[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2020054695A1 - Optical filters and their uses - Google Patents

Optical filters and their uses Download PDF

Info

Publication number
JPWO2020054695A1
JPWO2020054695A1 JP2020546021A JP2020546021A JPWO2020054695A1 JP WO2020054695 A1 JPWO2020054695 A1 JP WO2020054695A1 JP 2020546021 A JP2020546021 A JP 2020546021A JP 2020546021 A JP2020546021 A JP 2020546021A JP WO2020054695 A1 JPWO2020054695 A1 JP WO2020054695A1
Authority
JP
Japan
Prior art keywords
optical filter
wavelength
group
transmittance
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020546021A
Other languages
Japanese (ja)
Other versions
JP7255600B2 (en
Inventor
寛之 岸田
寛之 岸田
勝也 長屋
勝也 長屋
達之 山本
達之 山本
敦記 長尾
敦記 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Publication of JPWO2020054695A1 publication Critical patent/JPWO2020054695A1/en
Application granted granted Critical
Publication of JP7255600B2 publication Critical patent/JP7255600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Multimedia (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Filters (AREA)
  • Blocking Light For Cameras (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本発明の課題は、近赤外線領域の入射角依存性が低いことと赤色の透過率特性に優れることを両立し、ゴーストを改善した光学フィルターを提供することにある。本発明の光学フィルターは、下記要件(A)〜(D)を満たすことを特徴とする:(A)波長430〜580nmの範囲において、垂直方向から測定した場合の透過率の平均値が75%以上;(B)波長800〜1000nmの範囲において、垂直方向から測定した場合の透過率の平均値が10%以下;(C)波長700〜750nmの範囲において、垂直方向から測定した場合の透過率の平均値が46%超;(D)波長560〜800nmの範囲において、垂直方向から測定した場合の透過率が50%となる最も短い波長の値(Ya)と、垂直方向に対して30°の角度から測定した場合の透過率が50%となる最も短い波長の値(Yb)との差の絶対値が15nm未満である。 An object of the present invention is to provide an optical filter having both low incident angle dependence in the near infrared region and excellent red transmittance characteristics and improved ghosting. The optical filter of the present invention is characterized by satisfying the following requirements (A) to (D): (A) In the wavelength range of 430 to 580 nm, the average value of the transmittance when measured from the vertical direction is 75%. (B) The average value of the transmittance when measured from the vertical direction in the wavelength range of 800 to 1000 nm is 10% or less; (C) The transmittance when measured from the vertical direction in the wavelength range of 700 to 750 nm. (D) The shortest wavelength value (Ya) at which the transmittance is 50% when measured from the vertical direction in the wavelength range of 560 to 800 nm, and 30 ° with respect to the vertical direction. The absolute value of the difference from the shortest wavelength value (Yb) at which the transmittance is 50% when measured from the angle of is less than 15 nm.

Description

本発明は、光学フィルターおよびその用途に関する。詳しくは、特定の光学特性を有する光学フィルター(例えば近赤外線カットフィルター)、ならびに該光学フィルターを用いた固体撮像装置およびカメラモジュールに関する。 The present invention relates to an optical filter and its use. More specifically, the present invention relates to an optical filter having specific optical characteristics (for example, a near-infrared cut filter), and a solid-state imaging device and a camera module using the optical filter.

ビデオカメラ、デジタルスチルカメラ、カメラ機能付き携帯電話などの固体撮像装置には、カラー画像の固体撮像素子であるCCDやCMOSイメージセンサーが使用されている。これら固体撮像素子は、その受光部において近赤外線に感度を有するセンサーを使用しているために、視感度補正を行うことが必要であり、光学フィルター(例えば近赤外線カットフィルター)を用いることが多い。 A CCD or CMOS image sensor, which is a solid-state image sensor for a color image, is used in a solid-state image sensor such as a video camera, a digital still camera, or a mobile phone with a camera function. Since these solid-state image sensors use a sensor that is sensitive to near-infrared rays in the light-receiving part, it is necessary to correct the luminosity factor, and an optical filter (for example, a near-infrared cut filter) is often used. ..

このような光学フィルターとしては、従来から、各種方法で製造されたものが使用されており、例えばノルボルネン系樹脂に誘電体多層膜を積層した、近赤外線反射膜を有する近赤外線カットフィルターが知られている(例えば特許文献1参照)。しかしながら、このような近赤外線反射膜を有する近赤外線カットフィルターでは、光線透過特性の入射角依存性が大きく、視野角が広い固体撮像装置では画像の中央と周辺部で色味が異なる不具合が発生していた。 As such an optical filter, those manufactured by various methods have been conventionally used. For example, a near-infrared cut filter having a near-infrared reflective film obtained by laminating a dielectric multilayer film on a norbornene-based resin is known. (See, for example, Patent Document 1). However, in a near-infrared cut filter having such a near-infrared reflecting film, the incident angle dependence of the light transmission characteristics is large, and in a solid-state imaging device having a wide viewing angle, there is a problem that the tint is different between the center and the peripheral part of the image. Was.

入射角依存性を改良した例として、近赤外線吸収剤を含有する近赤外線カットフィルター等の光学フィルターが広く知られている。具体的には、基材として樹脂を用い、樹脂中に急峻な吸収特性を有する近赤外線吸収剤を含有させることで、近赤外線領域の入射角依存性を改良した近赤外線カットフィルターが知られている(例えば、特許文献2参照)。 As an example of improving the incident angle dependence, an optical filter such as a near-infrared cut filter containing a near-infrared absorber is widely known. Specifically, a near-infrared cut filter is known in which a resin is used as a base material and a near-infrared absorber having a steep absorption characteristic is contained in the resin to improve the dependence on the incident angle in the near-infrared region. (See, for example, Patent Document 2).

近年、人間の視感度が高い波長400nm〜700nmだけでなく、近赤外線を検出し、植物の育成度合いや人間の酸素化ヘモグロビン量を測る画像センシングシステムが検討されている(例えば、特許文献3および4参照)。例えば特許文献3では、稲の葉の波長500nm〜800nmにおける反射率は窒素含有量に応じて変化することが知られており、可視光の反射強度と近赤外線光の反射強度から、植物の育成指標を求める方法が提案されている。 In recent years, an image sensing system that detects not only wavelengths of 400 nm to 700 nm, which have high human luminosity, but also near infrared rays, and measures the degree of plant growth and the amount of oxygenated hemoglobin in humans has been studied (for example, Patent Document 3 and 4). For example, in Patent Document 3, it is known that the reflectance of rice leaves at a wavelength of 500 nm to 800 nm changes depending on the nitrogen content, and the reflection intensity of visible light and the reflection intensity of near-infrared light are used to grow plants. A method for obtaining an index has been proposed.

また、例えば、波長355nmの紫外線レーザーを光源とし、波長690nmの蛍光強度(F690)と波長740nmの蛍光強度(F740)の比(F690/F740)は植物生体内でのクロロフィル濃度の指標として、植生診断できることが知られている(例えば、非特許文献1参照)。 Further, for example, using an ultraviolet laser having a wavelength of 355 nm as a light source, the ratio (F690 / F740) of the fluorescence intensity (F690) having a wavelength of 690 nm to the fluorescence intensity (F740) having a wavelength of 740 nm is a vegetation as an index of the chlorophyll concentration in the living body of a plant. It is known that it can be diagnosed (see, for example, Non-Patent Document 1).

しかしながら、このような波長400〜700nmの可視光と近赤外線とを組み合わせた画像センシングシステムにおいて、従来の近赤外線吸収剤を含有する近赤外線カットフィルター等の光学フィルターでは、検出に使用する波長700〜750nmの光線透過率が低く、十分な感度を保つことが困難であった。 However, in an image sensing system that combines visible light with a wavelength of 400 to 700 nm and near infrared rays, an optical filter such as a conventional near infrared ray absorber containing a conventional near infrared ray absorber has a wavelength of 700 to 700 to be used for detection. The light transmittance at 750 nm was low, and it was difficult to maintain sufficient sensitivity.

誘電体多層膜を積層した近赤外線反射膜を有する近赤外線カットフィルターでは、積層する誘電体多層膜の厚みを厚くすることで、反射帯域を長波長シフトさせることが知られている。そのため、波長700nm〜750nmの透過率が高い誘電体多層膜を設けることは容易であるが、このような近赤外線カットフィルターにおいては、高角度入射時の入射角依存性が大きく、画像化した際に中央と画像周辺において、センシングで得られる光の強度が入射角に応じて異なる問題があった。 In a near-infrared cut filter having a near-infrared reflective film in which a dielectric multilayer film is laminated, it is known that the reflection band is shifted by a long wavelength by increasing the thickness of the laminated dielectric multilayer film. Therefore, it is easy to provide a dielectric multilayer film having a high transmittance at a wavelength of 700 nm to 750 nm, but such a near-infrared cut filter has a large dependence on the incident angle at the time of high-angle incident, and when imaged. In addition, there is a problem that the intensity of light obtained by sensing differs depending on the angle of incidence in the center and the periphery of the image.

また、固体撮像素子の高性能化が進み、従来の光学フィルターでは、光学フィルターの反射によるゴーストにより画質を低下させる場合があった。特に波長680〜720nmの光線による光学フィルターの反射によって、一部の迷光がセンサーの別の位置に再入射することによるゴーストの発生が問題となっていた。それゆえ、波長680〜720nmの反射率を低くすることが求められている。
しかしながら、従来の光学フィルターは、上記ゴーストの抑制と赤色のセンサー感度向上とを両立する要求に対して十分に応えられていなかった。
Further, the performance of the solid-state image sensor has been improved, and in the conventional optical filter, the image quality may be deteriorated due to the ghost caused by the reflection of the optical filter. In particular, there has been a problem of ghost generation due to the reflection of an optical filter by light rays having a wavelength of 680 to 720 nm, which causes some stray light to re-enter at another position of the sensor. Therefore, it is required to reduce the reflectance at a wavelength of 680 to 720 nm.
However, the conventional optical filter has not sufficiently met the demand for both suppressing the ghost and improving the sensitivity of the red sensor.

特許第4513420号公報Japanese Patent No. 4513420 特開2012−8532号公報Japanese Unexamined Patent Publication No. 2012-8532 特開2016−146784号公報Japanese Unexamined Patent Publication No. 2016-146784 国際公開第2018/123676号パンフレットInternational Publication No. 2018/123766 Pamphlet

H.K.Lichtenthaler et al.: Detection of Vegetation Stress Via a New High Resolution Fluorescence Imaging System,」.Plant Physiol.,148,599−612(1996)H. K. Richtenthaler et al. : Detection of Vegetation Pressure Via a New High Resolution Fluorescence Imaging System, ". Plant Physiol. , 148,599-612 (1996)

本発明の目的は、近赤外線領域の入射角依存性が低いことと、センシングに必要な波長700〜750nmの光の透過率特性に優れることを両立するとともにゴーストが改善された光学フィルターおよび該光学フィルターを用いた装置を提供することにある。 An object of the present invention is an optical filter having both low incident angle dependence in the near-infrared region and excellent light transmittance characteristics of light having a wavelength of 700 to 750 nm required for sensing, and improved ghosting, and the optics thereof. The purpose is to provide an apparatus using a filter.

本発明の一態様に係る光学フィルターは、下記要件(A)〜(D)を満たすことを特徴とする。
(A)波長430〜580nmの範囲において、光学フィルターの面に対して垂直方向から測定した場合の透過率の平均値が75%以上である。
(B)波長800〜1000nmの範囲において、光学フィルターの面に対して垂直方向から測定した場合の透過率の平均値が10%以下である。
(C)波長700〜750nmの範囲において、光学フィルターの面に対して垂直方向から測定した場合の透過率の平均値が46%超である。
(D)波長560〜800nmの範囲において、光学フィルターの面に対して垂直方向から測定した場合の透過率が50%となる最も短い波長の値(Ya)と、光学フィルターの面に対して垂直方向から30°の角度から測定した場合の透過率が50%となる最も短い波長の値(Yb)との差の絶対値が15nm未満である。
The optical filter according to one aspect of the present invention is characterized in that it satisfies the following requirements (A) to (D).
(A) In the wavelength range of 430 to 580 nm, the average value of the transmittance measured from the direction perpendicular to the surface of the optical filter is 75% or more.
(B) In the wavelength range of 800 to 1000 nm, the average value of the transmittance measured from the direction perpendicular to the surface of the optical filter is 10% or less.
(C) In the wavelength range of 700 to 750 nm, the average value of the transmittance measured from the direction perpendicular to the surface of the optical filter is more than 46%.
(D) The shortest wavelength value (Ya) at which the transmittance is 50% when measured from the direction perpendicular to the surface of the optical filter in the wavelength range of 560 to 800 nm, and the value perpendicular to the surface of the optical filter. The absolute value of the difference from the shortest wavelength value (Yb) at which the transmittance is 50% when measured from an angle of 30 ° from the direction is less than 15 nm.

本発明によれば、近赤外線領域の入射角依存性が低いことと、センシングに必要な波長700〜750nmの光の透過率特性に優れることを両立するとともにゴーストが改善された光学フィルターおよび該光学フィルターを用いた装置を提供することができる。本発明の光学フィルターは近赤外線カットフィルターとして好適である。 According to the present invention, an optical filter having both low incident angle dependence in the near-infrared region and excellent light transmittance characteristics of light having a wavelength of 700 to 750 nm required for sensing and improved ghosting, and the optics thereof. An apparatus using a filter can be provided. The optical filter of the present invention is suitable as a near-infrared cut filter.

本発明の光学フィルターの一例を示す模式図である。It is a schematic diagram which shows an example of the optical filter of this invention. 本発明の光学フィルターの一例を示す模式図である。It is a schematic diagram which shows an example of the optical filter of this invention. 国立研究開発法人新エネルギー・産業技術総合開発機構が公開している、ある日時の岐阜の照射量データを最大値1.0で規格化した波長別強度のデータである。This is the wavelength-specific intensity data released by the National Research and Development Corporation New Energy and Industrial Technology Development Organization, which standardizes the irradiation dose data of Gifu at a certain date and time with a maximum value of 1.0. 緑、近赤外線の各センサー画素の波長別感度の一例である。This is an example of the wavelength-specific sensitivity of each of the green and near-infrared sensor pixels. 緑の感度および近赤外線の感度評価用に作成した緑と近赤外線を透過する二波長領域透過フィルターの光学特性を示す図である。It is a figure which shows the optical characteristic of the bi-wavelength region transmission filter which transmits green and near-infrared rays which were made for the sensitivity evaluation of green and the sensitivity of near-infrared rays. 光学フィルターの面に対して垂直方向から測定した場合の透過率を測定する方法の例を示す概略図である。It is the schematic which shows the example of the method of measuring the transmittance when measured from the direction perpendicular to the surface of an optical filter. 光学フィルターの面に対して垂直方向から30°の角度で測定した場合の透過率を測定する方法の例を示す概略図である。It is the schematic which shows the example of the method of measuring the transmittance when it measured at the angle of 30 ° from the direction perpendicular to the surface of an optical filter. 光学フィルターの面に対して垂直方向から5°の角度で入射した光の反射率を測定する方法の例を示す概略図である。It is the schematic which shows the example of the method of measuring the reflectance of the light incident on the plane of an optical filter at an angle of 5 ° from the vertical direction. カメラモジュールの一例を示す概略図である。It is the schematic which shows an example of a camera module. カメラモジュールにおけるゴースト発生メカニズムの一例を示す概略図である。It is the schematic which shows an example of the ghost generation mechanism in a camera module. ゴーストの一例を示す模式図である。It is a schematic diagram which shows an example of a ghost. 実施例1で得られた光学フィルターの光学特性を示す図である。It is a figure which shows the optical characteristic of the optical filter obtained in Example 1. FIG. 実施例5で得られた光学フィルターの光学特性を示す図である。It is a figure which shows the optical characteristic of the optical filter obtained in Example 5. 比較例1で得られた光学フィルターの光学特性を示す図である。It is a figure which shows the optical characteristic of the optical filter obtained in the comparative example 1. FIG. 比較例4で得られた光学フィルターの光学特性を示す図である。It is a figure which shows the optical characteristic of the optical filter obtained in the comparative example 4. FIG. 比較例7で得られた光学フィルターの光学特性を示す図である。It is a figure which shows the optical characteristic of the optical filter obtained in the comparative example 7.

本発明の実施の形態について、必要に応じて図面に基づいて説明するが、それらの図面は単に図解のために提供されるものであり、本発明はそれらの図面に何ら限定されない。また、図面は模式的なものであり、厚みと平面寸法との関係、厚みの比率等は実際のものとは異なることに留意されたい。さらに、以下の説明において、同一もしくは略同一の機能および構成を有する構成用途については、同一符号を付し、重複する説明は省略する。本発明の光学フィルターの一実施形態として、図1に示すように、基材10および近赤外線反射膜21、22を有する態様が挙げられる。また、本発明の光学フィルターは、図2に示すように、その他の機能膜13を有してもよい。 Embodiments of the present invention will be described with reference to the drawings as needed, but those drawings are provided solely for illustration purposes and the present invention is not limited to those drawings. Also, please note that the drawings are schematic, and the relationship between the thickness and the plane dimensions, the ratio of the thickness, etc. are different from the actual ones. Further, in the following description, the same reference numerals will be given to the configuration applications having the same or substantially the same function and configuration, and duplicate description will be omitted. As an embodiment of the optical filter of the present invention, as shown in FIG. 1, an embodiment having a base material 10 and near-infrared reflective films 21 and 22 can be mentioned. Further, as shown in FIG. 2, the optical filter of the present invention may have another functional film 13.

[光学フィルター]
本発明の光学フィルターは、下記要件(A)〜(D)を満たす。
(A)波長430〜580nmの範囲において、光学フィルターの面に対して垂直方向から測定した場合の透過率の平均値が75%以上である。
(B)波長800〜1000nmの範囲において、光学フィルターの面に対して垂直方向から測定した場合の透過率の平均値が10%以下である。
(C)波長700〜750nmの範囲において、光学フィルターの面に対して垂直方向から測定した場合の透過率の平均値が46%超である。
(D)波長560〜800nmの範囲において、光学フィルターの面に対して垂直方向から測定した場合の透過率が50%となる最も短い波長の値(Ya)と、光学フィルターの面に対して垂直方向から30°の角度から測定した場合の透過率が50%となる最も短い波長の値(Yb)との差の絶対値が15nm未満である。
[Optical filter]
The optical filter of the present invention satisfies the following requirements (A) to (D).
(A) In the wavelength range of 430 to 580 nm, the average value of the transmittance measured from the direction perpendicular to the surface of the optical filter is 75% or more.
(B) In the wavelength range of 800 to 1000 nm, the average value of the transmittance measured from the direction perpendicular to the surface of the optical filter is 10% or less.
(C) In the wavelength range of 700 to 750 nm, the average value of the transmittance measured from the direction perpendicular to the surface of the optical filter is more than 46%.
(D) The shortest wavelength value (Ya) at which the transmittance is 50% when measured from the direction perpendicular to the surface of the optical filter in the wavelength range of 560 to 800 nm, and the value perpendicular to the surface of the optical filter. The absolute value of the difference from the shortest wavelength value (Yb) at which the transmittance is 50% when measured from an angle of 30 ° from the direction is less than 15 nm.

要件(A)を満たす光学フィルターを使用することで、波長430nm〜580nmの範囲において固体撮像素子が取り込む光の量を多くできる。要件(A)における透過率の平均値は、好ましくは80%以上である。80%以上であれば、より暗い環境においても撮像が可能となる。 By using an optical filter that satisfies the requirement (A), the amount of light taken in by the solid-state image sensor can be increased in the wavelength range of 430 nm to 580 nm. The average value of the transmittance in the requirement (A) is preferably 80% or more. If it is 80% or more, imaging is possible even in a darker environment.

要件(B)を満たす光学フィルターを使用することで、波長800nm〜1000nmの範囲において固体撮像素子が取り込む光の量を少なくできる。これにより人間の目に見えず、かつセンシングに不要な光を遮蔽することができる。要件(B)における透過率の平均値は、好ましくは7%以下、より好ましくは6%以下、さらに好ましくは5%以下である。 By using an optical filter that satisfies the requirement (B), the amount of light taken in by the solid-state image sensor in the wavelength range of 800 nm to 1000 nm can be reduced. This makes it possible to block light that is invisible to the human eye and is unnecessary for sensing. The average value of the transmittance in the requirement (B) is preferably 7% or less, more preferably 6% or less, still more preferably 5% or less.

要件(C)を満たす光学フィルターを使用することで、波長700nm〜750nmの範囲において固体撮像素子が取り込む光の量が確保され、センシング感度が良くなる。要件(C)における透過率の平均値は、好ましくは55%以上、より好ましくは65%以上、さらに好ましくは75%以上である。前記透過率は高ければ高いほど良いが、例えば上限は好ましくは100%、より好ましくは90%、さらに好ましくは80%である。前記範囲であれば、固体撮像素子が取り込む光の量が調整され、センシングに必要な光を効率よく透過することができる。 By using an optical filter that satisfies the requirement (C), the amount of light taken in by the solid-state image sensor is secured in the wavelength range of 700 nm to 750 nm, and the sensing sensitivity is improved. The average value of the transmittance in the requirement (C) is preferably 55% or more, more preferably 65% or more, still more preferably 75% or more. The higher the transmittance, the better, but for example, the upper limit is preferably 100%, more preferably 90%, and even more preferably 80%. Within the above range, the amount of light taken in by the solid-state image sensor is adjusted, and the light required for sensing can be efficiently transmitted.

要件(D)を満たす光学フィルターを使用することで、波長560nm〜800nmの範囲において、固体撮像素子に入射される光の量の入射角依存性を低くできる。その結果、この波長の範囲における固体撮像素子の分光感度の入射角依存性を小さくできる。入射角依存性が小さくなることで、固体撮像素子で得られる画像の中央と周辺の色味や、センサー感度の差が少なく、より高感度となる。 By using an optical filter that satisfies the requirement (D), the incident angle dependence of the amount of light incident on the solid-state image sensor can be reduced in the wavelength range of 560 nm to 800 nm. As a result, the incident angle dependence of the spectral sensitivity of the solid-state image sensor in this wavelength range can be reduced. By reducing the incident angle dependence, the difference in color tone between the center and the periphery of the image obtained by the solid-state image sensor and the sensor sensitivity is small, and the sensitivity becomes higher.

本発明の光学フィルターは、さらに下記要件(E)を満たすことが好ましい。
(E)前記要件(D)における波長の値(Ya)が730nm以上800nm以下である。
The optical filter of the present invention preferably further satisfies the following requirement (E).
(E) The wavelength value (Ya) in the requirement (D) is 730 nm or more and 800 nm or less.

要件(E)を満たす光学フィルターを使用することで、波長400〜700nmの可視光透過率とセンシングに用いる波長700〜750nmの近赤外線の透過率とを高く保つことと、センシングに不要な波長800〜1200nmの低い透過率(高い遮蔽性)とを両立することが容易となる。前記波長(Ya)は、好ましくは740nm以上800nm以下であり、さらに好ましくは745nm以上800nm以下である。 By using an optical filter that meets the requirement (E), the visible light transmittance at a wavelength of 400 to 700 nm and the near infrared transmittance at a wavelength of 700 to 750 nm used for sensing can be kept high, and the wavelength 800 unnecessary for sensing can be maintained. It becomes easy to achieve both a low transmittance (high shielding property) of about 1200 nm. The wavelength (Ya) is preferably 740 nm or more and 800 nm or less, and more preferably 745 nm or more and 800 nm or less.

本発明の光学フィルターは、さらに下記要件(Z1)および(Z2)を満たすことが好ましい。
(Z1)波長700nmにおいて、光学フィルターの面に対して垂直方向から5°の角度から測定した場合の反射率が、光学フィルターのどちらの面から入射した場合においても10%以下である。
(Z2)波長600nm以上の範囲において、光学フィルターの面に対して垂直方向から5°の角度から測定した場合の反射率が50%となる最も短い波長の値(Za)が、光学フィルターのどちらの面から入射した場合においても730nm以上である。
要件(Z1)および(Z2)を満たす光学フィルターを使用することで、光学フィルターで反射された光を原因とするゴーストの発生を抑制することができる。
It is preferable that the optical filter of the present invention further satisfies the following requirements (Z1) and (Z2).
(Z1) At a wavelength of 700 nm, the reflectance when measured from an angle of 5 ° from the direction perpendicular to the surface of the optical filter is 10% or less when incident from either surface of the optical filter.
(Z2) Which of the optical filters has the shortest wavelength value (Za) at which the reflectance is 50% when measured from an angle of 5 ° from the direction perpendicular to the surface of the optical filter in the wavelength range of 600 nm or more. It is 730 nm or more even when it is incident from the surface of.
By using an optical filter that satisfies the requirements (Z1) and (Z2), it is possible to suppress the generation of ghosts caused by the light reflected by the optical filter.

誘電体多層膜からなる近赤外線反射膜は、光学フィルターの面からより高角度に斜入射になるにつれ反射帯域が短波長に移動する傾向にある。そのため、前記要件(Z2)における波長(Za)は、より好ましくは740nm以上、さらに好ましくは750nm以上、特に好ましくは780nm以上である。これにより、人間の目で確認される光において、光学フィルターの面に対して高角度に入射した光にでもゴーストが発生することを十分に抑制することができる。
本発明の光学フィルターは、近赤外線吸収剤を含有する基材と近赤外線反射膜を有することが好ましい。
The near-infrared reflective film made of a dielectric multilayer film tends to move its reflection band to a shorter wavelength as it is obliquely incident at a higher angle from the surface of the optical filter. Therefore, the wavelength (Za) in the requirement (Z2) is more preferably 740 nm or more, further preferably 750 nm or more, and particularly preferably 780 nm or more. As a result, it is possible to sufficiently suppress the generation of ghosts even in the light incident on the surface of the optical filter at a high angle in the light confirmed by the human eye.
The optical filter of the present invention preferably has a base material containing a near-infrared absorber and a near-infrared reflective film.

近赤外線吸収剤を含有する基材を有する光学フィルターは、光学フィルターの近赤外線の反射を抑制することができ、ゴーストを低減することができる。近赤外線反射膜を有する光学フィルターは、近赤外線遮蔽性能に優れ、かつ波長430〜580nmの範囲の可視光線の透過性能に優れ、得られる固体撮像装置を高感度にすることができる。 An optical filter having a base material containing a near-infrared absorber can suppress the reflection of near-infrared rays of the optical filter and can reduce ghosts. An optical filter having a near-infrared reflective film has excellent near-infrared shielding performance and excellent transmission performance of visible light in the wavelength range of 430 to 580 nm, and can make the obtained solid-state image sensor highly sensitive.

前記近赤外線吸収剤は波長751〜950nmの範囲に吸収極大波長を有すること、および、該吸収極大波長における前記基材の透過率が10%となる量で前記近赤外線吸収剤を含有させた場合、波長430nm以上かつ該吸収極大波長以下の範囲において前記基材の透過率が70%となる最も長い波長(Aa)と、波長580nm以上の範囲において前記基材の透過率が30%となる最も短い波長(Ab)との差の絶対値が150nm未満であることが好ましい。 When the near-infrared absorber has an absorption maximum wavelength in the wavelength range of 751 to 950 nm and the near-infrared absorber is contained in an amount such that the transmittance of the base material at the absorption maximum wavelength is 10%. The longest wavelength (Aa) at which the transmittance of the base material is 70% in the wavelength range of 430 nm or more and the absorption maximum wavelength or less, and the longest wavelength (Aa) at which the transmittance of the base material is 30% in the wavelength range of 580 nm or more. The absolute value of the difference from the short wavelength (Ab) is preferably less than 150 nm.

前記(Aa)と前記(Ab)との差の絶対値が150nm未満となる近赤外線吸収剤を含む基材を有する光学フィルターを使用することで、波長700〜750nmの近赤外線の透過率を高く保つことと、センシングに不要な波長800〜1200nmの低い透過率(高い遮蔽性)とを両立することが容易となる。前記差の絶対値は少なければ少ない程よく、より好ましくは100nm未満、さらに好ましくは70nm未満である。下限は1nmである。 By using an optical filter having a base material containing a near-infrared absorber in which the absolute value of the difference between (Aa) and (Ab) is less than 150 nm, the transmittance of near-infrared rays having a wavelength of 700 to 750 nm is increased. It becomes easy to achieve both the maintenance and the low transmittance (high shielding property) having a wavelength of 800 to 1200 nm, which is unnecessary for sensing. The smaller the absolute value of the difference, the better, more preferably less than 100 nm, still more preferably less than 70 nm. The lower limit is 1 nm.

前記近赤外線吸収剤の好ましい範囲の特性である、波長751〜950nmに吸収極大波長を有すること、および、前記(Aa)と前記(Ab)との差の絶対値が150nm未満であることは、吸収剤1種の特性が満たしてもよく、複数種を混合した特性でもよい。また、複数種を混合した近赤外線吸収剤には、単独では特性を満たさないものを含んでもよい。 It is a characteristic of the near-infrared absorber in a preferable range that it has an absorption maximum wavelength at a wavelength of 751 to 950 nm and that the absolute value of the difference between the (Aa) and the (Ab) is less than 150 nm. The characteristics of one type of absorbent may be satisfied, or the characteristics of a mixture of a plurality of types may be used. Further, the near-infrared absorber in which a plurality of types are mixed may include one that does not satisfy the characteristics by itself.

[基材]
前記基材は透明性を有しているものが好ましい。本発明でいう透明性とは、波長420〜600nmの範囲の透過率の平均値が50%以上であることを表す。このような基材の材質として、例えば、ガラス、強化ガラスや、リン酸ガラス、フツリン酸ガラス、アルミナガラス、アルミン酸イットリウム、酸化イットリウムなどの特殊ガラス、および樹脂が挙げられる。
[Base material]
The base material preferably has transparency. Transparency as used in the present invention means that the average value of the transmittance in the wavelength range of 420 to 600 nm is 50% or more. Examples of the material of such a base material include glass, tempered glass, special glass such as phosphoric acid glass, fluorinated glass, alumina glass, yttrium aluminate, and yttrium oxide, and resin.

また、基材は、1層でも複数層から構成されてもよく、上記材料から選ばれる1種の材質から構成されても、複数種から構成されてもよく、適宜混合した材料でもよい。基材を構成する層のうち少なくとも1層は、近赤外線吸収剤を含有するものが好ましく、また近紫外線吸収剤を含有してもよい。近赤外線吸収剤が含まれる層と、近紫外線吸収剤が含まれる層とは、同一の層であってもよく、異なる層であってもよい。 Further, the base material may be composed of one layer or a plurality of layers, may be composed of one kind of material selected from the above materials, may be composed of a plurality of kinds, or may be an appropriately mixed material. At least one layer constituting the base material preferably contains a near-infrared absorber, and may also contain a near-ultraviolet absorber. The layer containing the near-infrared absorber and the layer containing the near-ultraviolet absorber may be the same layer or different layers.

<ガラス>
前記ガラスとしては、例えば、ケイ酸ガラス、ソーダ石灰ガラス、ホウケイ酸ガラス、石英ガラスなどが挙げられる。
<Glass>
Examples of the glass include silicate glass, soda-lime glass, borosilicate glass, quartz glass and the like.

<強化ガラス>
前記強化ガラスとしては、例えば、物理強化ガラス、強化合わせガラス、化学強化ガラスなどが挙げられる。これらの中では、圧縮層の厚みが薄く、基材厚みを薄く加工することができる化学強化ガラスが好ましい。化学強化ガラスの具体例としては、旭硝子社製「Dragontrail」、Corning社「Gorilla Glass」などが挙げられる。
<Tempered glass>
Examples of the tempered glass include physically tempered glass, tempered laminated glass, and chemically tempered glass. Among these, chemically strengthened glass having a thin compression layer and being able to process a thin base material is preferable. Specific examples of the chemically strengthened glass include "Dragonrail" manufactured by Asahi Glass Co., Ltd. and "Gorilla Glass" manufactured by Corning Inc.

<特殊ガラス>
前記リン酸ガラスや前記フツリン酸ガラスとしては、例えば、松浪硝子工業社製のBS3、BS4、BS6、BS7、BS8、BS10、BS11、BS12、BS13、BS16、BS17等、国際公開第2012/018026号に記載のフツリン酸塩系ガラスなどが挙げられる。前記アルミナガラスとしては、例えば日本ガイシ社製「ハイセラム」などが挙げられる。前記アルミン酸イットリウムや前記酸化イットリウムとしては、例えば、クアーズテック社製「EXYRIA(登録商標)」などが挙げられる。
<Special glass>
Examples of the phosphoric acid glass and the futuric acid glass include BS3, BS4, BS6, BS7, BS8, BS10, BS11, BS12, BS13, BS16, BS17, etc. manufactured by Matsunami Glass Ind. Examples thereof include the fluorinated glass described in 1. Examples of the alumina glass include "High Serum" manufactured by NGK Insulators, Ltd. Examples of the yttrium aluminate and the yttrium oxide include "EXYRIA (registered trademark)" manufactured by CoorsTek.

<樹脂>
前記樹脂としては、例えば、ポリエステル系樹脂、ポリエーテル系樹脂、アクリル系樹脂、ポリオレフィン系樹脂、ポリシクロオレフィン系樹脂、ノルボルネン系樹脂、ポリカーボネート系樹脂、エン・チオール系樹脂、エポキシ系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリウレタン系樹脂、ポリスチレン系樹脂などが挙げられる。これらの中では、ノルボルネン系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂が好ましい。
<Resin>
Examples of the resin include polyester-based resin, polyether-based resin, acrylic-based resin, polyolefin-based resin, polycycloolefin-based resin, norbornene-based resin, polycarbonate-based resin, en-thiol-based resin, epoxy-based resin, and polyamide-based resin. Examples thereof include resins, polyimide resins, polyurethane resins, and polystyrene resins. Among these, norbornene-based resin, polyimide-based resin, and polyether-based resin are preferable.

前記樹脂は、原料成分の分子構造を調整する方法等により、屈折率を調整できる。具体的には、原料成分のポリマーの主鎖や側鎖に特定の構造を付与する方法が挙げられる。ポリマー内に付与する構造は特に限定されないが、例えば、ノルボルネン骨格、フルオレン骨格が挙げられる。 The refractive index of the resin can be adjusted by a method of adjusting the molecular structure of the raw material component or the like. Specifically, a method of imparting a specific structure to the main chain or side chain of the polymer as a raw material component can be mentioned. The structure imparted into the polymer is not particularly limited, and examples thereof include a norbornene skeleton and a fluorene skeleton.

前記樹脂として、市販品を用いてもよい。市販品としては、大阪ガスケミカル(株)製「オグソール(登録商標)EA−F5003」(アクリル系樹脂、屈折率:1.60)、東京化成工業(株)製「ポリメチルメタクリレート」(屈折率:1 .49)、東京化成工業(株)製「ポリイソブチルメタクリレート」(屈折率:1.48)、三菱レイヨン(株)製「BR50」(屈折率:1.56)等が挙げられる。 A commercially available product may be used as the resin. Commercially available products include "Ogsol (registered trademark) EA-F5003" (acrylic resin, refractive index: 1.60) manufactured by Osaka Gas Chemical Co., Ltd. and "Polymethylmethacrylate" (refractive index) manufactured by Tokyo Kasei Kogyo Co., Ltd. 1.49), "Polyisobutylmethacrylate" (refractive index: 1.48) manufactured by Tokyo Kasei Kogyo Co., Ltd., "BR50" (refractive index: 1.56) manufactured by Mitsubishi Rayon Co., Ltd., and the like.

また、ポリエステル系樹脂の市販品としては、例えば、大阪ガスケミカル(株)製「OKP4HT」(屈折率:1.64)、「OKP4」(屈折率:1.61)、「B−OKP2」(屈折率:1.64) 、「OKP−850」(屈折率:1.65)、東洋紡(株)製「バイロン(登録商標)103」(屈折率:1.55)などが挙げられ、ポリカーボネート系樹脂の市販品としては、例えば、sabic社製「LeXan(登録商標)ML9103」(屈折率:1.59)、「xylex(登録商標)7507」、三菱ガス化学(株)製「EP5000」(屈折率:1.63) 、帝人化成(株)製「SP3810」(屈折率:1.63)、「SP1516」(屈折率:1.60) 、「TS2020」(屈折率:1.59)などが挙げられ、ノルボルネン系樹脂の市販品としては、例えば、JSR(株)製「ARTON(登録商標)(屈折率:1.51)、日本ゼオン(株)製「ZEONEX(登録商標)(屈折率:1.53)などが挙げられる。 Examples of commercially available polyester-based resins include "OKP4HT" (refraction rate: 1.64), "OKP4" (refraction rate: 1.61), and "B-OKP2" manufactured by Osaka Gas Chemical Co., Ltd. (refraction rate: 1.64). Refraction rate: 1.64), "OKP-850" (refraction rate: 1.65), "Byron (registered trademark) 103" manufactured by Toyo Boseki Co., Ltd. (refraction rate: 1.55), etc. are polycarbonate-based. Examples of commercially available resin products include "LeXan (registered trademark) ML9103" (refractive index: 1.59) manufactured by polycarbonate, "xylex (registered trademark) 7507", and "EP5000" (refraction) manufactured by Mitsubishi Gas Chemicals Co., Ltd. Rate: 1.63), "SP3810" (refraction rate: 1.63), "SP1516" (refraction rate: 1.60), "TS2020" (refraction rate: 1.59), etc. manufactured by Teijin Kasei Co., Ltd. Examples of commercially available products of the norbornene-based resin include "ARTON (registered trademark) (refraction rate: 1.51) manufactured by JSR Co., Ltd. and" ZEONEX (registered trademark) (refraction rate:: 1.51) manufactured by Nippon Zeon Co., Ltd. 1.53) and the like.

ポリエーテル系樹脂は、主鎖にエーテル結合を形成する反応により得られる重合体であり、下記式(1)および(2)で表される構造単位からなる群より選ばれる少なくとも一つの構造単位を有する重合体であることが好ましい。また、下記式(3)で表される構造単位を有してもよい。 The polyether resin is a polymer obtained by a reaction of forming an ether bond in the main chain, and contains at least one structural unit selected from the group consisting of the structural units represented by the following formulas (1) and (2). It is preferably a polymer having. Further, it may have a structural unit represented by the following formula (3).

Figure 2020054695
Figure 2020054695

Figure 2020054695
Figure 2020054695

Figure 2020054695
前記式(1)中、R1〜R4は、それぞれ独立に炭素数1〜12の1価の有機基を示す。a〜dは、それぞれ独立に0〜4の整数を示し、好ましくは0または1であり、より好ましくは0である。
Figure 2020054695
In the formula (1), R 1 to R 4 independently represent monovalent organic groups having 1 to 12 carbon atoms. Each of a to d independently represents an integer of 0 to 4, preferably 0 or 1, and more preferably 0.

炭素数1〜12の1価の有機基としては、炭素数1〜12の1価の炭化水素基、ならびに、酸素原子および窒素原子からなる群より選ばれる少なくとも1種の原子を含む炭素数1〜12の1価の有機基等が挙げられる。 The monovalent organic group having 1 to 12 carbon atoms includes a monovalent hydrocarbon group having 1 to 12 carbon atoms and at least one atom selected from the group consisting of an oxygen atom and a nitrogen atom. Examples thereof include monovalent organic groups of ~ 12.

炭素数1〜12の1価の炭化水素基としては、炭素数1〜12の直鎖または分岐鎖の炭化水素基、炭素数3〜12の脂環式炭化水素基および炭素数6〜12の芳香族炭化水素基等が挙げられる。 The monovalent hydrocarbon groups having 1 to 12 carbon atoms include linear or branched hydrocarbon groups having 1 to 12 carbon atoms, alicyclic hydrocarbon groups having 3 to 12 carbon atoms, and 6 to 12 carbon atoms. Examples include aromatic hydrocarbon groups.

前記炭素数1〜12の直鎖または分岐鎖の炭化水素基としては、炭素数1〜8の直鎖または分岐鎖の炭化水素基が好ましく、炭素数1〜5の直鎖または分岐鎖の炭化水素基がより好ましい。 As the linear or branched hydrocarbon group having 1 to 12 carbon atoms, a linear or branched hydrocarbon group having 1 to 8 carbon atoms is preferable, and a linear or branched hydrocarbon group having 1 to 5 carbon atoms is used. Hydrogen groups are more preferred.

前記直鎖または分岐鎖の炭化水素基の好適な具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基およびn−ヘプチル基等が挙げられる。 Preferable specific examples of the linear or branched hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group and an n-pentyl group. Groups, n-hexyl groups, n-heptyl groups and the like can be mentioned.

前記炭素数3〜12の脂環式炭化水素基としては、炭素数3〜8の脂環式炭化水素基が好ましく、炭素数3または4の脂環式炭化水素基がより好ましい。
炭素数3〜12の脂環式炭化水素基の好適な具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基およびシクロへキシル基等のシクロアルキル基;シクロブテニル基、シクロペンテニル基およびシクロヘキセニル基等のシクロアルケニル基が挙げられる。当該脂環式炭化水素基の結合部位は、脂環上のいずれの炭素でもよい。
As the alicyclic hydrocarbon group having 3 to 12 carbon atoms, an alicyclic hydrocarbon group having 3 to 8 carbon atoms is preferable, and an alicyclic hydrocarbon group having 3 or 4 carbon atoms is more preferable.
Preferable specific examples of the alicyclic hydrocarbon group having 3 to 12 carbon atoms are cycloalkyl groups such as cyclopropyl group, cyclobutyl group, cyclopentyl group and cyclohexyl group; cyclobutenyl group, cyclopentenyl group and cyclohexenyl group. Cycloalkenyl groups such as. The binding site of the alicyclic hydrocarbon group may be any carbon on the alicyclic.

前記炭素数6〜12の芳香族炭化水素基としては、フェニル基、ビフェニル基およびナフチル基等が挙げられる。当該芳香族炭化水素基の結合部位は、芳香族環上のいずれの炭素でもよい。 Examples of the aromatic hydrocarbon group having 6 to 12 carbon atoms include a phenyl group, a biphenyl group and a naphthyl group. The binding site of the aromatic hydrocarbon group may be any carbon on the aromatic ring.

酸素原子を含む炭素数1〜12の有機基としては、水素原子、炭素原子および酸素原子からなる有機基が挙げられ、中でも、エーテル結合、カルボニル基またはエステル結合と炭化水素基とからなる総炭素数1〜12の有機基等を好ましく挙げることができる。 Examples of the organic group having 1 to 12 carbon atoms including an oxygen atom include an organic group composed of a hydrogen atom, a carbon atom and an oxygen atom, and among them, a total carbon composed of an ether bond, a carbonyl group or an ester bond and a hydrocarbon group. The organic groups of numbers 1 to 12 can be preferably mentioned.

エーテル結合を有する総炭素数1〜12の有機基としては、炭素数1〜12のアルコキシ基、炭素数2〜12のアルケニルオキシ基、炭素数2〜12のアルキニルオキシ基、炭素数6〜12のアリールオキシ基および炭素数1〜12のアルコキシアルキル基等が挙げられ、具体的には、メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、ブトキシ基、フェノキシ基、プロペニルオキシ基、シクロヘキシルオキシ基およびメトキシメチル基等が挙げられる。 Examples of the organic group having a total carbon number of 1 to 12 having an ether bond include an alkoxy group having 1 to 12 carbon atoms, an alkenyloxy group having 2 to 12 carbon atoms, an alkynyloxy group having 2 to 12 carbon atoms, and 6 to 12 carbon atoms. Examples thereof include an aryloxy group and an alkoxyalkyl group having 1 to 12 carbon atoms. Specific examples thereof include a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a butoxy group, a phenoxy group, a propenyloxy group and a cyclohexyloxy group. And methoxymethyl group and the like.

カルボニル基を有する総炭素数1〜12の有機基としては、炭素数2〜12のアシル基等が挙げられ、具体的には、アセチル基、プロピオニル基、イソプロピオニル基およびベンゾイル基等が挙げられる。 Examples of the organic group having a total carbon number of 1 to 12 having a carbonyl group include an acyl group having 2 to 12 carbon atoms, and specific examples thereof include an acetyl group, a propionyl group, an isopropionyl group and a benzoyl group. ..

エステル結合を有する総炭素数1〜12の有機基としては、炭素数2〜12のアシルオキシ基等が挙げられ、具体的には、アセチルオキシ基、プロピオニルオキシ基、イソプロピオニルオキシ基およびベンゾイルオキシ基等が挙げられる。 Examples of the organic group having a total carbon number of 1 to 12 having an ester bond include an acyloxy group having 2 to 12 carbon atoms, and specifically, an acetyloxy group, a propionyloxy group, an isopropionyloxy group and a benzoyloxy group. And so on.

窒素原子を含む炭素数1〜12の有機基としては、水素原子、炭素原子および窒素原子からなる有機基が挙げられ、具体的には、シアノ基、イミダゾール基、トリアゾール基、ベンズイミダゾール基およびベンズトリアゾール基等が挙げられる。 Examples of the organic group having 1 to 12 carbon atoms including a nitrogen atom include an organic group consisting of a hydrogen atom, a carbon atom and a nitrogen atom, and specifically, a cyano group, an imidazole group, a triazole group, a benzimidazole group and benz. Examples thereof include a triazole group.

酸素原子および窒素原子を含む炭素数1〜12の有機基としては、水素原子、炭素原子、酸素原子、および、窒素原子からなる有機基が挙げられ、具体的には、オキサゾール基、オキサジアゾール基、ベンズオキサゾール基およびベンズオキサジアゾール基等が挙げられる。 Examples of the organic group having 1 to 12 carbon atoms including an oxygen atom and a nitrogen atom include an organic group consisting of a hydrogen atom, a carbon atom, an oxygen atom, and a nitrogen atom, and specifically, an oxadiazole group and an oxadiazole. Groups, benzoxazole groups, benzoxadiazole groups and the like can be mentioned.

前記式(1)におけるR1〜R4としては、樹脂(1)の吸水(湿)性の点から炭素数1〜12の1価の炭化水素基が好ましく、炭素数6〜12の芳香族炭化水素基がより好ましく、フェニル基がさらに好ましい。 As R 1 to R 4 in the formula (1), a monovalent hydrocarbon group having 1 to 12 carbon atoms is preferable from the viewpoint of water absorption (wetness) of the resin (1), and an aromatic group having 6 to 12 carbon atoms is preferable. Hydrocarbon groups are more preferred, and phenyl groups are even more preferred.

前記式(2)中、R1〜R4およびa〜dは、それぞれ独立に前記式(1)中のR1〜R4およびa〜dと同義であり、Yは、単結合、−SO2−または−CO−を示し、R7およびR8は、それぞれ独立にハロゲン原子、炭素数1〜12の1価の有機基またはニトロ基を示し、mは0または1を示す。但し、mが0の時、R7はシアノ基ではない。gおよびhは、それぞれ独立に0〜4の整数を示し、好ましくは0である。In the formula (2), R 1 to R 4 and a to d are independently synonymous with R 1 to R 4 and a to d in the formula (1), respectively, and Y is a single bond, −SO. 2 − or −CO −, R 7 and R 8 independently represent a halogen atom, a monovalent organic group or a nitro group having 1 to 12 carbon atoms, and m represents 0 or 1. However, when m is 0, R 7 is not a cyano group. g and h each independently represent an integer of 0 to 4, preferably 0.

炭素数1〜12の1価の有機基としては、前記式(1)における炭素数1〜12の1価
の有機基と同様のものが挙げられる。
前記樹脂(1)は、前記構造単位(1)と前記構造単位(2)とのモル比(但し、両者(構造単位(1)+構造単位(2))の合計は100である。)が、光学特性、耐熱性および力学的特性の観点から、構造単位(1):構造単位(2)=50:50〜100:0であることが好ましく、構造単位(1):構造単位(2)=70:30〜100:0であることがより好ましく、構造単位(1):構造単位(2)=80:20〜100:0であることがさらに好ましい。なお、本明細書において、力学的特性とは、樹脂の引張強度、破断伸びおよび引張弾性率等の性質のことをいう。
Examples of the monovalent organic group having 1 to 12 carbon atoms include those similar to the monovalent organic group having 1 to 12 carbon atoms in the formula (1).
The resin (1) has a molar ratio of the structural unit (1) and the structural unit (2) (however, the total of both (the total of the structural unit (1) + the structural unit (2)) is 100). From the viewpoint of optical properties, heat resistance and mechanical properties, structural unit (1): structural unit (2) = 50: 50 to 100: 0 is preferable, and structural unit (1): structural unit (2). = 70:30 to 100: 0 is more preferable, and structural unit (1): structural unit (2) = 80:20 to 100: 0 is even more preferable. In addition, in this specification, a mechanical property means a property such as a tensile strength, a breaking elongation and a tensile elastic modulus of a resin.

また、前記樹脂(1)は、さらに、下記式(3)で表わされる構造単位および下記式(4)で表わされる構造単位からなる群より選ばれる少なくとも一つの構造単位(以下「構造単位(3−4)」ともいう。)を有してもよい。前記樹脂(1)がこのような構造単位(3−4)を有すると、該樹脂(1)を含む基材の力学的特性が向上するため好ましい。 Further, the resin (1) is further selected from a group consisting of a structural unit represented by the following formula (3) and a structural unit represented by the following formula (4) (hereinafter, "structural unit (3)". -4) ”). It is preferable that the resin (1) has such a structural unit (3-4) because the mechanical properties of the base material containing the resin (1) are improved.

前記式(3)中、R5およびR6は、それぞれ独立に炭素数1〜12の1価の有機基を示し、Zは、単結合、−O−、−S−、−SO2−、−CO−、−CONH−、−COO−または炭素数1〜12の2価の有機基を示し、nは0または1を示す。eおよびfは、それぞれ独立に0〜4の整数を示し、好ましくは0である。In the formula (3), R 5 and R 6 are each independently a monovalent organic group having 1 to 12 carbon atoms, Z is a single bond, -O -, - S -, - SO 2 -, It represents -CO-, -CONH-, -COO- or a divalent organic group having 1 to 12 carbon atoms, and n represents 0 or 1. e and f each independently represent an integer of 0 to 4, preferably 0.

炭素数1〜12の1価の有機基としては、前記式(1)における炭素数1〜12の1価の有機基と同様のものが挙げられる。
炭素数1〜12の2価の有機基としては、炭素数1〜12の2価の炭化水素基、炭素数1〜12の2価のハロゲン化炭化水素基、酸素原子および窒素原子からなる群より選ばれる少なくとも1種の原子を含む炭素数1〜12の2価の有機基、ならびに、酸素原子および窒素原子からなる群より選ばれる少なくとも1種の原子を含む炭素数1〜12の2価のハロゲン化有機基等が挙げられる。
Examples of the monovalent organic group having 1 to 12 carbon atoms include those similar to the monovalent organic group having 1 to 12 carbon atoms in the formula (1).
The divalent organic group having 1 to 12 carbon atoms is a group consisting of a divalent hydrocarbon group having 1 to 12 carbon atoms, a divalent halogenated hydrocarbon group having 1 to 12 carbon atoms, an oxygen atom and a nitrogen atom. A divalent organic group having 1 to 12 carbon atoms containing at least one selected atom, and a divalent organic group having 1 to 12 carbon atoms containing at least one atom selected from the group consisting of an oxygen atom and a nitrogen atom. Halogenated organic groups and the like.

炭素数1〜12の2価の炭化水素基としては、炭素数1〜12の直鎖または分岐鎖の2価の炭化水素基、炭素数3〜12の2価の脂環式炭化水素基および炭素数6〜12の2価の芳香族炭化水素基等が挙げられる。 Examples of the divalent hydrocarbon group having 1 to 12 carbon atoms include a linear or branched divalent hydrocarbon group having 1 to 12 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 12 carbon atoms, and a divalent hydrocarbon group having 3 to 12 carbon atoms. Examples thereof include divalent aromatic hydrocarbon groups having 6 to 12 carbon atoms.

炭素数1〜12の直鎖または分岐鎖の2価の炭化水素基としては、メチレン基、エチレン基、トリメチレン基、イソプロピリデン基、ペンタメチレン基、ヘキサメチレン基およびヘプタメチレン基等が挙げられる。 Examples of the linear or branched divalent hydrocarbon group having 1 to 12 carbon atoms include a methylene group, an ethylene group, a trimethylene group, an isopropylidene group, a pentamethylene group, a hexamethylene group and a heptamethylene group.

炭素数3〜12の2価の脂環式炭化水素基としては、シクロプロピレン基、シクロブチレン基、シクロペンチレン基およびシクロへキシレン基等のシクロアルキレン基;シクロブテニレン基、シクロペンテニレン基およびシクロヘキセニレン基等のシクロアルケニレン基などが挙げられる。 Examples of the divalent alicyclic hydrocarbon group having 3 to 12 carbon atoms include cycloalkylene groups such as cyclopropylene group, cyclobutylene group, cyclopentylene group and cyclohexylene group; cyclobutenylene group, cyclopentenylene group and Examples thereof include a cycloalkenylene group such as a cyclohexenylene group.

炭素数6〜12の2価の芳香族炭化水素基としては、フェニレン基、ナフチレン基およびビフェニレン基等が挙げられる。
炭素数1〜12の2価のハロゲン化炭化水素基としては、炭素数1〜12の直鎖または分岐鎖の2価のハロゲン化炭化水素基、炭素数3〜12の2価のハロゲン化脂環式炭化水素基および炭素数6〜12の2価のハロゲン化芳香族炭化水素基等が挙げられる。
Examples of the divalent aromatic hydrocarbon group having 6 to 12 carbon atoms include a phenylene group, a naphthylene group and a biphenylene group.
Examples of the divalent halogenated hydrocarbon group having 1 to 12 carbon atoms include a linear or branched divalent halogenated hydrocarbon group having 1 to 12 carbon atoms and a divalent halogenated hydrocarbon group having 3 to 12 carbon atoms. Examples thereof include a cyclic hydrocarbon group and a divalent halogenated aromatic hydrocarbon group having 6 to 12 carbon atoms.

炭素数1〜12の直鎖または分岐鎖の2価のハロゲン化炭化水素基としては、ジフロオロメチレン基、ジクロロメチレン基、テトラフルオロエチレン基、テトラクロロエチレン基、ヘキサフルオロトリメチレン基、ヘキサクロロトリメチレン基、ヘキサフルオロイソプロピリデン基およびヘキサクロロイソプロピリデン基等が挙げられる。 Examples of the linear or branched divalent halogenated hydrocarbon group having 1 to 12 carbon atoms include a difluoromethylene group, a dichloromethylene group, a tetrafluoroethylene group, a tetrachloroethylene group, a hexafluorotrimethylene group and a hexachlorotrimethylene group. Examples thereof include a group, a hexafluoroisopropylidene group and a hexachloroisopropyridene group.

炭素数3〜12の2価のハロゲン化脂環式炭化水素基としては、前記炭素数3〜12の2価の脂環式炭化水素基において例示した基の少なくとも一部の水素原子がフッ素原子、塩素原子、臭素原子またはヨウ素原子で置換された基等が挙げられる。 As the divalent alicyclic hydrocarbon group having 3 to 12 carbon atoms, at least a part of the hydrogen atoms of the groups exemplified in the divalent alicyclic hydrocarbon group having 3 to 12 carbon atoms are fluorine atoms. , A group substituted with a chlorine atom, a bromine atom or an iodine atom, and the like.

炭素数6〜12の2価のハロゲン化芳香族炭化水素基としては、前記炭素数6〜12の2価の芳香族炭化水素基において例示した基の少なくとも一部の水素原子がフッ素原子、塩素原子、臭素原子またはヨウ素原子で置換された基等が挙げられる。 As the divalent halogenated aromatic hydrocarbon group having 6 to 12 carbon atoms, at least a part of the hydrogen atoms of the groups exemplified in the divalent aromatic hydrocarbon group having 6 to 12 carbon atoms are fluorine atoms and chlorine. Examples thereof include groups substituted with an atom, a bromine atom or an iodine atom.

酸素原子および窒素原子からなる群より選ばれる少なくとも1種の原子を含む炭素数1〜12の有機基としては、水素原子および炭素原子と、酸素原子および/または窒素原子とからなる有機基が挙げられ、エーテル結合、カルボニル基、エステル結合またはアミド結合と炭化水素基とを有する総炭素数1〜12の2価の有機基等が挙げられる。 Examples of the organic group having 1 to 12 carbon atoms including at least one atom selected from the group consisting of an oxygen atom and a nitrogen atom include an organic group consisting of a hydrogen atom and a carbon atom and an oxygen atom and / or a nitrogen atom. Examples thereof include a divalent organic group having 1 to 12 total carbon atoms having an ether bond, a carbonyl group, an ester bond or an amide bond and a hydrocarbon group.

酸素原子および窒素原子からなる群より選ばれる少なくとも1種の原子を含む炭素数1〜12の2価のハロゲン化有機基としては、具体的には、酸素原子および窒素原子からなる群より選ばれる少なくとも1種の原子を含む炭素数1〜12の2価の有機基において例示した基の少なくとも一部の水素原子がフッ素原子、塩素原子、臭素原子またはヨウ素原子で置換された基等が挙げられる。 The divalent halogenated organic group having 1 to 12 carbon atoms containing at least one atom selected from the group consisting of oxygen atoms and nitrogen atoms is specifically selected from the group consisting of oxygen atoms and nitrogen atoms. Examples thereof include a group in which at least a part of hydrogen atoms of the group exemplified in the divalent organic group having 1 to 12 carbon atoms including at least one atom is replaced with a fluorine atom, a chlorine atom, a bromine atom or an iodine atom. ..

前記式(3)におけるZとしては、単結合、−O−、−SO2−、−CO−または炭素数1〜12の2価の有機基が好ましく、樹脂(1)の吸水(湿)性の点から炭素数1〜12の2価の炭化水素基、炭素数1〜12の2価のハロゲン化炭化水素基または炭素数3〜12の2価の脂環式炭化水素基がより好ましい。Formula (3) as Z in a single bond, -O -, - SO 2 - , - CO- or preferably a divalent organic group having 1 to 12 carbon atoms, water absorption resin (1) (wet) properties From this point of view, a divalent hydrocarbon group having 1 to 12 carbon atoms, a divalent halogenated hydrocarbon group having 1 to 12 carbon atoms or a divalent alicyclic hydrocarbon group having 3 to 12 carbon atoms is more preferable.

前記基材は、近赤外線吸収剤を含有する樹脂層を有し、かつ、該樹脂層がノルボルネン系樹脂、ポリイミド系樹脂およびポリエーテル樹脂からなる群より選ばれる少なくとも1種を含むことが好ましい。 It is preferable that the base material has a resin layer containing a near-infrared absorber, and the resin layer contains at least one selected from the group consisting of a norbornene-based resin, a polyimide-based resin, and a polyether resin.

前記樹脂層を有することにより、波長430〜580nmにおける透明性が高く、耐熱性が高く、反りにくい、破断しにくい、面内位相差R0が低い光学フィルターが得られる。そのため、前記樹脂層を有する光学フィルターを具備する固体撮像装置は、画質が高く、製造を容易とすることができる。By having the resin layer, an optical filter having high transparency at a wavelength of 430 to 580 nm, high heat resistance, resistance to warping, resistance to breakage, and low in-plane retardation R 0 can be obtained. Therefore, the solid-state image sensor provided with the optical filter having the resin layer has high image quality and can be easily manufactured.

前記樹脂層の波長430〜580nmにおける透過率の平均値は、固体撮像装置が高感度となることから、厚み1μmにおいて70%以上であることが好ましい。
前記樹脂層のガラス転移温度は、固体撮像装置を低温リフロー工程で製造することができることから、140℃以上であることが好ましい。
The average value of the transmittance of the resin layer at a wavelength of 430 to 580 nm is preferably 70% or more at a thickness of 1 μm because the solid-state image sensor has high sensitivity.
The glass transition temperature of the resin layer is preferably 140 ° C. or higher because the solid-state image sensor can be manufactured in the low-temperature reflow step.

前記樹脂層のヤング率は、反りにくい光学フィルターを得る観点から、好ましくは2GPa以上である。
前記樹脂層の面内位相差R0は、好ましくは50nm以下、より好ましくは20nm以下、さらに好ましくは10nm以下、特に好ましくは5nm以下である。面内位相差R0が少ない光学フィルターは、偏光に応じて感度が異なる撮像素子を設けた場合に、偏光特性を精確に検出可能となり、誤差が少なくなる。
The Young's modulus of the resin layer is preferably 2 GPa or more from the viewpoint of obtaining an optical filter that does not easily warp.
The in-plane retardation R 0 of the resin layer is preferably 50 nm or less, more preferably 20 nm or less, still more preferably 10 nm or less, and particularly preferably 5 nm or less. When an optical filter having a small in-plane phase difference R 0 is provided with an image sensor having different sensitivities depending on the polarization, the polarization characteristics can be accurately detected and the error is reduced.

前記樹脂層は基材中に1層でもよく、複数層含んでもよく、基材が樹脂層のみから構成されてもよい。
前記基材の厚みは、所望の用途に応じて適宜選択することができ、特に制限されないが、上限は、好ましくは250μm以下、より好ましくは200μm以下、さらに好ましくは150μm以下であり、下限は、好ましくは30μm以上、より好ましくは40μm以上である。厚みが前記範囲であれば、光学フィルターの反りが少なく、十分に薄い固体撮像素子が得られる。
The resin layer may be one layer or a plurality of layers in the base material, and the base material may be composed of only the resin layer.
The thickness of the base material can be appropriately selected depending on the desired application and is not particularly limited, but the upper limit is preferably 250 μm or less, more preferably 200 μm or less, still more preferably 150 μm or less, and the lower limit is set. It is preferably 30 μm or more, more preferably 40 μm or more. When the thickness is within the above range, the warp of the optical filter is small, and a sufficiently thin solid-state image sensor can be obtained.

<樹脂層の製造方法>
前記樹脂層は、例えば、溶融成形またはキャスト成形により形成することができ、必要により、成形後に、反射防止剤、ハードコート剤および/または帯電防止剤等のコーティング剤をコーティングする方法により製造することができる。
<Manufacturing method of resin layer>
The resin layer can be formed by, for example, melt molding or cast molding, and if necessary, is produced by a method of coating a coating agent such as an antireflection agent, a hard coating agent and / or an antistatic agent after molding. Can be done.

(A)溶融成形
前記樹脂層は、樹脂と近赤外線吸収剤とを溶融混練りして得られたペレットを溶融成形する方法;樹脂と近赤外線吸収剤とを含有する樹脂組成物を溶融成形する方法;または、近赤外線吸収剤、樹脂および溶剤を含む樹脂組成物から溶剤を除去して得られたペレットを溶融成形する方法などにより製造することができる。溶融成形方法としては、例えば、射出成形、溶融押出成形またはブロー成形などを挙げることができる。
(A) Melt molding The resin layer is a method of melt-molding pellets obtained by melt-kneading a resin and a near-infrared absorber; a resin composition containing a resin and a near-infrared absorber is melt-molded. Method; Alternatively, it can be produced by a method of melt-molding pellets obtained by removing a solvent from a resin composition containing a near-infrared absorber, a resin and a solvent. Examples of the melt molding method include injection molding, melt extrusion molding, blow molding and the like.

(B)キャスト成形
前記樹脂層は、近赤外線吸収剤、樹脂および溶剤を含む樹脂組成物を適当な支持体の上にキャスティングして溶剤を除去する方法;反射防止剤、ハードコート剤および/または帯電防止剤等のコーティング剤と、近赤外線吸収剤と、樹脂とを含む樹脂組成物を適当な支持体の上にキャスティングする方法;または、反射防止剤、ハードコート剤および/または帯電防止剤等のコーティング剤と、色素化合物と、樹脂とを含む硬化性組成物を適当な支持体の上にキャスティングして硬化および乾燥させる方法などにより製造することもできる。
(B) Cast molding A method in which a resin composition containing a near-infrared absorber, a resin and a solvent is cast on a suitable support to remove the solvent; an antistatic agent, a hard coat agent and / or A method of casting a resin composition containing a coating agent such as an antistatic agent, a near infrared absorber, and a resin on an appropriate support; or an antireflection agent, a hard coat agent, and / or an antistatic agent, etc. It can also be produced by a method of casting a curable composition containing the coating agent of the above, a dye compound, and a resin on an appropriate support, curing and drying.

前記支持体としては、特に限定されず、基材の材質の例として挙げたガラス、強化ガラス、特殊ガラスまたは樹脂からなる支持体を用いることができ、また、基材の材質以外の支持体、例えばスチールベルト、スチールドラムなどを用いてもよい。 The support is not particularly limited, and a support made of glass, tempered glass, special glass or resin mentioned as an example of the material of the base material can be used, and a support other than the material of the base material, For example, a steel belt, a steel drum, or the like may be used.

前記基材が樹脂製基板からなる基材である場合には、該基材は、キャスト成形後、支持体から塗膜を剥離することにより得ることができ、また、前記基材が、支持体上に樹脂層が積層された基材である場合には、該基材は、キャスト成形後、塗膜を剥離しないことで得ることができる。 When the base material is a base material made of a resin substrate, the base material can be obtained by peeling the coating film from the support after cast molding, and the base material is the support. In the case of a base material having a resin layer laminated on the base material, the base material can be obtained by casting and molding without peeling off the coating film.

前記方法で得られた樹脂層中の残留溶剤量は可能な限り少ない方がよく、通常樹脂層の重さに対して3質量%以下、好ましくは1質量%以下、さらに好ましくは0.5質量%以下である。残留溶剤量が前記範囲にあると、光学フィルターの変形や光学特性の変化が起こりにくい、所望の機能を容易に発揮できる樹脂層が得られる。 The amount of residual solvent in the resin layer obtained by the above method should be as small as possible, and is usually 3% by mass or less, preferably 1% by mass or less, more preferably 0.5% by mass, based on the weight of the resin layer. % Or less. When the amount of the residual solvent is within the above range, a resin layer capable of easily exhibiting a desired function can be obtained, in which deformation of the optical filter and change in optical characteristics are unlikely to occur.

[近赤外線吸収剤]
前記近赤外線吸収剤は、好ましくは波長751〜950nm、より好ましくは760〜940nm、さらに好ましくは770〜930nm、特に好ましくは775〜925nmの範囲に吸収極大波長を有する。吸収極大波長が前記範囲にあることにより、波長700nm〜750nmの範囲において固体撮像素子が取り込む光の量が調整されるとともに、人間の視感度が低い波長751nm以上の範囲の光が固体撮像素子に入る量を減らすことができ、固体撮像装置を人間の視感度により近づけることができる。
[Near infrared absorber]
The near-infrared absorber preferably has an absorption maximum wavelength in the wavelength range of 751-950 nm, more preferably 760 to 940 nm, further preferably 770 to 930 nm, and particularly preferably 775 to 925 nm. When the absorption maximum wavelength is in the above range, the amount of light taken in by the solid-state image sensor is adjusted in the wavelength range of 700 nm to 750 nm, and the light in the wavelength range of 751 nm or more, which has low human visual sensitivity, is transferred to the solid-state image sensor. The amount of light entering can be reduced, and the solid-state image sensor can be brought closer to the human visual sensitivity.

前記近赤外線吸収剤としては、例えば、シアニン系色素、フタロシアニン系色素、ジチオール系色素、ジイモニウム系色素、スクアリリウム系色素、クロコニウム系色素、リン酸銅塩などが挙げられる。これら色素の構造は特に限定されるものではなく、本発明の効果を損なわないものであれば一般的に知られているものや市販品を使用することができる。また、本発明の効果を損なわないものであれば、光学フィルターに添加する近赤外線吸収剤は、1種でも複数種でもよい。 Examples of the near-infrared absorber include cyanine-based pigments, phthalocyanine-based pigments, dithiol-based pigments, diimonium-based pigments, squarylium-based pigments, croconium-based pigments, and copper phosphates. The structure of these dyes is not particularly limited, and generally known ones or commercially available products can be used as long as they do not impair the effects of the present invention. Further, the near-infrared absorber to be added to the optical filter may be one kind or a plurality of kinds as long as the effect of the present invention is not impaired.

前記近赤外線吸収剤は、前記樹脂層に対して0.01〜60.0質量%の範囲で含有されていることが好ましい。近赤外線吸収剤の含有量が前記範囲であれば、適切な光学特性が得られやすい。60.0質量%より多く含む場合、前述した透明性が高く、耐熱性が高く、反りにくい、破断しにくい等の性能が失われ、固体撮像装置の画質の低下、製造の難度を上げる要因となる。 The near-infrared absorber is preferably contained in the range of 0.01 to 60.0% by mass with respect to the resin layer. When the content of the near-infrared absorber is within the above range, appropriate optical characteristics can be easily obtained. If it is contained in an amount of more than 60.0% by mass, the above-mentioned high transparency, high heat resistance, resistance to warping, resistance to breakage, and other performances are lost, resulting in deterioration of image quality of the solid-state imaging device and increasing manufacturing difficulty. Become.

また、前記近赤外線吸収剤は、下記条件(a)および(b)を満たすことが好ましい。
(a)(吸光度λ700) / (吸光度λmax) ≦0.1
(b)(吸光度λ751) / (吸光度λmax) ≧0.1
Further, the near-infrared absorber preferably satisfies the following conditions (a) and (b).
(A) (absorbance λ 700 ) / (absorbance λ max ) ≤ 0.1
(B) (absorbance λ 751 ) / (absorbance λ max ) ≧ 0.1

ここで、前記近赤外線吸収剤の波長700nmにおける吸光度を「吸光度λ700」、波長751nmにおける吸光度を「吸光度λ751」、吸収極大波長における吸光度を「吸光度λmax」とし、波長λにおける吸光度λは、一般に用いられる以下の式に従い、波長λにおける透過率λより算出される。Here, the absorbance of the near-infrared absorber at a wavelength of 700 nm is defined as “absorbency λ 700 ”, the absorbance at a wavelength of 751 nm is defined as “absorbency λ 751 ”, the absorbance at the maximum absorption wavelength is defined as “absorbency λ max ”, and the absorbance λ at wavelength λ is , Calculated from the transmission λ at wavelength λ according to the following commonly used formula.

吸光度λ = −Log(内部透過率λ)
例えば内部透過率λが0.1(10%)の場合、吸光度は1.0である。内部透過率とは、得られた透過率から表面反射率を除いた値であり、得られた透過率から近赤外線吸収剤を除いた媒体の透過率で除することで得られる。
Absorbance λ = −Log (internal transmittance λ)
For example, when the internal transmittance λ is 0.1 (10%), the absorbance is 1.0. The internal transmittance is a value obtained by subtracting the surface reflectance from the obtained transmittance, and is obtained by dividing the obtained transmittance by the transmittance of the medium excluding the near-infrared absorber.

前記条件(a)および(b)を満たすと、センシングに必要な波長700〜750nmの透過率が高く、視感度およびセンシングのどちらにも不要な波長を充分に遮蔽する光学フィルターを得ることができる。ところで、センシングに必要な波長700〜750nmの透過率が高く、要件(C)を維持するため、光学フィルターの吸光度λ700は、好ましくは0.25以下、より好ましくは0.2以下、さらに好ましくは0.18以下、特に好ましくは0.16以下である。前記光学フィルターの吸光度λ700の下限は0である。前記条件(a)を満たす近赤外線吸収剤を用いることで、光学フィルターの吸光度λ700を前記範囲にすることが可能となる。When the above conditions (a) and (b) are satisfied, it is possible to obtain an optical filter having a high transmittance of a wavelength of 700 to 750 nm required for sensing and sufficiently shielding wavelengths unnecessary for both luminosity factor and sensing. .. By the way, in order to maintain the requirement (C) because the transmittance at a wavelength of 700 to 750 nm required for sensing is high, the absorbance λ 700 of the optical filter is preferably 0.25 or less, more preferably 0.2 or less, still more preferable. Is 0.18 or less, particularly preferably 0.16 or less. The lower limit of the absorbance λ 700 of the optical filter is 0. By using a near-infrared absorber that satisfies the condition (a), the absorbance λ 700 of the optical filter can be set within the above range.

また、視感度およびセンシングどちらにも不要な751nmから長波長の光を充分に遮蔽して要件(D)を達成するために、光学フィルターの吸光度λ751は、好ましくは0.2以上、より好ましくは0.21以上、さらに好ましくは0.23以上、特に好ましくは0.25以上である。また、光学フィルターの吸光度λ751は、好ましくは0.8以下、より好ましくは0.6以下、さらに好ましくは0.5以下である。前記条件(b)を満たす近赤外線吸収剤を用いることで、光学フィルターの吸光度λ751を前記範囲にすることが可能となる。Further, in order to sufficiently block light having a long wavelength from 751 nm, which is unnecessary for both luminosity factor and sensing, and to achieve the requirement (D), the absorbance λ 751 of the optical filter is preferably 0.2 or more, more preferably 0.2 or more. Is 0.21 or more, more preferably 0.23 or more, and particularly preferably 0.25 or more. The absorbance λ 751 of the optical filter is preferably 0.8 or less, more preferably 0.6 or less, still more preferably 0.5 or less. By using a near-infrared absorber that satisfies the above condition (b), the absorbance λ 751 of the optical filter can be set within the above range.

しかしながら、条件(b)を満たす近赤外線吸収剤は、吸収極大波長λmaxが751nmから950nmへと長波長のものとなるにつれ、(吸光度λ751) / (吸光度λmax)は小さくなる傾向にある。そのため、吸収極大波長(λmax)が751nmから950nmへと長波長のものになるつれ、基材に含まれる近赤外線吸収剤の濃度を上げる必要がある。一方、条件(a)を満たす近赤外線吸収剤を基材に過剰に含有させると、光学フィルターが要件(C)を維持することが困難となる場合がある。そのため、基材に含まれる近赤外線吸収剤は、下記条件(c)を満たすことが好ましい。
(c)1.5≧Σdye(n)[((950−最短吸収極大波長)×色素濃度×色素媒体厚さ)]>0.2
However, the near-infrared absorber satisfying the condition (b) tends to have a smaller (absorbance λ 751 ) / (absorbance λ max ) as the absorption maximum wavelength λ max becomes longer from 751 nm to 950 nm. .. Therefore, as the absorption maximum wavelength (λ max ) becomes longer from 751 nm to 950 nm, it is necessary to increase the concentration of the near-infrared absorber contained in the substrate. On the other hand, if the substrate contains an excessive amount of a near-infrared absorber that satisfies the condition (a), it may be difficult for the optical filter to maintain the requirement (C). Therefore, the near-infrared absorber contained in the base material preferably satisfies the following condition (c).
(C) 1.5 ≧ Σ dye (n) [((950-shortest absorption maximum wavelength) × dye concentration × dye medium thickness)]> 0.2

ここで「Σdye(n)」における「dye(n)」とは、基材に含まれる各近赤外線吸収剤のことを意味する。また、「最短吸収極大波長」とは、波長751〜950nmにおける吸収極大波長の中で最も短い波長(nm)を意味し、「色素濃度」とは、基材に含まれる近赤外線吸収剤の濃度(質量%)を意味し、「色素媒体厚さ」とは、近赤外線吸収剤を含有する基材の厚さ(mm)を意味する。Here, " dye (n) " in "Σ dye (n)" means each near-infrared absorber contained in the base material. Further, the "shortest absorption maximum wavelength" means the shortest wavelength (nm) among the absorption maximum wavelengths at wavelengths 751 to 950 nm, and the "dye concentration" is the concentration of the near-infrared absorber contained in the substrate. It means (% by mass), and the "dye medium thickness" means the thickness (mm) of the base material containing the near-infrared absorber.

前記条件(a)および(b)を満たす近赤外線吸収剤を、前記条件(c)の濃度で用いることで、光学フィルターの吸光度λ700および吸光度λ751を前述の好ましい範囲とすることが可能となり、要件(C)および(D)を満たすことが容易となる。By using a near-infrared absorber that satisfies the conditions (a) and (b) at the concentration of the condition (c), it becomes possible to set the absorbance λ 700 and the absorbance λ 751 of the optical filter within the above-mentioned preferable ranges. , It becomes easy to meet the requirements (C) and (D).

<シアニン系色素>
前記シアニン系色素としては、本発明の効果を損なわないものであれば、特に限定されないが、例えば特開2009−108267号公報、特開2010−72575号公報、特開2016−060774号公報に記載のシアニン系色素が挙げられる。
<Cyanine pigment>
The cyanine-based dye is not particularly limited as long as it does not impair the effects of the present invention, and is described in, for example, JP-A-2009-108267, JP-A-2010-72575, and JP-A-2016-060774. Cyanine pigments can be mentioned.

シアニン系色素の一部は波長751〜950nmに吸収極大波長を持たないものも含まれるが、波長751〜950nmに吸収極大波長を持つシアニン系色素を選択する、または、波長751〜950nmに吸収極大波長を持たないシアニン系色素と波長751〜950nmに吸収極大波長を持つシアニン系色素を併用する、または、波長751〜950nmに吸収極大波長を持たないシアニン系色素と波長751〜950nmに吸収極大波長を持つシアニン系色素以外の色素を併用することで、本発明の効果を得る近赤外線吸収剤として使用できる。 Some cyanine-based dyes do not have an absorption maximum wavelength at a wavelength of 751-950 nm, but a cyanine-based dye having an absorption maximum wavelength at a wavelength of 751-950 nm is selected, or an absorption maximum at a wavelength of 751-950 nm. A cyanine dye having no wavelength and a cyanine dye having an absorption maximum wavelength at a wavelength of 751 to 950 nm are used in combination, or a cyanine dye having no absorption maximum wavelength at a wavelength of 751 to 950 nm and an absorption maximum wavelength at a wavelength of 751 to 950 nm. It can be used as a near-infrared absorber to obtain the effect of the present invention by using a dye other than the cyanine-based dye having the above.

<フタロシアニン系色素>
前記フタロシアニン系色素としては、本発明の効果を損なわないものであれば、特に限定されないが、例えば特開昭60−224589号公報、特表1005−537319号公報、特開平4−23868号公報、特開平4−39361号公報、特開平5−78364号公報、特開平5−222047号公報、特開平5−222301号公報、特開平5−222302号公報、特開平5−345861号公報、特開平6−25548号公報、特開平6−107663号公報、特開平6−192584号公報、特開平6−228533号公報、特開平7−118551号公報、特開平7−118552号公報、特開平8−120186号公報、特開平8−225751号公報、特開平9−202860号公報、特開平10−120927号公報、特開平10−182995号公報、特開平11−35838号公報、特開2000−26748号公報、特開2000−63691号公報、特開2001−106689号公報、特開2004−18561号公報、特開2005−220060号公報、特開2007−169343号公報、特開2013−195480号公報の段落[0026]〜[0027]、国際公開第2015/025779号の表1等に記載の化合物等が挙げられる。
<Parthalocyanine pigment>
The phthalocyanine dye is not particularly limited as long as it does not impair the effects of the present invention. Japanese Patent Application Laid-Open No. 4-39361, Japanese Patent Application Laid-Open No. 5-78364, Japanese Patent Application Laid-Open No. 5-2222047, Japanese Patent Application Laid-Open No. 5-222301, Japanese Patent Application Laid-Open No. 5-222302, Japanese Patent Application Laid-Open No. 5-345861, Japanese Patent Application Laid-Open No. 6-25548, 6-107663, 6-192584, 6-228533, 7-118551, 7-118552, 8- 120186, 8-225751, Japanese 9-202860, 10-120927, 10-182995, 11-35838, 2000-26748. JP-A-2000-63691, JP-A-2001-106689, JP-A-2004-18561, JP-A-2005-220060, JP-A-2007-169343, JP-A-2013-195480. Examples thereof include the compounds described in paragraphs [0026] to [0027], Table 1 of International Publication No. 2015/025779, and the like.

フタロシアニン系色素の一部は波長751〜950nmに吸収極大波長を持たないものも含まれるが、波長751〜950nmに吸収極大波長を持つフタロシアニン系色素を選択する、または、波長751〜950nmに吸収極大波長を持たないフタロシアニン系色素と波長751〜950nmに吸収極大波長を持つフタロシアニン系色素を併用する、または、波長751〜950nmに吸収極大波長を持たないフタロシアニン系色素と波長751〜950nmに吸収極大波長を持つフタロシアニン系色素以外の色素を併用することで、本発明の効果を得る近赤外線吸収剤として使用できる。フタロシアニン系色素は、吸収極大波長近傍が急峻な吸収特性を有することが多く、本発明の光学フィルターにフタロシアニン系色素を用いる場合には、少なくとも1種の他の近赤外線吸収剤と併用することが好ましい。 Some phthalocyanine-based dyes do not have an absorption maximum wavelength at a wavelength of 751-950 nm, but a phthalocyanine-based dye having an absorption maximum wavelength at a wavelength of 751-950 nm is selected, or an absorption maximum at a wavelength of 751-950 nm. A phthalocyanine dye having no wavelength and a phthalocyanine dye having an absorption maximum wavelength at a wavelength of 751 to 950 nm are used in combination, or a phthalocyanine dye having no absorption maximum wavelength at a wavelength of 751 to 950 nm and an absorption maximum wavelength at a wavelength of 751 to 950 nm. It can be used as a near-infrared absorber to obtain the effect of the present invention by using a dye other than the phthalocyanine dye having the above. Phthalocyanine dyes often have steep absorption characteristics near the maximum absorption wavelength, and when a phthalocyanine dye is used in the optical filter of the present invention, it may be used in combination with at least one other near-infrared absorber. preferable.

<ジチオール系色素>
前記ジチオール系色素としては、本発明の効果を損なわないものであれば、特に限定されないが、例えば特開2006−215395号公報、WO2008/086931号に記載のジチオール系色素が挙げられる。
<Dithiol dye>
The dithiol-based dye is not particularly limited as long as it does not impair the effects of the present invention, and examples thereof include the dithiol-based dyes described in JP-A-2006-215395 and WO2008 / 086931.

ジチオール系色素の一部は波長751〜950nmに吸収極大波長を持たないものも含まれるが、波長751〜950nmに吸収極大波長を持つジチオール系色素を選択する、または、波長751〜950nmに吸収極大波長を持たないジチオール系色素と波長751〜950nmに吸収極大波長を持つジチオール系色素を併用する、または、波長751〜950nmに吸収極大波長を持たないジチオール系色素と波長751〜950nmに吸収極大波長を持つジチオール系色素以外の色素を併用することで、本発明の効果を得る近赤外線吸収剤として使用できる。
また、例えばWO1998/034988号に記載のようにジチオール系色素の対イオン結合体を用いてもよい。
Some dithiol-based dyes do not have an absorption maximum wavelength at a wavelength of 751-950 nm, but a dithiol-based dye having an absorption maximum wavelength at a wavelength of 751-950 nm is selected, or an absorption maximum at a wavelength of 751-950 nm. A dithiol dye having no wavelength and a dithiol dye having an absorption maximum wavelength at a wavelength of 751 to 950 nm are used in combination, or a dithiol dye having no absorption maximum wavelength at a wavelength of 751 to 950 nm and an absorption maximum wavelength at a wavelength of 751 to 950 nm. It can be used as a near-infrared absorber to obtain the effect of the present invention by using a dye other than the dithiol-based dye having the above.
Further, for example, as described in WO 1998/034988, a counter ionic bond of a dithiol dye may be used.

<スクアリリウム系色素>
前記スクアリリウム系色素としては、本発明の効果を損なわないものであれば、特に限定されないが、例えば、下記式(4)〜(6)で表されるスクアリリウム系色素、特開2014−074002号公報、特開2014−052431号公報に記載のスクアリリウム系色素などが挙げられ、一般に知られている方法で合成すればよい。
<Squarylium pigment>
The squarylium dye is not particularly limited as long as it does not impair the effects of the present invention, but for example, squarylium dyes represented by the following formulas (4) to (6), JP-A-2014-074002. , Squalylium-based dyes described in JP-A-2014-052431 and the like, and may be synthesized by a generally known method.

Figure 2020054695
Figure 2020054695

Figure 2020054695
Figure 2020054695

Figure 2020054695
Figure 2020054695

前記式(4)〜(6)中、Xは独立に、酸素原子、硫黄原子、セレン原子または−NH−を表し、 前記R1およびR1'としてはそれぞれ独立に、水素原子、塩素原子、フッ素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、シクロヘキシル基、フェニル基、水酸基、アミノ基、ジメチルアミノ基、ニトロ基が好ましく、水素原子、塩素原子、フッ素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、水酸基がより好ましい。R2〜R8はそれぞれ独立に、水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、−L1または−NRgh基を表す。RgおよびRhはそれぞれ独立に、水素原子、−La、−Lb、−Lc、−Ld、−Le、−Lf、−Lg、−Lhまたは−C(O)Ri基(Riは、−La、−Lb、−Lc、−Ldまたは−Leを表す。)を表し、R9は独立に、水素原子、−La、−Lb、−Lc、−Ld、−Le、−Lf、−Lgまたは−Lhを表す。
1は、La、Lb、Lc、Ld、Le、Lf、LgまたはLhである。
In the formula (4) ~ (6), X is independently an oxygen atom, a sulfur atom, a selenium atom or -NH-, said each independently as R 1 and R 1 ', a hydrogen atom, a chlorine atom, Fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, cyclohexyl group, phenyl group, hydroxyl group, amino group, dimethylamino group, nitro group Preferably, a hydrogen atom, a chlorine atom, a fluorine atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group and a hydroxyl group are more preferable. R 2 to R 8 independently represent a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphate group, and an −L 1 or −NR g R h group. R g and R h are independently hydrogen atoms, -L a , -L b , -L c , -L d , -L e , -L f , -L g , -L h or -C (O). Represents the R i group (R i represents -L a , -L b , -L c , -L d or -L e ), and R 9 independently represents the hydrogen atom, -L a , -L b. , -L c , -L d , -L e , -L f , -L g or -L h .
L 1 is L a , L b , L c , L d , L e , L f , L g or L h .

前記La〜Lhは、以下の基を表す。
(La)前記置換基Lを有してもよい炭素数1〜12の脂肪族炭化水素基
(Lb)前記置換基Lを有してもよい炭素数1〜12のハロゲン置換アルキル基
(Lc)前記置換基Lを有してもよい炭素数3〜14の脂環式炭化水素基
(Ld)前記置換基Lを有してもよい炭素数6〜14の芳香族炭化水素基
(Le)前記置換基Lを有してもよい炭素数3〜14の複素環基
(Lf)前記置換基Lを有してもよい炭素数1〜12のアルコキシ基
(Lg)前記置換基Lを有してもよい炭素数1〜12のアシル基
(Lh)前記置換基Lを有してもよい炭素数1〜12のアルコキシカルボニル基
(Li)前記置換基Lを有してもよい炭素数1〜12のスルフィド基またはジスルフィド基
9は独立に、水素原子、−La、−Lb、−Lc、−Ldまたは−Leを表す。
The L a to L h represent the following groups.
(L a) the substituents L and has also good C1-12 aliphatic hydrocarbon group (L b) the substitution with a group L also good C1-12 halogen-substituted alkyl group ( L c ) An alicyclic hydrocarbon group having 3 to 14 carbon atoms which may have the substituent L (L d ) An aromatic hydrocarbon group having 6 to 14 carbon atoms which may have the substituent L. (L e ) A heterocyclic group having 3 to 14 carbon atoms which may have the substituent L (L f ) An alkoxy group having 1 to 12 carbon atoms which may have the substituent L (L g ). Acrylic group having 1 to 12 carbon atoms which may have a substituent L (L h ) An alkoxycarbonyl group having 1 to 12 carbon atoms which may have the substituent L (L i ) Having the substituent L The sulfide or disulfide group R 9 having 1 to 12 carbon atoms may independently represent a hydrogen atom, −L a , −L b , −L c , −L d or −L e .

化合物(5)は置換基によって吸収極大波長を調整可能であるが、前記Xとしては、極大吸収波長が751〜950nmにある化合物になりやすい等の点から、好ましくは硫黄原子である。 The absorption maximum wavelength of the compound (5) can be adjusted by a substituent, but the X is preferably a sulfur atom from the viewpoint that the compound (5) tends to be a compound having a maximum absorption wavelength of 751 to 950 nm.

スクアリリウム系色素の一部は波長751〜950nmに吸収極大波長を持たないものも含まれるが、波長751〜950nmに吸収極大波長を持つスクアリリウム系色素を選択する、または、波長751〜950nmに吸収極大波長を持たないスクアリリウム系色素と波長751〜950nmに吸収極大波長を持つスクアリリウム系色素を併用する、または、波長751〜950nmに吸収極大波長を持たないスクアリリウム系色素と波長751〜950nmに吸収極大波長を持つスクアリリウム系色素以外の色素を併用することで、本発明の効果を得る近赤外線吸収剤として使用できる。 Some of the squarylium-based dyes do not have an absorption maximum wavelength at a wavelength of 751 to 950 nm, but a squarylium-based dye having an absorption maximum wavelength at a wavelength of 751-950 nm is selected, or an absorption maximum at a wavelength of 751-950 nm. A squarylium dye having no wavelength and a squarylium dye having an absorption maximum wavelength at a wavelength of 751 to 950 nm are used in combination, or a squarylium dye having no absorption maximum wavelength at a wavelength of 751 to 950 nm and an absorption maximum wavelength at a wavelength of 751-950 nm. It can be used as a near-infrared absorber to obtain the effect of the present invention by using a dye other than the squarylium dye having the above.

<ジイモニウム系色素>
前記ジイモニウム系色素としては、本発明の効果を損なわないものであれば、特に限定されないが、例えば、下記式(7−1)または(7−2)で表されるジイモニウム系色素、特許第4168031号公報、特許第4252961号公報、特開昭63−165392号公報、WO2004/048480等に記載のジイモニウム系色素などが挙げられ、一般的に知られている方法で合成すればよい。
<Diimonium pigment>
The diimonium-based dye is not particularly limited as long as it does not impair the effects of the present invention, but for example, a diimonium-based dye represented by the following formula (7-1) or (7-2), Patent No. 4168031. No. 4, Patent No. 4252961, Japanese Patent Application Laid-Open No. 63-165392, WO2004 / 048480 and the like can be mentioned, and synthesis may be performed by a generally known method.

Figure 2020054695
Figure 2020054695

式(7−1)および(7−2)中、Rdi1〜Rdi12は、それぞれ独立に水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、−SRi基、−SO2i基、−OSO2i基または下記La〜Lhのいずれかを表し、RgおよびRhは、それぞれ独立に水素原子、−C(O)Ri基または下記La〜Leのいずれかを表し、Riは下記La〜Leのいずれかを表し、
(La)炭素数1〜12の脂肪族炭化水素基
(Lb)炭素数1〜12のハロゲン置換アルキル基
(Lc)炭素数3〜14の脂環式炭化水素基
(Ld)炭素数6〜14の芳香族炭化水素基
(Le)炭素数3〜14の複素環基
(Lf)炭素数1〜12のアルコキシ基
(Lg)置換基Lを有してもよい炭素数1〜12のアシル基、
(Lh)置換基Lを有してもよい炭素数1〜12のアルコキシカルボニル基
In formulas (7-1) and (7-2), Rdi1 to Rdi12 independently contain a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphoric acid group, and a -SR i group. , -SO 2 R i group, or an -OSO 2 R i group or a group represented by L a ~L h, R g and R h are each independently a hydrogen atom, -C (O) R i groups or the following Represents any of L a to L e , R i represents any of the following L a to L e ,
(L a) from 1 to 12 carbon atoms aliphatic hydrocarbon group (L b) halogen-substituted alkyl group having 1 to 12 carbon atoms (L c) of 3 to 14 carbon atoms alicyclic hydrocarbon group (L d) carbon Aromatic hydrocarbon group (L e ) having 6 to 14 carbon atoms, heterocyclic group (L f ) having 3 to 14 carbon atoms, and alkoxy group (L g ) substituent L having 1 to 12 carbon atoms may have carbon number. 1-12 acyl groups,
(L h ) Alkoxycarbonyl group having 1 to 12 carbon atoms which may have a substituent L

置換基Lは、炭素数1〜12の脂肪族炭化水素基、炭素数1〜12のハロゲン置換アルキル基、炭素数3〜14の脂環式炭化水素基、炭素数6〜14の芳香族炭化水素基および炭素数3〜14の複素環基からなる群より選ばれる少なくとも1種であり、
隣り合うRdi1とRdi2、Rdi3とRdi4、Rdi5とRdi6、およびRdi7とRdi8は置換基Lを有してもよい環を形成してもよく、
Xは電荷を中和させるのに必要なアニオンを表し、
The substituent L is an aliphatic hydrocarbon group having 1 to 12 carbon atoms, a halogen-substituted alkyl group having 1 to 12 carbon atoms, an alicyclic hydrocarbon group having 3 to 14 carbon atoms, and an aromatic hydrocarbon having 6 to 14 carbon atoms. It is at least one selected from the group consisting of a hydrogen group and a heterocyclic group having 3 to 14 carbon atoms.
Adjacent Rdi1 and Rdi2, Rdi3 and Rdi4, Rdi5 and Rdi6, and Rdi7 and Rdi8 may form a ring that may have a substituent L.
X represents the anion needed to neutralize the charge

前記Rdi1〜Rdi8は、好ましくは水素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、シクロヘキシル基、フェニル基、ベンジル基から選ばれる基であり、より好ましくはイソプロピル基、sec−ブチル基、tert−ブチル基、ベンジル基から選ばれる基である。 The Rdi1 to Rdi8 are preferably selected from a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, a cyclohexyl group, a phenyl group and a benzyl group. A group selected from an isopropyl group, a sec-butyl group, a tert-butyl group, and a benzyl group.

前記Rdi9〜Rdi12は、好ましくは水素原子、塩素原子、フッ素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、シクロヘキシル基、フェニル基、水酸基、アミノ基、ジメチルアミノ基、シアノ基、ニトロ基、メトキシ基、エトキシ基、n−プロポキシ基、n−ブトキシ基、アセチルアミノ基、プロピオニルアミノ基、N−メチルアセチルアミノ基、トリフルオロメタノイルアミノ基、ペンタフルオロエタノイルアミノ基、tert−ブタノイルアミノ基、シクロヘキシノイルアミノ基、n−ブチルスルホニル基、メチルチオ基、エチルチオ基、n−プロピルチオ基、n−ブチルチオ基から選ばれる基であり、より好ましくは塩素原子、フッ素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、tert−ブチル基、水酸基、ジメチルアミノ基、メトキシ基、エトキシ基、アセチルアミノ基、プロピオニルアミノ基、トリフルオロメタノイルアミノ基、ペンタフルオロエタノイルアミノ基、tert−ブタノイルアミノ基、シクロヘキシノイルアミノ基から選ばれる基であり、特に好ましくは、メチル基、エチル基、n−プロピル基、イソプロピル基から選ばれる基である。 The Rdi9 to Rdi12 are preferably hydrogen atom, chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, cyclohexyl group and phenyl. Group, hydroxyl group, amino group, dimethylamino group, cyano group, nitro group, methoxy group, ethoxy group, n-propoxy group, n-butoxy group, acetylamino group, propionylamino group, N-methylacetylamino group, trifluoro A group selected from a methanoylamino group, a pentafluoroetanoylamino group, a tert-butanoylamino group, a cyclohexinoylamino group, an n-butylsulfonyl group, a methylthio group, an ethylthio group, an n-propylthio group and an n-butylthio group. More preferably, chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, hydroxyl group, dimethylamino group, methoxy group, ethoxy group, acetylamino group, propionylamino group. , Trifluoromethanoylamino group, pentafluoroetanoylamino group, tert-butanoylamino group, cyclohexinoylamino group, and particularly preferably methyl group, ethyl group, n-propyl group, isopropyl. It is a group selected from the groups.

前記X-は電荷を中和するのに必要なアニオンであり、式(7−2)のようにアニオンが2価である場合には1イオン、式(7−1)のようにアニオンが1価の場合には2イオンが必要となる。後者の場合は2つのアニオンX-が同一であっても異なっていてもよいが、合成上の観点から同一である方が好ましい。X-またはX2-はこのようなアニオンであれば特に制限されない。The X - is an anion required to neutralize the electric charge. When the anion is divalent as in the formula (7-2), the anion is 1 ion, and as in the formula (7-1), the anion is 1. In the case of valence, 2 ions are required. In the latter case, the two anions X - may be the same or different, but it is preferable that they are the same from the viewpoint of synthesis. X - or X 2-it is not particularly limited as long as such anions.

前記近赤外線吸収剤の中でも、式(4)、式(5)、式(7−1)および式(7−2)で表わされる化合物が、可視光透過率の高さ、波長700〜750nmの範囲の吸収特性、波長800〜1100nmの範囲の遮蔽性能から好ましい。 Among the near-infrared absorbers, the compounds represented by the formulas (4), (5), formulas (7-1) and (7-2) have high visible light transmittance and wavelengths of 700 to 750 nm. It is preferable because of the absorption characteristics in the range and the shielding performance in the wavelength range of 800 to 1100 nm.

[近赤外線反射膜]
本発明に用いることができる近赤外線反射膜は、近赤外線を反射する能力を有する膜である。このような近赤外線反射膜としては、アルミ蒸着膜、貴金属薄膜、酸化インジウムを主成分とし酸化錫を少量含有させた金属酸化物微粒子を分散させた樹脂膜、または高屈折率材料層と低屈折率材料層とを交互に積層した誘電体多層膜などが挙げられる。このような近赤外線反射膜を有すると、近赤外線をさらに効果的にカットすることができる。
[Near infrared reflective film]
The near-infrared reflective film that can be used in the present invention is a film having an ability to reflect near-infrared rays. Examples of such a near-infrared reflective film include an aluminum vapor deposition film, a noble metal thin film, a resin film in which metal oxide fine particles containing indium oxide as a main component and a small amount of tin oxide are dispersed, or a high refractive index material layer and low refractive index. Examples thereof include a dielectric multilayer film in which rate material layers are alternately laminated. Having such a near-infrared reflective film can cut near-infrared rays more effectively.

本発明では、近赤外線反射膜は基材の片面に設けてもよいし、両面に設けてもよい。片面に設ける場合、製造コストや製造容易性に優れ、両面に設ける場合、高い強度を有し、反りの生じにくい光学フィルターを得ることができる。 In the present invention, the near-infrared reflective film may be provided on one side of the base material or on both sides. When it is provided on one side, it is excellent in manufacturing cost and ease of manufacture, and when it is provided on both sides, it is possible to obtain an optical filter having high strength and less likely to warp.

前記近赤外線反射膜の中では、散乱が少ないことや、密着性が良いこと、波長430〜580nmの範囲の可視光の透過特性が高いこと、波長800〜1100nmの範囲の光の遮蔽性能が高いことから、高屈折率材料層と低屈折率材料層とを交互に積層した誘電体多層膜が好ましい。前記近赤外線反射膜が誘電体多層膜であると、得られる固体撮像装置の画質を良くすることができる。 Among the near-infrared reflective films, there is little scattering, good adhesion, high transmission characteristics of visible light in the wavelength range of 430 to 580 nm, and high light shielding performance in the wavelength range of 800 to 1100 nm. Therefore, a dielectric multilayer film in which high refractive index material layers and low refractive index material layers are alternately laminated is preferable. When the near-infrared reflective film is a dielectric multilayer film, the image quality of the obtained solid-state image sensor can be improved.

<誘電体多層膜>
高屈折率材料層を構成する材料としては、屈折率が1.7以上の材料を用いることができ、屈折率の範囲が通常は1.7〜2.5の材料が選択される。このような材料としては、例えば、酸化チタン、酸化ジルコニウム、五酸化タンタル、五酸化ニオブ、酸化ランタン、酸化イットリウム、酸化亜鉛、硫化亜鉛、または、酸化インジウム等を主成分とし、酸化チタン、酸化錫および/または酸化セリウムなどを少量(例えば、主成分に対し0〜10%)含有させたものなどが挙げられる。
<Dielectric multilayer film>
As a material constituting the high refractive index material layer, a material having a refractive index of 1.7 or more can be used, and a material having a refractive index in the range of 1.7 to 2.5 is usually selected. Examples of such a material include titanium oxide, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide, indium oxide and the like as main components, and titanium oxide and tin oxide. And / or those containing a small amount (for example, 0 to 10% with respect to the main component) of cerium oxide or the like can be mentioned.

低屈折率材料層を構成する材料としては、屈折率が1.7未満の材料を用いることができ、屈折率の範囲が通常は1.2以上1.7未満の材料が選択される。このような材料としては、例えば、樹脂、シリカ、アルミナ、フッ化ランタン、フッ化マグネシウムおよび六フッ化アルミニウムナトリウム、およびこれらを混合したもの、上記材料を屈折率1.7未満となるように空乏を設けたものなどが挙げられる。 As a material constituting the low refractive index material layer, a material having a refractive index of less than 1.7 can be used, and a material having a refractive index range of 1.2 or more and less than 1.7 is usually selected. Examples of such a material include resin, silica, alumina, lanthanum fluoride, magnesium fluoride and sodium hexafluoride, and a mixture thereof, and the above-mentioned material is deficient so as to have a refractive index of less than 1.7. For example, the one provided with.

高屈折率材料層と低屈折率材料層とを積層する方法については、これら材料層を積層した誘電体多層膜が形成される限り特に制限はない。例えば、前記基材上に、直接、CVD法、真空蒸着法、スパッタ法、イオンアシスト蒸着法、イオンプレーティング法、ラジカルアシストスパッタ法、イオンビームスパッタ法などにより、高屈折率材料層と低屈折率材料層とを交互に積層した誘電体多層膜を形成することができる。イオンアシスト蒸着法、イオンプレーティング法、ラジカルアシストスパッタ法は、得られる多層膜の光学膜厚が環境に応じて変化しにくい良質な膜が得られ好ましい。イオンアシスト蒸着法は得られる光学フィルターの反りが少なくさらに好ましい。 The method of laminating the high refractive index material layer and the low refractive index material layer is not particularly limited as long as a dielectric multilayer film in which these material layers are laminated is formed. For example, a high refractive index material layer and low refraction can be obtained directly on the substrate by a CVD method, a vacuum vapor deposition method, a sputtering method, an ion-assisted vapor deposition method, an ion plating method, a radical-assisted sputtering method, an ion beam sputtering method, or the like. A dielectric multilayer film in which ratio material layers are alternately laminated can be formed. The ion-assisted vapor deposition method, the ion plating method, and the radical-assisted sputtering method are preferable because a high-quality film in which the optical film thickness of the obtained multilayer film does not easily change depending on the environment can be obtained. The ion-assisted thin-film deposition method is more preferable because the obtained optical filter is less warped.

これら高屈折率材料層および低屈折率材料層の各層の厚みは、通常、遮蔽しようとする近赤外線波長をλ(nm)とすると、基材に隣接する2層および最外層以外は0.1λ〜0.5λの光学厚みが好ましい。光学厚みがこの範囲にあると、屈折率(n)と膜厚(d)との積(n×d)がλ/4で算出される光学的膜厚と高屈折率材料層および低屈折率材料層の各層の厚みとがほぼ同じ値となって、反射・屈折の光学的特性の関係から、特定波長の遮蔽・透過を容易にコントロールできる傾向にある。基材に隣接する2層は物理厚み5nm〜45nm以下であることが好ましい。また最外層は0.05〜0.2λの光学厚みが好ましい。基材に隣接する2層および最外層が上記範囲の厚みであれば、可視光の反射率を低減することができ、上記要件(Z)と合わせることで、ゴーストを低減される。 The thickness of each of these high-refractive-index material layers and low-refractive-index material layers is usually 0.1 λ except for the two layers adjacent to the base material and the outermost layer, where λ (nm) is the near-infrared wavelength to be shielded. An optical thickness of ~ 0.5λ is preferable. When the optical thickness is in this range, the product (n × d) of the refractive index (n) and the film thickness (d) is calculated by λ / 4, and the optical film thickness, the high refractive index material layer, and the low refractive index are calculated. The thickness of each layer of the material layer becomes almost the same value, and there is a tendency that the shielding / transmission of a specific wavelength can be easily controlled due to the relationship between the optical characteristics of reflection / refraction. The two layers adjacent to the base material preferably have a physical thickness of 5 nm to 45 nm or less. The outermost layer preferably has an optical thickness of 0.05 to 0.2λ. If the thickness of the two layers and the outermost layer adjacent to the base material are in the above range, the reflectance of visible light can be reduced, and ghosting can be reduced by combining with the above requirement (Z).

また、誘電体多層膜における高屈折率材料層と低屈折率材料層との合計の積層数は、5〜60層、好ましくは10〜50層であることが望ましい。
さらに、誘電体多層膜を形成した際に基材に反りが生じてしまう場合には、これを解消するために、基材両面に誘電体多層膜を形成したり、基材の誘電体多層膜を形成した面に紫外線等の電磁波を照射したりする方法等をとることができる。なお、電磁波を照射する場合、誘電体多層膜の形成中に照射してもよいし、形成後別途照射してもよい。
The total number of layers of the high-refractive index material layer and the low-refractive index material layer in the dielectric multilayer film is preferably 5 to 60 layers, preferably 10 to 50 layers.
Further, when the base material is warped when the dielectric multilayer film is formed, in order to eliminate this, a dielectric multilayer film is formed on both sides of the base material, or a dielectric multilayer film of the base material is formed. It is possible to take a method of irradiating the surface on which the surface is formed with an electromagnetic wave such as ultraviolet rays. When irradiating the electromagnetic wave, it may be irradiated during the formation of the dielectric multilayer film, or it may be irradiated separately after the formation.

しかしながら、前記特許文献1および特許文献2に記載されているような従来の設計方法では、波長751〜1200nmを遮蔽する誘電体多層膜を形成した場合、センシングに必要な波長700〜750nmの透過率も低下するおそれがある。それゆえ、要件(C)および要件(Z2)を満たす光学フィルターを得るために、誘電体多層膜は下記条件(e)を満たす設計であることが好ましい。
(e)基材に隣接する2層および最外層以外の層が、光学膜厚205nm以下の層(以下「層(e1)」ともいう。)を含まない。
However, in the conventional design method as described in Patent Document 1 and Patent Document 2, when a dielectric multilayer film that shields a wavelength of 751 to 1200 nm is formed, the transmittance at a wavelength of 700 to 750 nm required for sensing is formed. May also decrease. Therefore, in order to obtain an optical filter that satisfies the requirements (C) and (Z2), it is preferable that the dielectric multilayer film is designed to satisfy the following condition (e).
(E) The layers other than the two layers adjacent to the base material and the outermost layer do not include a layer having an optical film thickness of 205 nm or less (hereinafter, also referred to as “layer (e1)”).

ここで光学膜厚とは、物理膜厚×屈折率の物理量を表わし、屈折率は波長550nmにおける屈折率である。
屈折率の異なる層を積層した誘電体多層膜では、光学膜厚×4近傍の波長を遮蔽するように設計される。基材に隣接する2層および出射媒体に近接した最外層以外の層は、透過率を低減する遮蔽層の形成に寄与する層であることから、要件(C)を満たすために、前記層(e1)を含まないことが好ましい。
Here, the optical film thickness represents the physical quantity of the physical film thickness × the refractive index, and the refractive index is the refractive index at a wavelength of 550 nm.
A dielectric multilayer film in which layers having different refractive indexes are laminated is designed to shield wavelengths in the vicinity of the optical film thickness × 4. Since the layers other than the two layers adjacent to the base material and the outermost layer close to the emission medium are layers that contribute to the formation of the shielding layer that reduces the transmittance, the above layers (in order to satisfy the requirement (C)) It is preferable not to include e1).

要件(Z2)を満たすためには、基材の両面に形成された誘電体多層膜のいずれもが条件(e)を満たすことが好ましい。これにより、センシングに必要な波長700〜750nmの透過率が高く、かつ、波長751〜1200nmを遮蔽する光学フィルターが得られる。条件(e)における前記層(e1)の光学膜厚は、好ましくは210nm以下、より好ましくは215nm以下である。
また、要件(Z1)を満たすために、誘電体多層膜は、下記条件(f)を満たす設計であることが好ましい。
(f)基材に隣接する2層および最外層以外の層において、光学膜厚の標準偏差が6〜20nmである。
In order to satisfy the requirement (Z2), it is preferable that all of the dielectric multilayer films formed on both sides of the base material satisfy the condition (e). As a result, an optical filter having a high transmittance at a wavelength of 700 to 750 nm required for sensing and shielding a wavelength of 751 to 1200 nm can be obtained. The optical film thickness of the layer (e1) under the condition (e) is preferably 210 nm or less, more preferably 215 nm or less.
Further, in order to satisfy the requirement (Z1), the dielectric multilayer film is preferably designed to satisfy the following condition (f).
(F) The standard deviation of the optical film thickness is 6 to 20 nm in the layers other than the two layers adjacent to the base material and the outermost layer.

条件(f)を満たす誘電体多層膜の設計とすることで、要件(B)の「波長800〜1000nmの範囲において、光学フィルターの面に対して垂直方向から測定した場合の透過率の平均値が10%以下である」特性と、要件(Z1)の特性の両立が容易となる。光学フィルターが基材の両面に誘電体多層膜を有する場合、両面の誘電体多層膜のいずれもが条件(f)を満たすことがより好ましい。条件(f)における光学膜厚の標準偏差は、好ましくは6〜18nm、より好ましくは6〜16nmである。 By designing a dielectric multilayer film that satisfies the condition (f), the average value of the transmittance when measured from the direction perpendicular to the surface of the optical filter in the range of the requirement (B) "wavelength 800 to 1000 nm". Is 10% or less ”and the characteristic of the requirement (Z1) can be easily compatible with each other. When the optical filter has dielectric multilayer films on both sides of the base material, it is more preferable that all of the dielectric multilayer films on both sides satisfy the condition (f). The standard deviation of the optical film thickness under the condition (f) is preferably 6 to 18 nm, more preferably 6 to 16 nm.

[近紫外線吸収剤]
本発明で用いることができる近紫外線吸収剤は、アゾメチン系化合物、インドール系化合物、ベンゾトリアゾール系化合物、トリアジン系化合物、メロフタロシアニン系化合物、オキサゾール系化合物、ナフチルイミド系化合物、オキサジアゾール系化合物、オキサジン系化合物、オキサゾリジン系化合物、アントラセン系化合物からなる群より選ばれる少なくとも1種であることが好ましく、波長300〜420nmに少なくとも一つの吸収極大を持つことが好ましい。前記近赤外線吸収剤に加え、このような近紫外線吸収剤を含有することにより、近紫外波長領域においても入射角依存性が小さい光学フィルターを得ることができる。
[Near UV absorber]
Near-ultraviolet absorbers that can be used in the present invention include azomethine-based compounds, indol-based compounds, benzotriazole-based compounds, triazine-based compounds, merophthalocyanine-based compounds, oxazole-based compounds, naphthylimide-based compounds, and oxadiazole-based compounds. It is preferably at least one selected from the group consisting of oxazine-based compounds, oxazolidine-based compounds, and anthracene-based compounds, and it is preferable to have at least one absorption maximum at a wavelength of 300 to 420 nm. By containing such a near-ultraviolet absorber in addition to the near-infrared absorber, an optical filter having a small incident angle dependence can be obtained even in the near-ultraviolet wavelength region.

(A)アゾメチン系化合物
前記アゾメチン系化合物は、特に限定されるものではないが、例えば下記式(8)で表すことができる。
(A) Azomethine-based compound The azomethine-based compound is not particularly limited, but can be represented by, for example, the following formula (8).

Figure 2020054695
式(8)中、Ra1〜Ra5は、それぞれ独立に水素原子、ハロゲン原子、水酸基、カルボキシ基、炭素数1〜15のアルキル基、炭素数1〜9のアルコキシ基または炭素数1〜9のアルコキシカルボニル基を表す。
Figure 2020054695
In the formula (8), R a1 to R a5 independently represent a hydrogen atom, a halogen atom, a hydroxyl group, a carboxy group, an alkyl group having 1 to 15 carbon atoms, an alkoxy group having 1 to 9 carbon atoms, or an alkoxy group having 1 to 9 carbon atoms. Represents the alkoxycarbonyl group of.

(B)インドール系化合物
前記インドール系化合物は、特に限定されるものではないが、例えば下記式(9)で表すことができる。
(B) Indole-based compound The indole-based compound is not particularly limited, but can be represented by, for example, the following formula (9).

Figure 2020054695
式(9)中、Rb1〜Rb5は、それぞれ独立に水素原子、ハロゲン原子、水酸基、カルボキシ基、シアノ基、フェニル基、アラルキル基、炭素数1〜9のアルキル基、炭素数1〜9のアルコキシ基または炭素数1〜9のアルコキシカルボニル基を表す。
Figure 2020054695
In formula (9), R b1 to R b5 independently contain a hydrogen atom, a halogen atom, a hydroxyl group, a carboxy group, a cyano group, a phenyl group, an alkoxy group, an alkyl group having 1 to 9 carbon atoms, and 1 to 9 carbon atoms. Represents an alkoxy group or an alkoxycarbonyl group having 1 to 9 carbon atoms.

(C)ベンゾトリアゾール系化合物
前記ベンゾトリアゾール系化合物は、特に限定されるものではないが、例えば下記式(10)で表すことができる。
(C) Benzotriazole-based compound The benzotriazole-based compound is not particularly limited, but can be represented by, for example, the following formula (10).

Figure 2020054695
式(10)中、Rc1〜Rc3は、それぞれ独立に水素原子、ハロゲン原子、水酸基、アラルキル基、炭素数1〜9のアルキル基、炭素数1〜9のアルコキシ基、または置換基として炭素数1〜9のアルコキシカルボニル基を有する炭素数1〜9のアルキル基を表す。
Figure 2020054695
In the formula (10), R c1 to R c3 are independently hydrogen atoms, halogen atoms, hydroxyl groups, aralkyl groups, alkyl groups having 1 to 9 carbon atoms, alkoxy groups having 1 to 9 carbon atoms, or carbons as substituents. Represents an alkyl group having 1 to 9 carbon atoms having an alkoxycarbonyl group of 1 to 9.

(D)トリアジン系化合物
前記トリアジン系化合物は、特に限定されるものではないが、例えば下記式(11)、(12)または(13)で表すことができる。
(D) Triazine-based compound The triazine-based compound is not particularly limited, but can be represented by, for example, the following formulas (11), (12) or (13).

Figure 2020054695
Figure 2020054695

Figure 2020054695
Figure 2020054695

Figure 2020054695
Figure 2020054695

式(11)〜(13)中、Rd1は、独立に水素原子、炭素原子数1〜15のアルキル基、炭素原子数3〜8 のシクロアルキル基、炭素原子数3〜8のアルケニル基、炭素原子数6〜18のアリール基、炭素原子数7〜18のアルキルアリール基またはアリールアルキル基を表す。ただし、これらアルキル基、シクロアルキル基、アルケニル基、アリール基、アルキルアリール基およびアリールアルキル基は、ヒドロキシ基、ハロゲン原子、炭素原子数1〜12のアルキル基またはアルコキシ基で置換されてもよく、酸素原子、硫黄原子、カルボニル基、エステル基、アミド基またはイミノ基で中断されてもよい。また、前記置換及び中断は組み合わされてもよい。Rd2〜Rd9は、それぞれ独立に水素原子、ハロゲン原子、水酸基、炭素原子数1〜15のアルキル基、炭素原子数3〜8 のシクロアルキル基、炭素原子数3〜8のアルケニル基、炭素原子数6〜18のアリール基、炭素原子数7〜18のアルキルアリール基またはアリールアルキル基を表す。In formulas (11) to (13), R d1 is independently a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, and an alkenyl group having 3 to 8 carbon atoms. Represents an aryl group having 6 to 18 carbon atoms, an alkylaryl group having 7 to 18 carbon atoms, or an arylalkyl group. However, these alkyl groups, cycloalkyl groups, alkenyl groups, aryl groups, alkylaryl groups and arylalkyl groups may be substituted with hydroxy groups, halogen atoms, alkyl groups having 1 to 12 carbon atoms or alkoxy groups. It may be interrupted by an oxygen atom, a sulfur atom, a carbonyl group, an ester group, an amide group or an imino group. Also, the substitutions and interruptions may be combined. R d2 to R d9 are independently hydrogen atom, halogen atom, hydroxyl group, alkyl group having 1 to 15 carbon atoms, cycloalkyl group having 3 to 8 carbon atoms, alkenyl group having 3 to 8 carbon atoms, and carbon. It represents an aryl group having 6 to 18 atoms, an alkylaryl group having 7 to 18 carbon atoms, or an arylalkyl group.

(E)市販品
FewChemicals社製「S0511」、BASF社製「Lumogen(登録商標) Fviolet 570」、「Uvitex(登録商標)O B」、昭和化学工業(株)製「Hakkol RF−K」、日本化学工業(株)製「Nikkafluor EFS」、「Nikkafluor SB−conc」などが挙げられる。Exiton社製「A BS 407」、QCRSolutions Corp.社製「UV 381A 」、「UV 381B」 、「UV 382A 」、「UV 386A 」、BASF社製「TINUVIN 326」 、「TINUVIN 460」、「TINUVIN 479」、オリヱント化学(株)製「BONASORB UA3911」などを用いてもよい。
(E) Commercial products "S0511" manufactured by FewChemicals, "Lumogen (registered trademark) Fviolet 570" manufactured by BASF, "Ubitex (registered trademark) OB", "Hakkol RF-K" manufactured by Showa Chemical Industrial Co., Ltd., Japan Examples thereof include "Nikkafluor EFS" and "Nikkafluor SB-conc" manufactured by Nippon Chemical Industrial Co., Ltd. Exciton's "A BS 407", QCR Solutions Corp. "UV 381A", "UV 381B", "UV 382A", "UV 386A" manufactured by BASF, "TINUVIN 326", "TINUVIN 460", "TINUVIN 479" manufactured by BASF, "BONASORB UA3911" manufactured by Orient Chemical Co., Ltd. Etc. may be used.

<その他成分>
前記樹脂層は、本発明の効果を損なわない範囲において、さらに、酸化防止剤、分散剤、難燃剤、可塑剤、熱安定剤、光安定剤、および金属錯体系化合物等の添加剤を含有してもよい。また、上述のキャスト成形により樹脂製基材を製造する場合には、レベリング剤や消泡剤を添加することで樹脂製基材の製造を容易にすることができる。これらその他成分は、1種単独で用いてもよいし、2種以上を併用してもよい。
<Other ingredients>
The resin layer further contains additives such as antioxidants, dispersants, flame retardants, plasticizers, heat stabilizers, light stabilizers, and metal complex compounds, as long as the effects of the present invention are not impaired. You may. Further, when the resin base material is produced by the above-mentioned cast molding, the production of the resin base material can be facilitated by adding a leveling agent or a defoaming agent. These other components may be used alone or in combination of two or more.

前記酸化防止剤としては、例えば2,6−ジ−t−ブチル−4−メチルフェノール、2,2'−ジオキシ−3,3'−ジ−t−ブチル−5,5'−ジメチルジフェニルメタン、およびテトラキス[メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、1,3,5−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−1,3,5−トリアジル−2,4,6(1H,3H,5H)−トリオンなどが挙げられる。なお、これら添加剤は、樹脂製基材を製造する際に、樹脂などとともに混合してもよいし、樹脂を製造する際に添加してもよい。また、添加量は、所望の特性に応じて適宜選択されるものであるが、樹脂100質量部に対して、通常0.01〜5.0質量部、好ましくは0.05〜2.0質量部である。 Examples of the antioxidant include 2,6-di-t-butyl-4-methylphenol, 2,2'-dioxy-3,3'-di-t-butyl-5,5'-dimethyldiphenylmethane, and the like. Tetrakiss [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane, 1,3,5-tris (3,5-di-t-butyl-4-hydroxybenzyl)- 1,3,5-triazyl-2,4,6 (1H, 3H, 5H) -trion and the like can be mentioned. These additives may be mixed with a resin or the like when the resin base material is manufactured, or may be added when the resin is manufactured. The amount to be added is appropriately selected according to the desired characteristics, but is usually 0.01 to 5.0 parts by mass, preferably 0.05 to 2.0 parts by mass with respect to 100 parts by mass of the resin. It is a department.

[その他の機能膜]
本発明の光学フィルターは、本発明の効果を損なわない範囲において、機能膜を適宜設けることができる。
[Other functional membranes]
In the optical filter of the present invention, a functional film can be appropriately provided as long as the effect of the present invention is not impaired.

本発明の光学フィルターは、機能膜からなる層を1層含んでもよく、2層以上含んでもよい。本発明の光学フィルターが機能膜からなる層を2層以上含む場合には、同様の層を2層以上含んでもよいし、異なる層を2層以上含んでもよい。 The optical filter of the present invention may contain one layer made of a functional film, or may contain two or more layers. When the optical filter of the present invention contains two or more layers made of a functional film, it may contain two or more similar layers or two or more different layers.

機能膜を積層する方法としては、特に限定されないが、反射防止剤、ハードコート剤および/または帯電防止剤等のコーティング剤などを基材または近赤外線反射膜上に、溶融成形またはキャスト成形する方法等を挙げることができる。 The method of laminating the functional film is not particularly limited, but is a method of melt-molding or casting a coating agent such as an antireflection agent, a hard coating agent and / or an antistatic agent on a base material or a near-infrared reflective film. And so on.

また、前記コーティング剤は、硬化性組成物をバーコーター等で基材または近赤外線反射膜上に塗布した後、紫外線照射および/または加熱等により硬化することによっても製造することができる。得られる基材の破断強度の向上、傷つきにくさ、反りの低減などから、硬化性組成物の機能膜を有することが好ましい。 The coating agent can also be produced by applying the curable composition on a base material or a near-infrared reflective film with a bar coater or the like, and then curing the curable composition by ultraviolet irradiation and / or heating. It is preferable to have a functional film of a curable composition in order to improve the breaking strength of the obtained base material, prevent scratches, reduce warpage, and the like.

前記硬化性組成物としては、紫外線(UV)/電子線(EB)硬化型樹脂や熱硬化型樹脂などが挙げられ、具体的には、ビニル化合物類や、ウレタン系、ウレタンアクリレート系、アクリレート系、エポキシ系およびエポキシアクリレート系樹脂などが挙げられる。これらのコーティング剤を含む前記硬化性組成物としては、ビニル系、ウレタン系、ウレタンアクリレート系、アクリレート系、エポキシ系およびエポキシアクリレート系硬化性組成物などが挙げられる。 Examples of the curable composition include an ultraviolet (UV) / electron beam (EB) curable resin and a thermosetting resin, and specific examples thereof include vinyl compounds, urethane-based, urethane acrylate-based, and acrylate-based resins. , Epoxy-based and epoxy acrylate-based resins and the like. Examples of the curable composition containing these coating agents include vinyl-based, urethane-based, urethane acrylate-based, acrylate-based, epoxy-based and epoxy acrylate-based curable compositions.

前記ウレタン系もしくはウレタンアクリレート系硬化性組成物に含まれる成分としては、例えば、トリス(2−ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、ビス(2−ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート、分子内に2以上の(メタ)アクリロイル基を有するオリゴウレタン(メタ)アクリレート類を挙げることができる。これら成分は、1種単独で用いてもよいし、2種以上を併用してもよい。さらにポリウレタン(メタ)アクリレート等のオリゴマーまたはポリマーや、ポリエステル(メタ)アクリレート等のオリゴマーまたはポリマーを配合してもよい。 Examples of the components contained in the urethane-based or urethane acrylate-based curable composition include tris (2-hydroxyethyl) isocyanurate tri (meth) acrylate and bis (2-hydroxyethyl) isocyanurate di (meth) acrylate. Examples thereof include oligourethane (meth) acrylates having two or more (meth) acryloyl groups in the molecule. These components may be used alone or in combination of two or more. Further, an oligomer or polymer such as polyurethane (meth) acrylate or an oligomer or polymer such as polyester (meth) acrylate may be blended.

前記ビニル化合物類としては、例えば、酢酸ビニル、プロピオン酸ビニル、ジビニルベンゼン、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル等を挙げることができるが、これらの例示に限定されるものではない。これら成分は、1種単独で用いてもよいし、2種以上を併用してもよい。 Examples of the vinyl compounds include vinyl acetate, vinyl propionate, divinylbenzene, ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether and the like, but are not limited to these examples. No. These components may be used alone or in combination of two or more.

前記エポキシ系もしくはエポキシアクリレート系硬化性組成物に含まれる成分としては、特に限定されないが、グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート、分子内に2以上の(メタ)アクリロイル基を有するオリゴエポキシ(メタ)アクリレート類等を挙げることができる。これら成分は、1種単独で用いてもよいし、2種以上を併用してもよい。さらにポリエポキシ(メタ)アクリレート等のオリゴマーまたはポリマーを配合してもよい。 The components contained in the epoxy-based or epoxy-acrylate-based curable composition are not particularly limited, but are glycidyl (meth) acrylate, methylglycidyl (meth) acrylate, and oligo having two or more (meth) acryloyl groups in the molecule. Epoxy (meth) acrylates and the like can be mentioned. These components may be used alone or in combination of two or more. Further, an oligomer or polymer such as polyepoxy (meth) acrylate may be blended.

前記硬化性組成物の市販品としては、東洋インキ製造(株)製「LCH」、「LAS」;荒川化学工業(株)製「ビームセット」;ダイセル・サイテック(株)製「EBECRYL」、「UVACURE」;JSR(株)製「オプスター」、「デソライトZ」などが挙げられる。 Commercially available products of the curable composition include "LCH" and "LAS" manufactured by Toyo Ink Mfg. Co., Ltd .; "Beamset" manufactured by Arakawa Chemical Industry Co., Ltd .; "EBECRYL" and "EBECRYL" manufactured by Daicel Cytec Co., Ltd. UVACURE ";" Opstar "," Desolite Z "manufactured by JSR Corporation, and the like.

また、前記硬化性組成物は、重合開始剤を含んでいてもよい。前記重合開始剤としては、公知の光重合開始剤または熱重合開始剤を用いることができ、光重合開始剤と熱重合開始剤を併用してもよい。重合開始剤は、1種単独で用いてもよいし、2種以上を併用してもよい。 In addition, the curable composition may contain a polymerization initiator. As the polymerization initiator, a known photopolymerization initiator or thermal polymerization initiator can be used, and the photopolymerization initiator and the thermal polymerization initiator may be used in combination. The polymerization initiator may be used alone or in combination of two or more.

前記硬化性組成物中、重合開始剤の配合割合は、硬化性組成物の全量を100質量%とした場合、好ましくは0.1〜10質量%、より好ましくは0.5〜10質量%、さらに好ましくは1〜5質量%である。重合開始剤の配合割合が前記範囲にあると、硬化性組成物の硬化特性および取り扱い性が優れ、所望の硬度を有する反射防止膜、ハードコート膜や帯電防止膜などの機能膜を得ることができる。 The proportion of the polymerization initiator in the curable composition is preferably 0.1 to 10% by mass, more preferably 0.5 to 10% by mass, when the total amount of the curable composition is 100% by mass. More preferably, it is 1 to 5% by mass. When the blending ratio of the polymerization initiator is within the above range, it is possible to obtain a functional film such as an antireflection film, a hard coat film or an antistatic film which has excellent curability and handleability of the curable composition and has a desired hardness. can.

さらに、前記硬化性組成物には溶剤として有機溶剤を加えてもよく、有機溶剤としては、公知のものを使用することができる。有機溶剤の具体例としては、メタノール、エタノール、イソプロパノール、ブタノール、オクタノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、乳酸エチル、γ−ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のエステル類;エチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル等のエーテル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等のアミド類を挙げることができる。これら溶剤は、1種単独で用いてもよいし、2種以上を併用してもよい。 Further, an organic solvent may be added to the curable composition as a solvent, and known organic solvents can be used. Specific examples of the organic solvent include alcohols such as methanol, ethanol, isopropanol, butanol and octanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethyl acetate, butyl acetate, ethyl lactate, γ-butyrolactone and propylene. Esters such as glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate; ethers such as ethylene glycol monomethyl ether and diethylene glycol monobutyl ether; aromatic hydrocarbons such as benzene, toluene and xylene; dimethylformamide, dimethylacetamide, N- Examples thereof include amides such as methylpyrrolidone. These solvents may be used alone or in combination of two or more.

前記機能膜の厚さは、好ましくは0.1μm〜20μm、さらに好ましくは0.5μm〜10μm、特に好ましくは0.7μm〜5μmである。
また、基材と機能膜および/または近赤外線反射膜との密着性や、機能膜と近赤外線反射膜との密着性を上げる目的で、基材や機能膜の表面にコロナ処理やプラズマ処理等の表面処理をしてもよい。
The thickness of the functional film is preferably 0.1 μm to 20 μm, more preferably 0.5 μm to 10 μm, and particularly preferably 0.7 μm to 5 μm.
In addition, for the purpose of improving the adhesion between the base material and the functional film and / or the near-infrared reflective film and the adhesion between the functional film and the near-infrared reflective film, the surface of the base material and the functional film is treated with corona or plasma. Surface treatment may be performed.

上記の材料は、デジタルスチルカメラ、デジタルビデオカメラ、監視カメラ、車載用カメラ、ウェブカメラ、無人航空機等の撮像装置において、モアレや偽色を低減するためのローパスフィルタや波長板の材料として使用される場合がある。 The above materials are used as materials for low-pass filters and wavelength plates to reduce moire and false colors in imaging devices such as digital still cameras, digital video cameras, surveillance cameras, in-vehicle cameras, webcams, and unmanned aircraft. May occur.

[光学フィルターの用途]
本発明の光学フィルターは、視野角が広く、赤色の感度が高く、ゴーストを改善した特性を有する。したがって、カメラモジュールのCCDやCMOSなどの固体撮像素子の視感度補正用として有用である。特に、デジタルスチルカメラ、携帯電話用カメラ、デジタルビデオカメラ、PCカメラ、監視カメラ、自動車用カメラ、テレビ、カーナビ、携帯情報端末、パソコン、ビデオゲーム機、携帯ゲーム機、指紋認証システム、距離測定センサー、虹彩認証システム、顔認証システム、距離測定カメラ、デジタルミュージックプレーヤー等に有用である。
[Use of optical filter]
The optical filter of the present invention has a wide viewing angle, high sensitivity to red, and improved ghost characteristics. Therefore, it is useful for correcting the luminosity factor of a solid-state image sensor such as a CCD or CMOS of a camera module. In particular, digital still cameras, mobile phone cameras, digital video cameras, PC cameras, surveillance cameras, automobile cameras, TVs, car navigation systems, mobile information terminals, personal computers, video game machines, mobile game machines, fingerprint authentication systems, distance measurement sensors , Iridescent authentication system, face authentication system, distance measurement camera, digital music player, etc.

<固体撮像装置>
本発明の固体撮像装置は、本発明の光学フィルターを具備する。ここで、固体撮像装置とはCCDやCMOSなどといった固体撮像素子を備えたイメージセンサーである。固体撮像素子を構成する部材としては、シリコンフォトダイオードや有機半導体などの特定の波長の光を電荷に変換する光電変換素子が使用される。また、固体撮像素子を構成する画素には、少なくとも波長700〜750nmの近赤外線に感度を有する画素を有する。
<Solid image sensor>
The solid-state image sensor of the present invention includes the optical filter of the present invention. Here, the solid-state image sensor is an image sensor including a solid-state image sensor such as a CCD or CMOS. As a member constituting the solid-state image sensor, a photoelectric conversion element such as a silicon photodiode or an organic semiconductor that converts light having a specific wavelength into an electric charge is used. Further, the pixels constituting the solid-state image sensor include pixels having sensitivity to near infrared rays having a wavelength of at least 700 to 750 nm.

本発明の固体撮像装置には、固体撮像素子の全面に位相差フィルム、ワイヤーグリッド等の偏光子を設けてもよい。偏光素子を設けた場合、画像の位相情報が得られ、被写体の反射光を除いた像や、被写体の形状を三次元計測が可能となりより好ましい。 In the solid-state image sensor of the present invention, a polarizing element such as a retardation film or a wire grid may be provided on the entire surface of the solid-state image sensor. When the polarizing element is provided, the phase information of the image can be obtained, and the image excluding the reflected light of the subject and the shape of the subject can be three-dimensionally measured, which is more preferable.

<ワイヤーグリッド>
本発明の固体撮像素子に設けるワイヤーグリッドは、アルミニウム、ニッケル、銀、白金、タングステン、あるいはこれらの金属を含む合金等などを用いることができ、特開2017−003878号公報、特開2017−005111号公報に記載の偏光子を設けることが好ましい。
<Wire grid>
As the wire grid provided in the solid-state image sensor of the present invention, aluminum, nickel, silver, platinum, tungsten, alloys containing these metals, or the like can be used, and JP-A-2017-003878 and JP-A-2017-005111 It is preferable to provide the polarizer described in Japanese Patent Application Laid-Open No.

<カメラモジュール>
本発明のカメラモジュールは、本発明の光学フィルターを具備する。ここで、カメラモジュールとは、イメージセンサーや焦点調整機構、あるいは位相検出機構、距離測定機構等を備え、画像や距離情報を電気信号として出力する装置である。ここで、本発明の光学フィルターをカメラモジュールに用いる場合について具体的に説明する。カメラモジュール400の断面概略図9を示す。
<Camera module>
The camera module of the present invention comprises the optical filter of the present invention. Here, the camera module is a device including an image sensor, a focus adjustment mechanism, a phase detection mechanism, a distance measurement mechanism, and the like, and outputs an image or distance information as an electric signal. Here, a case where the optical filter of the present invention is used in a camera module will be specifically described. FIG. 9 is a schematic cross-sectional view of the camera module 400.

本発明の光学フィルター1の場合、垂直方向から入射する光と、フィルター1の垂直方向に対して30°から入射する光の透過波長に大きな差はない(吸収(透過)波長の入射角依存性が小さい)ため、フィルター1は、レンズ301とセンサー302の間に具備してもセンサー全体の色味変化が少ない。このため、本発明の光学フィルター1をカメラモジュールに用いる場合には、より高角度入射に対応したレンズを用いることができ、カメラモジュールの低背化が可能となる。 In the case of the optical filter 1 of the present invention, there is no large difference in the transmission wavelength of the light incident from the vertical direction and the light incident from 30 ° with respect to the vertical direction of the filter 1 (dependence of the incident angle of the absorption (transmission) wavelength). Therefore, even if the filter 1 is provided between the lens 301 and the sensor 302, the color change of the entire sensor is small. Therefore, when the optical filter 1 of the present invention is used in a camera module, a lens corresponding to a higher angle of incidence can be used, and the height of the camera module can be reduced.

[ゴースト]
本発明における画質低下を起こすゴーストとは、被写体と撮像素子間の光学部品表面または裏面で反射した光が、他の部品等に反射し、本来の撮像位置とは異なる位置の撮像素子に入射した光が原因で発生する画像不良である。
[ghost]
The ghost that causes image quality deterioration in the present invention means that the light reflected on the front surface or the back surface of the optical component between the subject and the image sensor is reflected by other components or the like and is incident on the image sensor at a position different from the original image pickup position. Image defects caused by light.

図10に示すように、光学フィルター1の表面で反射した光がレンズでさらに反射し、光学フィルター1を透過し、センサー302に入射されるとき、ゴースト304として発生する。あるいはセンサー302から反射した光が光学フィルター1の裏面でさらに反射し、センサー302に入射されるとき、ゴースト305として発生する。 As shown in FIG. 10, when the light reflected on the surface of the optical filter 1 is further reflected by the lens, passes through the optical filter 1, and is incident on the sensor 302, it is generated as a ghost 304. Alternatively, when the light reflected from the sensor 302 is further reflected by the back surface of the optical filter 1 and is incident on the sensor 302, it is generated as a ghost 305.

従来の光学フィルターは、特に波長680〜720nm近傍の反射が大きく、ゴースト発生の原因となっていた。しかし、本発明の光学フィルター1は、波長700nmにおける両面の反射率が10%以下であり、かつ、両面の(Za)の値が730nm以上であることから、波長700〜(Za)nmの反射率は50%より低いこととなる。よって波長680〜720nm近傍におけるフィルターの表面の反射が両面とも少ない。そのため、センサーに誤って入射されるゴースト304やゴースト305の発生が少なく、良好な画質が得られる。
図11はゴーストの一例である。
The conventional optical filter has a particularly large reflection near a wavelength of 680 to 720 nm, which causes ghost generation. However, since the optical filter 1 of the present invention has a reflectance of 10% or less on both sides at a wavelength of 700 nm and a (Za) value on both sides of 730 nm or more, reflection at a wavelength of 700 to (Za) nm. The rate will be lower than 50%. Therefore, the reflection on the surface of the filter in the vicinity of the wavelength of 680 to 720 nm is small on both sides. Therefore, ghosts 304 and ghosts 305 that are erroneously incident on the sensor are less likely to occur, and good image quality can be obtained.
FIG. 11 is an example of a ghost.

以下、本発明を実施例により説明するが、本発明はこれら実施例により何ら限定されるものではない。なお、「部」および「%」は、特に断りのない限り「質量部」および「質量%」を意味する。
実施例における各種物性の測定方法および評価方法は以下のとおりである。
Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to these Examples. In addition, "part" and "%" mean "part by mass" and "mass%" unless otherwise specified.
The measurement method and evaluation method of various physical properties in the examples are as follows.

<透過率>
透過率は、(株)日立ハイテクノロジーズ社製の分光光度計「U−4100」を用いて測定した。基材や光学フィルターの面に対して垂直方向から測定した場合の透過率は、図6のように光学フィルターに対し垂直に透過した無偏光光線を測定した。また、光学フィルターの面に対して垂直方向に対して30°の角度から測定した場合の透過率は、図7のようにフィルターの垂直方向に対して30°の角度で透過したP偏光光線およびS偏光光線を測定し、それらの平均より算出した。
<Transmittance>
The transmittance was measured using a spectrophotometer "U-4100" manufactured by Hitachi High-Technologies Corporation. As for the transmittance measured from the direction perpendicular to the surface of the base material and the optical filter, the unpolarized light beam transmitted perpendicularly to the optical filter was measured as shown in FIG. The transmittance when measured from an angle of 30 ° with respect to the surface of the optical filter in the direction perpendicular to the surface of the optical filter is as shown in FIG. The S-polarized rays were measured and calculated from the average of them.

なお、波長A〜Bnmの透過率の平均値は、Anm以上Bnm以下の、1nm刻みの各波長における透過率を測定し、その透過率の合計を、測定した透過率の数(波長範囲、B−A+1)で除した値により算出した。 The average value of the transmittances of wavelengths A to Bnm is obtained by measuring the transmittances at each wavelength of Annm or more and Bnm or less in 1 nm increments, and the total of the transmittances is the number of measured transmittances (wavelength range, B). It was calculated by dividing by −A + 1).

<反射率>
分光反射率は、(株)日立ハイテクノロジーズ社製の分光光度計「U−4100」を用いて、図8のように5°入射における無偏光光線の、光学フィルターの一方の面から入射した表面および裏面から反射される光の強度、ならびに、もう一方の面から入射した表面および裏面から反射される光の強度を絶対反射率測定法より測定した。
<Reflectance>
The spectral reflectance is determined by using a spectrophotometer "U-4100" manufactured by Hitachi High-Technologies Co., Ltd., as shown in FIG. 8, the surface of unpolarized light incident at 5 ° incident from one surface of the optical filter. The intensity of the light reflected from the back surface and the intensity of the light reflected from the front surface and the back surface incident from the other surface were measured by the absolute reflectance measurement method.

なお、波長A〜Bnmの反射率の平均値は、Anm以上Bnm以下の、1nm刻みの各波長における反射率を測定し、その反射率の合計を、測定した反射率の数(波長範囲、B−A+1)で除した値により算出した。 The average value of the reflectances of wavelengths A to Bnm is obtained by measuring the reflectances at each wavelength of Annm or more and Bnm or less in 1 nm increments, and the total of the reflectances is the number of measured reflectances (wavelength range, B). It was calculated by the value divided by −A + 1).

<吸収剤の評価>
吸収剤の評価は、JSR(株)社製のノルボルネン樹脂「ARTON」(屈折率1.52、ガラス転移温度160℃)100質量部に、各種吸収剤を添加し、さらに塩化メチレンを加えて、固形分が質量基準にて30%の溶液を得た。次いで、得られた溶液を平滑なガラス板上にキャスト成形し、50℃で8時間、さらに減圧下100℃で1時間乾燥後に剥離し、厚さ0.1mmの基材を得た。各種吸収剤の添加量は、得られる基材の吸収極大波長における透過率が10%となる濃度とした。得られた基材の透過率より、吸収極大波長、最短吸収極大波長、吸光度λ700、吸光度λ751、前記(Aa)と(Ab)の差の絶対値を算出した。
<Evaluation of absorbent>
For the evaluation of the absorbent, various absorbents were added to 100 parts by mass of the norbornene resin "ARTON" (refractive index 1.52, glass transition temperature 160 ° C.) manufactured by JSR Corporation, and methylene chloride was further added. A solution having a solid content of 30% on a mass basis was obtained. Next, the obtained solution was cast-molded on a smooth glass plate, dried at 50 ° C. for 8 hours, and further dried at 100 ° C. for 1 hour under reduced pressure, and then peeled off to obtain a substrate having a thickness of 0.1 mm. The amount of the various absorbents added was such that the transmittance of the obtained base material at the maximum absorption wavelength was 10%. From the transmittance of the obtained substrate, the absolute values of the absorption maximum wavelength, the shortest absorption maximum wavelength, the absorbance λ 700 , the absorbance λ 751 , and the difference between (Aa) and (Ab) were calculated.

<屈折率>
本明細書における種々の材料の屈折率は、特に指定が無い場合、波長550nmの値とした。
<Refractive index>
Unless otherwise specified, the refractive indexes of various materials in the present specification are values having a wavelength of 550 nm.

<ガラス転移温度>
エスアイアイ・ナノテクノロジーズ(株)社製の示差走査熱量計「DSC6200」を用いて、昇温速度:毎分20℃、窒素気流下で測定した。
<Glass transition temperature>
Using a differential scanning calorimeter "DSC6200" manufactured by SII Nanotechnology Co., Ltd., the temperature was measured at a heating rate of 20 ° C. per minute under a nitrogen stream.

<面内位相差R0
位相差計(王子計測機器(株)社製「KOBRA−HBR」)を用いて、実施例で得られた基材の550nmの位相差を測定し、面内位相差R0とした。
<In-plane phase difference R 0 >
Using a phase difference meter (“KOBRA-HBR” manufactured by Oji Measuring Instruments Co., Ltd.), the phase difference of the substrate obtained in the example at 550 nm was measured, and the in-plane phase difference was R 0 .

<緑の感度および近赤外線の感度評価>
光学フィルターによる可視光感度および近赤外線感度への効果として、図9(b)の構成とした撮像装置の評価に相当する数値として、光学フィルターの面から垂直方向から入射した際の波長別透過率T0(λ)および垂直方向から30度の角度で入射した波長別透過率T30(λ)を用いて以下の数式(i)〜(v)より緑画素の感度、近赤外線画素の感度を算出した。
<Evaluation of green sensitivity and near-infrared sensitivity>
As an effect of the optical filter on the visible light sensitivity and the near-infrared sensitivity, as a numerical value corresponding to the evaluation of the image pickup apparatus configured in FIG. Using T 0 (λ) and the wavelength-specific transmission T 30 (λ) incident at an angle of 30 degrees from the vertical direction, the sensitivity of green pixels and the sensitivity of near-infrared pixels can be calculated from the following equations (i) to (v). Calculated.

Figure 2020054695
Figure 2020054695

0は、太陽光線が光学フィルターの垂直方向から入射した際の緑の画素の感度を表し、具体的には、数式(i)に基づいて、光学フィルターの波長別透過率T0(λ)と、太陽光線の波長別強度I(λ)と、緑のセンサー画素の波長別感度G(λ)と、緑と近赤外線を透過する二波長領域透過フィルターの波長別透過率DT(λ)との積の1nm毎の計算値の総和として算出した。G 0 represents the sensitivity of the green pixel when the sun's rays are incident from the vertical direction of the optical filter. Specifically, based on the equation (i), the wavelength-specific transmission coefficient T 0 (λ) of the optical filter. The wavelength-specific intensity I (λ) of the sun's rays, the wavelength-specific sensitivity G (λ) of the green sensor pixel, and the wavelength-specific transmission rate DT (λ) of the two-wavelength region transmission filter that transmits green and near-infrared rays. It was calculated as the sum of the calculated values for each 1 nm of the product of.

IR0は、太陽光線が光学フィルターの垂直方向から入射した際の近赤外線の画素の感度を表し、具体的には、数式(ii)に基づいて、光学フィルターの波長別透過率T0(λ)と、太陽光線の波長別強度I(λ)と、近赤外線のセンサー画素の波長別感度IR(λ)と、緑と近赤外線を透過する二波長領域透過フィルターの波長別透過率DT(λ)との積の1nm毎の計算値の総和として、算出した。IR 0 represents the sensitivity of the near-infrared pixel when the sun's rays enter from the vertical direction of the optical filter. Specifically, based on the equation (ii), the wavelength-specific transmission coefficient T 0 (λ) of the optical filter. ), The wavelength-specific intensity I (λ) of the sun's rays, the wavelength-specific sensitivity IR (λ) of the near-infrared sensor pixel, and the wavelength-specific transmission rate DT (λ) of the two-wavelength region transmission filter that transmits green and near-infrared rays. ) And the sum of the calculated values for each 1 nm.

30は、太陽光線が光学フィルターの垂直方向から30°の角度で入射した際の緑の画素の感度を表し、具体的には、数式(iii)に基づいて、光学フィルターの波長別透過率T0(λ)と、太陽光線の波長別強度I(λ)と、緑のセンサー画素の波長別感度G(λ)と、緑と近赤外線を透過する二波長領域透過フィルターの波長別透過率DT(λ)との積の1nm毎の計算値の総和として、算出した。G 30 represents the sensitivity of the green pixel when the sun's rays are incident at an angle of 30 ° from the vertical direction of the optical filter. Specifically, based on the equation (iii), the transmission rate of the optical filter by wavelength. T 0 (λ), the wavelength-specific intensity I (λ) of the sun's rays, the wavelength-specific sensitivity G (λ) of the green sensor pixel, and the wavelength-specific transmission rate of the two-wavelength region transmission filter that transmits green and near-infrared rays. It was calculated as the sum of the calculated values for each 1 nm of the product with DT (λ).

IR30は、太陽光線が光学フィルターの垂直方向から30°の角度で入射した際の近赤外線の画素の感度を表し、具体的には、数式(iv)に基づいて、光学フィルターの波長別透過率T0(λ)と、太陽光線の波長別強度I(λ)と、近赤外線のセンサー画素の波長別感度IR(λ)と、緑と近赤外線を透過する二波長領域透過フィルターの波長別透過率DT(λ)との積の1nm毎の計算値の総和として、算出した。IR 30 represents the sensitivity of near-infrared pixels when the sun's rays enter at an angle of 30 ° from the vertical direction of the optical filter. Specifically, it is transmitted by wavelength of the optical filter based on equation (iv). Rate T 0 (λ), intensity I (λ) by wavelength of sunlight, sensitivity IR (λ) by wavelength of near-infrared sensor pixels, and wavelength of two-wavelength region transmission filter that transmits green and near-infrared It was calculated as the sum of the calculated values for each 1 nm of the product with the transmittance DT (λ).

Nは、緑画素における波長800〜1200nmのノイズ量を表し、具体的には、数式(v)に基づいて、光学フィルターの波長別透過率T0(λ)と、太陽光線の波長別強度I(λ)と、近赤外線のセンサー画素の波長別感度IR(λ)と、緑と近赤外線を透過する二波長領域透過フィルターの波長別透過率DT(λ)との積の1nm毎の計算値の総和として、算出した。G N represents the noise of wavelength 800~1200nm in the green pixel, specifically, on the basis of the formula (v), each wavelength transmittance of the optical filter T 0 and (lambda), wavelength-specific intensity of sunlight Calculation of the product of I (λ), the wavelength-specific sensitivity IR (λ) of the near-infrared sensor pixel, and the wavelength-specific transmission rate DT (λ) of the two-wavelength region transmission filter that transmits green and near-infrared, in 1 nm increments. Calculated as the sum of the values.

太陽光線の波長別強度I(λ)は、図3に示す通り、国立研究開発法人新エネルギー・産業技術総合開発機構が公開している、ある日時の岐阜の照射量データを、最大強度が1.0となるように規格化した値を用いた。緑と近赤外線の各センサー画素の波長別感度は、特開2017−216678号公報の記載に基づき、図4に示す値を用いた。 As shown in Fig. 3, the intensity I (λ) of the sun's rays by wavelength is the maximum intensity of 1 in the irradiation amount data of Gifu at a certain date and time released by the New Energy and Industrial Technology Development Organization. A value standardized to be 0.0 was used. The values shown in FIG. 4 were used for the wavelength-specific sensitivities of the green and near-infrared sensor pixels based on the description in JP-A-2017-216678.

緑と近赤外線を透過する二波長領域透過フィルターは、ガラス基材(SCHOTT社製D263、厚み0.1mm)の一方の面に、イオンアシスト真空蒸着装置を用いて、蒸着温度120℃で、表2に示す設計(0) [シリカ(SiO2:550nmの屈折率1.46)層とチタニア(TiO2:550nmの屈折率2.48)層とが交互に積層されてなるもの]の誘電体多層膜を形成することで得た。二波長領域透過フィルターの波長別透過率DT(λ)を図5に示す。The two-wavelength region transmission filter that transmits green and near-infrared light is obtained by using an ion-assisted vacuum vapor deposition apparatus on one surface of a glass substrate (D263 manufactured by SCHOTT, thickness 0.1 mm) at a vapor deposition temperature of 120 ° C. Dielectric material of design (0) [silica (SiO 2 : 550 nm refractive index 1.46) layer and titania (TiO 2 : 550 nm refractive index 2.48) layer are alternately laminated] shown in 2. Obtained by forming a multilayer film. The transmittance DT (λ) for each wavelength of the two-wavelength region transmission filter is shown in FIG.

得られた画素感度より、下記要件(Xa)および(Xb)を共に満たす光学フィルターは、緑画素において高入射角時おいても感度の変化量が少なく、人間の視感度の低い波長800〜1200nmのノイズ量が少なく、緑の感度〇とした。要件(Xa)および(Xb)を共に満たす光学フィルターでないものは、緑の感度×とした。
要件(Xa)0.8≦G30/G0≦1.2
要件(Xb)GN/G0≦ 0.05
From the obtained pixel sensitivity, an optical filter that satisfies both the following requirements (Xa) and (Xb) has a small amount of change in sensitivity even at a high incident angle in a green pixel, and has a wavelength of 800 to 1200 nm, which is low in human visual sensitivity. The amount of noise was small, and the sensitivity of green was set to 〇. Those that are not optical filters that satisfy both the requirements (Xa) and (Xb) are rated as green sensitivity ×.
Requirement (Xa) 0.8 ≤ G 30 / G 0 ≤ 1.2
Requirements (Xb) G N / G 0 ≦ 0.05

また、下記要件(Y)および(Z)を共に満たす光学フィルターは、緑画素対比の近赤外線感度が高く、また広視野角時においても近赤外線感度の変化量が少ないことから近赤外線感度〇とした。要件(Y)を満たさない場合、IR0はG0対比約5倍以上センサー感度を上げる必要があり、ノイズ量も5倍以上に増大することが予想される。また要件(Z)を満たさない場合ではIR30においてIR0対比0.2倍感度が変動する。即ち要件(Y)および(Z)を満たさない場合、太陽光源の下におけるセンシング時にIR30のノイズ量をオフセットすることが困難となる。このことから要件(Y)および(Z)を共に満たす光学フィルターでないものは近赤外線感度×とした。
要件(Y)IR0/G0が0.21以上
要件(Z) 0.8≦IR30/IR0≦1.2
In addition, an optical filter that satisfies both the following requirements (Y) and (Z) has high near-infrared sensitivity compared to green pixels, and the amount of change in near-infrared sensitivity is small even at a wide viewing angle. bottom. If the requirement (Y) is not satisfied, IR 0 needs to increase the sensor sensitivity by about 5 times or more as compared with G 0, and the amount of noise is expected to increase by 5 times or more. If the requirement (Z) is not satisfied, the sensitivity of IR 30 is 0.2 times higher than that of IR 0. That is, if the requirements (Y) and (Z) are not satisfied, it becomes difficult to offset the noise amount of IR 30 during sensing under a solar light source. For this reason, a filter that does not satisfy both the requirements (Y) and (Z) is set as near-infrared sensitivity ×.
Requirement (Y) IR 0 / G 0 is 0.21 or more Requirement (Z) 0.8 ≤ IR 30 / IR 0 ≤ 1.2

<ゴースト評価>
撮像装置(シキノハイテック社製「KBCR−M04VG」)に用いられているレンズとセンサーの間に、得られた光学フィルターを具備した撮像装置を構築した。周囲の迷光を遮蔽する環境の下、画像を横方向に5分割し左から右へ1〜5行とし、縦方向に5分割した際の上から下へ1〜5列とした場合に、ハロゲン光源(朝日分光(株)社製「ALA−100」)が2行−4列の位置となるように撮像した。その際に、1行−5列の領域に発生するゴーストにおいて、赤の感度が80以上である領域をゴーストの領域とし、その面積を評価した。1行−5列の領域の20%以下であるものをゴースト性能〇とし、20%を超えるものをゴースト性能×とした。
<Ghost evaluation>
An image pickup device equipped with the obtained optical filter was constructed between the lens and the sensor used in the image pickup device (“KBCR-M04VG” manufactured by Shikino High Tech Co., Ltd.). Halogen when the image is divided into 5 rows from left to right in 1 to 5 rows and 5 columns from top to bottom when divided into 5 in the vertical direction under an environment that shields ambient stray light. The image was taken so that the light source (“ALA-100” manufactured by Asahi Spectroscopy Co., Ltd.) was located at the position of 2 rows and 4 columns. At that time, among the ghosts generated in the regions of 1 row-5 columns, the region where the red sensitivity was 80 or more was designated as the ghost region, and the area was evaluated. The ghost performance was 0 when it was 20% or less of the area of 1 row-5 columns, and the ghost performance was × when it exceeded 20%.

[実施例1]
JSR(株)製のノルボルネン樹脂「ARTON」(屈折率1.52、ガラス転移温度160℃)100質量部に、下記式(14)で表わされる化合物(14)(吸収極大波長;887nm、前記(Aa)と(Ab)の差の絶対値:94nm、吸光度λ700/吸光度λmax:0.08、吸光度λ751/吸光度λmax:0.31)0.078質量部、およびフェノール系酸化防止剤(ADEKA社製、「アデカスタブAO−20」)0.05質量部を加え、さらに塩化メチレンを加えて溶解し、固形分が質量基準にて30%の溶液を得た。次いで、得られた溶液を平滑なガラス板上にキャスト成形し、50℃で8時間、さらに減圧下100℃で1時間乾燥後に剥離した。この樹脂フィルムを180℃で延伸することで、厚さ0.1mm、一辺が60mm、面内位相差Roが5nmである基材を得た。得られた基材の「(950−最短吸収極大波長)×色素濃度×色素媒体厚さ」は、1.3であり条件(c)を満たしていた。
[Example 1]
The compound (14) represented by the following formula (14) (absorption maximum wavelength; 887 nm, above (absorption maximum wavelength; 887 nm) was added to 100 parts by mass of the norbornene resin “ARTON” (refractive index 1.52, glass transition temperature 160 ° C.) manufactured by JSR Co., Ltd. Absolute value of difference between Aa) and (Ab): 94 nm, Absorbance λ 700 / Absorbance λ max : 0.08, Absorbance λ 751 / Absorbance λ max : 0.31) 0.078 parts by mass, and phenolic antioxidant (“Adecastab AO-20” manufactured by ADEKA) was added in an amount of 0.05 parts by mass, and methylene chloride was further added to dissolve the mixture to obtain a solution having a solid content of 30% on a mass basis. Then, the obtained solution was cast-molded on a smooth glass plate, dried at 50 ° C. for 8 hours, and further dried at 100 ° C. under reduced pressure for 1 hour, and then peeled off. By stretching this resin film at 180 ° C., a substrate having a thickness of 0.1 mm, a side of 60 mm, and an in-plane retardation Ro of 5 nm was obtained. The "(950-shortest absorption maximum wavelength) x dye concentration x dye medium thickness" of the obtained base material was 1.3, which satisfied the condition (c).

Figure 2020054695
Figure 2020054695

得られた基材の両面に、イオンアシスト真空蒸着装置を用いて、蒸着温度120℃で誘電体多層膜からなる近赤外線反射膜を、それぞれ設計(1)および設計(2)[シリカ(SiO2:550nmの屈折率1.46)層とチタニア(TiO2:550nmの屈折率2.48)層とが交互に積層されてなるもの]で形成し、厚さ0.107mmの光学フィルターを得た。前記設計(1)および設計(2)を表2に示す。なお、波長700nmでの反射率はどちらの面も10%以下であった。Using an ion-assisted vacuum vapor deposition apparatus on both sides of the obtained substrate, a near-infrared reflective film composed of a dielectric multilayer film was designed (1) and design (2) [silica (SiO 2), respectively, at a vapor deposition temperature of 120 ° C. : 550 nm refractive index 1.46) layer and titania (TiO 2 : 550 nm refractive index 2.48) layer are alternately laminated] to obtain an optical filter with a thickness of 0.107 mm. .. The design (1) and the design (2) are shown in Table 2. The reflectance at a wavelength of 700 nm was 10% or less on both surfaces.

得られた光学フィルターの透過率および反射率の測定した、前記要件(A)〜(E)および(Za)の結果を表1および図12に示す。
この光学フィルターの感度評価を行った結果、緑の感度〇、近赤外線の感度〇であった。またゴースト評価を行った結果、ゴースト性能は〇であった。得られた光学フィルターは近赤外線に感度を有する固体撮像装置に好適であった。
Tables 1 and 12 show the results of the above requirements (A) to (E) and (Za) in which the transmittance and reflectance of the obtained optical filter were measured.
As a result of evaluating the sensitivity of this optical filter, the sensitivity of green was 〇 and the sensitivity of near infrared rays was 〇. As a result of ghost evaluation, the ghost performance was 〇. The obtained optical filter was suitable for a solid-state image sensor having sensitivity to near infrared rays.

[実施例2]
実施例1における化合物(14)を下記式(15)で表わされる化合物(15)(吸収極大波長;898nm、前記(Aa)と(Ab)の差の絶対値:110nm、吸光度λ700/吸光度λmax:0.05、吸光度λ751/吸光度λmax:0.1)0.05質量部に変えた他は同様の手順で、基材を得た。得られた基材の「(950−最短吸収極大波長)×色素濃度×色素媒体厚さ」は、0.74であり条件(c)を満たしていた。
[Example 2]
The compound (14) in Example 1 is represented by the compound (15) represented by the following formula (15) (absorption maximum wavelength; 898 nm, absolute value of difference between (Aa) and (Ab): 110 nm, absorbance λ 700 / absorbance λ. A substrate was obtained in the same procedure except that max: 0.05, absorbance λ 751 / absorbance λ max : 0.1) was changed to 0.05 parts by mass. The "(950-shortest absorption maximum wavelength) x dye concentration x dye medium thickness" of the obtained base material was 0.74, which satisfied the condition (c).

Figure 2020054695
Figure 2020054695

得られた基材の両面に、イオンアシスト真空蒸着装置を用いて、蒸着温度120℃で誘電体多層膜からなる近赤外線反射膜を設計(2)[シリカ(SiO2:550nmの屈折率1.46)層とチタニア(TiO2:550nmの屈折率2.48)層とが交互に積層されてなるもの]で形成し、厚さ0.107mmの光学フィルターを得た。前記設計(2)を表2に示す。A near-infrared reflective film composed of a dielectric multilayer film was designed on both sides of the obtained substrate by using an ion-assisted vacuum vapor deposition apparatus at a vapor deposition temperature of 120 ° C. (2) [Silica (SiO 2 : Refractive index at 550 nm 1. 46) Layers and titania (TiO 2 : 550 nm refractive index 2.48) layers were alternately laminated] to obtain an optical filter with a thickness of 0.107 mm. The design (2) is shown in Table 2.

得られた光学フィルターの透過率および反射率の測定した、前記要件(A)〜(E)および(Za)の結果を表1に示す。なお、波長700nmでの反射率はどちらの面も10%以下であった。 Table 1 shows the results of the above requirements (A) to (E) and (Za) in which the transmittance and reflectance of the obtained optical filter were measured. The reflectance at a wavelength of 700 nm was 10% or less on both surfaces.

この光学フィルターの感度評価を行った結果、緑の感度〇、近赤外線の感度〇であった。またゴースト評価を行った結果、ゴースト性能は〇であった。得られた光学フィルターは近赤外線に感度を有する固体撮像装置に好適であった。 As a result of evaluating the sensitivity of this optical filter, the sensitivity of green was 〇 and the sensitivity of near infrared rays was 〇. As a result of ghost evaluation, the ghost performance was 〇. The obtained optical filter was suitable for a solid-state image sensor having sensitivity to near infrared rays.

[実施例3]
実施例1における化合物(14)を下記式(16)で表わされる化合物(16)(吸収極大波長;897nm、前記(Aa)と(Ab)の差の絶対値:134nm、吸光度λ700/吸光度λmax:0.1、吸光度λ751/吸光度λmax:0.2)0.064質量部に変えた他は同様の手順で、基材を得た。得られた基材の「(950−最短吸収極大波長)×色素濃度×色素媒体厚さ」は、0.32であり条件(c)を満たしていた。
[Example 3]
The compound (14) in Example 1 is represented by the compound (16) represented by the following formula (16) (absorption maximum wavelength; 897 nm, absolute value of difference between (Aa) and (Ab): 134 nm, absorbance λ 700 / absorbance λ. A substrate was obtained in the same procedure except that max: 0.1, absorbance λ 751 / absorbance λ max : 0.2) was changed to 0.064 parts by mass. The "(950-shortest absorption maximum wavelength) x dye concentration x dye medium thickness" of the obtained base material was 0.32, which satisfied the condition (c).

Figure 2020054695
Figure 2020054695

得られた基材の両面に、イオンアシスト真空蒸着装置を用いて、蒸着温度120℃で誘電体多層膜からなる近赤外線反射膜を設計(3)[シリカ(SiO2:550nmの屈折率1.46)層とチタニア(TiO2:550nmの屈折率2.48)層とが交互に積層されてなるもの]で形成し、厚さ0.104mmの光学フィルターを得た。前記設計(3)を表2に示す。A near-infrared reflective film composed of a dielectric multilayer film was designed on both sides of the obtained substrate by using an ion-assisted vacuum vapor deposition apparatus at a vapor deposition temperature of 120 ° C. (3) [Silica (SiO 2 : Refractive index at 550 nm 1. 46) Layers and titania (TiO 2 : 550 nm refractive index 2.48) layers were alternately laminated] to obtain an optical filter with a thickness of 0.104 mm. The design (3) is shown in Table 2.

得られた光学フィルターの透過率および反射率の測定した、前記要件(A)〜(E)および(Za)の結果を表1に示す。なお、波長700nmでの反射率はどちらの面も10%以下であった。 Table 1 shows the results of the above requirements (A) to (E) and (Za) in which the transmittance and reflectance of the obtained optical filter were measured. The reflectance at a wavelength of 700 nm was 10% or less on both surfaces.

この光学フィルターの感度評価を行った結果、緑の感度〇、近赤外線の感度〇であった。またゴースト評価を行った結果、ゴースト性能は〇であった。得られた光学フィルターは近赤外線に感度を有する固体撮像装置に好適であった。 As a result of evaluating the sensitivity of this optical filter, the sensitivity of green was 〇 and the sensitivity of near infrared rays was 〇. As a result of ghost evaluation, the ghost performance was 〇. The obtained optical filter was suitable for a solid-state image sensor having sensitivity to near infrared rays.

[実施例4]
実施例1における化合物(14)を下記式(17)で表わされる化合物(17)(吸収極大波長;844nm、前記(Aa)と(Ab)の差の絶対値:84nm、吸光度λ700/吸光度λmax:0.08、吸光度λ751/吸光度λmax:0.26)0.05質量部に変えた他は同様の手順で、基材を得た。得られた基材の「(950−最短吸収極大波長)×色素濃度×色素媒体厚さ」は、0.54であり条件(c)を満たしていた。
[Example 4]
The compound (14) in Example 1 is represented by the compound (17) represented by the following formula (17) (absorption maximum wavelength; 844 nm, absolute value of difference between (Aa) and (Ab): 84 nm, absorbance λ 700 / absorbance λ. A substrate was obtained in the same procedure except that max: 0.08, absorbance λ 751 / absorbance λ max : 0.26) 0.05 parts by mass. The "(950-shortest absorption maximum wavelength) x dye concentration x dye medium thickness" of the obtained base material was 0.54, which satisfied the condition (c).

Figure 2020054695
Figure 2020054695

得られた基材の両面に、イオンアシスト真空蒸着装置を用いて、蒸着温度120℃で誘電体多層膜からなる近赤外線反射膜を設計(3)[シリカ(SiO2:550nmの屈折率1.46)層とチタニア(TiO2:550nmの屈折率2.48)層とが交互に積層されてなるもの]で形成し、厚さ0.104mmの光学フィルターを得た。前記設計(3)を表2に示す。A near-infrared reflective film composed of a dielectric multilayer film was designed on both sides of the obtained substrate by using an ion-assisted vacuum vapor deposition apparatus at a vapor deposition temperature of 120 ° C. (3) [Silica (SiO 2 : Refractive index at 550 nm 1. 46) Layers and titania (TiO 2 : 550 nm refractive index 2.48) layers were alternately laminated] to obtain an optical filter with a thickness of 0.104 mm. The design (3) is shown in Table 2.

得られた光学フィルターの透過率および反射率の測定した、前記要件(A)〜(E)および(Za)の結果を表1に示す。なお、波長700nmでの反射率はどちらの面も10%以下であった。 Table 1 shows the results of the above requirements (A) to (E) and (Za) in which the transmittance and reflectance of the obtained optical filter were measured. The reflectance at a wavelength of 700 nm was 10% or less on both surfaces.

この光学フィルターの感度評価を行った結果、緑の感度〇、近赤外線の感度〇であった。またゴースト評価を行った結果、ゴースト性能は〇であった。得られた光学フィルターは近赤外線に感度を有する固体撮像装置に好適であった。 As a result of evaluating the sensitivity of this optical filter, the sensitivity of green was 〇 and the sensitivity of near infrared rays was 〇. As a result of ghost evaluation, the ghost performance was 〇. The obtained optical filter was suitable for a solid-state image sensor having sensitivity to near infrared rays.

[実施例5]
実施例1における化合物(14)の量を0.07質量部に変えた他は同様の手順で、基材を得た。得られた基材の「(950−最短吸収極大波長)×色素濃度×色素媒体厚さ」は、1.1であり条件(c)を満たしていた。
[Example 5]
A substrate was obtained in the same procedure except that the amount of compound (14) in Example 1 was changed to 0.07 parts by mass. The "(950-shortest absorption maximum wavelength) x dye concentration x dye medium thickness" of the obtained base material was 1.1, satisfying the condition (c).

得られた基材の両面に、イオンアシスト真空蒸着装置を用いて、蒸着温度120℃で誘電体多層膜からなる近赤外線反射膜をそれぞれ設計(4)および設計(5)[シリカ(SiO2:550nmの屈折率1.46)層とチタニア(TiO2:550nmの屈折率2.48)層とが交互に積層されてなるもの]で形成し、厚さ0.104mmの光学フィルターを得た。前記設計(4)、(5)を表2に示す。 A near-infrared reflective film composed of a dielectric multilayer film was designed (4) and design (5) [silica (SiO 2 : SiO 2:) on both sides of the obtained substrate by using an ion-assisted vacuum vapor deposition apparatus at a vapor deposition temperature of 120 ° C. It was formed of 550 nm refractive index 1.46) layers and titania (TiO 2 : 550 nm refractive index 2.48) layers alternately laminated] to obtain an optical filter having a thickness of 0.104 mm. The designs (4) and (5) are shown in Table 2.

得られた光学フィルターの透過率および反射率の測定した、前記要件(A)〜(E)および(Za)の結果を表1および図13に示す。なお、波長700nmでの反射率はどちらの面も10%以下であった。 Tables 1 and 13 show the results of the above requirements (A) to (E) and (Za) in which the transmittance and reflectance of the obtained optical filter were measured. The reflectance at a wavelength of 700 nm was 10% or less on both surfaces.

この光学フィルターの感度評価を行った結果、緑の感度〇、近赤外線の感度〇であった。またゴースト評価を行った結果、ゴースト性能は〇であった。得られた光学フィルターは近赤外線に感度を有する固体撮像装置に好適であった。 As a result of evaluating the sensitivity of this optical filter, the sensitivity of green was 〇 and the sensitivity of near infrared rays was 〇. As a result of ghost evaluation, the ghost performance was 〇. The obtained optical filter was suitable for a solid-state image sensor having sensitivity to near infrared rays.

[実施例6]
厚さ0.1mmのガラス板(SCHOTT社製D263)に、下記樹脂組成物(1)をスピンコートで塗布した後、ホットプレート上80℃で2分間加熱し、溶剤を揮発除去することで硬化層を形成した。この際、該硬化層の膜厚が0.8μm程度となるようにスピンコーターの塗布条件を調整した。
[Example 6]
The following resin composition (1) is applied to a glass plate (D263 manufactured by SCHOTT) having a thickness of 0.1 mm by spin coating, and then heated on a hot plate at 80 ° C. for 2 minutes to volatilize and remove the solvent. A layer was formed. At this time, the coating conditions of the spin coater were adjusted so that the film thickness of the cured layer was about 0.8 μm.

樹脂組成物(1):イソシアヌル酸エチレンオキサイド変性トリアクリレート(商品名:アロニックスM−315、東亜合成化学(株)製)30部、1,9−ノナンジオールジアクリレート20部、メタクリル酸20部、メタクリル酸グリシジル30部、3−グリシドキシプロピルトリメトキシシラン5部、1−ヒドロキシシクロヘキシルベンゾフェノン(商品名:IRGACURE184、チバ・スペシャリティ・ケミカル(株)製)5部及びサンエイドSI−110主剤(三新化学工業(株)製)1部を混合し、固形分濃度が50質量%になるようにプロピレングリコールモノメチルエーテルアセテートに溶解した後、孔径0.2μmのミリポアフィルタでろ過した溶液。 Resin composition (1): Isocyanurate ethylene oxide-modified triacrylate (trade name: Aronix M-315, manufactured by Toa Synthetic Chemical Co., Ltd.) 30 parts, 1,9-nonanediol diacrylate 20 parts, methacrylic acid 20 parts, 30 parts of glycidyl methacrylate, 5 parts of 3-glycidoxypropyltrimethoxysilane, 5 parts of 1-hydroxycyclohexylbenzophenone (trade name: IRGACURE184, manufactured by Ciba Specialty Chemical Co., Ltd.) and Sun Aid SI-110 main agent (Sanshin) A solution obtained by mixing 1 part (manufactured by Chemical Industry Co., Ltd.), dissolving it in propylene glycol monomethyl ether acetate so that the solid content concentration becomes 50% by mass, and then filtering it with a millipore filter having a pore size of 0.2 μm.

JSR(株)製のノルボルネン樹脂「ARTON」(屈折率1.52、ガラス転移温度160℃)100質量部に、上記式(14)で表わされる化合物(14)0.7質量部、およびフェノール系酸化防止剤(ADEKA社製「アデカスタブAO−20」)0.1質量部を加え、さらに塩化メチレンを加えて溶解し、固形分が質量基準にて10%の溶液(A)を得た。前記硬化層の上に、スピンコーターにより乾燥後の膜厚が0.01mmとなるように前記溶液(A)を塗布し、ホットプレート上80℃で30分間加熱し、溶剤を揮発除去することで、樹脂層を形成した。次いで、ガラス板側からUVコンベア式露光機を用いて露光(露光量:500mJ/cm2、照度:200mW)し、その後オーブン中210℃で5分間焼成し、ガラス基板と樹脂層からなる基材を得た。得られた基材の「(950−最短吸収極大波長)×色素濃度×色素媒体厚さ」は、1.3であり条件(c)を満たしていた。100 parts by mass of the norbornene resin "ARTON" (refractive index 1.52, glass transition temperature 160 ° C.) manufactured by JSR Co., Ltd., 0.7 parts by mass of the compound (14) represented by the above formula (14), and a phenolic compound. An antioxidant (“ADEKA STAB AO-20” manufactured by ADEKA) was added in an amount of 0.1 part by mass, and methylene chloride was further added to dissolve the mixture to obtain a solution (A) having a solid content of 10% by mass. The solution (A) is applied onto the cured layer with a spin coater so that the film thickness after drying is 0.01 mm, and the solution is heated on a hot plate at 80 ° C. for 30 minutes to volatilize and remove the solvent. , A resin layer was formed. Next, the glass plate is exposed from the glass plate side using a UV conveyor type exposure machine (exposure amount: 500 mJ / cm 2 , illuminance: 200 mW), and then baked in an oven at 210 ° C. for 5 minutes to form a base material composed of a glass substrate and a resin layer. Got The "(950-shortest absorption maximum wavelength) x dye concentration x dye medium thickness" of the obtained base material was 1.3, which satisfied the condition (c).

得られた基材の両面に、イオンアシスト真空蒸着装置を用いて、蒸着温度120℃で誘電体多層膜からなる近赤外線反射膜を、それぞれ設計(4)および設計(5)[シリカ(SiO2:550nmの屈折率1.46)層とチタニア(TiO2:550nmの屈折率2.48)層とが交互に積層されてなるもの]で形成し、厚さ0.104mmの光学フィルターを得た。前記設計(4)、(5)を表2に示す。On both sides of the obtained base material, a near-infrared reflective film composed of a dielectric multilayer film was designed (4) and design (5) [Silica (SiO 2), respectively, using an ion-assisted vacuum vapor deposition apparatus at a vapor deposition temperature of 120 ° C. : 550 nm refractive index 1.46) layer and titania (TiO 2 : 550 nm refractive index 2.48) layer are alternately laminated] to obtain an optical filter with a thickness of 0.104 mm. .. The designs (4) and (5) are shown in Table 2.

この光学フィルターの感度評価を行った結果、緑の感度〇、近赤外線の感度〇であった。またゴースト評価を行った結果、ゴースト性能は〇であった。得られた光学フィルターは近赤外線に感度を有する固体撮像装置に好適であった。 As a result of evaluating the sensitivity of this optical filter, the sensitivity of green was 〇 and the sensitivity of near infrared rays was 〇. As a result of ghost evaluation, the ghost performance was 〇. The obtained optical filter was suitable for a solid-state image sensor having sensitivity to near infrared rays.

[比較例1]
JSR(株)製のノルボルネン樹脂「ARTON」(屈折率1.52、ガラス転移温度160℃)100質量部に、QCR Solutions社製の吸収剤「NIR829A」(吸収極大波長;840nm、前記(Aa)と(Ab)の差の絶対値:90nm、吸光度λ700/吸光度λmax:0.15、吸光度λ751/吸光度λmax:0.38であり、条件(a)を満たしていない。)0.113質量部、およびフェノール系酸化防止剤(ADEKA社製、「アデカスタブAO−20」)0.05質量部を加え、さらに塩化メチレンを加えて溶解し、固形分が質量基準にて30%の溶液を得た。次いで、得られた溶液を平滑なガラス板上にキャスト成形し、50℃で8時間、さらに減圧下100℃で1時間乾燥後に剥離した。この樹脂フィルムを150℃で延伸することで、厚さ0.1mm、一辺が60mm、面内位相差Roが5nmである基材を得た。得られた基材の「(950−最短吸収極大波長)×色素濃度×色素媒体厚さ」は、1.2であり条件(c)を満たしていた。
[Comparative Example 1]
In 100 parts by mass of the norbornene resin "ARTON" (refractive index 1.52, glass transition temperature 160 ° C.) manufactured by JSR Co., Ltd., the absorbent "NIR829A" manufactured by QCR Solutions (absorption maximum wavelength; 840 nm, said (Aa)). Absolute value of the difference between (Ab) and (Ab): 90 nm, absorbance λ 700 / absorbance λ max : 0.15, absorbance λ 751 / absorbance λ max : 0.38, and condition (a) is not satisfied.) 0. 113 parts by mass and 0.05 parts by mass of a phenolic antioxidant (“Adecastab AO-20” manufactured by ADEKA) are added, and methylene chloride is further added to dissolve the solution, and the solid content is 30% on a mass basis. Got Then, the obtained solution was cast-molded on a smooth glass plate, dried at 50 ° C. for 8 hours, and further dried at 100 ° C. under reduced pressure for 1 hour, and then peeled off. By stretching this resin film at 150 ° C., a substrate having a thickness of 0.1 mm, a side of 60 mm, and an in-plane retardation Ro of 5 nm was obtained. The "(950-shortest absorption maximum wavelength) x dye concentration x dye medium thickness" of the obtained base material was 1.2, satisfying the condition (c).

得られた基材の両面に、イオンアシスト真空蒸着装置を用いて、蒸着温度120℃で誘電体多層膜からなる近赤外線反射膜を、それぞれ設計(7)および設計(6)[シリカ(SiO2:550nmの屈折率1.46)層とチタニア(TiO2:550nmの屈折率2.48)層とが交互に積層されてなるもの]で形成し、厚さ0.106mmの光学フィルターを得た。前記設計(6)および設計(7)を表2に示す。Using an ion-assisted vacuum vapor deposition apparatus on both sides of the obtained substrate, a near-infrared reflective film composed of a dielectric multilayer film was designed (7) and design (6) [Silica (SiO 2), respectively, at a vapor deposition temperature of 120 ° C. : 550 nm refractive index 1.46) layer and titania (TiO 2 : 550 nm refractive index 2.48) layer are alternately laminated] to obtain an optical filter with a thickness of 0.106 mm. .. The design (6) and the design (7) are shown in Table 2.

得られた光学フィルターの透過率および反射率の測定結果、前記要件(A)〜(E)および(Za)の結果を表1および図14に示す。なお、波長700nmでの反射率はどちらの面も10%以下であった。 The measurement results of the transmittance and the reflectance of the obtained optical filter, and the results of the above requirements (A) to (E) and (Za) are shown in Table 1 and FIG. The reflectance at a wavelength of 700 nm was 10% or less on both surfaces.

この光学フィルターの感度評価を行った結果、緑の感度は〇であったが、近赤外線の感度は×であった。また、得られた光学フィルターのゴースト評価を行った結果、ゴースト性能は〇であった。得られた光学フィルターは近赤外線に感度を有する固体撮像装置には性能不十分であった。 As a result of evaluating the sensitivity of this optical filter, the sensitivity of green was 〇, but the sensitivity of near infrared rays was ×. Moreover, as a result of ghost evaluation of the obtained optical filter, the ghost performance was 〇. The obtained optical filter had insufficient performance for a solid-state image sensor having sensitivity to near infrared rays.

[比較例2]
温度計、撹拌器、窒素導入管、側管付き滴下ロート、ディーンスターク管および冷却管を備えた500mLの5つ口フラスコに、窒素気流下、1,4−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン27.66g(0.08モル)および4,4'−ビス(4−アミノフェノキシ)ビフェニル7.38g(0.02モル)をγ−ブチロラクトン68.65g及びN,N−ジメチルアセトアミド17.16gに溶解させた。得られた溶液を、氷水バスを用いて5℃に冷却した。同温に保ちながら1,2,4,5−シクロヘキサンテトラカルボン酸二無水物22.62g(0.1モル)およびイミド化触媒としてトリエチルアミン0.50g(0.005モル)を前記溶液に一括添加した。添加終了後、180℃に昇温し、随時留出液を留去させながら、6時間還流させた。反応終了後、内温が100℃になるまで空冷した後、N,N−ジメチルアセトアミド143.6gを加えて希釈し、攪拌しながら冷却することにより、固形分濃度20質量%のポリイミド樹脂溶液264.16gを得た。このポリイミド樹脂溶液の一部を1Lのメタノール中に注ぎ入れてポリイミド樹脂を沈殿させた。濾別したポリイミド樹脂をメタノールで洗浄した後、100℃の真空乾燥機中で24時間乾燥させて白色粉末状のポリイミド樹脂を得た。得られたポリイミド樹脂のガラス転移温度310℃であった。
[Comparative Example 2]
In a 500 mL five-necked flask equipped with a thermometer, stirrer, nitrogen introduction tube, dripping funnel with side tube, Dean Stark tube and cooling tube, 1,4-bis (4-amino-α, α) under a nitrogen stream. -Dimethylbenzyl) Benzene 27.66 g (0.08 mol) and 4,4'-bis (4-aminophenoxy) biphenyl 7.38 g (0.02 mol) γ-butyrolactone 68.65 g and N, N-dimethyl It was dissolved in 17.16 g of acetoamide. The resulting solution was cooled to 5 ° C. using an ice water bath. While maintaining the same temperature, 22.62 g (0.1 mol) of 1,2,4,5-cyclohexanetetracarboxylic acid dianhydride and 0.50 g (0.005 mol) of triethylamine as an imidization catalyst were collectively added to the solution. bottom. After completion of the addition, the temperature was raised to 180 ° C., and the mixture was refluxed for 6 hours while distilling off the distillate as needed. After completion of the reaction, the mixture was air-cooled until the internal temperature reached 100 ° C., then 143.6 g of N, N-dimethylacetamide was added to dilute the reaction, and the mixture was cooled with stirring to obtain a polyimide resin solution 264 having a solid content concentration of 20% by mass. .16 g was obtained. A part of this polyimide resin solution was poured into 1 L of methanol to precipitate the polyimide resin. The polyimide resin separated by filtration was washed with methanol and then dried in a vacuum dryer at 100 ° C. for 24 hours to obtain a white powdery polyimide resin. The glass transition temperature of the obtained polyimide resin was 310 ° C.

得られたポリイミド樹脂100質量部に、前記式(4)におけるR1が水素基、R1'がメチル基、R2が水素基、R3がiso−プロピル基、R4が水素基、R5が水素基、R6がメチル基のスクアリリウム系吸収剤(吸収極大波長は770nm、前記(Aa)と(Ab)の差の絶対値:82nm、吸光度λ700/吸光度λmax:0.4、吸光度λ751/吸光度λmax:0.9であり、条件(a)を満たしていない)0.05質量部、および前記式(7−1)におけるRdi1〜Rdi8がtert−ブチル基、Rdi9〜Rdi12が水素基、アニオン(X-)がビス(トリフルオロメタンスルホニル)イミドアニオンであるジイモニウム系吸収剤(吸収極大波長;1094nm、前記(Aa)と(Ab)の差の絶対値:124nm)0.0005質量部を加え、さらにN,N−ジメチルアセトアミドを加えて溶解し、固形分が質量基準にて30%の溶液を得た。次いで、得られた溶液を平滑なガラス板上にキャスト成形し、50℃で8時間、さらに減圧下140℃で1時間乾燥後に剥離し、厚さ0.05mm、一辺が60mmの基材を得た。得られた基材の「(950−最短吸収極大波長)×色素濃度×色素媒体厚さ」は、0.45であり条件(c)を満たしていた。To 100 parts by weight of the polyimide resin obtained, the formula (4) in which R 1 is hydrogen group, R 1 'is a methyl group, R 2 is hydrogen group, R 3 is iso- propyl group, R 4 is hydrogen radical, R Squalylium-based absorber with 5 as hydrogen group and R 6 as methyl group (maximum absorption wavelength is 770 nm, absolute value of difference between (Aa) and (Ab) above: 82 nm, absorbance λ 700 / absorbance λ max : 0.4, Absorptivity λ 751 / absorbance λ max : 0.9, which does not satisfy condition (a)) 0.05 parts by mass, and Rdi1 to Rdi8 in the above formula (7-1) are tert-butyl groups, Rdi9 to Rdi12. but hydrogen groups, the anion (X -) is bis (trifluoromethanesulfonyl) imide anion in which diimonium absorber (absorption maximum wavelength; 1094Nm, the absolute value of the difference between the (Aa) and (Ab): 124 nm) 0.0005 A part by mass was added, and N, N-dimethylacetamide was further added and dissolved to obtain a solution having a solid content of 30% on a mass basis. Next, the obtained solution was cast-molded on a smooth glass plate, dried at 50 ° C. for 8 hours, and further dried at 140 ° C. under reduced pressure for 1 hour, and then peeled off to obtain a substrate having a thickness of 0.05 mm and a side of 60 mm. rice field. The “(950-shortest absorption maximum wavelength) × dye concentration × dye medium thickness” of the obtained base material was 0.45, which satisfied the condition (c).

得られた基材の両面に、重合開始剤2質量部を含むアクリレート系紫外線硬化性ハードコート剤(JSR(株)製「デソライトZ−7524」)をメチルエチルケトンにて希釈して固形分濃度を45質量%とした溶液をコーターバー(安田精機製作所製オートマチックフィルムアプリケーター、型番No.542-AB)により塗布した。これを80℃で3分間乾燥後、アイグラフィックス社製のUVコンベア紫外線硬化装置「US2−X040560Hz」を用い、窒素雰囲気化、メタルハライドランプ照度270mW/cm2、積算光量150mJ/cm2 でUV硬化させることで、樹脂フィルムの両面に厚さ1μmのハードコート層を有する、厚さ0.052mmの積層体を得た。An acrylate-based ultraviolet curable hard coat agent (“Desolite Z-7524” manufactured by JSR Corporation) containing 2 parts by mass of a polymerization initiator was diluted with methyl ethyl ketone on both sides of the obtained substrate to reduce the solid content concentration to 45. The solution in mass% was applied by a coater bar (automatic film applicator manufactured by Yasuda Seiki Seisakusho Co., Ltd., model number No. 542-AB). After drying this at 80 ° C. for 3 minutes, UV curing was performed using a UV conveyor UV curing device "US2-X040560Hz" manufactured by Eye Graphics Co., Ltd. with a nitrogen atmosphere, a metal halide lamp illuminance of 270 mW / cm 2 , and an integrated light intensity of 150 mJ / cm 2. By doing so, a laminate having a thickness of 0.052 mm having a hard coat layer having a thickness of 1 μm on both sides of the resin film was obtained.

得られた積層体の両面に、イオンアシスト真空蒸着装置を用いて、蒸着温度120℃で誘電体多層膜からなる近赤外線反射膜を、それぞれ設計(8)および設計(6)[シリカ(SiO2:550nmの屈折率1.46)層とチタニア(TiO2:550nmの屈折率2.48)層とが交互に積層されてなるもの]で形成し、厚さ0.056mmの光学フィルターを得た。前記設計(8)および設計(6)を表2に示す。On both sides of the obtained laminate, a near-infrared reflective film composed of a dielectric multilayer film was designed (8) and design (6) [Silica (SiO 2), respectively, using an ion-assisted vacuum vapor deposition apparatus at a vapor deposition temperature of 120 ° C. : 550 nm refractive index 1.46) layer and titania (TiO 2 : 550 nm refractive index 2.48) layer are alternately laminated] to obtain an optical filter with a thickness of 0.056 mm. .. The design (8) and the design (6) are shown in Table 2.

得られた光学フィルターの透過率および反射率の測定結果、前記要件(A)〜(E)および(Za)の結果を表1に示す。なお、波長700nmでの反射率はどちらの面も10%以下であった。 Table 1 shows the measurement results of the transmittance and the reflectance of the obtained optical filter, and the results of the above requirements (A) to (E) and (Za). The reflectance at a wavelength of 700 nm was 10% or less on both surfaces.

この光学フィルターの感度評価を行った結果、緑の感度は〇、近赤外線の感度は×であった。またゴースト評価を行った結果、ゴースト性能は〇であった。得られた光学フィルターは近赤外線に感度を有する固体撮像装置には性能不十分であった。 As a result of evaluating the sensitivity of this optical filter, the sensitivity of green was 〇 and the sensitivity of near infrared rays was ×. As a result of ghost evaluation, the ghost performance was 〇. The obtained optical filter had insufficient performance for a solid-state image sensor having sensitivity to near infrared rays.

[比較例3]
3Lの4つ口フラスコに2,6−ジフルオロベンゾニトリル35.12g(0.253mol)、9,9−ビス(4−ヒドロキシフェニル)フルオレン87.60g(0.250mol)、炭酸カリウム41.46g(0.300mol)、N,N−ジメチルアセトアミド(以下「DMAc」ともいう。)443gおよびトルエン111gを添加した。続いて、4つ口フラスコに温度計、撹拌機、窒素導入管付き三方コック、ディーンスターク管および冷却管を取り付けた。次いで、フラスコ内を窒素置換した後、得られた溶液を140℃で3時間反応させ、生成する水をディーンスターク管から随時取り除いた。水の生成が認められなくなったところで、徐々に温度を160℃まで上昇させ、そのままの温度で6時間反応させた。室温(25℃)まで冷却後、生成した塩をろ紙で除去し、ろ液をメタノールに投じて再沈殿させ、ろ別によりろ物(残渣)を単離した。得られたろ物を60℃で一晩真空乾燥し、ポリエーテル樹脂を得た。得られたポリエーテル樹脂の屈折率は1.60、ガラス転移温度285℃であった。
[Comparative Example 3]
35.12 g (0.253 mol) of 2,6-difluorobenzonitrile, 87.60 g (0.250 mol) of 9,9-bis (4-hydroxyphenyl) fluorene, and 41.46 g of potassium carbonate in a 3 L four-necked flask. 0.300 mol), 443 g of N, N-dimethylacetamide (hereinafter also referred to as “DMAc”) and 111 g of toluene were added. Subsequently, a thermometer, a stirrer, a three-way cock with a nitrogen introduction tube, a Dean-Stark tube and a cooling tube were attached to the four-necked flask. Then, after nitrogen substitution in the flask, the obtained solution was reacted at 140 ° C. for 3 hours, and the water produced was removed from the Dean-Stark apparatus at any time. When the formation of water was no longer observed, the temperature was gradually raised to 160 ° C., and the reaction was carried out at the same temperature for 6 hours. After cooling to room temperature (25 ° C.), the produced salt was removed with a filter paper, the filtrate was poured into methanol for reprecipitation, and the filtrate (residue) was isolated by filtration. The obtained filtrate was vacuum dried at 60 ° C. overnight to obtain a polyether resin. The obtained polyether resin had a refractive index of 1.60 and a glass transition temperature of 285 ° C.

得られたポリエーテル樹脂100質量部に、H.W.SANDS社製の吸収剤「SDB4927」(吸収極大波長;825nm、前記(Aa)と(Ab)の差の絶対値:98nm、吸光度λ700/吸光度λmax:0.1、吸光度λ751/吸光度λmax:0.3)0.05質量部を加え、さらに塩化メチレンを加えて溶解し、固形分が質量基準にて15%の溶液を得た。次いで、得られた溶液を平滑な厚さ0.1mmのガラス板(SCHOTT社製D263)上にスピンコートし、50℃で8時間、さらに減圧下150℃で1時間乾燥し、厚さ0.01mmの樹脂層を形成することにより、ガラス板と樹脂層を含む、一辺が60mmの基材を得た。得られた基材の面内位相差Roは8nmであった。100 parts by mass of the obtained polyether resin was added to H. W. Absorbent "SDB4927" manufactured by SANDS (maximum absorption wavelength; 825 nm, absolute value of difference between (Aa) and (Ab): 98 nm, absorbance λ 700 / absorbance λ max : 0.1, absorbance λ 751 / absorbance λ max : 0.3) 0.05 parts by mass was added, and methylene chloride was further added to dissolve the solution to obtain a solution having a solid content of 15% on a mass basis. Next, the obtained solution was spin-coated on a smooth glass plate having a thickness of 0.1 mm (D263 manufactured by SCHOTT), dried at 50 ° C. for 8 hours, and further dried at 150 ° C. under reduced pressure for 1 hour to obtain a thickness of 0. By forming a resin layer of 01 mm, a substrate having a side of 60 mm including a glass plate and a resin layer was obtained. The in-plane retardation Ro of the obtained base material was 8 nm.

続いて、得られた基材の両面に、イオンアシスト真空蒸着装置を用いて、蒸着温度120℃で誘電体多層膜からなる近赤外線反射膜を設計(7)および設計(6)[シリカ(SiO2:550nmの屈折率1.46)層とチタニア(TiO2:550nmの屈折率2.48)層とが交互に積層されてなるもの]で形成し、厚さ0.116mmの光学フィルターを得た。前記設計(7)および設計(6)を表2に示す。Subsequently, a near-infrared reflective film composed of a dielectric multilayer film was designed (7) and design (6) [silica (SiO) on both sides of the obtained base material by using an ion-assisted vacuum vapor deposition apparatus at a vapor deposition temperature of 120 ° C. 2 : 550 nm refractive index 1.46) layer and titania (TiO 2 : 550 nm refractive index 2.48) layer are alternately laminated] to obtain an optical filter with a thickness of 0.116 mm. rice field. The design (7) and the design (6) are shown in Table 2.

得られた光学フィルターの透過率および反射率の測定結果、前記要件(A)〜(E)および(Za)の結果を表3に示す。なお、波長700nmでの反射率はどちらの面も10%以下であった。 Table 3 shows the measurement results of the transmittance and the reflectance of the obtained optical filter, and the results of the above requirements (A) to (E) and (Za). The reflectance at a wavelength of 700 nm was 10% or less on both surfaces.

この光学フィルターの感度評価を行った結果、緑の感度は〇、近赤外線の感度は×であった。またゴースト評価を行った結果、ゴースト性能は〇であった。得られた光学フィルターは近赤外線に感度を有する固体撮像装置には性能不十分であった。 As a result of evaluating the sensitivity of this optical filter, the sensitivity of green was 〇 and the sensitivity of near infrared rays was ×. As a result of ghost evaluation, the ghost performance was 〇. The obtained optical filter had insufficient performance for a solid-state image sensor having sensitivity to near infrared rays.

[比較例4]
JSR(株)製のノルボルネン樹脂「ARTON」(屈折率1.52、ガラス転移温度160℃)100質量部に、FewChemicals社製の吸収剤「S−2084」(吸収極大波長;667nm、前記(Aa)と(Ab)の差の絶対値:26nm、吸光度λ700/吸光度λmax:0.06、吸光度λ751/吸光度λmax:0.0であり、条件(b)を満たしていない)0.0087質量部を加え、さらに塩化メチレンを加えて溶解し、固形分が質量基準にて30%の溶液を得た。次いで、得られた溶液を平滑なガラス板上にキャスト成形し、50℃で8時間、さらに減圧下140℃で3時間乾燥後に剥離し、厚さ0.1mm、一辺が60mmの基材を得た。得られた基材の「(950−最短吸収極大波長)×色素濃度×色素媒体厚さ」は、1.26であり条件(c)を満たしていた。
[Comparative Example 4]
In 100 parts by mass of the norbornene resin "ARTON" (refractive index 1.52, glass transition temperature 160 ° C.) manufactured by JSR Co., Ltd., the absorbent "S-2084" manufactured by FewChemicals (absorption maximum wavelength; 667 nm, said (Aa). ) And (Ab) are absolute values: 26 nm, absorbance λ 700 / absorbance λ max : 0.06, absorbance λ 751 / absorbance λ max : 0.0, and condition (b) is not satisfied) 0. 0087 parts by mass was added, and methylene chloride was further added and dissolved to obtain a solution having a solid content of 30% on a mass basis. Next, the obtained solution was cast-molded on a smooth glass plate, dried at 50 ° C. for 8 hours, and further dried at 140 ° C. under reduced pressure for 3 hours, and then peeled off to obtain a substrate having a thickness of 0.1 mm and a side of 60 mm. rice field. The "(950-shortest absorption maximum wavelength) x dye concentration x dye medium thickness" of the obtained base material was 1.26, which satisfied the condition (c).

続いて、得られた基材の両面に、イオンアシスト真空蒸着装置を用いて、蒸着温度120℃で誘電体多層膜からなる近赤外線反射膜を、それぞれ設計(1)および設計(9)[シリカ(SiO2:550nmの屈折率1.46)層とチタニア(TiO2:550nmの屈折率2.48)層とが交互に積層されてなるもの]で形成し、厚さ0.106mmの光学フィルターを得た。前記設計(1)および設計(9)を表2に示す。Subsequently, on both sides of the obtained base material, a near-infrared reflective film composed of a dielectric multilayer film was designed (1) and design (9) [silica, respectively, using an ion-assisted vacuum vapor deposition apparatus at a vapor deposition temperature of 120 ° C. (SiO 2 : 550 nm refractive index 1.46) layer and titania (TiO 2 : 550 nm refractive index 2.48) layer are alternately laminated] to form an optical filter with a thickness of 0.106 mm. Got The design (1) and design (9) are shown in Table 2.

得られた光学フィルターの透過率および反射率の測定結果、前記要件(A)〜(E)および(Za)の結果を表1および図15に示す。なお、波長700nmでの反射率は10%を超えていた。 The measurement results of the transmittance and the reflectance of the obtained optical filter, and the results of the above requirements (A) to (E) and (Za) are shown in Table 1 and FIG. The reflectance at a wavelength of 700 nm exceeded 10%.

この光学フィルターの感度評価を行った結果、緑の感度は〇、近赤外線の感度は×であった。またゴースト評価を行った結果、ゴースト性能は×であった。得られた光学フィルターは近赤外線に感度を有する固体撮像装置には性能不十分であった。 As a result of evaluating the sensitivity of this optical filter, the sensitivity of green was 〇 and the sensitivity of near infrared rays was ×. As a result of ghost evaluation, the ghost performance was x. The obtained optical filter had insufficient performance for a solid-state image sensor having sensitivity to near infrared rays.

[比較例5]
JSR(株)製のノルボルネン樹脂「ARTON」(屈折率1.52、ガラス転移温度160℃)100質量部に、(株)林原社製の吸収剤「SMP−54」(吸収極大波長;721nm、前記(Aa)と(Ab)の差の絶対値:65nm、吸光度λ700/吸光度λmax:0.53、吸光度λ751/吸光度λmax:0.08であり、条件(a)および(b)を満たしていない)0.05質量部を加え、さらに塩化メチレンを加えて溶解し、固形分が質量基準にて30%の溶液を得た。次いで、得られた溶液を平滑なガラス板上にキャスト成形し、50℃で3時間、さらに減圧下100℃で3時間乾燥後に剥離し、厚さ0.1mm、一辺が60mmの基材を得た。得られた基材の「(950−最短吸収極大波長)×色素濃度×色素媒体厚さ」は、1.15であり条件(c)を満たしていた。
[Comparative Example 5]
100 parts by mass of norbornene resin "ARTON" (refractive index 1.52, glass transition temperature 160 ° C) manufactured by JSR Co., Ltd., and absorbent "SMP-54" manufactured by Hayashihara Co., Ltd. (absorption maximum wavelength; 721 nm, The absolute value of the difference between (Aa) and (Ab) is 65 nm, the absorbance λ 700 / absorbance λ max : 0.53, and the absorbance λ 751 / absorbance λ max : 0.08. 0.05 parts by mass was added, and methylene chloride was further added to dissolve the mixture to obtain a solution having a solid content of 30% on a mass basis. Next, the obtained solution was cast-molded on a smooth glass plate, dried at 50 ° C. for 3 hours, and further dried at 100 ° C. under reduced pressure for 3 hours, and then peeled off to obtain a substrate having a thickness of 0.1 mm and a side of 60 mm. rice field. The "(950-shortest absorption maximum wavelength) x dye concentration x dye medium thickness" of the obtained base material was 1.15, which satisfied the condition (c).

得られた基材の両面に、イオンアシスト真空蒸着装置を用いて、蒸着温度120℃で誘電体多層膜からなる近赤外線反射膜を、それぞれ設計(2)および設計(10)[シリカ(SiO2:550nmの屈折率1.45、膜厚37〜194nm)層とチタニア(TiO2:550nmの屈折率2.45、膜厚11〜108nm)層とが交互に積層されてなるもの]で形成し、厚さ0.106mmの光学フィルターを得た。On both sides of the obtained base material, a near-infrared reflective film composed of a dielectric multilayer film was designed (2) and design (10) [Silica (SiO 2), respectively, using an ion-assisted vacuum vapor deposition apparatus at a vapor deposition temperature of 120 ° C. : 550 nm refractive index 1.45, film thickness 37-194 nm) layer and titania (TiO 2 : 550 nm refractive index 2.45, film thickness 11-108 nm) layers are alternately laminated]. , An optical filter having a thickness of 0.106 mm was obtained.

得られた光学フィルターの透過率および反射率の測定結果、前記要件(A)〜(E)および(Za)の結果を表1に示す。なお、波長700nmでの反射率は10%を超えていた。 Table 1 shows the measurement results of the transmittance and the reflectance of the obtained optical filter, and the results of the above requirements (A) to (E) and (Za). The reflectance at a wavelength of 700 nm exceeded 10%.

この光学フィルターの感度評価を行った結果、緑の感度は〇、近赤外線の感度は×であった。またゴースト評価を行った結果、ゴースト性能は×であった。得られた光学フィルターは近赤外線に感度を有する固体撮像装置には性能不十分であった。 As a result of evaluating the sensitivity of this optical filter, the sensitivity of green was 〇 and the sensitivity of near infrared rays was ×. As a result of ghost evaluation, the ghost performance was x. The obtained optical filter had insufficient performance for a solid-state image sensor having sensitivity to near infrared rays.

[比較例6]
JSR(株)製のノルボルネン樹脂「ARTON」(屈折率1.52、ガラス転移温度160℃)100質量部に、前記化合物(15)0.05質量部および下記式(18)で表わされる化合物(18)(吸収極大波長;1064nm、前記(Aa)と(Ab)の差の絶対値:139nm、吸光度λ700/吸光度λmax:0.05、吸光度λ751/吸光度λmax:0.1)0.04質量部を加え、さらに塩化メチレンを加えて溶解し、固形分が質量基準にて30%の溶液を得た。次いで、得られた溶液を平滑なガラス板上にキャスト成形し、50℃で3時間、さらに減圧下100℃で3時間乾燥後に剥離し、厚さ0.1mm、一辺が60mmの光学フィルターを得た。
[Comparative Example 6]
In addition to 100 parts by mass of the norbornene resin "ARTON" (refractive index 1.52, glass transition temperature 160 ° C.) manufactured by JSR Co., Ltd., 0.05 parts by mass of the compound (15) and the compound represented by the following formula (18) (18) 18) (Maximum absorption wavelength; 1064 nm, absolute value of difference between (Aa) and (Ab): 139 nm, absorbance λ 700 / absorbance λ max : 0.05, absorbance λ 751 / absorbance λ max : 0.1) 0 A solution having a solid content of 30% by mass was obtained by adding .04 parts by mass and further adding methylene chloride to dissolve the mixture. Next, the obtained solution was cast-molded on a smooth glass plate, dried at 50 ° C. for 3 hours, and further dried at 100 ° C. under reduced pressure for 3 hours, and then peeled off to obtain an optical filter having a thickness of 0.1 mm and a side of 60 mm. rice field.

Figure 2020054695
Figure 2020054695

得られた光学フィルターの透過率および反射率の測定結果、前記要件(A)〜(E)および(Za)の結果を表1に示す。なお、波長700nmでの反射率はどちらの面も10%以下であった。 Table 1 shows the measurement results of the transmittance and the reflectance of the obtained optical filter, and the results of the above requirements (A) to (E) and (Za). The reflectance at a wavelength of 700 nm was 10% or less on both surfaces.

この光学フィルターの感度評価を行った結果、緑の感度は×、近赤外線の感度は〇であった。また、ゴースト評価を行った結果、ゴースト性能は〇であった。得られた光学フィルターは近赤外線に感度を有する固体撮像装置には性能不十分であった。 As a result of evaluating the sensitivity of this optical filter, the sensitivity of green was × and the sensitivity of near infrared rays was 〇. In addition, as a result of ghost evaluation, the ghost performance was 〇. The obtained optical filter had insufficient performance for a solid-state image sensor having sensitivity to near infrared rays.

[比較例7]
ガラス基材(SCHOTT社製D263、厚み0.1mm)の両面に、イオンアシスト真空蒸着装置を用いて、蒸着温度120℃で誘電体多層膜を、それぞれ表2に示す設計(11)および設計(12) [シリカ(SiO2:550nmの屈折率1.46)層とチタニア(TiO2:550nmの屈折率2.48)層とが交互に積層されてなるもの]で形成することで光学フィルターを得た。得られた光学フィルターの透過率および反射率の測定結果、前記要件(A)〜(E)および(Za)の結果を表1および図16に示す。なお、波長700nmでの反射率はどちらの面も10%以下であった。
[Comparative Example 7]
Using an ion-assisted vacuum vapor deposition apparatus on both sides of a glass substrate (D263 manufactured by SCHOTT, thickness 0.1 mm), a dielectric multilayer film was formed at a vapor deposition temperature of 120 ° C., respectively, in the design (11) and design (11) shown in Table 2. 12) An optical filter is formed by forming it with [a glass (SiO 2 : 550 nm refractive index 1.46) layer and a titania (TiO 2 : 550 nm refractive index 2.48) layer alternately laminated]. Obtained. The measurement results of the transmittance and the reflectance of the obtained optical filter, and the results of the above requirements (A) to (E) and (Za) are shown in Table 1 and FIG. The reflectance at a wavelength of 700 nm was 10% or less on both surfaces.

この光学フィルターの感度評価を行った結果、緑の感度は〇、近赤外線の感度は×であった。またゴースト評価を行った結果、ゴースト性能は〇であった。得られた光学フィルターは近赤外線に感度を有する固体撮像装置には性能不十分であった。 As a result of evaluating the sensitivity of this optical filter, the sensitivity of green was 〇 and the sensitivity of near infrared rays was ×. As a result of ghost evaluation, the ghost performance was 〇. The obtained optical filter had insufficient performance for a solid-state image sensor having sensitivity to near infrared rays.

Figure 2020054695
Figure 2020054695

Figure 2020054695
Figure 2020054695

本発明の光学フィルターは、カメラモジュールのCCDやCMOSなどの波長700〜750nmの近赤外線感度を有した固体撮像素子に感度補正用として有用である。特に、デジタルスチルカメラ、携帯電話用カメラ、スマートフォン用カメラ、デジタルビデオカメラ、PCカメラ、監視カメラ、自動車用カメラ、テレビ、カーナビ、携帯情報端末、パソコン、ビデオゲーム機、携帯ゲーム機、指紋認証システム、虹彩認証システム、顔認証システム、距離測定センサー、距離測定カメラ、デジタルミュージックプレーヤー、植生センシングシステム、脳血流量センシングシステム等に有用である。 The optical filter of the present invention is useful for sensitivity correction for a solid-state image sensor having a near-infrared sensitivity with a wavelength of 700 to 750 nm, such as a CCD or CMOS of a camera module. In particular, digital still cameras, mobile phone cameras, smartphone cameras, digital video cameras, PC cameras, surveillance cameras, automobile cameras, TVs, car navigation systems, mobile information terminals, personal computers, video game machines, mobile game machines, fingerprint authentication systems. , Iridescent authentication system, face authentication system, distance measurement sensor, distance measurement camera, digital music player, vegetation sensing system, cerebral blood flow sensing system, etc.

1: 本発明に係る光学フィルターの一例
10:基材
11:支持体
12:樹脂層
13:その他の機能膜
21:近赤外線反射膜1
22:近赤外線反射膜2
201:検出器
301:レンズ
302:センサー
303:バンドパスフィルター
304:正常検出部
305:ゴースト
306:ゴースト
400:カメラモジュール
401:光源
402:ゴースト
1: Example of an optical filter according to the present invention 10: Base material 11: Support 12: Resin layer 13: Other functional film 21: Near infrared reflective film 1
22: Near infrared reflective film 2
201: Detector 301: Lens 302: Sensor 303: Bandpass filter 304: Normal detector 305: Ghost 306: Ghost 400: Camera module 401: Light source 402: Ghost

炭素数1〜12の直鎖または分岐鎖の2価のハロゲン化炭化水素基としては、ジフオロメチレン基、ジクロロメチレン基、テトラフルオロエチレン基、テトラクロロエチレン基、ヘキサフルオロトリメチレン基、ヘキサクロロトリメチレン基、ヘキサフルオロイソプロピリデン基およびヘキサクロロイソプロピリデン基等が挙げられる。 Examples of the divalent halogenated hydrocarbon group of straight chain or branched chain having 1 to 12 carbon atoms, diphenyl Le Oromechiren group, dichloromethylene group, a tetrafluoroethylene group, tetrachlorethylene group, hexafluoro trimethylene group, hexachloro trimethylene group , Hexafluoroisopropyridene group, hexachloroisopropyridene group and the like.

得られた光学フィルターの透過率および反射率の測定結果、前記要件(A)〜(E)および(Za)の結果を表に示す。なお、波長700nmでの反射率はどちらの面も10%以下であった。
Table 1 shows the measurement results of the transmittance and the reflectance of the obtained optical filter, and the results of the above requirements (A) to (E) and (Za). The reflectance at a wavelength of 700 nm was 10% or less on both surfaces.

Claims (10)

下記要件(A)〜(D)を満たすことを特徴とする光学フィルター:
(A)波長430〜580nmの範囲において、光学フィルターの面に対して垂直方向から測定した場合の透過率の平均値が75%以上である;
(B)波長800〜1000nmの範囲において、光学フィルターの面に対して垂直方向から測定した場合の透過率の平均値が10%以下である;
(C)波長700〜750nmの範囲において、光学フィルターの面に対して垂直方向から測定した場合の透過率の平均値が46%超である;
(D)波長560〜800nmの範囲において、光学フィルターの面に対して垂直方向から測定した場合の透過率が50%となる最も短い波長の値(Ya)と、光学フィルターの面に対して垂直方向から30°の角度から測定した場合の透過率が50%となる最も短い波長の値(Yb)との差の絶対値が15nm未満である。
An optical filter characterized by satisfying the following requirements (A) to (D):
(A) In the wavelength range of 430 to 580 nm, the average value of the transmittance measured from the direction perpendicular to the surface of the optical filter is 75% or more;
(B) In the wavelength range of 800 to 1000 nm, the average value of the transmittance measured from the direction perpendicular to the surface of the optical filter is 10% or less;
(C) In the wavelength range of 700 to 750 nm, the average value of the transmittance measured from the direction perpendicular to the surface of the optical filter is more than 46%;
(D) The shortest wavelength value (Ya) at which the transmittance is 50% when measured from the direction perpendicular to the surface of the optical filter in the wavelength range of 560 to 800 nm, and the value perpendicular to the surface of the optical filter. The absolute value of the difference from the shortest wavelength value (Yb) at which the transmittance is 50% when measured from an angle of 30 ° from the direction is less than 15 nm.
前記光学フィルターが、さらに下記要件(E)を満たすことを特徴とする請求項1に記載の光学フィルター:
(E)前記波長の値(Ya)が730nm以上800nm以下である。
The optical filter according to claim 1, wherein the optical filter further satisfies the following requirement (E):
(E) The wavelength value (Ya) is 730 nm or more and 800 nm or less.
近赤外線吸収剤を含有する基材と、近赤外線反射膜とを有することを特徴とする請求項1または2に記載の光学フィルター。 The optical filter according to claim 1 or 2, further comprising a base material containing a near-infrared absorber and a near-infrared reflective film. 前記近赤外線吸収剤が波長751〜950nmの範囲に吸収極大波長を有すること、および、
該吸収極大波長における前記基材の透過率が10%となる量で前記近赤外線吸収剤を含有させた場合、波長430nm以上かつ該吸収極大波長以下の範囲において前記基材の透過率が70%となる最も長い波長(Aa)と、波長580nm以上の範囲において前記基材の透過率が30%となる最も短い波長(Ab)との差の絶対値が150nm未満であることを特徴とする請求項3に記載の光学フィルター。
The near-infrared absorber has an absorption maximum wavelength in the wavelength range of 751 to 950 nm, and
When the near-infrared absorber is contained in an amount such that the transmittance of the base material at the absorption maximum wavelength is 10%, the transmittance of the base material is 70% in the range of the wavelength of 430 nm or more and the absorption maximum wavelength or less. The absolute value of the difference between the longest wavelength (Aa) and the shortest wavelength (Ab) at which the transmittance of the substrate is 30% in the wavelength range of 580 nm or more is less than 150 nm. Item 3. The optical filter according to Item 3.
前記基材が樹脂層を有し、かつ、該樹脂層が、ノルボルネン系樹脂、ポリイミド系樹脂およびポリエーテル樹脂からなる群より選ばれる少なくとも1種を含むことを特徴とする請求項3または4に記載の光学フィルター。 3. The optical filter described. 前記近赤外線吸収剤が、前記樹脂層に対して0.01〜60.0質量%の範囲で含有されていることを特徴とする請求項5に記載の光学フィルター。 The optical filter according to claim 5, wherein the near-infrared absorber is contained in the range of 0.01 to 60.0% by mass with respect to the resin layer. 前記近赤外線反射膜が誘電体多層膜であることを特徴とする請求項3〜6のいずれか1項に記載の光学フィルター。 The optical filter according to any one of claims 3 to 6, wherein the near-infrared reflective film is a dielectric multilayer film. 前記光学フィルターが、下記要件(Z1)および(Z2)を満たすことを特徴とする請求項1〜7のいずれか1項に記載の光学フィルター:
(Z1)波長700nmにおいて、光学フィルターの面に対して垂直方向から5°の角度から測定した場合の反射率が、光学フィルターのどちらの面から入射した場合においても10%以下である;
(Z2)波長600nm以上の範囲において、光学フィルターの面に対して垂直方向から5°の角度から測定した場合の反射率が50%となる600nm以上の波長の値(Za)が、光学フィルターのどちらの面から入射した場合においても730nm以上である。
The optical filter according to any one of claims 1 to 7, wherein the optical filter satisfies the following requirements (Z1) and (Z2).
(Z1) At a wavelength of 700 nm, the reflectance when measured from an angle of 5 ° perpendicular to the surface of the optical filter is 10% or less when incident from either surface of the optical filter;
(Z2) In the wavelength range of 600 nm or more, the value (Za) of the wavelength of 600 nm or more at which the reflectance is 50% when measured from an angle of 5 ° from the vertical direction with respect to the surface of the optical filter is the value (Za) of the optical filter. It is 730 nm or more when it is incident from either surface.
請求項1〜8のいずれか1項に記載の光学フィルターを具備することを特徴とする固体撮像装置。 A solid-state image sensor comprising the optical filter according to any one of claims 1 to 8. 請求項1〜8のいずれか1項に記載の光学フィルターを具備することを特徴とするカメラモジュール。 A camera module including the optical filter according to any one of claims 1 to 8.
JP2020546021A 2018-09-12 2019-09-10 Optical filter and its use Active JP7255600B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018170316 2018-09-12
JP2018170316 2018-09-12
PCT/JP2019/035476 WO2020054695A1 (en) 2018-09-12 2019-09-10 Optical filter and use thereof

Publications (2)

Publication Number Publication Date
JPWO2020054695A1 true JPWO2020054695A1 (en) 2021-08-30
JP7255600B2 JP7255600B2 (en) 2023-04-11

Family

ID=69778435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020546021A Active JP7255600B2 (en) 2018-09-12 2019-09-10 Optical filter and its use

Country Status (5)

Country Link
JP (1) JP7255600B2 (en)
KR (1) KR20210055704A (en)
CN (1) CN112585508B (en)
TW (1) TWI753299B (en)
WO (1) WO2020054695A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023535159A (en) * 2020-07-17 2023-08-16 エヴァテック・アーゲー biometric authentication system
WO2022016524A1 (en) * 2020-07-24 2022-01-27 Huawei Technologies Co., Ltd. Infrared cut filter, infrared cut lens and camera module
US20230340270A1 (en) * 2020-09-25 2023-10-26 Mitsubishi Gas Chemical Company, Inc. Cyanine compound and photoelectric conversion element
TWI817205B (en) * 2020-11-25 2023-10-01 大立光電股份有限公司 Optical lens assembly, imaging apparatus and electronic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005338395A (en) * 2004-05-26 2005-12-08 Jsr Corp Near ir ray cut-off filter and its manufacturing method
JP2014048402A (en) * 2012-08-30 2014-03-17 Kyocera Corp Optical filter member and imaging device
JP2016142891A (en) * 2015-02-02 2016-08-08 Jsr株式会社 Optical filter and apparatus using optical filter
WO2016133099A1 (en) * 2015-02-18 2016-08-25 旭硝子株式会社 Optical filter and imaging device
WO2018043564A1 (en) * 2016-08-31 2018-03-08 Jsr株式会社 Optical filter and device using optical filter
WO2018088561A1 (en) * 2016-11-14 2018-05-17 日本板硝子株式会社 Light-absorbing composition, and optical filter
WO2018155634A1 (en) * 2017-02-24 2018-08-30 株式会社オプトラン Camera structure and image capturing device
JP2019012121A (en) * 2017-06-29 2019-01-24 Agc株式会社 Optical filter and imaging device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5810604B2 (en) 2010-05-26 2015-11-11 Jsr株式会社 Near-infrared cut filter and device using near-infrared cut filter
JP6380390B2 (en) * 2013-05-29 2018-08-29 Jsr株式会社 Optical filter and apparatus using the filter
JP6451374B2 (en) 2015-02-12 2019-01-16 コニカミノルタ株式会社 Plant growth index measuring apparatus and method
TWI709767B (en) * 2015-07-28 2020-11-11 日商Jsr股份有限公司 Optical filter, ambient light sensor and electronic equipment
CN108449956A (en) * 2015-11-30 2018-08-24 Jsr株式会社 Optical filter, ambient light sensor and sensor assembly
US11163098B2 (en) * 2016-06-08 2021-11-02 Jsr Corporation Optical filter and optical sensor device
JPWO2018123676A1 (en) 2016-12-27 2019-07-11 アルプスアルパイン株式会社 Sensor module and biological information display system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005338395A (en) * 2004-05-26 2005-12-08 Jsr Corp Near ir ray cut-off filter and its manufacturing method
JP2014048402A (en) * 2012-08-30 2014-03-17 Kyocera Corp Optical filter member and imaging device
JP2016142891A (en) * 2015-02-02 2016-08-08 Jsr株式会社 Optical filter and apparatus using optical filter
WO2016133099A1 (en) * 2015-02-18 2016-08-25 旭硝子株式会社 Optical filter and imaging device
WO2018043564A1 (en) * 2016-08-31 2018-03-08 Jsr株式会社 Optical filter and device using optical filter
WO2018088561A1 (en) * 2016-11-14 2018-05-17 日本板硝子株式会社 Light-absorbing composition, and optical filter
WO2018155634A1 (en) * 2017-02-24 2018-08-30 株式会社オプトラン Camera structure and image capturing device
JP2019012121A (en) * 2017-06-29 2019-01-24 Agc株式会社 Optical filter and imaging device

Also Published As

Publication number Publication date
TW202022414A (en) 2020-06-16
JP7255600B2 (en) 2023-04-11
TWI753299B (en) 2022-01-21
WO2020054695A1 (en) 2020-03-19
CN112585508A (en) 2021-03-30
KR20210055704A (en) 2021-05-17
CN112585508B (en) 2023-02-28

Similar Documents

Publication Publication Date Title
JP7088261B2 (en) Optical filters and devices using optical filters
KR101969612B1 (en) Optical filter, solid state image-capturing device using same, and camera module using same
KR101661088B1 (en) Optical filter, solid-state image pickup device, and camera module
JP6627864B2 (en) Optical filter and device using optical filter
JP7200985B2 (en) Optical filters, camera modules and electronics
JP7255600B2 (en) Optical filter and its use
JP6380390B2 (en) Optical filter and apparatus using the filter
JP2021039369A (en) Optical filter and device having the same
JP7326993B2 (en) OPTICAL FILTER, MANUFACTURING METHOD THEREOF AND USE THEREOF
KR102619325B1 (en) Optical filter for ambient light sensor
TWI851815B (en) Optical components and camera modules
JP6939224B2 (en) Optical filters and their uses
JP2017072748A (en) Optical filter and imaging device using optical filter
JP7143881B2 (en) Optical filter and its use
JP2018159925A (en) Optical filter and use of the same
TW202304698A (en) Optical element, optical filter, solid-state imaging device, and optical sensor device wherein the optical element includes a resin layer that reduces a shoulder peak in the red to near-infrared region based on a near-infrared absorber
CN220584520U (en) Optical filter, imaging device, camera module, and optical sensor
JP2021120733A (en) Optical filter and application of the same
JP2022103108A (en) Optical filter, solid-state imaging apparatus and camera module

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230313

R150 Certificate of patent or registration of utility model

Ref document number: 7255600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150