JPWO2020054134A1 - Organic-inorganic composite material - Google Patents
Organic-inorganic composite material Download PDFInfo
- Publication number
- JPWO2020054134A1 JPWO2020054134A1 JP2020546688A JP2020546688A JPWO2020054134A1 JP WO2020054134 A1 JPWO2020054134 A1 JP WO2020054134A1 JP 2020546688 A JP2020546688 A JP 2020546688A JP 2020546688 A JP2020546688 A JP 2020546688A JP WO2020054134 A1 JPWO2020054134 A1 JP WO2020054134A1
- Authority
- JP
- Japan
- Prior art keywords
- organic
- composite material
- inorganic composite
- organosilicon compound
- silica carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910003471 inorganic composite material Inorganic materials 0.000 title claims abstract description 86
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 180
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 89
- 150000003961 organosilicon compounds Chemical class 0.000 claims abstract description 71
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims abstract description 44
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000000243 solution Substances 0.000 claims abstract description 40
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 35
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 20
- 238000005259 measurement Methods 0.000 claims abstract description 18
- 238000002835 absorbance Methods 0.000 claims abstract description 17
- 125000000524 functional group Chemical group 0.000 claims abstract description 15
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 claims abstract description 14
- 238000002156 mixing Methods 0.000 claims abstract description 11
- 239000007787 solid Substances 0.000 claims abstract description 11
- 239000011259 mixed solution Substances 0.000 claims abstract description 9
- 238000003756 stirring Methods 0.000 claims abstract description 8
- 238000004040 coloring Methods 0.000 claims abstract description 6
- 238000000870 ultraviolet spectroscopy Methods 0.000 claims abstract description 6
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 5
- 230000003287 optical effect Effects 0.000 claims abstract description 5
- 239000000843 powder Substances 0.000 claims abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- 239000003054 catalyst Substances 0.000 claims description 16
- 239000002516 radical scavenger Substances 0.000 claims description 16
- 238000012986 modification Methods 0.000 claims description 7
- 230000004048 modification Effects 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 230000000704 physical effect Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 21
- 229910000510 noble metal Inorganic materials 0.000 description 19
- 239000002904 solvent Substances 0.000 description 19
- 238000001914 filtration Methods 0.000 description 17
- 239000011148 porous material Substances 0.000 description 16
- 239000002131 composite material Substances 0.000 description 10
- 238000001179 sorption measurement Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 238000001035 drying Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 150000003377 silicon compounds Chemical class 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000002815 homogeneous catalyst Substances 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 229910001428 transition metal ion Inorganic materials 0.000 description 5
- 238000011481 absorbance measurement Methods 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000002638 heterogeneous catalyst Substances 0.000 description 4
- 125000005372 silanol group Chemical group 0.000 description 4
- 150000003624 transition metals Chemical group 0.000 description 4
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000004611 spectroscopical analysis Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- -1 thiol compounds Chemical class 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 150000004696 coordination complex Chemical class 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000000967 suction filtration Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- NRQHDLXUPYAJJK-UHFFFAOYSA-O CCC(C(C(C(OC)(OC)[SH+]O1)(C=C)O[Si](CCCS)(OC)OC)(C1(OC)[SH-]O[Si-](OC)OC)O)O Chemical compound CCC(C(C(C(OC)(OC)[SH+]O1)(C=C)O[Si](CCCS)(OC)OC)(C1(OC)[SH-]O[Si-](OC)OC)O)O NRQHDLXUPYAJJK-UHFFFAOYSA-O 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 239000002094 self assembled monolayer Substances 0.000 description 1
- 239000013545 self-assembled monolayer Substances 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical class O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- PFUVRDFDKPNGAV-UHFFFAOYSA-N sodium peroxide Chemical compound [Na+].[Na+].[O-][O-] PFUVRDFDKPNGAV-UHFFFAOYSA-N 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- ZSDSQXJSNMTJDA-UHFFFAOYSA-N trifluralin Chemical compound CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O ZSDSQXJSNMTJDA-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/08—Silica
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/18—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Catalysts (AREA)
- Silicon Compounds (AREA)
Abstract
シリカ担体を、遷移金属元素と結合する官能基とアルコキシシランとを含む有機ケイ素化合物で修飾した有機無機複合材料であって、
下記測定条件により調製された混合液から固形分を除去した溶液の紫外可視分光光度計で測定された波長400[nm]における吸光度が0.5以下であることを特徴とする有機無機複合材料は、物性を測定しなくても、吸光度測定だけで産業上有用であることを確認できるものである。
[測定条件]
<発色試薬>
金属換算パラジウム濃度が1[g/l]である酢酸パラジウムのテトラヒドロフラン(THF)溶液15[ml]
<粉体としての有機無機複合材料>
有機ケイ素化合物換算で0.147[mmol]
<混合条件>
攪拌子:長さ1[cm]、直径4[mm]
回転数:300[rpm]
混合容器:内径25[mm]円筒形密閉容器
攪拌時間:1[時間]
<分光光度計測定セル>
光路長:10[mm]
【選択図】図1An organic-inorganic composite material in which a silica carrier is modified with an organosilicon compound containing a functional group that binds to a transition metal element and an alkoxysilane.
An organic-inorganic composite material characterized in that the absorbance of a solution prepared by removing solids from a mixed solution prepared under the following measurement conditions at a wavelength of 400 [nm] measured by an ultraviolet-visible spectrophotometer is 0.5 or less. It can be confirmed that it is industrially useful only by measuring the absorbance without measuring the physical properties.
[Measurement condition]
<Coloring reagent>
A solution of palladium acetate having a metal-equivalent palladium concentration of 1 [g / l] in tetrahydrofuran (THF) 15 [ml]
<Organic-inorganic composite material as powder>
0.147 [mmol] in terms of organosilicon compound
<Mixed conditions>
Stirrer: length 1 [cm], diameter 4 [mm]
Rotation speed: 300 [rpm]
Mixing container: Inner diameter 25 [mm] Cylindrical closed container Stirring time: 1 [hour]
<Spectrophotometer measurement cell>
Optical path length: 10 [mm]
[Selection diagram] Fig. 1
Description
本発明は、シリカ担体の表面を、官能基を有する有機ケイ素化合物で修飾した有機無機複合材料に関するものである。 The present invention relates to an organic-inorganic composite material in which the surface of a silica carrier is modified with an organosilicon compound having a functional group.
シリカは有機ケイ素化合物でその表面を修飾することにより、無機酸化物材料としての化学的及び物理的特性を変化させることができ、そのような修飾をしたシリカは各種吸着や触媒用途に用いられる有機無機複合材料として知られていた。(特許文献1〜4、非特許文献1) By modifying the surface of silica with an organosilicon compound, the chemical and physical properties of the inorganic oxide material can be changed, and such modified silica is an organic material used for various adsorption and catalytic applications. It was known as an inorganic composite material. (Patent Documents 1 to 4, Non-Patent Document 1)
吸着材の用途であるスカベンジャーは、溶媒中に溶解している遷移金属イオンを有機ケイ素化合物の官能基で吸着した後、無機酸化物材料と共に濾過することで溶媒中から遷移金属イオンを分離するものである。 A scavenger, which is used as an adsorbent, separates transition metal ions from a solvent by adsorbing transition metal ions dissolved in a solvent with a functional group of an organic silicon compound and then filtering the transition metal ions together with an inorganic oxide material. Is.
このようなスカベンジャーは化学的な結合をもって遷移金属イオンを吸着することから、低濃度の遷移金属イオンを分離することが可能である。そのため、貴金属のように高価な成分を溶液中から分離する場合に特に有用である。 Since such a scavenger adsorbs a transition metal ion with a chemical bond, it is possible to separate a low concentration of the transition metal ion. Therefore, it is particularly useful when separating expensive components such as precious metals from the solution.
貴金属成分を含む溶液の例としては均一系触媒を使用した反応に使用した溶液が挙げられる。均一系触媒は溶液化した貴金属塩または貴金属錯体を触媒として使用するものである。以下、本出願において特にことわりの無い場合、貴金属塩というときは貴金属錯体を含むものとする。このような貴金属塩の濃度が高い場合には中和などの手段で溶液中の貴金属塩を沈殿させ濾過することが貴金属成分の分離における効率的な手法の一つである。しかし、このような分離手段では溶液中の貴金属を完全に分離することは困難であり、低濃度の貴金属塩が溶質として溶媒中に残ってしまう。このような低濃度の貴金属塩溶液からの貴金属成分の分離においてスカベンジャーは特に有効である。(特許文献4、非特許文献1) An example of a solution containing a noble metal component is a solution used in a reaction using a homogeneous catalyst. The homogeneous catalyst uses a solution of a noble metal salt or a noble metal complex as a catalyst. Hereinafter, unless otherwise specified in this application, the term noble metal salt shall include a noble metal complex. When the concentration of such a noble metal salt is high, it is one of the efficient methods for separating the noble metal component to precipitate and filter the noble metal salt in the solution by means such as neutralization. However, it is difficult to completely separate the noble metal in the solution by such a separation means, and a low-concentration noble metal salt remains in the solvent as a solute. Scavengers are particularly effective in separating noble metal components from such low-concentration noble metal salt solutions. (Patent Document 4, Non-Patent Document 1)
低濃度貴金属成分を含む溶液としては均一系触媒に使用した溶液に限らず、他にも不均一系の触媒製造過程で生じる洗浄溶液や、貴金属化合物そのものを製造する過程で生じる廃液なども挙げられる。スカベンジャーはこのような低濃度貴金属溶液中からの貴金属成分の分離にも広く使用されている。 The solution containing a low-concentration noble metal component is not limited to the solution used for the homogeneous catalyst, but also includes a cleaning solution produced in the process of producing a heterogeneous catalyst and a waste solution generated in the process of producing the noble metal compound itself. .. Scavengers are also widely used to separate noble metal components from such low-concentration noble metal solutions.
また、本発明のような無機担体と有機ケイ素化合物の複合材料は触媒としても知られている。このような触媒は、シリカ担体を修飾している有機ケイ素化合物の反応基に活性種となる金属成分を化学結合させ、金属成分を結合した有機無機複合材料を触媒として使用するもので、金属成分として各種錯体を使用できることから、触媒としての繰り返し使用や反応系からの触媒の分離が容易な不均一系触媒の形を取りつつも、触媒活性に優れる均一系触媒としての作用も期待できる(特許文献1〜3)。 Further, a composite material of an inorganic carrier and an organosilicon compound as in the present invention is also known as a catalyst. Such a catalyst uses an organic-inorganic composite material in which a metal component as an active species is chemically bonded to a reactive group of an organic silicon compound modifying a silica carrier and the metal component is bonded as a catalyst. Since various complexes can be used as a catalyst, it can be expected to act as a homogeneous catalyst with excellent catalytic activity while taking the form of a heterogeneous catalyst that can be easily used repeatedly as a catalyst or separated from the reaction system (Patent). Documents 1 to 3).
このようなスカベンジャーや触媒担体としての用途の他にも、溶液中から様々な成分を吸着するために使用される有機ケイ素化合物で修飾された有機無機複合材料であるが、いずれの用途においてもシリカ担体上の有機ケイ素化合物は、シリカ担体に強固に結合している必要がある。結合が弱いか、あるいは結合していない有機ケイ素化合物があると、有機ケイ素化合物が遷移金属成分等と結合した状態で溶液中に遊離してしまい、例えばスカベンジャー用途であると濾過による分離効率が低いものとなってしまう。 In addition to such uses as scavengers and catalyst carriers, it is an organoinorganic composite material modified with an organosilicon compound used for adsorbing various components from a solution, but silica is used in all of these uses. The organosilicon compound on the carrier needs to be tightly bound to the silica carrier. If there is an organosilicon compound with a weak bond or no bond, the organosilicon compound is released in the solution in a state of being bonded to a transition metal component or the like, and for example, in the case of scavenger use, the separation efficiency by filtration is low. It becomes a thing.
このように、産業用に使用される有機無機複合材料では、有機ケイ素化合物がシリカ担体に強固に結合している必要があるが、有機無機複合材料の修飾に使用される有機ケイ素化合物は、修飾の前後でその構造を大きく変化させるものでは無いこともあり、その結合の強弱、すなわち性能の良否を使用前に特定することは困難であった。 As described above, in the organic-inorganic composite material used for industrial purposes, the organosilicon compound needs to be firmly bonded to the silica carrier, but the organosilicon compound used for modifying the organic-inorganic composite material is modified. Since the structure does not change significantly before and after, it was difficult to identify the strength of the bond, that is, the quality of the performance before use.
また、シリカは担体として高い物理的な吸着能力を有することが知られている。有機無機複合材料では、有機ケイ素化合物がシリカ担体表面で化学結合をすることで、その結合は強固なものになるが、物理結合であっても相当に強固な担持状態が維持される。そのため、担持過程における濾過や洗浄程度では、濾液や洗浄液への有機ケイ素化合物の溶出に差が見られないことがある。 In addition, silica is known to have a high physical adsorption capacity as a carrier. In the organic-inorganic composite material, the organosilicon compound chemically bonds on the surface of the silica carrier to strengthen the bond, but even if it is a physical bond, a considerably strong supporting state is maintained. Therefore, there may be no difference in the elution of the organosilicon compound into the filtrate or the washing liquid in the degree of filtration or washing in the supporting process.
このように、シリカ担体に対して有機ケイ素化合物が強固に結合された有機無機複合材料は産業上優れた作用を期待されるものであるが、実際に製造し、その物性を測定してみないと産業上有用であるかどうか判断がつかなかった。 In this way, an organoinorganic composite material in which an organosilicon compound is firmly bonded to a silica carrier is expected to have excellent industrial action, but it is not actually manufactured and its physical properties are not measured. I couldn't judge whether it was industrially useful.
本発明の課題は、高価な分析装置や複雑な手段による解析や測定をしなくても、吸光度測定だけで産業上有用であることを確認することができる有機無機複合材料を得ることである。 An object of the present invention is to obtain an organic-inorganic composite material that can be confirmed to be industrially useful only by absorbance measurement without analysis or measurement by an expensive analyzer or complicated means.
本発明者は、上記課題を解決するため鋭意検討を行った結果、シリカ担体を、遷移金属元素と結合する官能基とアルコキシシランとを含む有機ケイ素化合物で修飾した有機無機複合材料であって、この有機無機複合材料を含む溶液の紫外可視分光光度計で測定された吸光度が特定の範囲である場合に、物性を測定してみなくても、スカベンジャーや触媒等として産業上有用であることを見出し、本発明を完成させた。また、本発明者は前記有機無機複合材料が、前記修飾前のシリカ担体の含水量が特定の範囲である場合に製造できることを見出し、本発明を完成させた。 As a result of diligent studies to solve the above problems, the present inventor is an organic-inorganic composite material in which a silica carrier is modified with an organic silicon compound containing a functional group that binds to a transition metal element and an alkoxysilane. When the absorbance of the solution containing this organic-inorganic composite material measured by an ultraviolet-visible spectrophotometer is within a specific range, it is industrially useful as a scavenger, catalyst, etc. without measuring the physical properties. Find out and complete the present invention. Further, the present inventor has found that the organic-inorganic composite material can be produced when the water content of the silica carrier before modification is within a specific range, and completed the present invention.
すわなち、本発明は、シリカ担体を、遷移金属元素と結合する官能基とアルコキシシランとを含む有機ケイ素化合物で修飾した有機無機複合材料であって、
下記測定条件により調製された混合液から固形分を除去した溶液の紫外可視分光光度計で測定された波長400[nm]における吸光度が0.5以下であることを特徴とする有機無機複合材料である。
[測定条件]
<発色試薬>
金属換算パラジウム濃度が1[g/l]である酢酸パラジウムのテトラヒドロフラン溶液15[ml]
<粉体としての有機無機複合材料>
有機ケイ素化合物換算で0.147[mmol]
<混合条件>
攪拌子:長さ1[cm]、直径4[mm]
回転数:300[rpm]
混合容器:内径25[mm]円筒形密閉容器
攪拌時間:1[時間]
<分光光度計測定セル>
光路長:10[mm]That is, the present invention is an organic-inorganic composite material in which a silica carrier is modified with an organosilicon compound containing a functional group that binds to a transition metal element and an alkoxysilane.
An organic-inorganic composite material characterized in that the absorbance of a solution prepared by removing solids from a mixed solution prepared under the following measurement conditions at a wavelength of 400 [nm] measured by an ultraviolet-visible spectrophotometer is 0.5 or less. be.
[Measurement condition]
<Coloring reagent>
Tetrahydrofuran solution of palladium acetate having a metal-equivalent palladium concentration of 1 [g / l] 15 [ml]
<Organic-inorganic composite material as powder>
0.147 [mmol] in terms of organosilicon compound
<Mixed conditions>
Stirrer: length 1 [cm], diameter 4 [mm]
Rotation speed: 300 [rpm]
Mixing container: Inner diameter 25 [mm] Cylindrical closed container Stirring time: 1 [hour]
<Spectrophotometer measurement cell>
Optical path length: 10 [mm]
また、本発明は、シリカ担体を、遷移金属元素と結合する官能基とアルコキシシランとを含む有機ケイ素化合物で修飾して有機無機複合材料を製造するにあたり、
修飾前のシリカ担体の含水量が、シリカ担体の質量換算で、0.15wt%以上であることを特徴とする上記有機無機複合材料の製造方法である。Further, in the present invention, in producing an organic-inorganic composite material by modifying a silica carrier with an organosilicon compound containing a functional group that binds to a transition metal element and an alkoxysilane.
The method for producing an organic-inorganic composite material, wherein the water content of the silica carrier before modification is 0.15 wt% or more in terms of mass of the silica carrier.
更に、本発明は上記有機無機複合材料を含むスカベンジャーである。 Furthermore, the present invention is a scavenger containing the organic-inorganic composite material.
また、本発明は、更に、遷移金属元素を含むものである上記有機無機複合材料およびこれを含む触媒である。 Further, the present invention is the above-mentioned organic-inorganic composite material containing a transition metal element and a catalyst containing the same.
本発明の有機無機複合材料は、有機ケイ素化合物がシリカ担体上に強固に結合し、遷移金属元素との結合も強固に行えるため、高価な分析装置や複雑な手段による解析を測定してみなくても産業上有用なものである。 In the organic-inorganic composite material of the present invention, the organosilicon compound is strongly bonded to the silica carrier and can be strongly bonded to the transition metal element. Therefore, it is necessary to measure the analysis by an expensive analyzer or complicated means. However, it is industrially useful.
従って、本発明の有機無機複合材料は、スカベンジャーとして吸着した遷移金属元素を濾過により高効率に分離可能である。 Therefore, the organic-inorganic composite material of the present invention can separate the transition metal element adsorbed as a scavenger with high efficiency by filtration.
また、本発明の有機無機複合材料は、予め遷移金属元素と結合させておけば、触媒として、不均一系触媒のような再利用や反応系からの分離が容易になる。また、本発明の有機無機複合材料は、上記遷移金属元素として、メタルとしての金属ではなく、より高活性が期待できる金属イオンを強固に結合することができるため、均一系触媒のような高活性も期待できる。 Further, if the organic-inorganic composite material of the present invention is bonded to a transition metal element in advance, it can be easily reused as a catalyst such as a heterogeneous catalyst or separated from the reaction system. In addition, the organic-inorganic composite material of the present invention can firmly bond metal ions, which are expected to have higher activity, as the transition metal element instead of a metal as a metal, and thus have high activity like a homogeneous catalyst. Can also be expected.
本発明の有機無機複合材料は、シリカ担体を、遷移金属元素と結合する官能基とアルコキシシランとを含む有機ケイ素化合物で修飾した有機無機複合材料である。 The organic-inorganic composite material of the present invention is an organic-inorganic composite material in which a silica carrier is modified with an organosilicon compound containing a functional group that binds to a transition metal element and an alkoxysilane.
本発明の有機無機複合材料に使用されるシリカ担体としては、以下のものが挙げられる。 Examples of the silica carrier used in the organic-inorganic composite material of the present invention include the following.
[シリカ担体形状]
本発明の有機無機複合材料は、有機ケイ素化合物が担体としてのシリカ表面のシラノール基を修飾するものであることから、その形状は特に限定されるものでは無く、球状、円柱状、円筒状など成型された幾何学的な形状を有するものであっても良く、円筒状についてはその空間が任意の形状の壁により仕切られていても良い。また、このような成型担体のみならず粉体やゲル状のシリカであっても良い。[Silica carrier shape]
Since the organosilicon compound modifies the silanol group on the surface of silica as a carrier, the shape of the organoinorganic composite material of the present invention is not particularly limited, and it is molded into a spherical shape, a cylindrical shape, a cylindrical shape, or the like. It may have a geometric shape, and for a cylindrical shape, the space may be partitioned by a wall having an arbitrary shape. Further, not only such a molded carrier but also powder or gel-like silica may be used.
シリカ担体の形状については前記のとおり限定されるものではないが、本発明の有機無機複合材料をスカベンジャーとして使用する場合、その形状は球状であることが好ましい。球状であることで、反応系からの濾別に際して目詰まりを起こし難く迅速な分離が可能になり作業時間が短縮され産業上有利な形状である。 The shape of the silica carrier is not limited as described above, but when the organic-inorganic composite material of the present invention is used as a scavenger, the shape is preferably spherical. The spherical shape makes it less likely to cause clogging when filtering from the reaction system, enables quick separation, shortens the working time, and is an industrially advantageous shape.
球状シリカ担体を使用する場合、その大きさは特に限定されるものでは無く、使用する用途に応じて適宜選択すれば良いが、本発明の有機無機複合材料をスカベンジャーとして使用する場合、その粒子径は体積基準の累積10%粒子径(D10径)が30〜100μmであることが好ましく、50〜100μmがより好ましい。粒径が有る程度大きなことで濾過を効率的に行うことが可能であり、粒径が大きすぎないことで単位体積あたり、またバルクな状態における重量あたりの幾何学的な表面積が広くなり、多くの有機ケイ素化合物を担持することができ、吸着対象成分の単位重量、単位体積あたりの吸着できる成分の量も多くなる。なお、この球状シリカの直径はレーザ回折式粒度分布測定装置で測定される値である。 When a spherical silica carrier is used, its size is not particularly limited and may be appropriately selected depending on the intended use. However, when the organic-inorganic composite material of the present invention is used as a scavenger, its particle size The cumulative 10% particle diameter (D10 diameter) on a volume basis is preferably 30 to 100 μm, more preferably 50 to 100 μm. If the particle size is large enough, filtration can be performed efficiently, and if the particle size is not too large, the geometric surface area per unit volume and per weight in the bulk state becomes large, and many of them are present. The organic silicon compound can be supported, and the unit weight of the component to be adsorbed and the amount of the component that can be adsorbed per unit volume also increase. The diameter of the spherical silica is a value measured by a laser diffraction type particle size distribution measuring device.
[シリカ物性]
本発明に使用されるシリカの物性も、本発明の有機無機複合材料を使用する環境に応じて適宜選択するもので特に限定されるものではなく、不均一系触媒用の担体として一般的に使用される物性であっても良い。比表面積値、細孔容積、細孔径等が挙げられる。[Silica physical characteristics]
The physical characteristics of the silica used in the present invention are not particularly limited as they are appropriately selected according to the environment in which the organic-inorganic composite material of the present invention is used, and are generally used as a carrier for a heterogeneous catalyst. It may be a physical characteristic to be used. Specific surface area value, pore volume, pore diameter and the like can be mentioned.
シリカ担体比表面積については200〜1,500m2/gであることが好ましく、500〜1,000m2/gであることがより好ましい。高比表面積値であることは有機ケイ素化合物を修飾可能な担体重量あたりの面積が広いことになり遷移金属を吸着能力が高くなる。また、比表面積値が大きすぎないことで担体としての安定性に優れ、担体表面に修飾される有機ケイ素化合物の密度も最適化し易くなる。なお、シリカ担体比表面積は窒素ガス吸着法で測定される値である。Preferably from 200~1,500m 2 / g for the silica support specific surface area, more preferably 500~1,000m 2 / g. A high specific surface area value means that the area per weight of the carrier on which the organosilicon compound can be modified is large, and the ability to adsorb transition metals is high. Further, since the specific surface area value is not too large, the stability as a carrier is excellent, and the density of the organosilicon compound modified on the surface of the carrier can be easily optimized. The specific surface area of the silica carrier is a value measured by the nitrogen gas adsorption method.
細孔容積については0.3〜5mL/gであることが好ましく、0.8〜2mL/gであることがより好ましい。平均細孔径については2〜20nmであることが好ましく、3〜10nmであることがより好ましい。なお、細孔容積と平均細孔径は窒素ガス吸着法で測定される値である。 The pore volume is preferably 0.3 to 5 mL / g, more preferably 0.8 to 2 mL / g. The average pore diameter is preferably 2 to 20 nm, more preferably 3 to 10 nm. The pore volume and the average pore diameter are values measured by the nitrogen gas adsorption method.
[シリカ担体の含水量]
通常工業的に入手可能なシリカ担体には水分が含まれる。シリカ担体に水分が含まれる理由は様々であるが、シリカ担体が有する細孔に由来した毛細管凝縮作用が挙げられる。毛細管凝縮を有することで、製造工程や保管中の雰囲気中の水分を吸収してしまう。言い換えると、製造工程や保管中の湿度が高いときは細孔が吸着する水蒸気の量が増え、乾燥時には細孔に吸着される水蒸気の量は少なくなる。特に乾燥時には細孔に吸着されている水分も放出されシリカ担体が含有する含水量が減少する。[Water content of silica carrier]
Silica carriers that are usually industrially available contain moisture. There are various reasons why the silica carrier contains water, and examples thereof include a capillary condensing action derived from the pores of the silica carrier. Having capillary condensation absorbs moisture in the atmosphere during the manufacturing process and storage. In other words, when the humidity during the manufacturing process or storage is high, the amount of water vapor adsorbed by the pores increases, and when drying, the amount of water vapor adsorbed by the pores decreases. In particular, during drying, the water adsorbed in the pores is also released, and the water content contained in the silica carrier decreases.
本発明に使用されるシリカ担体の含水量は、本発明の有機無機複合材料を製造する上で重要であり、修飾前のシリカ担体の質量換算で、0.15wt%以上が好ましく、0.15〜3wt%がより好ましく、0.2〜2wt%が最も好ましい。シリカの含水量は、乾燥、水への浸漬等の常法に従って調整することが可能である。このように好適な含水量が存在する理由は定かではないが、有機ケイ素化合物によるシリカ担体の表面修飾において形成されるシラノール基に対する影響があるのではないかと考えられ、特に低含水量時において、このような影響が大きいのではないかと推測される。なお、含水量が多すぎるとシリカ担体表面が水分子で被覆されてしまっていて有機ケイ素化合物による修飾が困難になる場合があったり、シリカ担体自体が凝集してしまって有機ケイ素化合物によるシリカ担体表面への修飾が不均一になったりすることがある。 The water content of the silica carrier used in the present invention is important in producing the organic-inorganic composite material of the present invention, and is preferably 0.15 wt% or more, preferably 0.15 wt% or more in terms of mass of the silica carrier before modification. ~ 3 wt% is more preferable, and 0.2 to 2 wt% is most preferable. The water content of silica can be adjusted according to conventional methods such as drying and immersion in water. The reason why such a suitable water content exists is not clear, but it is considered that there may be an influence on the silanol groups formed by the surface modification of the silica carrier by the organosilicon compound, especially at the time of low water content. It is speculated that such an influence may be large. If the water content is too high, the surface of the silica carrier may be coated with water molecules, making it difficult to modify with the organosilicon compound, or the silica carrier itself may aggregate and the silica carrier with the organosilicon compound may be aggregated. The surface modification may be non-uniform.
また、含水量の測定方法も常法に従って行うことが可能であり、例えば、シリカ担体を加熱乾燥し、その前後の重量差をもって特定することが可能である。なお、本発明においては、110℃、16時間乾燥処理を施した前後のシリカ担体の質量差をもって特定された含水量をシリカ担体の含水量としている。 Further, the method for measuring the water content can also be carried out according to a conventional method. For example, the silica carrier can be heat-dried and specified by the weight difference before and after that. In the present invention, the water content specified by the mass difference of the silica carriers before and after the drying treatment at 110 ° C. for 16 hours is defined as the water content of the silica carrier.
本発明の有機無機複合材料に使用される、シリカ担体を修飾する、遷移金属元素と結合する官能基とアルコキシシランとを含む有機ケイ素化合物としては、以下のものが挙げられる。 Examples of the organosilicon compound used in the organic-inorganic composite material of the present invention, which modifies the silica carrier and contains a functional group bonded to a transition metal element and an alkoxysilane, include the following.
[有機ケイ素化合物]
有機ケイ素化合物としては、シリカ担体表面に化学結合可能で、遷移金属元素と結合する官能基とアルコキシシランとを含む有機ケイ素化合物であれば特に限定されず、市場から入手可能な公知の化合物で良い。[Organosilicon compound]
The organosilicon compound is not particularly limited as long as it is an organosilicon compound that can be chemically bonded to the surface of the silica carrier and contains a functional group that bonds with a transition metal element and an alkoxysilane, and any known compound available on the market may be used. ..
遷移金属元素と結合する官能基としては、特に限定されるものではなく、例えば、ビニル基、エポキシ基、スチリル基、メタクリル基、アクリル基、アミノ基、ウレイド基、イソシアネート基、チオール基等が挙げられる。このうち、チオール基は金、銀、銅、白金、パラジウム、水銀など様々な金属表面で自己組織化単分子膜を形成する官能基としても知られており、遷移金属元素のスカベンジャー用途等においても好ましいものであるといえる。 The functional group bonded to the transition metal element is not particularly limited, and examples thereof include a vinyl group, an epoxy group, a styryl group, a methacryl group, an acrylic group, an amino group, a ureido group, an isocyanate group, and a thiol group. Be done. Of these, the thiol group is also known as a functional group that forms a self-assembled monolayer on the surface of various metals such as gold, silver, copper, platinum, palladium, and mercury, and is also used in scavenger applications for transition metal elements. It can be said that it is preferable.
また、アルコキシシランとしては、シリカ担体上のSi元素とシロキサン結合(Si−O−Si)可能であるものであれば特に限定されるものではなく、例えば、メトキシ基、エトキシ基、ジアルコキシ基、トリアルコキシ基等が挙げられる。このうち、メトキシ基を有するものは安価に市場から入手可能であり、本発明の用途に対しては価格競争力に優れたものであるが、一方でシリカ担体への結合性に劣る場合がある。本発明によれば、シリカ担体に強固に結合されていない有機ケイ素化合物で修飾された有機無機複合材料を容易な手法で選別することが可能であり、スカベンジャー等の用途に適した有機無機複合材料を提供することができる。 The alkoxysilane is not particularly limited as long as it can form a siloxane bond (Si—O—Si) with the Si element on the silica carrier. For example, a methoxy group, an ethoxy group, a dialkoxy group, etc. Examples thereof include a trialkoxy group. Of these, those having a methoxy group are inexpensively available on the market and are excellent in price competitiveness for the applications of the present invention, but on the other hand, they may be inferior in bondability to silica carriers. .. According to the present invention, it is possible to select an organic-inorganic composite material modified with an organosilicon compound that is not firmly bonded to a silica carrier by an easy method, and the organic-inorganic composite material suitable for applications such as scavengers can be selected. Can be provided.
好ましい有機ケイ素化合物としては、例えば、下記式(III)および(IV)から選ばれるチオール化合物が挙げられる。 Preferred organosilicon compounds include, for example, thiol compounds selected from the following formulas (III) and (IV).
これらのチオール化合物の中でも下記式(I)である3−メルカプトプロピルトリメトキシシランが好ましい。
このような有機ケイ素化合物でシリカ担体を修飾することにより、下記式(II)の構造を有する有機無機複合材料となる。有機無機複合材料にこのような構造がある場合、Si3+がシリカ担体上の3つのSi元素とシロキサン結合(Si−O−Si)してシリカ担体に強固に担持される。
上記したシリカ担体を、遷移金属元素と結合する官能基とアルコキシシランとを含む有機ケイ素化合物で修飾する方法としては以下のものが挙げられる。 Examples of the method for modifying the above-mentioned silica carrier with an organosilicon compound containing a functional group that binds to a transition metal element and an alkoxysilane include the following.
[シリカ担体の修飾方法]
シリカ担体を、遷移金属元素と結合する官能基とアルコキシシランとを含む有機ケイ素化合物で修飾する方法は、有機ケイ素化合物とシリカ担体表面のシラノール基とをシロキサン結合をもって結合させる方法であれば特に限定されないが、例えば、溶媒中でシリカ担体と有機ケイ素化合物を混合する方法等が挙げられる。[Method for modifying silica carrier]
The method of modifying the silica carrier with an organosilicon compound containing a functional group for binding to a transition metal element and an alkoxysilane is particularly limited as long as it is a method for bonding the organosilicon compound and a silanol group on the surface of the silica carrier with a siloxane bond. However, for example, a method of mixing the silica carrier and the organosilicon compound in a solvent can be mentioned.
上記溶媒としては、例えば、トルエン、キシレン等の芳香族炭化水素類、ペンタン、ヘキサン等の脂肪族飽和炭化水素類、メタノール、エタノール等のアルコール類等の有機溶媒等が挙げられる。これらの溶媒は1種または2種以上を組み合わせても良い。このとき、溶媒とシリカ担体の比は任意に選択することができるが、溶媒が少なすぎるとシリカ担体と有機ケイ素化合物が混合されにくくなり、逆に溶媒が多すぎると溶媒中の有機ケイ素化合物の濃度が希薄となるため結合させるのに長時間が必要となる。このため溶媒とシリカ担体の比は体積比で好ましくは1:10から100:1である。 Examples of the solvent include aromatic hydrocarbons such as toluene and xylene, aliphatic saturated hydrocarbons such as pentane and hexane, and organic solvents such as alcohols such as methanol and ethanol. These solvents may be used alone or in combination of two or more. At this time, the ratio of the solvent to the silica carrier can be arbitrarily selected, but if the solvent is too small, it becomes difficult to mix the silica carrier and the organosilicon compound, and conversely, if the solvent is too large, the organosilicon compound in the solvent Since the concentration is diluted, it takes a long time to combine. Therefore, the ratio of the solvent to the silica carrier is preferably 1:10 to 100: 1 in terms of volume ratio.
有機ケイ素化合物とシリカ担体の比は任意に選択することができるが、有機ケイ素化合物が少なすぎると有機無機複合材料上の有機ケイ素化合物の濃度が希薄となってしまうし、逆に多すぎてもシリカ担体の表面に結合できない有機ケイ素化合物が増えるため、好ましくは体積比で1:1000から100:1である。混合の際、室温のままでも可能であるが加熱しても良い。ここで加熱をする場合、その温度は特に限定されるものではないが、90〜150℃であることが好ましく、110〜130℃であることがより好ましい。加熱によりシリカ担体の修飾に要する時間が短縮でき、製造に要するエネルギーコストの低減が図れる。また、加熱し過ぎないことで有機ケイ素化合物の構造が保たれ、シリカ担体に修飾した有機ケイ素化合物の量に見合った金属の吸着性能を発揮できる。有機ケイ素化合物は、前記のように溶剤中でシリカ担体と混合されることで、シリカ担体が有機ケイ素化合物で修飾された有機無機複合材料となる。 The ratio of the organosilicon compound to the silica carrier can be arbitrarily selected, but if the amount of the organosilicon compound is too small, the concentration of the organosilicon compound on the organoinorganic composite material becomes diluted, and conversely, if it is too large. Since the number of organosilicon compounds that cannot be bonded to the surface of the silica carrier increases, the volume ratio is preferably 1: 1000 to 100: 1. At the time of mixing, it is possible to keep it at room temperature, but it may be heated. When heating is performed here, the temperature is not particularly limited, but is preferably 90 to 150 ° C, more preferably 110 to 130 ° C. By heating, the time required for modifying the silica carrier can be shortened, and the energy cost required for production can be reduced. Further, by not heating too much, the structure of the organosilicon compound is maintained, and the adsorption performance of the metal corresponding to the amount of the organosilicon compound modified on the silica carrier can be exhibited. The organosilicon compound is mixed with the silica carrier in the solvent as described above to obtain an organic-inorganic composite material in which the silica carrier is modified with the organosilicon compound.
溶媒と混合された状態の有機無機複合材料には、後工程として必要に応じて溶媒からの混合溶液からの分離、洗浄、乾燥を施しても良い。このような後工程において適用される手法は特に限定されるものではなく、広く当業者において実施されている手法の中から選択的に用いれば良い。例えば、分離であれば遠心分離や自然濾過、吸引濾過のような物理濾過であっても良く、これらを組み合わせても良い。洗浄であれば分離後の沈殿物や濾物を有機ケイ素化合物とシリカ担体との混合に使用した溶媒と混合することによる洗浄でも良く、濾過にあたって溶媒を供給することで洗浄しても良く、これらを組み合わせても良い。乾燥であれば自然乾燥でも良く、更に送風して乾燥を促進してもよく、加熱乾燥でも良く、減圧乾燥でも良く、これらを組み合わせても良い。また、分離や乾燥工程を経ることで有機無機複合材料が凝固してしまうことがあるが、必要に応じて解砕、粉砕処理を施しても良い。 The organic-inorganic composite material mixed with the solvent may be separated from the mixed solution from the solvent, washed, and dried as a subsequent step, if necessary. The method applied in such a post-process is not particularly limited, and may be selectively used from the methods widely practiced by those skilled in the art. For example, in the case of separation, physical filtration such as centrifugation, natural filtration, or suction filtration may be used, or a combination of these may be used. In the case of washing, the precipitate or filter after separation may be washed by mixing with the solvent used for mixing the organic silicon compound and the silica carrier, or may be washed by supplying a solvent for filtration. May be combined. As long as it is dried, it may be naturally dried, may be further blown to promote drying, may be heat-dried, may be vacuum-dried, or may be combined. In addition, the organic-inorganic composite material may solidify through the separation and drying steps, but it may be crushed and crushed if necessary.
このようにして得られる本発明の有機無機複合材料は、シリカ担体と有機ケイ素化合物の結合強度が高いものである。この結合強度を検証するためには、後記するTHF溶液と有機無機複合材料を充分に攪拌混合した後、吸光度を測定して評価する必要がある。この測定の条件は以下のとおりである。この測定条件は、触媒反応やスカベンジャーとしての使用を踏まえた過酷な攪拌条件であるともいえ、このような条件下における有機ケイ素化合物の脱離の程度は産業上有意な指標となる。 The organic-inorganic composite material of the present invention thus obtained has a high bond strength between the silica carrier and the organosilicon compound. In order to verify this bond strength, it is necessary to sufficiently stir and mix the THF solution and the organic-inorganic composite material described later, and then measure and evaluate the absorbance. The conditions for this measurement are as follows. It can be said that this measurement condition is a harsh stirring condition based on the catalytic reaction and use as a scavenger, and the degree of desorption of the organosilicon compound under such a condition is an industrially significant index.
[測定条件]
<発色試薬>
金属換算パラジウム濃度が1[g/l]である酢酸パラジウムのテトラヒドロフラン溶液15[ml]
<粉体としての有機無機複合材料>
有機ケイ素化合物換算で0.147[mmol]
<混合条件>
攪拌子:長さ1[cm]、直径4[mm]
回転数:300[rpm]
混合容器:内径25[mm]円筒形密閉容器
攪拌時間:1[時間]
<分光光度計測定セル>
光路長:10[mm][Measurement condition]
<Coloring reagent>
Tetrahydrofuran solution of palladium acetate having a metal-equivalent palladium concentration of 1 [g / l] 15 [ml]
<Organic-inorganic composite material as powder>
0.147 [mmol] in terms of organosilicon compound
<Mixed conditions>
Stirrer: length 1 [cm], diameter 4 [mm]
Rotation speed: 300 [rpm]
Mixing container: Inner diameter 25 [mm] Cylindrical closed container Stirring time: 1 [hour]
<Spectrophotometer measurement cell>
Optical path length: 10 [mm]
[有機無機複合材料の溶解]
上記測定において、発色試薬として、金属換算パラジウム濃度が1[g/l]である酢酸パラジウムのテトラヒドロフラン(THF)溶液(以下、「THF溶液」という)15[ml]を使用した。[Dissolution of organic-inorganic composite materials]
In the above measurement, 15 [ml] of a tetrahydrofuran (THF) solution of palladium acetate having a metal-equivalent palladium concentration of 1 [g / l] (hereinafter referred to as “THF solution”) was used as the color-developing reagent.
このTHFは錯体を用いた合成反応によく使われる溶剤で入手が容易であり、酢酸パラジウムの溶解性に優れ、非プロトン性の溶媒でありシロキサン結合への影響も小さく測定の目的に適した溶剤であるといえる。 This THF is a solvent often used for synthetic reactions using complexes and is easily available. It has excellent solubility of palladium acetate, is an aprotic solvent, has little effect on siloxane bonds, and is suitable for measurement purposes. You can say that.
まず、THF15[ml]に酢酸パラジウムを金属換算パラジウム濃度が1[g/l]となるように添加し、混合してTHF溶液を調製する。混合の際の温度は特に限定されず、例えば、15〜25℃程度でよい。 First, palladium acetate is added to THF15 [ml] so that the metal-equivalent palladium concentration is 1 [g / l], and the mixture is mixed to prepare a THF solution. The temperature at the time of mixing is not particularly limited, and may be, for example, about 15 to 25 ° C.
次に、THF溶液に0.147[mmol]の有機ケイ素化合物を含む有機無機複合材料を、上記条件で混合して混合液を調製する。ここで、シリカ担体の量は特に限定されるもので無いが、有機無機複合材料中の有機ケイ素化合物の量[mmol/g]で、0.5以上であることが好ましく、0.8以上であることがより好ましい。貴金属等の遷移金属との結合は有機ケイ素化合物の量が支配的であることから、0.5を下回っても理論上の問題は無いが、有機無機複合材料中の有機ケイ素化合物の量(比率)が低すぎると、貴金属等の遷移金属との結合に要する有機無機複合材料の総量が多くなりすぎ、産業上好ましいものとは言えない場合がある。 Next, an organic-inorganic composite material containing 0.147 [mmol] of an organosilicon compound is mixed with a THF solution under the above conditions to prepare a mixed solution. Here, the amount of the silica carrier is not particularly limited, but the amount [mmol / g] of the organosilicon compound in the organic-inorganic composite material is preferably 0.5 or more, preferably 0.8 or more. More preferably. Since the amount of the organosilicon compound is dominant in the bond with the transition metal such as a noble metal, there is no theoretical problem even if it is less than 0.5, but the amount (ratio) of the organosilicon compound in the organic-inorganic composite material. ) Is too low, the total amount of the organoinorganic composite material required for bonding with a transition metal such as a noble metal becomes too large, which may not be industrially preferable.
一方で、有機無機複合材料中の有機ケイ素化合物の量(比率)が多い(高い)ことは、有機無機複合材料の単位重量あたりの有機ケイ素化合物が多いことを表し、このことは吸着材料として高い性能が期待できる指標であるともいえる。しかしながら、有機無機複合材料中の有機ケイ素化合物の量(比率)が多い(高い)ことは、シリカ担体表面における有機ケイ素化合物の密度が高いことでもあり、シリカ担体の表面状態にもよるものの、過剰に高密度な状態であると有機ケイ素化合物の結合の安定性を保つのが難しい場合もある。このようなことを踏まえると、有機無機複合材料中の有機ケイ素化合物の量(比率)としては2以下であることが好ましく、1.5以下であることがより好ましい。 On the other hand, a large amount (high) of the organosilicon compound in the organoinorganic composite material indicates that the amount of the organosilicon compound per unit weight of the organoinorganic composite material is large, which is high as an adsorption material. It can be said that it is an index that can be expected to perform. However, the large amount (high) of the organosilicon compound in the organic-inorganic composite material also means that the density of the organosilicon compound on the surface of the silica carrier is high, and although it depends on the surface condition of the silica carrier, it is excessive. In a high density state, it may be difficult to maintain the stability of the bond of the organosilicon compound. Based on these facts, the amount (ratio) of the organosilicon compound in the organic-inorganic composite material is preferably 2 or less, and more preferably 1.5 or less.
このようにTHF溶液と有機無機複合材料を混合した混合液は、更に固形分としてのシリカを除去して溶液とし、これについて吸光度の測定が行われる。固形分の除去方法は特に限定されるものではなく、濾過、遠心分離、固形分を沈殿させて上澄みの分取、いずれの方法で有っても良いが、濾過によれば迅速に安定した吸光度を測定することができる。 In the mixed solution in which the THF solution and the organic-inorganic composite material are mixed in this way, silica as a solid content is further removed to obtain a solution, and the absorbance of the mixed solution is measured. The method for removing the solid content is not particularly limited, and any method may be used: filtration, centrifugation, or separation of the supernatant by precipitating the solid content. However, according to filtration, the absorbance is rapidly stable. Can be measured.
このうち、濾過については溶剤であるTHFの揮発による溶液の濃縮可能性を考慮すると開放系での除去操作は速やかに行われることが好ましい。このような濾過手段の例としては吸引濾過が挙げられる。また、固形分を沈殿させて上澄みを分取する場合、固形分を充分に沈殿させる必要があることから、密閉した状態で12時間以上静置させることが好ましい。このようにして混合液が調製される。 Of these, with regard to filtration, it is preferable that the removal operation in an open system be performed promptly in consideration of the possibility of concentrating the solution due to the volatilization of THF as a solvent. An example of such a filtration means is suction filtration. Further, when the solid content is precipitated and the supernatant is separated, it is necessary to sufficiently precipitate the solid content. Therefore, it is preferable to allow the solid content to stand for 12 hours or more in a closed state. The mixed solution is prepared in this way.
[吸光度測定]
上記で調製された溶液は、紫外可視分光光度計で測定された波長400[nm]における吸光度を測定する。本発明の有機無機複合材料を含む溶液は、吸光度が0.5以下であり、好ましくは0.3以下である。[Absorbance measurement]
The solution prepared above measures the absorbance at a wavelength of 400 [nm] as measured by an ultraviolet-visible spectrophotometer. The solution containing the organic-inorganic composite material of the present invention has an absorbance of 0.5 or less, preferably 0.3 or less.
なお、単に酢酸パラジウムとTHFのみを前記の条件のとおり混合した溶液の吸光度は2.6であった。このことは、酢酸パラジウムによるTHFの着色ともいえる。この中に有機無機複合材料が介在することで、THF溶液中のパラジウム成分は有機無機複合材料に吸着される。パラジウム成分が吸着されたTHF溶液は着色が薄まる。 The absorbance of the solution obtained by simply mixing palladium acetate and THF as described above was 2.6. This can be said to be the coloring of THF with palladium acetate. By interposing the organic-inorganic composite material in this, the palladium component in the THF solution is adsorbed by the organic-inorganic composite material. The THF solution on which the palladium component is adsorbed becomes less colored.
また、シリカ担体表面における有機ケイ素化合物の結合が弱い有機無機複合材料では、吸着を促進するための攪拌等による応力により、パラジウムと結合した有機ケイ素化合物がシリカ担体表面から脱離してしまう。脱離した有機ケイ素化合物は単純な濾過によっては溶液中から取り除くことは困難である。このような不具合は、触媒用途であれば担体からの活性種の脱離であり、反応系からの触媒の濾過による再利用においては、濾過のたびに活性種の担持量が減ることになり、触媒としての活性の低下のみならず、反応物への活性種の混入という問題も生じる。また、スカベンジャー用途においても、シリカ担体から脱離した有機ケイ素化合物が吸着した貴金属等の遷移金属元素は濾過により取り除くことができず、遷移金属元素の回収率の低下につながる。 Further, in an organic-inorganic composite material in which the bonding of the organosilicon compound on the surface of the silica carrier is weak, the organosilicon compound bonded to palladium is separated from the surface of the silica carrier by stress due to stirring or the like for promoting adsorption. The desorbed organosilicon compound is difficult to remove from the solution by simple filtration. Such a defect is the desorption of the active species from the carrier in the case of catalyst use, and in the reuse of the catalyst by filtration from the reaction system, the amount of the active species supported decreases with each filtration. Not only is the activity as a catalyst reduced, but there is also the problem of contamination of the reactant with the active species. Also, in scavenger applications, transition metal elements such as noble metals adsorbed by organic silicon compounds desorbed from the silica carrier cannot be removed by filtration, leading to a decrease in the recovery rate of the transition metal elements.
以上のことから、上記のような条件で吸光度測定を行うことにより、吸光度の値から産業上有用な有機無機複合材料であるかどうかを判断することができる。 From the above, it is possible to determine whether or not the organic-inorganic composite material is industrially useful from the value of the absorbance by measuring the absorbance under the above conditions.
また、本発明の有機無機複合材料の性能は、吸光度測定だけでなく、実際に有機無機複合材料に吸着されたパラジウムに代表される貴金属等の遷移金属元素の量を測定して判断してもよい。その場合、ICP発光分光分析法など金属の定量に対して有効な任意の手法で遷移金属元素を定量すれば良いが、吸光度をもとにランベルトベールの法則から導いても良い。 Further, the performance of the organic-inorganic composite material of the present invention can be judged not only by measuring the absorbance but also by measuring the amount of transition metal elements such as precious metals such as palladium actually adsorbed on the organic-inorganic composite material. good. In that case, the transition metal element may be quantified by an arbitrary method effective for quantification of metal such as ICP emission spectroscopic analysis, but it may be derived from Lambertbert's law based on the absorbance.
[結合可能な遷移金属元素]
本発明の有機無機複合材料が結合可能な遷移金属元素としては、特に限定されず、例えば、パラジウム、白金、銅、水銀、銀、鉛等が挙げられる。[Bindable transition metal element]
The transition metal element to which the organic-inorganic composite material of the present invention can be bonded is not particularly limited, and examples thereof include palladium, platinum, copper, mercury, silver, and lead.
[有機無機複合材料の用途]
本発明の有機無機複合材料は、遷移金属元素を結合させていない状態であれば、例えば、遷移金属元素のスカベンジャーに使用することができる。[Use of organic-inorganic composite materials]
The organic-inorganic composite material of the present invention can be used, for example, as a scavenger for a transition metal element as long as the transition metal element is not bonded.
また、本発明の有機無機複合材料は、遷移金属元素のうち、例えば、触媒作用を有するパラジウム、白金、銅等の遷移金属元素を結合させた状態であれば、水素化等の触媒に使用することができる。本発明の有機無機複合材料に遷移金属元素を結合させる方法は特に限定されず、溶媒中で担体と混合、撹拌、適宜加熱等すればよい。 Further, the organic-inorganic composite material of the present invention is used as a catalyst for hydrogenation or the like as long as the transition metal elements such as palladium, platinum and copper having a catalytic action are bonded among the transition metal elements. be able to. The method for binding the transition metal element to the organic-inorganic composite material of the present invention is not particularly limited, and may be mixed with a carrier in a solvent, stirred, appropriately heated, or the like.
以下、本発明を実施例を挙げて詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
実 施 例 1
有機無機複合材料の調製:
窒素ガスで満たされた反応容器中で、n−パラフィン:120L、シリカ担体(比表面積値:750m2/g、細孔容積:1.24ml/g、平均細孔径:6.6nm、平均粒子径(D10):62μm、含水量:0.31wt%):40kgと3−メルカプトプロピルトリメトキシシラン(式(I)の有機ケイ素化合物):12kgを120℃まで昇温しながら8時間攪拌した。その後、加熱を止め16時間放置し、反応容器を水冷して室温まで冷却し、フィルターを使用して固形分を濾過した。濾別された固形分について60℃に加熱しながら真空乾燥を施し、粉体の有機無機複合材料を得た。Example 1
Preparation of organic-inorganic composites:
In a reaction vessel filled with nitrogen gas, n-paraffin: 120 L, silica carrier (specific surface area value: 750 m 2 / g, pore volume: 1.24 ml / g, average pore diameter: 6.6 nm, average particle diameter). (D10): 62 μm, water content: 0.31 wt%): 40 kg and 3-mercaptopropyltrimethoxysilane (organosilicon compound of formula (I)): 12 kg were stirred for 8 hours while raising the temperature to 120 ° C. Then, the heating was stopped, the mixture was left to stand for 16 hours, the reaction vessel was cooled to room temperature by water cooling, and the solid content was filtered using a filter. The filtered solid content was vacuum dried while heating at 60 ° C. to obtain a powdered organic-inorganic composite material.
なお、シリカ担体の粒度の測定にはマイクロトラック・ベル株式会社製のレーザ回折式粒度分布測定装置HRAを使用し、比表面積値と平均細孔径の測定には株式会社島津製作所製の比表面積・細孔分布測定装置ASAP2420を使用し、細孔容積と平均細孔径の測定にはMicromeritics製のTriStar II 3020を使用した。 The laser diffraction type particle size distribution measuring device HRA manufactured by Microtrac Bell Co., Ltd. was used to measure the particle size of the silica carrier, and the specific surface area and average pore size measured by Shimadzu Corporation were measured. A pore distribution measuring device ASAP2420 was used, and TriStar II 3020 manufactured by Micromeritics was used for measuring the pore volume and the average pore diameter.
比 較 例 1
有機無機複合材料の調製:
実施例1のシリカ担体に乾燥処理を施し、含水量が0.1wt%としたものを用いる以外は、同じ装置、同じ手順で有機無機複合材料を調製した。Comparison example 1
Preparation of organic-inorganic composites:
An organic-inorganic composite material was prepared by the same apparatus and the same procedure except that the silica carrier of Example 1 was dried and used having a water content of 0.1 wt%.
試 験 例1
実施例1および比較例1で得られた有機無機複合材料のスカベンジャーとしての性能を評価した。Trial Example 1
The performance of the organic-inorganic composite materials obtained in Example 1 and Comparative Example 1 as a scavenger was evaluated.
[有機ケイ素化合物の担持量測定]
上記の様にして得られた有機無機複合材料について、ICP発光分光分析法を用いて硫黄元素の量を測定し、シリカ担体に担持された有機ケイ酸化合物の量を測定した。ICP発光分光分析法に使用する試料としては、800℃で有機無機複合材料を苛性ソーダと過酸化ナトリウムでアルカリ溶融したものを水で抽出した後に定容したものを使用した。その結果を表1に示した。[Measurement of supported amount of organosilicon compound]
With respect to the organic-inorganic composite material obtained as described above, the amount of sulfur elements was measured using ICP emission spectroscopic analysis, and the amount of organic silicic acid compounds supported on the silica carrier was measured. As the sample used for the ICP emission spectroscopic analysis, a sample obtained by alkali-melting an organic-inorganic composite material with caustic soda and sodium peroxide at 800 ° C. was extracted with water and then defined. The results are shown in Table 1.
このように、シリカ担体に担持された有機ケイ素化合物は、その担持量は概ね同じであった。 As described above, the amount of the organosilicon compound supported on the silica carrier was substantially the same.
[吸光度測定]
実施例1および比較例1の有機無機複合材料について、3−メルカプトプロピルトリメトキシシランの仕込み量換算で0.147[mmol]を、金属換算パラジウム濃度が1[g/L]である酢酸パラジウムのテトラヒドロフラン溶液15[ml]と、下記条件で混合した。
<混合条件>
攪拌子:長さ1[cm]、直径4[mm]
回転数:300[rpm]
混合容器:内径25[mm]円筒形密閉容器(キャップ付きスクリュー管
)
温度:23℃
攪拌時間:1[時間][Absorbance measurement]
Regarding the organic-inorganic composite materials of Example 1 and Comparative Example 1, 0.147 [mmol] in terms of the amount of 3-mercaptopropyltrimethoxysilane charged and palladium acetate having a metal-equivalent palladium concentration of 1 [g / L] It was mixed with 15 [ml] of a tetrahydrofuran solution under the following conditions.
<Mixed conditions>
Stirrer: length 1 [cm], diameter 4 [mm]
Rotation speed: 300 [rpm]
Mixing container: Inner diameter 25 [mm] Cylindrical closed container (screw tube with cap)
Temperature: 23 ° C
Stirring time: 1 [hour]
このようにして得られた混合溶液を吸引濾過し、得られた濾液について下記条件でそれぞれの波長400[nm]における吸光度を測定した。金属換算パラジウム濃度が1[g/l]である酢酸パラジウムのテトラヒドロフラン溶液15[ml]のみからなる溶液の参考例と共に結果を表2に示した。 The mixed solution thus obtained was suction-filtered, and the absorbance of the obtained filtrate at each wavelength of 400 [nm] was measured under the following conditions. Table 2 shows the results together with a reference example of a solution consisting of only 15 [ml] of a tetrahydrofuran solution of palladium acetate having a metal-equivalent palladium concentration of 1 [g / l].
<測定装置>
紫外可視分光光度計:株式会社日立ハイテクサイエンス社製U−3310
分光光度計測定セル:石英製、光路長10[mm]<Measuring device>
Ultraviolet-visible spectrophotometer: U-3310 manufactured by Hitachi High-Tech Science Corporation
Spectrophotometer measurement cell: made of quartz, optical path length 10 [mm]
[スカベンジャー性能評価]
実施例1および比較例1の吸光度測定のために調製した濾液について、そのパラジウム含有量をICP発光分光分析法で測定し、酢酸パラジウムとしての仕込み量との差からパラジウム吸着率を求め、スカベンジャーとしての性能を比較した。結果を表3に示した。[Scavenger performance evaluation]
The palladium content of the filtrates prepared for the absorbance measurement of Example 1 and Comparative Example 1 was measured by ICP emission spectroscopy, and the palladium adsorption rate was determined from the difference from the amount charged as palladium acetate, and used as a scavenger. Performance was compared. The results are shown in Table 3.
実施例1および比較例1において、修飾前のシリカ担体のわずかな含水量の違いで着色挙動とパラジウムの吸着性能に歴然とした差が認められた。また、その性能は、吸光度測定により予測できることが分かった。 In Example 1 and Comparative Example 1, a clear difference in coloring behavior and palladium adsorption performance was observed due to a slight difference in water content of the silica carrier before modification. It was also found that its performance can be predicted by measuring the absorbance.
本発明の有機無機複合材料は、スカベンジャーや触媒等に利用可能である。
以 上The organic-inorganic composite material of the present invention can be used for scavengers, catalysts and the like.
that's all
Claims (10)
下記測定条件により調製された混合液から固形分を除去した溶液の紫外可視分光光度計で測定された波長400[nm]における吸光度が0.5以下であることを特徴とする有機無機複合材料。
[測定条件]
<発色試薬>
金属換算パラジウム濃度が1[g/l]である酢酸パラジウムのテトラヒドロフラン溶液15[ml]
<粉体としての有機無機複合材料>
有機ケイ素化合物換算で0.147[mmol]
<混合条件>
攪拌子:長さ1[cm]、直径4[mm]
回転数:300[rpm]
混合容器:内径25[mm]円筒形密閉容器
攪拌時間:1[時間]
<分光光度計測定セル>
光路長:10[mm]An organic-inorganic composite material in which a silica carrier is modified with an organosilicon compound containing a functional group that binds to a transition metal element and an alkoxysilane.
An organic-inorganic composite material characterized in that the absorbance of a solution prepared by removing solids from a mixed solution prepared under the following measurement conditions at a wavelength of 400 [nm] measured by an ultraviolet-visible spectrophotometer is 0.5 or less.
[Measurement condition]
<Coloring reagent>
Tetrahydrofuran solution of palladium acetate having a metal-equivalent palladium concentration of 1 [g / l] 15 [ml]
<Organic-inorganic composite material as powder>
0.147 [mmol] in terms of organosilicon compound
<Mixed conditions>
Stirrer: length 1 [cm], diameter 4 [mm]
Rotation speed: 300 [rpm]
Mixing container: Inner diameter 25 [mm] Cylindrical closed container Stirring time: 1 [hour]
<Spectrophotometer measurement cell>
Optical path length: 10 [mm]
修飾前のシリカ担体の含水量が、シリカ担体の質量換算で、0.15wt%以上であることを特徴とする請求項1〜4の何れかに記載の有機無機複合材料の製造方法。In producing an organic-inorganic composite material by modifying a silica carrier with an organosilicon compound containing a functional group that binds to a transition metal element on the silica carrier and an alkoxysilane.
The method for producing an organic-inorganic composite material according to any one of claims 1 to 4, wherein the water content of the silica carrier before modification is 0.15 wt% or more in terms of mass of the silica carrier.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018172377 | 2018-09-14 | ||
JP2018172377 | 2018-09-14 | ||
PCT/JP2019/020643 WO2020054134A1 (en) | 2018-09-14 | 2019-05-24 | Organic/inorganic composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2020054134A1 true JPWO2020054134A1 (en) | 2021-08-30 |
Family
ID=69778576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020546688A Pending JPWO2020054134A1 (en) | 2018-09-14 | 2019-05-24 | Organic-inorganic composite material |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2020054134A1 (en) |
KR (1) | KR20210044873A (en) |
TW (1) | TW202021667A (en) |
WO (1) | WO2020054134A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004175793A (en) * | 2002-11-15 | 2004-06-24 | Toyota Central Res & Dev Lab Inc | Method for combining organic modifying residue with inorganic solid |
JP2006052357A (en) * | 2004-08-16 | 2006-02-23 | Denki Kagaku Kogyo Kk | Filler and method for producing the same |
JP2008535645A (en) * | 2005-03-07 | 2008-09-04 | クィーンズ ユニバーシティー アット キングストン | Sol-gel functionalized silicate catalyst and scavenger |
WO2009110531A1 (en) * | 2008-03-07 | 2009-09-11 | 独立行政法人産業技術総合研究所 | Organic inorganic composite material and utilization thereof |
JP4964772B2 (en) * | 2004-08-04 | 2012-07-04 | フォスフォニックス リミテッド | Substituted organopolysiloxanes and their use |
JP2013043791A (en) * | 2011-08-23 | 2013-03-04 | Nof Corp | Modified hollow silica microparticle |
JP2016022465A (en) * | 2014-07-24 | 2016-02-08 | 株式会社東芝 | Iodine adsorbent, water treatment tank, and iodine adsorption system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19540497A1 (en) | 1995-10-31 | 1997-05-07 | Degussa | Inorganic support materials containing sulfonate and mercapto groups, process for their preparation and use as catalysts |
-
2019
- 2019-05-24 JP JP2020546688A patent/JPWO2020054134A1/en active Pending
- 2019-05-24 KR KR1020217008541A patent/KR20210044873A/en not_active Application Discontinuation
- 2019-05-24 WO PCT/JP2019/020643 patent/WO2020054134A1/en active Application Filing
- 2019-05-29 TW TW108118533A patent/TW202021667A/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004175793A (en) * | 2002-11-15 | 2004-06-24 | Toyota Central Res & Dev Lab Inc | Method for combining organic modifying residue with inorganic solid |
JP4964772B2 (en) * | 2004-08-04 | 2012-07-04 | フォスフォニックス リミテッド | Substituted organopolysiloxanes and their use |
JP2006052357A (en) * | 2004-08-16 | 2006-02-23 | Denki Kagaku Kogyo Kk | Filler and method for producing the same |
JP2008535645A (en) * | 2005-03-07 | 2008-09-04 | クィーンズ ユニバーシティー アット キングストン | Sol-gel functionalized silicate catalyst and scavenger |
WO2009110531A1 (en) * | 2008-03-07 | 2009-09-11 | 独立行政法人産業技術総合研究所 | Organic inorganic composite material and utilization thereof |
JP2013043791A (en) * | 2011-08-23 | 2013-03-04 | Nof Corp | Modified hollow silica microparticle |
JP2016022465A (en) * | 2014-07-24 | 2016-02-08 | 株式会社東芝 | Iodine adsorbent, water treatment tank, and iodine adsorption system |
Also Published As
Publication number | Publication date |
---|---|
TW202021667A (en) | 2020-06-16 |
KR20210044873A (en) | 2021-04-23 |
WO2020054134A1 (en) | 2020-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
He et al. | Advanced functional materials in solid phase extraction for ICP-MS determination of trace elements and their species-A review | |
Awual et al. | Investigation of palladium (II) detection and recovery using ligand modified conjugate adsorbent | |
Roosen et al. | Adsorption performance of functionalized chitosan–silica hybrid materials toward rare earths | |
Xie et al. | The importance of surface functional groups in the adsorption of copper onto walnut shell derived activated carbon | |
Xu et al. | Highly efficient and selective recovery of Au (III) by a new metal-organic polymer | |
Schroden et al. | Hybrid macroporous materials for heavy metal ion adsorption | |
Shi et al. | High performance adsorbents based on hierarchically porous silica for purifying multicomponent wastewater | |
KR101907048B1 (en) | Aluminum silicate, metal ion adsorbent, and method for producing same | |
CN107638870A (en) | A kind of preparation method and application of ionic liquid and metal organic frame compound adsorbent | |
Dobrowolski et al. | Amino-functionalized SBA-15 mesoporous silicas as sorbents of platinum (IV) ions | |
Abbasi et al. | Synthesis and application of ion-imprinted polymer nanoparticles for the determination of nickel ions | |
JP2013527118A (en) | Organic templated nano metal oxyhydroxide | |
CN101343538B (en) | Fluorescence silica gel particle and uses thereof | |
Shin et al. | Palladium nanoparticles captured onto spherical silica particles using a urea cross-linked imidazolium molecular band | |
CN112823875B (en) | Phenylboronic acid solid-phase extraction column filler and preparation method thereof | |
JP7300173B2 (en) | Prussian Blue Derivative-Containing Composite Using Silicon Oxide as Substrate, Ammonia Adsorption/Desorption Method Using the Composite, and Ammonia Recovery Device | |
Servati et al. | Silica bonded calix [4] arene as an efficient, selective and reusable sorbent for rubber chemical additives | |
JP6501282B2 (en) | Reaction method in which a particulate porous body is brought into contact and reacted | |
Zeytuncu et al. | Synthesis and adsorption application of in situ photo-cross-linked electrospun poly (vinyl alcohol)-based nanofiber membranes | |
JPWO2020054134A1 (en) | Organic-inorganic composite material | |
Poursaberi et al. | Application of Rh (III)-metalloporphyrin grafted Fe3O4 nanoparticles for the extraction of thiocyanate ions from aqueous solutions | |
CN110813254B (en) | Method for preparing hybrid membrane for selectively separating copper from mixed metal solution | |
Northcott et al. | Synthesis, characterization and evaluation of mesoporous silicates for adsorption of metal ions | |
JP2015188821A (en) | Palladium adsorbent and production method thereof | |
JP2024524528A (en) | Zirconium-based metal-organic framework for use as a heavy metal adsorbent in condensates and method for preparing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221005 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230322 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230508 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230920 |