며 (400GHz vs. 10GHz), 기존 광섬유 어레이 집속등이 용이할 뿐만 아니라 가공성이 좋기 때문에 여러 가지의 광소자 예를들어, 직선 광도파로 배선, 위상변조기, 마크-젠더(Mach-Zender) 간섭계, 빔스플리터(beam splitter), 방향성 결합기(direcional coupler), X-스위치(X-switch)등의 집적화가 훨씬 용이하게 차세대에 필요한 광소자에 매우 유리한 장점을 지니고 있다.c.) Very wide bandwidth (400 GHz vs. 10 GHz), easy to focus on existing optical fiber arrays and good processability, so that various optical devices such as linear optical waveguide wiring, phase modulators and mark-gender ( Mach-Zender interferometers, beam splitters, directional couplers, X-switches, etc. are much easier to integrate.

유기 고분자 물질로 만든 광소자가 현재 사용되고 있는 LiNbO3의 광소자보다 제반 특성이 월등함에도 불구하고 지금까지 실용화되지 않은 이유는 고분자 물질의 전기광학적 성질이 열적으로 안정하지 못하고 광전송 손실이 크기 때문이다.Although the optical device made of the organic polymer material is superior to the LiNbO 3 optical device currently used, it has not been put to practical use until now because the electro-optical properties of the polymer material are not thermally stable and the optical transmission loss is large.

지금까지 연구된 유기 고분자 물질들은 고분자 매질에 비선형 광전자 유기물을 주입하여 극화(poling)시킨 호스트-게스트(host-guest)계, 비선형 광전자 유기물을 고분자 매질에 공유결합시킨 측쇄(side chain)계 고분자, 고분자를 가교시킨 가교고분자(cross-linked polymer)등이 있고, 특히 가교고분자의 경우 전기광학적 성질이 100℃ 이상에서도 안정한 물질이 보고되었다.The organic polymers studied so far include a host-guest system obtained by injecting a nonlinear optoelectronic organic material into the polymer medium, and a side chain polymer covalently bonded to the polymer medium. Cross-linked polymers (cross-linked polymer) and the like cross-linked polymers, and especially cross-linked polymers have been reported to be stable even in the electro-optic properties of 100 ℃ or more.

가교고분자 물질은 열적으로 안정한 전기광학적인 성질은 해결하였으나, 광전송 손실(10dB/cm)이 아주 높아서 실용화하는 큰 문제가 있다. 또한, 비선형 광전자 유기물을 주입하여 극화시킨 호스트-게스트(host-guest)계의 광소자용 유기 고분자 재료도 최근들어 고분자 물질의 전기광학적 성질이 150℃에서도 안정하다고 보고 되었으나, 전기광학 효과가 아주 작기 때문에 광소자 제작에 이용할 수 없다는 결점이 있다.Although crosslinked polymer materials have solved thermally stable electro-optic properties, there is a big problem of practical use because the optical transmission loss (10dB / cm) is very high. In addition, the organic polymer material of the host-guest optical device, which has been polarized by injecting nonlinear optoelectronic organic materials, has recently been reported to have stable electro-optic properties at 150 ° C, but the electro-optic effect is very small. There is a drawback that it can not be used to fabricate optical devices.

한편, 지금까지 많은 연구되어온 고분자 매질은 폴리메틸메타 크릴레이트(PMMA)와 같은 상용 폴리머가 사용되었으나, 이들 매질은 유리전이온도(Tg)가 낮아서 배향된 비선형 광전자 화합물들이 가공온도에서 쉽게 배향이 흐트려져서 그 광학 성질을 잃어버리는 단점이 있었다. 또한, 호스트(HOST) 매질인 상용 폴리머와 게스트(guest) 물질인 기존에 발표된 비선형 광전자 화합물과의 상용성이 크지 않기 때문에 광학특성에 결정적 영향을 미치는 비선형 광전자 화합물이 함량을 증가시키는데 한계가 있어 큰 값의 전기광학 계수를 얻을 수 없었다.On the other hand, many polymer media that have been studied so far are commercial polymers such as polymethyl methacrylate (PMMA), but these media have low glass transition temperature (Tg), so that the oriented nonlinear optoelectronic compounds are easily oriented at the processing temperature. There was a disadvantage of being lost and losing its optical properties. In addition, there is a limit to increase the content of the nonlinear optoelectronic compound that has a critical effect on the optical properties because the compatibility between the commercial polymer of the host medium and the conventional nonlinear optoelectronic compound of the guest material is not large Large values of electrooptic coefficients could not be obtained.

따라서, 본 발명의 목적은 고분자 매질과의 상용성이 우수하고 전기광학적 성질이 아주 우수하며 250℃ 이상의 온도에서도 열적 분해가 일어나지 않을 뿐만 아니라 승화되지 않고, 광전송 손실이 아주 낮은 비선형 광전자 화합물을 이용하여 광도파로형 광소자를 제조하는 방법을 제공하는데 있다.Accordingly, an object of the present invention is to use a nonlinear optoelectronic compound having excellent compatibility with a polymer medium, excellent electro-optic properties, no thermal decomposition even at a temperature of 250 ° C. or higher, and no sublimation and a very low optical transmission loss. The present invention provides a method for manufacturing an optical waveguide optical device.

상기 목적 뿐만 아니라 용이하게 표출되는 또 다른 목적을 달성하기 위하여 본 발명에서는 유리전이온도가 150℃ 이상이어서 열적으로 매우 안정하여 비선형 광전자 화합물의 완화(relaxation)을 방지할 수 있는 폴리이미드를 고분자 매질로 사용하고, 고분자 매질인 폴리이미드의 전구체 즉, 폴리아믹산과의 상용성(compatibility)이 우수하고, 열적 안정성이 좋고(가공온도 또는 경화온도에서의 승화 및 분해) 및 광전송이 손실을 최소화하기 위하여 공지의 비선형 광전자 화합물에 특정 작용기(functional group)를 부가한 하기 일반식(Ⅰ)의 비선형 광전자 화합물을 제조하고 이를 이용하여 광도파로형 광소자를 제조하므로서 신뢰도가 우수한 광소자를 얻을 수 있었다.In order to achieve the above object as well as another object that is easily expressed in the present invention, the glass transition temperature is 150 ° C or more, so that it is thermally very stable to prevent relaxation of the nonlinear optoelectronic compound as a polymer medium. In order to have excellent compatibility with the precursor of polyimide, that is, a polymer medium, that is, polyamic acid, good thermal stability (sublimation and decomposition at processing temperature or curing temperature), and light transmission to minimize losses. The nonlinear optoelectronic compound of the following general formula (I), in which a specific functional group was added to the nonlinear optoelectronic compound of, was prepared, and an optical waveguide optical device was manufactured using the nonlinear optoelectronic compound, thereby obtaining an optical device having excellent reliability.

상기식에서, R1및 R2는 상술한 바와 같다.Wherein R 1 and R 2 are as described above.

본 발명은 좀 더 구체적으로 설명하면 다음과 같다.The present invention is described in more detail as follows.

먼저, 4-할로 벤즈알데히드와 디알킬아민 및 소듐카보네이트를 헥사메틸-포스포르아미드에 첨가한 후, 질소기류하에서 교반반응시킨 다음, 냉각하고 극성용매를 이용하여 추출한 후 건조하고 용매를 제거한 다음, 크로마토그래피 공정을 행하여 디알킬아미노벤즈알데히드를 얻거나, 알킬아미노벤젠과 할로알키를 반응시킨 다음, 반응생성물과 POCl3를 디메틸포름아미드에서 반응시켜 디알킬아미노벤즈알데히드를 얻는다.First, 4-halo benzaldehyde, dialkylamine, and sodium carbonate are added to hexamethyl-phosphoramide, stirred under a stream of nitrogen, cooled, extracted with a polar solvent, dried, and the solvent is removed. The digraphing process is carried out to obtain dialkylaminobenzaldehyde, or to react alkylaminobenzene and haloalki, and then to react the reaction product with POCl 3 in dimethylformamide to obtain dialkylaminobenzaldehyde.

그 다음에 4-니트로페닐아세트산을 플라스크에 넣고 피페라딘을 천천히 적하시킨 후, 상기에서 제조된 디알킬아미노벤즈알데히드를 가하고 교반 반응시키고 냉각한 다음, 방치하고 교체생성물을 형성시키고 여과하여 재결정하고 정제하여 상기 일반식(Ⅰ)로 표현되는 화합물을 얻는다.Then, 4-nitrophenylacetic acid was added to the flask, and piperidine was slowly added dropwise, and dialkylaminobenzaldehyde prepared above was added, stirred, cooled, left to stand, a replacement product was formed, filtered, recrystallized, and purified. To obtain the compound represented by the general formula (I).

이를 반응도식으로 설명하면 다음과 같다.The reaction scheme is described as follows.

상술한 방법으로 제조되는 본 발명은 비선형 광전자 화합물을 아주 큰값의 전기-광학계수를 그대로 지니면서 고분자 매질인 폴리머와의 상용성 및 열적안정성이 우수하였다. 뿐만 아니라, 본 발명에서는 유리전이온도가 150℃ 이상으로 열적으로 매우 안정하여 비선형 광전자 화합물의 완화(relaxation)를 방지할 수 있는 폴리이미드를 고분자 매질로 사용하므로서 비선형 광전자 화합물과 고분자 매질의 상용성, 비선형 광전자 화합물의 열적 안정성 및 작용기를 포함하지 않아서 광전송 손실을 최소화할 수 있다.The present invention prepared by the above-described method is excellent in compatibility and thermal stability of the nonlinear optoelectronic compound with the polymer as a polymer medium while maintaining a very large value of the electro-optic coefficient. In addition, the present invention uses a polyimide that can be thermally very stable at a glass transition temperature of more than 150 ℃ to prevent relaxation of the nonlinear optoelectronic compound as a polymer medium, the compatibility between the nonlinear optoelectronic compound and the polymer medium, It does not include the thermal stability and functional groups of the nonlinear optoelectronic compound, thereby minimizing light transmission loss.

상술한 바와 같은 본 발명이 비선형 광전자 화합물은 통상의 광소자 제작방법을 이용하여 여러 가지 형태의 광소자 제작에 이용될 수 있다.As described above, the non-linear optoelectronic compound of the present invention may be used for fabricating various types of optical devices using conventional optical device manufacturing methods.

예를들어, 비선형 광전자 화합물을 고분자 매질인 폴리이미드에 일정비율로 혼합시켜 미리 크롬이 증착된 실리콘 기판위에 주사한 후 스핀코우팅하여 광도파로를 제조한다. 제조된 광도파로는 특정조건으로 소성한 후 열처리하여 이미드하면서 경화한다.For example, an optical waveguide is manufactured by mixing a nonlinear optoelectronic compound with a polyimide, which is a polymer medium, in a predetermined ratio, scanning the silicon substrate on which chromium is deposited in advance, and then spin coating. The prepared optical waveguide is cured while being imidized by firing under specific conditions.

다음의 실시예에 본 발명을 좀 더 구체적으로 설명하는 것이지만, 본 발명의 범주를 한정하는 것이 아니다.The present invention is explained in more detail in the following Examples, but is not intended to limit the scope of the present invention.

[실시예 1]Example 1

(a) 디헥실아미노벤즈알데히드의 합성(a) Synthesis of Dihexylaminobenzaldehyde

4-플루오로벤즈알데히드(25g,0.2몰)과 디헥실아민(37g,0.2몰) 및 소듐 카보네이트(21.3g,0.2몰)를 150μm의 헥사메틸포스포로아미드(HMPA)에 넣은 후 질소기류하에서 110℃의 온도로 4일동안 교반시킨 다음, 반응 혼합물을 냉각시키고, 1.5ℓ의 물을 부가한 후, 톨루엔을 이용하여 추출하고 나서 무수 MgSO4로 건조시키고 톨루엔을 제거한다. 생성되는 점성이 큰 액체를 에틸아세테이트와 헥산을 전개용매(1:4)로 이용하는 크로마토그래피 공정을 행하여 디헥실아미노벤즈알데히드를 합성한다.4-fluorobenzaldehyde (25 g, 0.2 mole), dihexylamine (37 g, 0.2 mole), and sodium carbonate (21.3 g, 0.2 mole) were added to 150 μm hexamethylphosphoramide (HMPA), followed by 110 ° C under nitrogen stream. After stirring for 4 days at the temperature of the reaction mixture, the reaction mixture is cooled, 1.5 L of water is added, extracted with toluene, dried over anhydrous MgSO 4 , and toluene is removed. Dihexylaminobenzaldehyde is synthesized by performing a chromatographic process using the resulting highly viscous liquid with ethyl acetate and hexane as the developing solvent (1: 4).

수율:56%Yield: 56%

(b) 4-디헥실아미노-4'-니트로스텔벤의 합성(b) Synthesis of 4-dihexylamino-4'-nitrostelbene

4-니트로페닐아세트산(7.24g,0.04몰)을 250ml의 3구 플라스크에 넣고 4g의 피페리딘을 천천히 적하시킨다. 피페리딘을 다적하시킨후에 (a)에서 합성된 디헥실아미노벤즈알데히드(11.56g,0.04몰)를 첨가하고, 반응 혼합물을 100℃에서 3시간동안 교반반응시킨후, 또 다시 130℃에서 3시간동안 교반반응시킨다음, 반응혼합물을 상온으로 냉각시키고 150ml의 에탄올을 가한다.4-nitrophenylacetic acid (7.24 g, 0.04 mol) is added to a 250 ml three-necked flask and 4 g of piperidine is slowly added dropwise. After dropping piperidine, dihexylaminobenzaldehyde (11.56 g, 0.04 mol) synthesized in (a) was added, and the reaction mixture was stirred at 100 ° C. for 3 hours, and then again at 130 ° C. for 3 hours. After stirring, the reaction mixture was cooled to room temperature and 150 ml of ethanol was added thereto.

에탄올을 가한후 방지하면 교체 생성물이 생성되는데 이를 여과하여 교체 생성물을 얻고 이를 에탄올을 이용하여 재결정하고 정제하여 4-디헥실아미노-4'-니트로스틸벤을 얻는다.Preventing the addition of ethanol yields a replacement product which is filtered to obtain a replacement product which is recrystallized and purified using ethanol to give 4-dihexylamino-4'-nitrostilbene.

수율:34%Yield: 34%

[실시예 2]Example 2

실시예 1에서 제조한 4-디헥실-4'-(니트로)스틸벤을 폴리이미드(PIQ 2200, 히다찌사제품)에 20wt%로 혼합시켜 미리 크롬이 증착된 실리콘 기판위에 주사한 후, 스핀코우팅하여 광도파로를 제조한다.4-dihexyl-4 '-(nitro) stilbene prepared in Example 1 was mixed with polyimide (PIQ 2200, manufactured by Hitachi, Inc.) at 20wt%, injected onto a silicon substrate previously deposited with chromium, and then spincoated To prepare an optical waveguide.

이때, 광도파로의 두께는 회전수로 조절하며, 두께는 회전수에 반비례한다. 제조된 광도파로를 120℃에서 5분동안 소성한 후, 200∼210℃에서 약 3시간 동안 이미드화(imidization)하면서 경화한다.At this time, the thickness of the optical waveguide is adjusted by the rotational speed, the thickness is inversely proportional to the rotational speed. The prepared optical waveguide is fired at 120 ° C. for 5 minutes and then cured while being imidized at 200 to 210 ° C. for about 3 hours.

[실시예 3]Example 3

실시예 2와 유사한 방법으로 실리콘 기판에 아래층의 전극을 형성하는 크롬을 열증착기로 증착하고, 클래딩(cladding)층은 일본 히다찌사의 PIQ 2200을 사용하여 스핀코우팅법으로 제작한다.In a manner similar to that of Example 2, chromium for forming an electrode of the lower layer is deposited on a silicon substrate by a thermal evaporator, and the cladding layer is manufactured by spin coating using PIQ 2200 manufactured by Hitachi, Japan.

클래딩층위의 코어(core)층은 PIQ 2200에 실시예 1에서 제조한 디에틸아미노 헥실설폰 스틸벤을 20wt% 혼합한 것을 스핀코우팅하여 제작한다. 제작한 박막형태의 코어층을 02-RIE(Reactive Ion Etching)를 이용하여 건식 식각하되 식각패턴을 포토리소그래피 공정에 의하여 식각한다. 제작된 도파로 위에 아래 클래딩층과 동일한 방법으로 PIQ 2200을 스핀코우팅하여 윗 클래딩층을 제작한 다음, 리프트-오프(lift-off)방법으로 전극을 크롬패턴화하여 광도파로형 광소자를 제조한다.The core layer on the cladding layer is prepared by spin coating a mixture of 20 wt% diethylamino hexylsulfone stilbene prepared in Example 1 on PIQ 2200. The thin film core layer is dry-etched using 02-RIE (Reactive Ion Etching), but the etching pattern is etched by a photolithography process. The upper cladding layer was fabricated by spin coating PIQ 2200 on the fabricated waveguide in the same manner as the lower cladding layer, and then chromium-patterned the electrode by a lift-off method to manufacture an optical waveguide optical device.

[실시예 4∼5][Examples 4 to 5]

4-(디헥실)-4'-(니트로)스틸벤을 PIQ 2200에 40wt%로 혼합한 것을 제외하고는 실시예 2 및 3과 동일하게 행하였다.The procedure was carried out in the same manner as in Examples 2 and 3 except that 4- (dihexyl) -4 '-(nitro) styrenebene was mixed in PIQ 2200 at 40 wt%.

[실시예 6∼9][Examples 6-9]

폴리이미드로서 미국의 아모코코포레이션사의 Ultradel 3112 또는 4212를 사용한 것을 제외하고는 실시예 2∼5와 동일하게 행하였다.It carried out similarly to Examples 2-5 except having used Ultradel 3112 or 4212 of Amico Corporation of USA as a polyimide.

실시예 1에서 제조된 비선형 광전자 화합물의 전기광학적 성질 및 실시예 3, 5, 7, 9에서 제조된 광도파로형 광소자의 광전송 손실율을 측정한 결과, 비선형 광전자 화합물을 폴리이미드에 첨가하는 혼합비(10∼40wt%)에 따라 달라짐을 알 수 있었고, 광전송 손실은 1∼2dB/cm를 나타내었으며, 250℃의 분해온도 및 400℃의 승화온도를 가지고 있었다.As a result of measuring the electro-optical properties of the nonlinear optoelectronic compound prepared in Example 1 and the optical transmission loss ratio of the optical waveguide optical devices prepared in Examples 3, 5, 7, and 9, the mixing ratio of adding the nonlinear optoelectronic compound to the polyimide (10 ~ 40wt%), the light transmission loss was 1 ~ 2dB / cm, and had a decomposition temperature of 250 ℃ and sublimation temperature of 400 ℃.

상기에서 전기광학적 성질 및 광전송 손실율 측정방법은 다음과 같다.The method of measuring the electro-optic properties and the light transmission loss rate is as follows.

전기 광학 계수는 단순 반사 방법 즉, 제1도에 도시한 방법으로 측정하였다. 레이저 빔은 글라스 기판의 뒤에서 θ의 각을 가지고 입사하며, 금속(Au 또는 Al) 전극에서 반사되어 나온다. 입사빔의 편광은 입사면에서 45°가 되도록하며 p파와 s파 크기가 같게 한다. p파와 s파 간의 위상 지연(phase retardation:Ψsp)은 SB 보상기에 의해 조절된다. 검출기에서 출력빔의 세기(output laser intensity)는 아래식으로 주어진다.The electro-optic coefficient was measured by the simple reflection method, that is, the method shown in FIG. The laser beam is incident at the back of the glass substrate at an angle of θ and is reflected from the metal (Au or Al) electrode. The polarization of the incident beam is 45 ° from the plane of incidence, and the magnitude of p and s waves is the same. The phase retardation (Ψsp) between the p and s waves is controlled by the SB compensator. The output laser intensity at the detector is given by

여기서, Ic는 반가폭(half maximum intensity)이다.Where I c is the half maximum intensity.

두 전극에 변조 전압 V=Vmsinωmt가 걸렸을 때, 전기 광학 효과에 의한 δn에 의해 위상 각의 변화 δΨ가 유도된다. 그리고 각 α의 변화에 의한 빔(p파와 s파)의 경로변화에 기인한 δs도 부가된다. 그러므로 전기광학계수 r33(∼3r31)은 아래식으로 주어진다.When the modulation voltage V = Vmsin? Mt is applied to the two electrodes, the change of phase angle? Is induced by? N due to the electro-optic effect. Further, δs due to the path change of the beam (p wave and s wave) due to the change of angle α is added. Therefore, the electrooptic coefficient r33 (˜3r31) is given by the following equation.

여기서, λ는 진공 중에서의 입사파장, n은 폴리머의 굴절율, Im은 변조된 세기의 진폭, Ic는 반가폭, Vm은 가해진 변조 전압의 진폭이다. 그리고 n=ne=no로 가정되었다.Is the incident wavelength in vacuum, n is the refractive index of the polymer, Im is the amplitude of the modulated intensity, I c is the half width, and Vm is the amplitude of the applied modulation voltage. And n = n e = n o .

또한, 광전송 손실은 제2도에 도시된 바와 같이 고굴절율 프리즘(GGG)을 사용하여 레이저 빔을 도파로 속으로 입사시켜 가이딩시킨 후 1.5cm만큼 광이 전송되었을 때와 3cm만큼 광이 전송되었을때, 고굴절율 프리즘을 사용하여 레이저 빔을 도파로 밖으로 출사시켜 광검지기로 출사된 빔의 세기를 각각 측정한 후 두 측정 결과의 차이를 가지고 단위 길이(cm)당 광의 전송 과정에서 일어나는 손실(dB/cm)을 확산하였다.Also, as shown in FIG. 2, the optical transmission loss is obtained by guiding a laser beam into a waveguide using a high refractive index prism (GGG) as shown in FIG. After measuring the intensity of the beam emitted by the photodetector by using a high refractive index prism to measure the intensity of the beam emitted by the photodetector, the difference in the transmission of light per unit length (cm) ) Spread.

Claims (1)

유기 광전자 화합물을 고분자 매질에 분산시켜 얻은 호스트-게스트(host-guest)계를 이용하는 광소자를 제조함에 있어서, 유기 광전자 화합물로는 하기 일반식(Ⅰ)의 화합물을 사용하고 고분자 매질로는 폴리아믹에시드를 사용함을 특징으로 하는 광도파로형 광소자의 제조방법.In preparing an optical device using a host-guest system obtained by dispersing an organic optoelectronic compound in a polymer medium, a compound of the following general formula (I) is used as the organic optoelectronic compound, and a polyamic acid is used as the polymer medium. Method for manufacturing an optical waveguide optical device, characterized in that using. 상기식에서, R1및 R2는 각각 C6∼C10의 알킬기이다.In the above formula, R 1 and R 2 are each an alkyl group of C 6 to C 10 .
KR1019940010421A 1994-05-12 1994-05-12 Method of preparing photoelements for wave guide KR0152211B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940010421A KR0152211B1 (en) 1994-05-12 1994-05-12 Method of preparing photoelements for wave guide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940010421A KR0152211B1 (en) 1994-05-12 1994-05-12 Method of preparing photoelements for wave guide

Publications (2)

Publication Number Publication Date
KR950032076A KR950032076A (en) 1995-12-20
KR0152211B1 true KR0152211B1 (en) 1998-10-15

Family

ID=19382964

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940010421A KR0152211B1 (en) 1994-05-12 1994-05-12 Method of preparing photoelements for wave guide

Country Status (1)

Country Link
KR (1) KR0152211B1 (en)

Also Published As

Publication number Publication date
KR950032076A (en) 1995-12-20

Similar Documents

Publication Publication Date Title
US5541039A (en) Method for forming optically active waveguides
US5061404A (en) Electro-optical materials and light modulator devices containing same
US5186865A (en) Electro-optical materials and light modulator devices containing same
US4936645A (en) Waveguide electrooptic light modulator with low optical loss
US4767169A (en) Thin film waveguide electrooptic modulator
US6091879A (en) Organic photochromic compositions and method for fabrication of polymer waveguides
US5076658A (en) Non-linear optical polymeric fiber waveguides
US4877298A (en) Thin film waveguide electrooptic modulator
US11927868B2 (en) Electro-optic polymer devices having high performance claddings, and methods of preparing the same
US5322986A (en) Methods for preparing polymer stripe waveguides and polymer stripe waveguides prepared thereby
US7346259B1 (en) Thermally reversibly crosslinkable polymer as cladding material for electro-optic devices
US5080764A (en) Novel polymeric nonlinear optical materials from anisotropic dipolar monomers
US5872882A (en) Non-linear optical polycarbonates
KR0152211B1 (en) Method of preparing photoelements for wave guide
EP0313477B1 (en) An optical article containing a linear polymer exhibiting a high level of second order polarization susceptibility
US20060106262A1 (en) Electrooptic chromophores with large optical birefringence for applications at high speed and short wavelengths
EP1359461A2 (en) Low loss electro-optic polymers and devices made therefrom
KR0152243B1 (en) Method of preparing photoelements for wave guide
JP2005227376A (en) Organic nonlinear optical material and nonlinear optical element using the same
KR0152210B1 (en) Method of preparing photo elements for wave guide
Zhai et al. Study on the thermal properties of doped PMMA systems
Amano et al. Diazo dye attached electro-optical polymer and its applications to waveguide devices and electro-optical sampling
US5112531A (en) Optoelectronic devices
KR0151906B1 (en) Carbazole with directional coupler
EP3613810A1 (en) Articles and compositions comprising host polymers and chromophores and methods of producing the same

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030530

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee