JPWO2012157680A1 - Martensitic stainless steel sheet for bicycle disc brake rotor and method for manufacturing the same - Google Patents
Martensitic stainless steel sheet for bicycle disc brake rotor and method for manufacturing the same Download PDFInfo
- Publication number
- JPWO2012157680A1 JPWO2012157680A1 JP2013515182A JP2013515182A JPWO2012157680A1 JP WO2012157680 A1 JPWO2012157680 A1 JP WO2012157680A1 JP 2013515182 A JP2013515182 A JP 2013515182A JP 2013515182 A JP2013515182 A JP 2013515182A JP WO2012157680 A1 JPWO2012157680 A1 JP WO2012157680A1
- Authority
- JP
- Japan
- Prior art keywords
- hardness
- stainless steel
- disc brake
- less
- brake rotor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001105 martensitic stainless steel Inorganic materials 0.000 title claims abstract description 59
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- 238000000034 method Methods 0.000 title description 13
- 238000010791 quenching Methods 0.000 claims abstract description 87
- 230000000171 quenching effect Effects 0.000 claims abstract description 87
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 24
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 20
- 238000005098 hot rolling Methods 0.000 claims abstract description 17
- 239000012535 impurity Substances 0.000 claims abstract description 16
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 12
- 239000010935 stainless steel Substances 0.000 claims abstract description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000005097 cold rolling Methods 0.000 claims description 63
- 229910000831 Steel Inorganic materials 0.000 claims description 45
- 239000010959 steel Substances 0.000 claims description 45
- 238000000137 annealing Methods 0.000 claims description 39
- 239000000203 mixture Substances 0.000 claims description 19
- 229910052718 tin Inorganic materials 0.000 claims description 19
- 229910052804 chromium Inorganic materials 0.000 claims description 18
- 229910052748 manganese Inorganic materials 0.000 claims description 17
- 229910052802 copper Inorganic materials 0.000 claims description 16
- 229910052782 aluminium Inorganic materials 0.000 claims description 15
- 229910052750 molybdenum Inorganic materials 0.000 claims description 15
- 229910052719 titanium Inorganic materials 0.000 claims description 15
- 229910052759 nickel Inorganic materials 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 229910052720 vanadium Inorganic materials 0.000 claims description 14
- 229910052758 niobium Inorganic materials 0.000 claims description 13
- 229910052726 zirconium Inorganic materials 0.000 claims description 13
- 238000005554 pickling Methods 0.000 claims description 12
- 238000005096 rolling process Methods 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 16
- 230000007797 corrosion Effects 0.000 description 49
- 238000005260 corrosion Methods 0.000 description 49
- 239000000047 product Substances 0.000 description 42
- 239000002994 raw material Substances 0.000 description 32
- 230000000694 effects Effects 0.000 description 25
- 238000010438 heat treatment Methods 0.000 description 25
- 239000000463 material Substances 0.000 description 19
- 229910001566 austenite Inorganic materials 0.000 description 18
- 238000001816 cooling Methods 0.000 description 18
- 229910000734 martensite Inorganic materials 0.000 description 18
- 238000001556 precipitation Methods 0.000 description 17
- 238000012360 testing method Methods 0.000 description 16
- 229910000859 α-Fe Inorganic materials 0.000 description 13
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- 230000007423 decrease Effects 0.000 description 10
- 230000003247 decreasing effect Effects 0.000 description 9
- 229910000604 Ferrochrome Inorganic materials 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 238000005498 polishing Methods 0.000 description 8
- 238000000465 moulding Methods 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000007670 refining Methods 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000002893 slag Substances 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 229910052796 boron Inorganic materials 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 150000004767 nitrides Chemical class 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000009628 steelmaking Methods 0.000 description 4
- 238000005496 tempering Methods 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 238000006477 desulfuration reaction Methods 0.000 description 3
- 230000023556 desulfurization Effects 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 235000008373 pickled product Nutrition 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000006392 deoxygenation reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 238000007550 Rockwell hardness test Methods 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000000866 electrolytic etching Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D65/00—Parts or details
- F16D65/0006—Noise or vibration control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D65/00—Parts or details
- F16D65/02—Braking members; Mounting thereof
- F16D65/12—Discs; Drums for disc brakes
- F16D65/125—Discs; Drums for disc brakes characterised by the material used for the disc body
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D69/00—Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
- F16D69/02—Composition of linings ; Methods of manufacturing
- F16D69/027—Compositions based on metals or inorganic oxides
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Braking Arrangements (AREA)
Abstract
本発明は、自転車のディスクブレーキロータとして優れた制動特性、鳴き防止性能に優れ、焼入れたままで使用に供する自転車のディスクブレーキロータ用マルテンサイト系ステンレス鋼板を提供する。本発明に係るマルテンサイト系ステンレス鋼板の要旨は、C:0.070〜0.120%、N:0.015〜0.060%であって、C+N:0.09〜0.15%を満足する低炭素・低窒素ステンレス鋼であって、Cu:0.1%以下で且つMn:1.0〜1.4%であって、熱間圧延時の相バランスを表す指標であるγpが80〜120を満足し、残部がFeおよび不可避的不純物からなり、焼入れ後の硬さがHRCで38〜44であることを特徴とする。The present invention provides a martensitic stainless steel plate for a disc brake rotor of a bicycle that is excellent in braking characteristics and anti-squealing performance as a bicycle disc brake rotor and is used while being quenched. The gist of the martensitic stainless steel sheet according to the present invention is C: 0.070 to 0.120%, N: 0.015 to 0.060%, and satisfies C + N: 0.09 to 0.15%. Low carbon / low nitrogen stainless steel, Cu: 0.1% or less and Mn: 1.0-1.4%, and γp, which is an index representing the phase balance during hot rolling, is 80 -120 is satisfied, the balance is Fe and inevitable impurities, and the hardness after quenching is 38-44 in HRC.
Description
本発明は、自転車のディスクブレーキロータとして、ブレーキの制動特性に優れ、ローター形状に加工する際のプレス成形性に優れる、マルテンサイト系ステンレス鋼板およびその製造方法に関する。 The present invention relates to a martensitic stainless steel plate and a method for producing the same as a disc brake rotor of a bicycle, which are excellent in braking characteristics of a brake and excellent in press formability when processed into a rotor shape.
自転車用ディスクブレーキロータには、耐摩耗性、耐銹性、軽量性等の特性が要求される。そのため、マルテンサイト系のステンレス鋼やマルテンサイト系ステンレス鋼とアルミの複合材料が用いられている。マルテンサイト系のステンレス鋼では、SUS420J1、SUS420J2が一般的に用いられる。ディスクブレーキロータは、ステンレス鋼を熱間圧延し焼鈍後に冷間圧延を行って形状と硬さを調整した後、プレス成形によって所定の形状に加工され、焼入れ、焼き戻しの熱処理によって所望の硬さに調整された後、研磨や塗装等の工程を経て、ディスクブレーキロータが製造される。 Bicycle disc brake rotors are required to have characteristics such as wear resistance, weather resistance, and light weight. Therefore, martensitic stainless steel or a composite material of martensitic stainless steel and aluminum is used. For martensitic stainless steel, SUS420J1 and SUS420J2 are generally used. The disc brake rotor is hot-rolled stainless steel, cold-rolled after annealing, adjusted in shape and hardness, then processed into a predetermined shape by press molding, and hardened and tempered by heat treatment. Then, the disc brake rotor is manufactured through processes such as polishing and painting.
オートバイのディスクブレーキ用にも、同様のマルテンサイト系ステンレス鋼が用いられる。自転車に較べると、高速走行し、かつ大重量の車体であるため、高い制動力が必要になる。そのため、マルテンサイト系ステンレスの熱延鋼板を焼鈍しプレス成形後に焼き入れて製造される。耐摩耗性は、一般に鋼の硬さが高いほど大きくなるが、硬さが高過ぎるとブレーキロータとパッドの間でいわゆるブレーキの”鳴き (Brake noise)”が生じる。このため、オートバイのディスクブレーキロータの硬さはあまり高くすることができず、34±3HRC(ロックウェル硬さCスケール)が求められる。 Similar martensitic stainless steel is used for motorcycle disc brakes. Compared to a bicycle, it is a high-speed and heavy vehicle body, and therefore requires a high braking force. Therefore, it is manufactured by annealing a hot-rolled steel sheet of martensitic stainless steel and quenching it after press forming. The wear resistance generally increases as the hardness of the steel increases, but if the hardness is too high, a so-called brake “brake noise” occurs between the brake rotor and the pad. For this reason, the hardness of the disc brake rotor of a motorcycle cannot be made very high, and 34 ± 3 HRC (Rockwell hardness C scale) is required.
オートバイのディスクブレーキロータ製造に於いては、焼入れ後の焼き戻し工程を省略すべく、低炭素(C)、低窒素(N)化したステンレス鋼の適用が進んでいる、例えば、特許文献1では、重量比でC+N:0.04〜0.10%とし、Mnを1.0〜2.5%添加した低炭素マルテンサイト系ステンレス鋼がオートバイディスクブレーキ用材料として開示されている。 In the manufacture of motorcycle disc brake rotors, low carbon (C) and low nitrogen (N) stainless steel is being applied to eliminate the tempering step after quenching. A low carbon martensitic stainless steel with a weight ratio of C + N: 0.04 to 0.10% and Mn added to 1.0 to 2.5% is disclosed as a material for motorcycle disc brakes.
また、特許文献2では、熱延板の脱スケール性を向上させるために、Mnを1.0%以下とし、且つ、以下の式で示す計算値Hを32〜40の範囲としたオートバイディスクブレーキ用材料が開示されている。
H=223C−2.6Si+2.8Mn+9.2Ni−4.6Cr+3.6Cu+188N+74.0(各元素記号は当該元素の重量%の数値を示す。)
この計算値Hは最高焼き入れ硬さの実測値と良く対応するとされている。Moreover, in patent document 2, in order to improve the descaling property of a hot-rolled sheet, Mn is set to 1.0% or less, and the calculated value H shown by the following formula | equation is the range of 32-40. Materials for use are disclosed.
H = 223C-2.6Si + 2.8Mn + 9.2Ni-4.6Cr + 3.6Cu + 188N + 74.0 (Each element symbol indicates a numerical value by weight of the element.)
This calculated value H is said to correspond well with the actual measured value of the maximum quenching hardness.
しかし、これらの公報に記載された鋼は、オートバイのディスクブレーキ用途に適した特性を有する反面、自転車のディスクブレーキロータ用の材料としては不向きであり、適用が進んでいなかった。それは以下の様な諸問題に起因する。 However, while the steels described in these publications have characteristics suitable for motorcycle disc brake applications, they are unsuitable as materials for bicycle disc brake rotors, and their application has not progressed. This is due to the following problems.
自転車のディスクブレーキロータにオートバイのディスクブレーキ用に開発されたマルテンサイト系ステンレス鋼を用いると摩耗が大きく、摩耗による表面損傷が走行性能に影響する。即ち、焼入れ硬さが32〜40の範囲では硬さが低く、自転車、例えばマウンテンバイクのディスクブレーキロータとして、十分な制動力を得る事が出来なかった。 When martensitic stainless steel developed for motorcycle disc brakes is used for a bicycle disc brake rotor, the wear is large, and surface damage due to wear affects the running performance. That is, when the quenching hardness is in the range of 32 to 40, the hardness is low, and a sufficient braking force cannot be obtained as a disc brake rotor of a bicycle such as a mountain bike.
制動力を上げるためには、SUS420J1、SUS420J2の様にC量を上げて焼入れ硬度を高める事が有効である。しかし、オートバイのディスクブレーキ用に開発された低炭素マルテンサイト系ステンレス鋼に於いて、炭素(C)量を上げて硬度を上げた場合、制動力は改善するものの、制動時に鳴きが発生するなどブレーキ性能を損ねる問題があった。 In order to increase the braking force, it is effective to increase the quenching hardness by increasing the C amount as in SUS420J1 and SUS420J2. However, in low-carbon martensitic stainless steel developed for motorcycle disc brakes, increasing the carbon (C) amount and increasing the hardness improves the braking force, but generates squeal during braking. There was a problem of damaging brake performance.
従来、一般的に自転車用ディスクブレーキロータに使用されているSUS420J1、SUS420J2は、焼入れのままでは硬度が50HRC以上となるため、焼戻し処理が必要である。そのため工程が長く、その生産性の向上が課題である。
一方、オートバイ用のマルテンサイト系ステンレス鋼は、前述したように、焼入れ硬度が不足し、自転車用ディスクブレーキロータには使用できない。また、焼入れ硬度を上げるために炭素(C)を増やすと鳴きが発生しやすくなるという問題がある。
そのため、焼戻し処理がなく、つまり焼入れのままで、自転車用ディスクブレーキロータに適した硬度を有するマルテンサイト系ステンレス鋼を得ることが課題である。
本発明は、上記従来技術の持つ課題を有利に解決し、制動時に鳴きが発生するのを抑制し、ブレーキ制動特性に優れ、焼入れたままで使用に供する、自転車のディスクブレーキロータ用マルテンサイト系ステンレス鋼板およびその製造方法を提供することを目的とするものである。Conventionally, SUS420J1 and SUS420J2 that are generally used for bicycle disc brake rotors have a hardness of 50 HRC or more when quenched, and therefore need to be tempered. Therefore, a process is long and the improvement of the productivity is a subject.
On the other hand, martensitic stainless steel for motorcycles has insufficient quenching hardness as described above, and cannot be used for a disc brake rotor for bicycles. Further, there is a problem that squealing is likely to occur when carbon (C) is increased in order to increase the quenching hardness.
Therefore, there is a problem of obtaining martensitic stainless steel having a hardness suitable for a bicycle disc brake rotor without being tempered, that is, as it is quenched.
The present invention advantageously solves the above-mentioned problems of the prior art, suppresses the occurrence of squeal during braking, has excellent brake braking characteristics, and is used while being quenched, martensitic stainless steel for a disc brake rotor of a bicycle It aims at providing a steel plate and its manufacturing method.
本発明者らは、上記の課題を解決するために鋭意検討を行い、下記の知見を得て本発明を完成させた。 The present inventors have intensively studied to solve the above problems, and have obtained the following knowledge to complete the present invention.
自転車のブレーキディスクロータ用のマルテンサイト系ステンレス鋼は、その必要な制動力を得るために、その硬度を38HRC以上にすることが必要である。この硬度は、オートバイのディスクブレーキロータに必要とされる硬度32HRC以上よりも高いことが特徴である。
一方、制動力を上げるために焼入れ硬度を上げると、自転車のディスクブレーキロータにおいては、”鳴き (Brake noise)”と呼ばれる振動を伴う異音が問題になる。SUS420J1、SUS420J2等のステンレス鋼を、焼入れ焼き戻しを行い、硬度を43HRC以下にすることで、鳴きを抑制できる。しかし、焼き戻しを省略する技術に対しては、オートバイのディスクブレーキロータ用のステンレス鋼を用いようとすると、鳴きが38HRCでも生じるため、制動力と鳴き防止を両立する硬度範囲を見出す事が出来なかった。Martensitic stainless steel for bicycle brake disc rotors needs to have a hardness of 38 HRC or higher in order to obtain the necessary braking force. This hardness is characterized by being higher than the hardness of 32 HRC or more required for a motorcycle disc brake rotor.
On the other hand, when the quenching hardness is increased to increase the braking force, an abnormal noise accompanied by vibration called “Brake noise” becomes a problem in a disc brake rotor of a bicycle. Squeaking can be suppressed by quenching and tempering stainless steel such as SUS420J1 and SUS420J2 to a hardness of 43 HRC or less. However, for the technology that omits tempering, if stainless steel is used for motorcycle disc brake rotors, squealing occurs even at 38 HRC, so it is possible to find a hardness range that achieves both braking force and squeal prevention. There wasn't.
このことは、オートバイのディスクブレーキロータで問題となる、鳴きと呼ばれる、摺動音(異音)の問題に類似している。オートバイのディスクブレーキロータでは、鳴きを防止するために硬度を38HRC以下にする事が一般的であり、制動力を得るために必要な32HRC以上とし、鳴きを生じ始める38HRC以下に硬度を制御している。
自転車では、必要とされる制動力を得るためには38HRC以上のディスクブレーキロータの硬度が必要である。焼入れ後の硬度のバラツキも考慮すると硬度範囲として38〜43HRCは必要と考えられる。
この硬度範囲に於いて、鳴きを抑制する方法を検討した結果、摺動時にディスクブレーキロータ表面に形成される僅かな酸化被膜を介して、母材成分が影響している事、鳴きを抑制するには、母材のCu量を0.1%以下に制限すると共に、Mn量を1.0〜1.4%の範囲にする事が必要である事を見出した。更に、ディスクブレーキロータの耐食性を高めるためには、焼入れ後の組織をマルテンサイト母地に僅かに炭化物が分散した組織とする事が望ましく、その析出量は、Feの重量%で0.04%以下にすることが必要である。This is similar to the problem of sliding noise (abnormal noise), called squeal, which is a problem with motorcycle disc brake rotors. In order to prevent squealing in motorcycle disc brake rotors, the hardness is generally set to 38 HRC or less, and the hardness is controlled to 32 HRC or more necessary for obtaining braking force, and the hardness is controlled to 38 HRC or less which starts to squeal. Yes.
In a bicycle, in order to obtain a required braking force, the hardness of the disc brake rotor of 38 HRC or more is required. Considering the variation in hardness after quenching, the hardness range of 38 to 43 HRC is considered necessary.
As a result of examining methods for suppressing squealing in this hardness range, the influence of the base material component through the slight oxide film formed on the disc brake rotor surface during sliding, squealing is suppressed. In addition, the present inventors have found that it is necessary to limit the Cu content of the base material to 0.1% or less and to make the Mn content in the range of 1.0 to 1.4%. Furthermore, in order to improve the corrosion resistance of the disc brake rotor, it is desirable that the structure after quenching is a structure in which carbides are slightly dispersed in the martensite matrix, and the precipitation amount is 0.04% in terms of the weight percentage of Fe. It is necessary to:
上記の知見に基づいて完成させた本発明の要旨は、下記の自転車のディスクブレーキロータ用マルテンサイト系ステンレス鋼板およびその製造方法にある。 The gist of the present invention completed based on the above knowledge resides in the following martensitic stainless steel plate for a disc brake rotor of a bicycle and a manufacturing method thereof.
(1)質量%で、
C:0.070〜0.120%、
N:0.015〜0.060%、
Si:0.10〜0.50%、
Mn:1.0〜1.4%、
P:0.035%以下、
S:0.015%以下
Ni:0.3%以下、
Cr:11.5〜13.5%、
Cu:0.1%以下
V:0.3%以下
Al:0.001%〜0.010%
を含み、C+N:0.09〜0.15%を満足し、かつ次式(1)で表される熱間圧延時の相バランスを表す指標であるγpが80〜120を満足し、残部がFeおよび不可避的不純物からなり、焼入れ後の硬さがHRCで38〜44であることを特徴とする自転車のディスクブレーキロータ用マルテンサイト系ステンレス鋼板。
γp=420[%C]+470[%N]+23[%Ni]+9[%Cu]+7[%Mn]−11.5[%Cr]−11.5[%Si]−52[%Al]−12[%Mo]−47[%Nb]−7[%Sn]−49[%Ti]−48[%Zr]−49[%V]+189 ・・・(1)
[%C]は、炭素(C)の含有量(質量%)を示す。
以下同様に、[%N][%Ni][%Cu][%Mn][%Cr][%Si][%Al][%Mo][%Nb][%Sn][%Ti][%Zr][%V]は、それぞれN、Cu、Mn、Cr、Si、Al、Mo、Nb、Sn、Ti、Zr、V
の含有量(質量%)を示す。
元素が含まれていないときは0とする。(1) In mass%,
C: 0.070 to 0.120%,
N: 0.015-0.060%,
Si: 0.10 to 0.50%,
Mn: 1.0 to 1.4%
P: 0.035% or less,
S: 0.015% or less Ni: 0.3% or less,
Cr: 11.5 to 13.5%,
Cu: 0.1% or less V: 0.3% or less Al: 0.001% to 0.010%
And C + N: 0.09 to 0.15% is satisfied, and γp, which is an index representing the phase balance during hot rolling represented by the following formula (1), satisfies 80 to 120, and the balance is A martensitic stainless steel plate for a disc brake rotor of a bicycle comprising Fe and inevitable impurities and having a hardness after quenching of 38 to 44 in HRC.
γp = 420 [% C] +470 [% N] +23 [% Ni] +9 [% Cu] +7 [% Mn] −11.5 [% Cr] −11.5 [% Si] −52 [% Al] − 12 [% Mo] -47 [% Nb] -7 [% Sn] -49 [% Ti] -48 [% Zr] -49 [% V] +189 (1)
[% C] indicates the content (% by mass) of carbon (C).
Similarly, [% N] [% Ni] [% Cu] [% Mn] [% Cr] [% Si] [% Al] [% Mo] [% Nb] [% Sn] [% Ti] [% Zr] [% V] is N, Cu, Mn, Cr, Si, Al, Mo, Nb, Sn, Ti, Zr, V, respectively.
Content (mass%).
0 when no element is contained.
(2)さらに、質量%で、
Mo:0.05〜0.5%、
Sn:0.003〜0.5%、
Nb:0.03〜0.15%、
Ti:0.05%以下、
Zr:0.05%以下、
B:0.0005〜0.0030%、
の1種以上を含むことを特徴とする(1)に記載の自転車のディスクブレーキロータ用マルテンサイト系ステンレス鋼板。(2) Furthermore, in mass%,
Mo: 0.05-0.5%
Sn: 0.003-0.5%,
Nb: 0.03-0.15%,
Ti: 0.05% or less,
Zr: 0.05% or less,
B: 0.0005 to 0.0030%,
The martensitic stainless steel plate for disc brake rotors of bicycles according to (1), characterized in that it contains one or more of the following.
(3)上記(1)または(2)に記載の鋼組成を有するマルテンサイト系ステンレス鋼板を焼き入れて自転車のディスクブレーキロータとした際に、未固溶炭化物の析出量が、そのFeの量として0.04%以下であることを特徴とする自転車のディスクブレーキロータ用マルテンサイト系ステンレス鋼板。 (3) When a martensitic stainless steel plate having the steel composition described in (1) or (2) above is quenched to form a disc brake rotor for a bicycle, the amount of undissolved carbide precipitated is the amount of Fe. A martensitic stainless steel plate for a disc brake rotor of a bicycle, characterized by being 0.04% or less.
(4)上記(1)または(2)に記載の成分のステンレス鋼の熱延板を焼鈍後に、総圧下率20〜70%の冷間圧延を1回行なうか、又は中間焼鈍を挟んで2回冷間圧延を行うと共に、仕上げ冷間圧延の冷間圧延率を20%以上とし、冷間圧延製品、或いは冷間圧延後焼鈍し酸洗を施した製品の硬度を220HV〜260HVとすることを特徴とする、自転車のディスクブレーキロータ用マルテンサイト系ステンレス鋼板の製造方法。 (4) After annealing the stainless steel hot-rolled sheet of the component described in (1) or (2) above, cold rolling with a total rolling reduction of 20 to 70% is performed once, or intermediate annealing is performed 2 While performing cold rolling, the cold rolling rate of finish cold rolling should be 20% or more, and the hardness of the cold rolled product or the product after annealing after cold rolling and pickling should be 220HV to 260HV. A method for producing a martensitic stainless steel sheet for a disc brake rotor of a bicycle.
以上のように、本発明によれば、自転車のディスクブレーキロータとして優れた制動特性、例えば制動力や鳴き防止性能に優れた、焼入れたままで使用に供する自転車のディスクブレーキロータ用マルテンサイト系ステンレス鋼板が安価に提供できるため、工業的効果は非常に大きい。 As described above, according to the present invention, a martensitic stainless steel plate for a disc brake rotor for a bicycle that is excellent in braking characteristics as a disc disc rotor for a bicycle, for example, excellent in braking force and squealing performance, and used for quenching. However, the industrial effect is very large.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
まず、本発明の自転車のディスクブレーキロータ用マルテンサイト系ステンレス鋼板の鋼組成を限定した理由について説明する。なお、組成について%の表記は、特に断りが無い場合は質量%を意味する。 First, the reason for limiting the steel composition of the martensitic stainless steel plate for the disc brake rotor of the bicycle of the present invention will be described. In addition, the description of% about a composition means the mass% unless there is particular notice.
(C:0.070〜0.120%)
Cは、焼入れ時の硬さを高めると共に、焼入れ加熱時にオーステナイト相分率を高め、焼入れ後のマルテンサイト量を増加させる。自転車のディスクブレーキロータに必要な硬度と制動力を与えるためには、0.070%以上が必要である。しかし、C含有量が多すぎる焼入れ硬度の増加により鳴きを生じやすくなるため、0.120%以下とした。目標とする硬さを安定して確保するためには、0.070〜0.100%、好ましくは0.080%〜0.100%、さらに好ましくは0.080〜0.090%とすることが好ましい。(C: 0.070 to 0.120%)
C increases the hardness during quenching, increases the austenite phase fraction during quenching heating, and increases the amount of martensite after quenching. In order to give the necessary hardness and braking force to the bicycle disc brake rotor, 0.070% or more is required. However, since the squealing is liable to occur due to an increase in the quenching hardness with too much C content, the content is set to 0.120% or less. In order to stably secure the target hardness, 0.070 to 0.100%, preferably 0.080% to 0.100%, more preferably 0.080 to 0.090% Is preferred.
(N:0.015〜0.060%)
Nは、Cと同様に、焼入れ時のマルテンサイトの硬さを上げると共に、強力なオーステナイトフォーマーとして、十分なマルテンサイト量を与える成分である。そのため、0.015%以上が必要である。しかし、N含有量が多すぎると窒化物の量が増え、粗大化するために溶体化温度が上がり、溶体化時間が長くなるため、焼入れ安定性が損なわれる。また、鋳造時に気泡系欠陥が形成して、耐食性を損なうために、Nの含有量の上限は、0.060%以下とした。目標とする硬さを安定して得るためには、下限を0.018%、上限を0.045%とすることが望ましい。さらに望ましくは、下限を0.019%、上限を0.040%とするとよい。(N: 0.015-0.060%)
N, like C, is a component that increases the hardness of martensite during quenching and gives a sufficient amount of martensite as a strong austenite former. Therefore, 0.015% or more is necessary. However, if the N content is too large, the amount of nitride increases and the solution is coarsened, so that the solution temperature rises and the solution time becomes longer, so that the quenching stability is impaired. Further, the upper limit of the N content is set to 0.060% or less in order to form bubble defects during casting and impair the corrosion resistance. In order to stably obtain the target hardness, it is desirable that the lower limit is 0.018% and the upper limit is 0.045%. More desirably, the lower limit is 0.019% and the upper limit is 0.040%.
(Si:0.10〜0.50%)
Siは、焼入れ時のマルテンサイト量を減じると共に、靭性を低下させる元素であるため、その上限を0.50%とした。しかし、製鋼時の脱酸素や、鋳造時の湯流れ性の向上に好ましい元素であり、操業性や表面品質を向上させる。そこで、下限を0.10%とした。但し、原料コストの低減や精錬時間の短縮による生産性向上を考慮すると、下限を0.20%、上限を0.40%とすることが望ましい。さらに望ましくは、下限を0.25%、上限を0.035%とするとよい。(Si: 0.10 to 0.50%)
Si is an element that reduces the amount of martensite during quenching and lowers the toughness, so the upper limit was made 0.50%. However, it is an element preferable for deoxygenation during steelmaking and improvement of hot water flow during casting, and improves operability and surface quality. Therefore, the lower limit was made 0.10%. However, considering the reduction of raw material costs and the improvement of productivity by shortening the refining time, it is desirable that the lower limit is 0.20% and the upper limit is 0.40%. More desirably, the lower limit is 0.25% and the upper limit is 0.035%.
(Mn:1.0〜1.4%)
Mnは、NiやCuと同様に、オーステナイトフォーマーであり、焼入れ時のマルテンサイト量を増加させる。また、Mn独自の効果としては、非金属介在物(MnS)を形成し、熱間加工性を向上させる効果を持つ。更に、溶鋼中への窒素の溶解度を上げる効果があり多量に窒素を添加する際には気泡系欠陥の形成を抑制する作用を示す。その他にもSiと同様に製鋼時の脱酸元素としての効果も有する。この様な効果を得るためにはMnの含有量は少なくとも1.0%以上とする。しかし、Mnを多量に含有すると、焼入れ加熱時の酸化が進み、酸化膜除去が困難になり、またMnSの粗大化により素材の表面品質を低下させる。さらに、Mnを多量に含有すると、制動時の鳴き発生硬度(鳴きが発生する最低硬度)を下げる事が問題になる。これらのことから、Mnの含有量は1.4%以下とする。原料コストの低減や、オーステナイトバランスに依存する熱延時の高温延性を考慮すると、下限を1.1%、上限を1.3%とすることが望ましい。さらに望ましくは、下限を1.15%、上限を1.25%とするとよい。(Mn: 1.0-1.4%)
Mn, like Ni and Cu, is an austenite former and increases the amount of martensite during quenching. Further, as an effect unique to Mn, non-metallic inclusions (MnS) are formed and the hot workability is improved. Furthermore, it has the effect of increasing the solubility of nitrogen in the molten steel, and when nitrogen is added in a large amount, it exhibits the effect of suppressing the formation of bubble defects. In addition, similarly to Si, it has an effect as a deoxidizing element during steelmaking. In order to obtain such effects, the Mn content is at least 1.0%. However, if Mn is contained in a large amount, oxidation during quenching heats up and it becomes difficult to remove the oxide film, and the surface quality of the material is lowered due to the coarsening of MnS. Furthermore, when Mn is contained in a large amount, it becomes a problem to reduce the squealing hardness during braking (the minimum hardness at which squeal occurs). For these reasons, the Mn content is set to 1.4% or less. Considering reduction of raw material costs and high temperature ductility during hot rolling depending on austenite balance, it is desirable that the lower limit is 1.1% and the upper limit is 1.3%. More desirably, the lower limit is 1.15% and the upper limit is 1.25%.
(P:0.035%以下)
Pは固溶強化能の大きな元素であり、かつフェライトフォーマーである。しかも耐食性や靭性に対しては有害な元素であるため、可能な限り少ない方が好ましい。 (P: 0.035% or less)
P is an element having a large solid solution strengthening ability and a ferrite former. Moreover, since it is an element harmful to corrosion resistance and toughness, it is preferable that it be as small as possible.
Pはステンレス鋼の原料であるフェロクロムに不純物として含まれるが、ステンレス鋼の溶鋼から脱Pすることは非常に困難であるため、0.010%以上とする事が好ましい。また、Pの含有量は、使用するフェロクロム原料の純度と量でほぼ決定される。Pは有害な元素であるため、フェロクロム原料のPの純度は低い方が好ましいが、低Pのフェロクロムは高価であるため、材質や耐食性を大きく劣化させない範囲である0.035%以下に制限する。なお、好ましくは0.030%以下に制限するとよい。 P is contained as an impurity in ferrochrome, which is a raw material of stainless steel. However, it is very difficult to remove P from molten stainless steel, so 0.010% or more is preferable. The P content is almost determined by the purity and amount of the ferrochrome raw material to be used. Since P is a harmful element, the purity of P of the ferrochrome raw material is preferably low. However, since low P ferrochrome is expensive, it is limited to 0.035% or less, which is a range in which the material and corrosion resistance are not greatly deteriorated. . Note that the content is preferably limited to 0.030% or less.
(S:0.015%以下)
Sは、粒化物系介在物を形成し、鋼材の一般的な耐食性(孔食)を劣化させるため、その含有量の上限は少ない方が好ましく、0.015%以下と制限する。また、Sの含有量は少ないほど耐食性は良好となるので、可能な限り少ない方が望ましい。しかし、低S化には脱硫負荷が増大し、製造コストが増大すると共に、脱硫の強化と共にスラグ中に形成されるCaSが鋼中にも混入して耐食性を損なうため、その下限を0.001%とするのが好ましい。なお、好ましくは上限を0.010%とするとよい。さらに好ましくは上限を0.008%とするとよい。(S: 0.015% or less)
Since S forms a granulated inclusion and deteriorates the general corrosion resistance (pitting corrosion) of the steel material, the upper limit of the content is preferably small, and is limited to 0.015% or less. Further, the smaller the S content, the better the corrosion resistance. However, reducing the sulfur content increases the desulfurization load, increases the production cost, and CaS formed in the slag with strengthening of the desulfurization mixes in the steel and impairs the corrosion resistance. % Is preferable. The upper limit is preferably 0.010%. More preferably, the upper limit is 0.008%.
(Ni:0.3%以下)
Niは、Mn、Cuと同様にオーステナイトフォーマーであり、焼入れ時のマルテンサイト量を増加させる。しかし、Niは高価であるため、本発明ではスクラップから混入する程度にとどめ、許容できる上限を0.3%とした。但し、孔食の進展抑制に有効な元素であると共に、過度の低減は、高純度原料の使用が必要になり原料コストの増加につながるため、下限を0.01%以上とすることが好ましい。なお、焼入れ後の靭性向上を考慮すると0.05〜0.15%が望ましい。(Ni: 0.3% or less)
Ni is an austenite former like Mn and Cu and increases the amount of martensite during quenching. However, since Ni is expensive, in the present invention, it is limited to the extent that it is mixed from scrap, and the allowable upper limit is set to 0.3%. However, it is an element effective for suppressing the progress of pitting corrosion, and excessive reduction requires the use of a high-purity raw material, leading to an increase in raw material cost, so the lower limit is preferably made 0.01% or more. In consideration of improvement in toughness after quenching, 0.05 to 0.15% is desirable.
(Cr:11.5〜13.5%)
Crはブレーキディスクに必要とされる耐食性を確保するため、11.5%以上が必要である。しかし、フェライトフォーマーであるために、Cr量に応じたオーステナイトフォーマー(Ni、Cu、Mn)を添加して、焼入れ加熱時のオーステナイト相分率を確保する必要がある。しかし、上記、又は下記に示した様な種々の理由によりオーステナイトフォーマーによる相バランスの調整にも限界がある。そこで、Cr含有量の上限を13.5%とした。なお、製造性や高温延性を考慮すると、下限を11.8%、上限を13.2%とすることが望ましい。さらに望ましくは、下限を12.0%、上限を13.0%とするとよい。(Cr: 11.5 to 13.5%)
In order to ensure the corrosion resistance required for the brake disc, Cr needs to be 11.5% or more. However, since it is a ferrite former, it is necessary to add an austenite former (Ni, Cu, Mn) according to the Cr amount to ensure the austenite phase fraction during quenching heating. However, there is a limit to the adjustment of the phase balance by the austenite former for various reasons as described above or below. Therefore, the upper limit of the Cr content is set to 13.5%. In consideration of manufacturability and high temperature ductility, it is desirable that the lower limit is 11.8% and the upper limit is 13.2%. More preferably, the lower limit is 12.0% and the upper limit is 13.0%.
(Cu:0.1%以下)
Cuは、MnやNiと同様に、オーステナイトフォーマーであり、焼入れ時のマルテンサイト量を増加させ、硬度を増加させる。しかし、摺動時発熱により形成される酸化膜を変化させディスクブレーキロータの鳴き発生硬度を下げる事が問題になるため、その含有量を0.1%以下に制限する。しかし、Cuは他の合金原料に不純物として混入するため、極度な低減は高純度原料の使用が必要になり好ましくないため、下限を0.01%以上とすることが望ましい。製造時の成分管理の効率を加味すると0.02〜0.05%とすることが好ましい。(Cu: 0.1% or less)
Cu, like Mn and Ni, is an austenite former that increases the amount of martensite during quenching and increases hardness. However, since it becomes a problem to reduce the squealing hardness of the disc brake rotor by changing the oxide film formed by heat generation during sliding, its content is limited to 0.1% or less. However, since Cu is mixed into other alloy raw materials as impurities, extreme reduction is not preferable because it requires the use of high-purity raw materials, so the lower limit is preferably made 0.01% or more. Taking into account the efficiency of component management during production, it is preferably 0.02 to 0.05%.
(V:0.3以下)
Vは、合金原料から不可避的不純物として混入する元素である。過度の低減は高純度原料の使用が必要になり原料コストを増加させるために、下限は0.01%とすることが望ましい。一方、過度の含有は、炭窒化物の形成によるマルテンサイトの硬度を低下させるために、0.3%を上限とする。大型の炭窒化物形成に伴うブレーキディスクロータの鳴きを抑制するためには、0.1%以下にする事がより望ましい。(V: 0.3 or less)
V is an element mixed as an inevitable impurity from the alloy raw material. Excessive reduction requires the use of high-purity raw materials and increases raw material costs, so the lower limit is desirably 0.01%. On the other hand, the excessive content lowers the hardness of martensite due to the formation of carbonitrides, so the upper limit is 0.3%. In order to suppress the squealing of the brake disc rotor that accompanies the formation of a large carbonitride, it is more desirable to make it 0.1% or less.
(Al:0.001〜0.010%)
Alは、強い脱酸元素であると共に、精錬時のスラグ塩基度を調整しスラグの脱硫能を高める。その作用は0.001%から安定して得られるため、下限を0.001%とする。一方、過度の添加は、スラグの塩基度を上げる事により、水溶性の介在物CaSが晶出することで、耐食性を大きく損ねるため、その上限を0.010%以下とする。精錬時の脱酸素能力を安定して得るためには、0.003%〜0.008%にすることがより望ましい。(Al: 0.001 to 0.010%)
Al is a strong deoxidizing element and adjusts the slag basicity during refining to increase the desulfurization ability of slag. Since the effect is stably obtained from 0.001%, the lower limit is made 0.001%. On the other hand, excessive addition increases the basicity of the slag and causes the water-soluble inclusion CaS to crystallize, thereby greatly impairing the corrosion resistance. Therefore, the upper limit is made 0.010% or less. In order to stably obtain the deoxygenation ability at the time of refining, it is more desirable to make it 0.003% to 0.008%.
(C+N:0.09〜0.15%)
CとNは、マルテンサイトの硬さを支配する元素であり、自転車のディスクブレーキロータに必要な制動力を得るために不可欠な硬さであるHRC38〜44にするためには、C+Nで0.09%以上、0.15%以下が必要である。好ましくはC+Nの下限を0.095%、上限を0.13%、さらに好ましくは下限を0.10%〜0.12%である。なお、不可避的不純物として混入が危惧される炭窒化物形成元素による固溶C、Nの低下や、固溶、析出強化元素によるマルテンサイトの強度上昇を考慮すると、0.11〜0.14%、好ましくは0.11%〜0.13%にすることが好ましい。(C + N: 0.09 to 0.15%)
C and N are elements that govern the hardness of martensite, and in order to obtain
(熱間圧延加熱時の相バランスを表す指標であるγp=80〜120)
γpの下記式(1)は、焼入れ加熱温度や、素材を製造する熱間圧延加熱時の相バランスを表す指標であるが。γpが小さくなると、フェライト分率が増加し、焼入れ時のマルテンサイト量が減少し、焼入れ硬さが低下し、ディスクブレーキロータの摩耗速度が上がり、ブレーキ制動性が低下する。更には、熱延時のフェライト分率が増加して、δフェライトとオーステナイトの強度差、変形能の違いによってδフェライトとオーステナイトの界面に亀裂が生じ耳割れの原因となる。従って、焼入れ硬さを向上させ、熱間加工性を向上させるために、γpは80以上、好ましくは85以上とする。更に好ましくは90以上あるとよい。(Γp = 80 to 120 which is an index representing the phase balance during hot rolling heating)
The following formula (1) of γp is an index representing the quenching heating temperature and the phase balance during hot rolling heating for producing the material. As γp decreases, the ferrite fraction increases, the amount of martensite during quenching decreases, the quenching hardness decreases, the wear rate of the disc brake rotor increases, and the brake braking performance decreases. Furthermore, the ferrite fraction during hot rolling increases, and cracks occur at the interface between δ ferrite and austenite due to differences in strength and deformability between δ ferrite and austenite, which causes ear cracks. Therefore, in order to improve quenching hardness and improve hot workability, γp is set to 80 or more, preferably 85 or more. More preferably 90 or more.
一方、γpを高くしすぎると、熱間圧延時に於いて、オーステナイト粒界にSが偏析し、粒界脆化を起こす事で耳割れが発生し易くなる。そこで、Sを固溶し無害化するうえで最小限度のδフェライトの存在が必要となる。そこで、γpの上限は120以下、好ましくは110以下とすることが望ましい。更に好ましくは105以下であるとよい。
γp=420[%C]+470[%N]+23[%Ni]+9[%Cu]+7[%Mn]
−11.5[%Cr]−11.5[%Si]−52[%Al]−12[%Mo]−47[%Nb]−7[%Sn]−49[%Ti]−48[%Zr]−49[%V]+189 ・・・(1)
ここで、上記式中に記載の成分は鋼中に含有されている成分の質量%を意味する。
なお、γpの式(1)は1100℃加熱時に生成するオーステナイト量の最大値を示す指標であり、「Metal Treatment」1964、p.230〜245の文献で紹介されているCastroの式を改良したもので、γ相の最大相分率を推定する経験式として公知の式である。On the other hand, if γp is too high, S is segregated at the austenite grain boundaries during the hot rolling, and ear cracks are likely to occur due to the grain boundary embrittlement. Therefore, a minimum amount of δ ferrite is required to dissolve S and make it harmless. Therefore, the upper limit of γp is 120 or less, preferably 110 or less. More preferably, it is good to be 105 or less.
γp = 420 [% C] +470 [% N] +23 [% Ni] +9 [% Cu] +7 [% Mn]
-11.5 [% Cr] -11.5 [% Si] -52 [% Al] -12 [% Mo] -47 [% Nb] -7 [% Sn] -49 [% Ti] -48 [% Zr] -49 [% V] +189 (1)
Here, the component described in the above formula means mass% of the component contained in the steel.
Note that γp equation (1) is an index indicating the maximum value of the amount of austenite generated during heating at 1100 ° C., “Metal Treatment” 1964, p. This is an improvement of the Castro equation introduced in the literatures 230 to 245, and is a well-known equation as an empirical equation for estimating the maximum phase fraction of the γ phase.
また、本発明では、上記元素に加えて、Mo:0.05〜0.5%、Sn:0.003〜0.5%、Nb:0.03〜0.15%、Ti:0.05%以下、Zr:0.05%以下、B:0.0005〜0.0030%、の1種以上を添加する、或いは高純度原料を使用して上限規制を行う事が好ましい。 In the present invention, in addition to the above elements, Mo: 0.05 to 0.5%, Sn: 0.003 to 0.5%, Nb: 0.03 to 0.15%, Ti: 0.05 % Or less, Zr: 0.05% or less, and B: 0.0005 to 0.0030%, or the upper limit is preferably controlled using a high-purity raw material.
(Mo:0.05〜0.5%)
Moは、耐食性を高めるために必要に応じて添加すれば良く、その効果を発揮させるため、下限を0.05%とすることが好ましい。一方、MoはCrと同様にフェライトフォーマーであり、過度の添加は焼入れ加熱時のオーステナイト分率を低下させ、焼入れ硬度を低下させるために、0.5%以下とする。但し、高価な元素であり、添加に見合った耐食性向上効果を発揮させると共に、原料コスト増加を抑制するためには、0.1%〜0.3%が望ましい。(Mo: 0.05-0.5%)
Mo may be added as necessary to enhance corrosion resistance, and the lower limit is preferably made 0.05% in order to exert its effect. On the other hand, Mo is a ferrite former like Cr, and excessive addition reduces the austenite fraction at the time of quenching heating and lowers the quenching hardness, so is 0.5% or less. However, it is an expensive element, and 0.1% to 0.3% is desirable in order to exhibit an effect of improving corrosion resistance commensurate with the addition and to suppress an increase in raw material cost.
(Sn:0.003〜0.5%)
Snは、耐食性を高めるために必要に応じて添加すれば良く、その効果を発揮させるためには、下限を0.003%、好ましくは0.03%とする。一方、SnはCr、Moと同様にフェライトフォーマーであり、過度の添加は焼入れ加熱時のオーステナイト分率を低下させ、焼入れ硬度を低下させるために、0.5%以下とする。但し、高価な元素であり、添加に見合った耐食性向上効果を発揮させると共に、原料コスト増加を抑制するためには、0.01%〜0.3%が望ましい。(Sn: 0.003-0.5%)
Sn may be added as necessary to enhance the corrosion resistance, and in order to exert its effect, the lower limit is made 0.003%, preferably 0.03%. On the other hand, Sn is a ferrite former like Cr and Mo, and excessive addition reduces the austenite fraction during quenching heating and lowers the quenching hardness, so is 0.5% or less. However, it is an expensive element, and 0.01% to 0.3% is desirable in order to exhibit an effect of improving corrosion resistance commensurate with the addition and to suppress an increase in raw material cost.
(Nb:0.03〜0.15%)
Nbは、焼き戻し軟化抵抗を上げるために必要に応じて添加すれば良く、その効果を発揮させるためには、下限を0.03%とすることが好ましい。一方、過度の添加は熱延板焼鈍時間の長時間化が必要になり生産性を大きく阻害するために、その上限は0.15%とする。なお、炭窒化物の形成による、マルテンサイトの硬度低下、固溶Nb量の低下を考慮すると0.05〜0.10%がより望ましい。(Nb: 0.03-0.15%)
Nb may be added as necessary to increase the temper softening resistance, and in order to exert its effect, the lower limit is preferably 0.03%. On the other hand, excessive addition requires a longer time for hot-rolled sheet annealing and greatly impedes productivity, so the upper limit is made 0.15%. In consideration of a decrease in martensite hardness and a decrease in the amount of solute Nb due to the formation of carbonitride, 0.05 to 0.10% is more preferable.
(Ti:0.05%以下)
Tiは、硬質の粗大な窒化物TiNとして析出することで、ブレーキディスクロータの鳴きを促進するために、必要に応じて上限規制を行う事が好ましい。粗大なTiN析出を抑制するためには、上限を0.05%以下とする事が好ましい。但し、他の合金原料に不純物として含まれるために、極度に低減する事は高純度原料の使用が必須になり原料コストの増加につながるために、下限を0.0005%とすることが好ましい。(Ti: 0.05% or less)
In order to promote the squeal of the brake disc rotor by precipitating Ti as hard coarse nitride TiN, it is preferable to perform upper limit regulation as necessary. In order to suppress coarse TiN precipitation, the upper limit is preferably 0.05% or less. However, since it is contained as an impurity in other alloy raw materials, it is preferable to use a high-purity raw material to reduce it extremely, leading to an increase in raw material cost, so the lower limit is preferably made 0.0005%.
(Zr:0.05%以下)
Zrは、硬質の粗大な窒化物ZrNとして析出することで、ブレーキディスクロータの鳴きを促進するために、必要に応じて上限規制を行う事が好ましい。粗大なZrN析出を抑制するためには、上限を0.05%以下とする事が好ましい。但し、他の合金原料に不純物として含まれるために、極度の低減する事は高純度原料の使用が必須になり原料コストの増加につながるために、下限を0.0005%とすることが好ましい。(Zr: 0.05% or less)
Zr is preferably precipitated as hard coarse nitride ZrN so as to promote the squealing of the brake disc rotor, and the upper limit is preferably set as necessary. In order to suppress coarse ZrN precipitation, the upper limit is preferably 0.05% or less. However, since it is contained as an impurity in other alloy raw materials, extreme reduction makes it necessary to use high-purity raw materials and leads to an increase in raw material costs. Therefore, the lower limit is preferably made 0.0005%.
(B:0.0005%〜0.0030%)
Bは、熱間圧延時の高温延性を向上させ、熱延板の耳割れによる歩留まり低下を低減するために、必要に応じて添加すれば良く、その効果を発揮させるためには、下限を0.0005%以上とする事が望ましい。しかし、過度な添加は、Cr2B、(Cr、Fe)23(C、B)6の析出により、靭性や耐食性を損なうため、その上限を0.0030%とする。なお、加工性や製造コストを考慮すると、0.0008〜0.0015%とすることがより望ましい。(B: 0.0005% to 0.0030%)
B may be added as necessary in order to improve the hot ductility during hot rolling and to reduce the yield reduction due to the ear cracks of the hot-rolled sheet, and in order to exert its effect, the lower limit is 0. .0005% or more is desirable. However, excessive addition impairs toughness and corrosion resistance due to precipitation of Cr2B and (Cr, Fe) 23 (C, B) 6, so the upper limit is made 0.0030%. In view of workability and manufacturing cost, 0.0008 to 0.0015% is more preferable.
(未固溶炭化物の析出量が、そのFeの量として0.04%以下)
また、本発明では上記元素に加えて、焼入れ後のマルテンサイト相中における、未固溶炭化物量を、炭化物として析出しているFeの量として0.04%以下に制御することが好ましい。これにより、ディスクブレーキロータの耐食性を高め、制動性を向上させることができる。(The amount of precipitation of undissolved carbide is 0.04% or less as the amount of Fe)
In the present invention, in addition to the above elements, the amount of undissolved carbide in the martensite phase after quenching is preferably controlled to 0.04% or less as the amount of Fe precipitated as carbide. Thereby, the corrosion resistance of the disc brake rotor can be increased and the braking performance can be improved.
すなわち、焼入れ後の未固溶炭化物[(FeCr)23C6]は、少ない方が固溶C量が増加し、マルテンサイトの硬度が上がる。また、炭化物析出に伴う鋭敏化(粒界への炭化物の析出による、粒界腐食に対するステンレス鋼の感受性)に起因する耐食性の低下も抑制する事が可能になるために好ましい。その効果を得るためには、炭化物としてのFeの析出量として0.04%以下が望ましい。尚、炭化物として析出したFeの量を測定するには、非水溶媒系電解液による、定電位電解エッチング法(SPEED法)を用いた。なお、耐食性を考慮しなければ、0.04%を超えても問題はないが、硬度が低くなり、狙いの硬度の下限値近くとなるので、0.04%以下とすることが好ましい。未固溶炭化物[(FeCr)23C6]の析出量が、そのFeの量として0.04%以下にするためには、800〜600℃の温度域を0.3℃/s以上、好ましくは、3℃/s以上、さらに好ましくは10℃/s以上の冷却速度で冷却すればよい。That is, the amount of solid solution C increases as the amount of undissolved carbide [(FeCr) 23 C 6 ] after quenching increases and the hardness of martensite increases. Further, it is preferable because it is possible to suppress a decrease in corrosion resistance due to sensitization accompanying carbide precipitation (sensitivity of stainless steel to intergranular corrosion due to precipitation of carbide at the grain boundary). In order to acquire the effect, 0.04% or less is desirable as the precipitation amount of Fe as a carbide. In order to measure the amount of Fe precipitated as carbide, a constant potential electrolytic etching method (SPEED method) using a non-aqueous solvent electrolyte was used. If the corrosion resistance is not taken into consideration, there is no problem even if it exceeds 0.04%, but the hardness becomes low and is close to the lower limit value of the target hardness, so 0.04% or less is preferable. In order for the precipitation amount of insoluble carbide [(FeCr) 23 C 6 ] to be 0.04% or less as the amount of Fe, the temperature range of 800 to 600 ° C. is preferably 0.3 ° C./s or more, preferably May be cooled at a cooling rate of 3 ° C./s or more, more preferably 10 ° C./s or more.
次に、本実施形態におけるマルテンサイト系ステンレス鋼板の製造方法について説明する。 Next, the manufacturing method of the martensitic stainless steel plate in this embodiment is demonstrated.
本実施形態のマルテンサイト系ステンレス鋼板の製造方法は、上記鋼組成を有したマルテンサイト系ステンレス鋼を製鋼し、製鋼後、鋳造した鋼片(スラブ)に対して、熱間圧延を施した後、熱延板焼鈍を行い、酸洗後に、冷間圧延を行う。冷間圧延工程に於いては、必要に応じて、中間焼鈍−酸洗、仕上げ焼鈍−酸洗を行う。 The manufacturing method of the martensitic stainless steel sheet according to the present embodiment is the method of manufacturing the martensitic stainless steel having the above steel composition, and after hot rolling the cast steel piece (slab) after steelmaking. Then, hot-rolled sheet annealing is performed, and after pickling, cold rolling is performed. In the cold rolling step, intermediate annealing-pickling and finish annealing-pickling are performed as necessary.
本実施形態における製鋼に於いては、前記必須成分および必要に応じて添加される成分を含有する鋼を、転炉における精錬と、引き続き行う二次精錬によって行う溶製方法が好適である。
次に、溶製した溶鋼を、公知の鋳造方法(連続鋳造)に従ってスラブとする。そして、このスラブを、所定の温度に加熱し、所定の板厚に熱間圧延し、熱延鋼板(熱延板)とする。なお、熱間圧延の仕上げ圧延終了温度は、800〜950℃の範囲とする。
次に、仕上げ圧延後、熱延鋼板をコイル状に巻き取る。巻き取りまでの冷却は、空冷として巻き取り温度を700〜900℃の範囲にする事が、熱延板焼鈍時間の短縮のためにも好ましい。熱延鋼板は、熱延ままでは硬く、冷間圧延が困難であるため、例えばバッチ式の焼鈍炉で、焼鈍される。焼鈍温度は、その最高到達温度を800〜900℃として、最冷点が800℃を超えた後、1時間から10時間焼鈍した後、焼鈍炉内で一定時間冷却後、炉外に移されて、常温まで冷却される。この最冷点とは、バッチ式の焼鈍炉における加熱対象物において最も温度が上がりにくい部位を意味しており、熱延コイルでは、コイルの長手方向中央部で、炉底部に接する部位を示す。その後、ショットブラスト等の機械式デスケーリングと、酸による化学的なデスケーリングによって、表面の酸化スケールを除去し、引き続き、冷間圧延を行う事で冷間圧延製品となる。冷延製品は、その硬度が220〜260HVになる様に、冷延率を調整するが、冷延板に仕上げ焼鈍を行い、焼鈍温度によって硬度を調整する事も可能である。この時の焼鈍温度は650〜750℃の範囲とする事が好ましい。また、熱延板の板厚によっては、冷間圧延時に中間焼鈍−酸洗を行うが、この場合でも仕上げ冷間圧延の冷間圧延率を制御する事で、硬度を調整する事が可能である。中間焼鈍は、総冷延圧下率が高くなると、加工硬化により硬度が高くなるので、冷間圧延機の能力を考慮して行なうが、冷間圧延機の能力によっては、中間焼鈍を省略して一回の冷間圧延で製造することも可能である。また、中間焼鈍は板厚精度を高める効果もある。なお、硬さのレベルに応じて、適切な硬度の測定方法がある。なお、本発明ではビッカース硬さ(HV)とロックウエル硬さ(HRC)とを使い分けている。In steelmaking in this embodiment, a smelting method is preferred in which the steel containing the essential components and components added as necessary is refined in a converter and subsequently subjected to secondary refining.
Next, the molten steel is made into a slab according to a known casting method (continuous casting). Then, this slab is heated to a predetermined temperature and hot-rolled to a predetermined plate thickness to obtain a hot-rolled steel sheet (hot-rolled sheet). In addition, the finish rolling finish temperature of hot rolling shall be the range of 800-950 degreeC.
Next, after finish rolling, the hot rolled steel sheet is wound into a coil. Cooling up to the winding is preferably performed by air cooling so that the winding temperature is in the range of 700 to 900 ° C. in order to shorten the hot-rolled sheet annealing time. Since a hot-rolled steel sheet is hard as it is hot-rolled and is difficult to cold-roll, it is annealed in, for example, a batch-type annealing furnace. The annealing temperature is set to 800 to 900 ° C., and after the coldest point exceeds 800 ° C., it is annealed for 1 to 10 hours, cooled in the annealing furnace for a certain time, and then transferred to the outside of the furnace. Cool to room temperature. The coldest point means a part where the temperature is most unlikely to rise in an object to be heated in a batch-type annealing furnace. In a hot-rolled coil, the part that is in contact with the furnace bottom at the central part in the longitudinal direction of the coil is shown. After that, the surface oxide scale is removed by mechanical descaling such as shot blasting and chemical descaling with acid, and then cold rolling is performed to obtain a cold rolled product. The cold-rolled product adjusts the cold-rolling rate so that the hardness is 220 to 260 HV, but it is also possible to perform final annealing on the cold-rolled plate and adjust the hardness according to the annealing temperature. The annealing temperature at this time is preferably in the range of 650 to 750 ° C. Depending on the thickness of the hot-rolled sheet, intermediate annealing and pickling are performed during cold rolling, but even in this case, the hardness can be adjusted by controlling the cold rolling rate of finish cold rolling. is there. Intermediate annealing is performed in consideration of the capability of the cold rolling mill, because the hardness increases due to work hardening when the total cold rolling reduction ratio increases, but depending on the capability of the cold rolling mill, intermediate annealing may be omitted. It is also possible to manufacture by one cold rolling. Intermediate annealing also has the effect of increasing the thickness accuracy. There is an appropriate hardness measurement method depending on the hardness level. In the present invention, Vickers hardness (HV) and Rockwell hardness (HRC) are properly used.
以下に、本実施形態における冷間圧延率の限定理由について説明する。 Below, the reason for limitation of the cold rolling rate in this embodiment is demonstrated.
本実施形態に於いては、一回又は二回に分けて行う冷間圧延の総冷間圧延率を20〜70%とすると共に、そのうちの仕上げ冷間圧延の冷間圧延率を20%以上とし、冷間圧延製品、或いは冷間圧延−焼鈍−酸洗製品の硬度を220HV〜260HVとする。なお、一回又は二回に分けて冷間圧延を行なうのは、熱延板の板厚、製品の板厚で適宜選択して実施する。また、板厚精度を高めるために、二回冷延を行なう場合もある。さらに、使用する設備や生産量によって、一回又は二回の冷間圧延は適宜選択することができる。 In the present embodiment, the total cold rolling rate of cold rolling performed once or twice is set to 20 to 70%, and the cold rolling rate of finish cold rolling is 20% or more. And the hardness of the cold-rolled product or cold-rolled-annealed-pickled product is set to 220 HV to 260 HV. The cold rolling is performed once or twice by appropriately selecting the thickness of the hot rolled sheet and the thickness of the product. Moreover, in order to improve plate | board thickness precision, cold rolling may be performed twice. Furthermore, the cold rolling of 1 time or 2 times can be selected suitably according to the installation and production amount to be used.
また、冷間圧延製品は、冷間圧延ままで出荷される製品を意味し、一般にハード材と呼ばれる。酸洗製品は、冷間圧延後に焼鈍、酸洗を行なって仕上げた製品を意味する(仕上は2D或いは2B仕上で、JIS G4305参照)。製品の硬さは、冷延時の加工硬化で硬さを制御するか、或いは焼鈍温度で硬さを制御するかのいずれの方法でも制御することができる。 Further, the cold-rolled product means a product that is shipped as cold-rolled, and is generally called a hard material. The pickled product means a product finished by performing annealing and pickling after cold rolling (finish is 2D or 2B finish, see JIS G4305). The hardness of the product can be controlled either by controlling the hardness by work hardening during cold rolling or by controlling the hardness at the annealing temperature.
冷間圧延を行う事によって、製品の板厚精度が向上し、ディスクブレーキロータの形状にプレス成形した際の、板厚寸法精度を高める事が可能になる。マルテンサイト系ステンレス鋼の板厚精度を50μm以下に高めるためには、総冷間圧延率を20%以上にする事が望ましい。板厚精度の向上は、焼入れ後の研磨工程に於いて作業効率を高める事が可能になる。過度に冷間圧延率を高める事は、生産性を低下させることになるため、総冷間圧延率を70%以下にする。 By performing cold rolling, the plate thickness accuracy of the product is improved, and it is possible to increase the plate thickness dimensional accuracy when press-molding into the shape of the disc brake rotor. In order to increase the thickness accuracy of martensitic stainless steel to 50 μm or less, it is desirable to set the total cold rolling rate to 20% or more. The improvement of the plate thickness accuracy can increase the working efficiency in the polishing process after quenching. Excessively increasing the cold rolling rate decreases productivity, so the total cold rolling rate is set to 70% or less.
また、プレス成形時の寸法精度を高めるためには、冷延板、或いは冷間圧延、焼鈍、酸洗板の硬度を220〜260HVにすることが望ましい。プレス成形時の寸法精度とは、プレス成形(打ち抜き加工)時における剪断面のだれ量によって評価したものである。硬度が130〜200HVの焼鈍酸洗材をプレス成形した時のだれ量に較べて、硬度を220HV以上にすることで、だれの量を1/2以下に低減する事が可能になる。硬度を220HV以上にする方法としては、仕上げ冷間圧延の冷間圧延率を20%以上とするか、冷間圧延率20%以上の冷間圧延と焼鈍を組み合わせる事で可能となる。但し、硬度が過度に高くなると、金型の摩耗を早めるため、260HV以下にする。また、仕上げ冷間圧延圧下率を60%以下にすることが好ましい。硬さを制御する焼鈍は、例えば、650〜780℃の範囲で、10〜120秒の範囲で行なうことが好ましい。 Moreover, in order to improve the dimensional accuracy at the time of press molding, it is desirable to set the hardness of a cold-rolled sheet, or cold rolling, annealing, and pickling sheet to 220 to 260 HV. The dimensional accuracy at the time of press forming is evaluated by the amount of sheared surface at the time of press forming (punching). By setting the hardness to 220 HV or higher as compared with the amount of dripping when an annealed pickling material having a hardness of 130 to 200 HV is press-molded, it becomes possible to reduce the amount of the sacrificial amount to ½ or less. As a method for setting the hardness to 220 HV or higher, it is possible to set the cold rolling rate of finish cold rolling to 20% or higher, or by combining cold rolling and annealing at a cold rolling rate of 20% or higher. However, if the hardness is excessively high, the wear of the mold is accelerated, so 260 HV or less. Further, the finish cold rolling reduction ratio is preferably 60% or less. The annealing for controlling the hardness is preferably performed, for example, in the range of 650 to 780 ° C. and in the range of 10 to 120 seconds.
以下に、このような成分(C+N)範囲、冷間圧延率範囲、製品の硬度範囲、焼入れ後の未固溶炭化物量の限定理由を説明するための調査結果を示す。 Hereinafter, the investigation results for explaining the reasons for limiting the component (C + N) range, the cold rolling rate range, the product hardness range, and the amount of undissolved carbide after quenching will be shown.
図1では、本実施形態にかかるマルテンサイト系ステンレス鋼のC+N量を変化させたうえで、複数の鋼塊に鋳造した後、仕上げ熱延温度を850℃として、板厚4mmに熱間圧延した。その後、780℃で巻き取った後、熱延板焼鈍を850℃で4時間行い、炉内で常温まで緩冷却した。熱延鋼板をショットブラストし、硫酸酸洗してデスケーリングした後、冷間圧延によって、板厚1.8mmの冷間圧延製品とした。製品から、自転車用のディスクブレーキロータ形状にプレス成形した後、焼入れ処理を行い、表面研磨をおこなって、ディスクブレーキロータとした。焼入れ後の硬度をロックウエル硬さ計で測定した。また、ディスクブレーキの制動性評価を実車走行試験で行い、制動性、鳴き特性を3段階で評点付けした。ここで制動性の評価はJIS D9301に規定される制動性試験において、25km/h走行での制動距離が、ローターが新しい状態での制動距離L0と、ブレーキ油圧1.0MPa、車輪回転数2rpsで5km相当の負荷テストを行った後の制動距離LBで比較した。L0とLBの比、L0/LBが0.7未満を×(不合格)、0.7以上で0.9未満を○(不合格)、0.9以上を◎(合格レベルであって優れたもの)とした。鳴きの評価は、ブレーキ油圧1.0MPa、車輪の回転数2rpsにおいて、45dBの環境下に於いて鳴き音が聞こえる場合を×(不合格)、30dBの騒音下で聞こえない物を◎(合格レベルであって優れたもの)、その間を○(不合格)とした。 In FIG. 1, after changing the C + N amount of the martensitic stainless steel according to the present embodiment and casting into a plurality of steel ingots, the hot rolling temperature was set to 850 ° C. and hot rolling was performed to a plate thickness of 4 mm. . Then, after winding up at 780 degreeC, hot-rolled sheet annealing was performed at 850 degreeC for 4 hours, and it cooled slowly to normal temperature in the furnace. The hot-rolled steel sheet was shot blasted, washed with sulfuric acid, descaled, and then cold-rolled to obtain a cold-rolled product having a thickness of 1.8 mm. The product was press-molded into a disc brake rotor shape for bicycles, then subjected to quenching treatment and surface polishing to obtain a disc brake rotor. The hardness after quenching was measured with a Rockwell hardness meter. In addition, the braking performance of the disc brake was evaluated in an actual vehicle running test, and the braking performance and squeal characteristics were rated in three stages. Here, the evaluation of braking performance is based on the braking performance test specified in JIS D9301, where the braking distance at 25 km / h is the braking distance L0 when the rotor is new, the brake hydraulic pressure is 1.0 MPa, and the wheel rotational speed is 2 rps. A comparison was made by the braking distance LB after a load test equivalent to 5 km. Ratio of L0 and LB, L0 / LB is less than 0.7 x (failed), 0.7 or more and less than 0.9 ○ (failed), 0.9 or more ◎ (pass level is excellent Was). The evaluation of squeal is x (failure) when you can hear a squeal in a 45 dB environment at a brake hydraulic pressure of 1.0 MPa and a wheel speed of 2 rps. (Between and excellent ones), the interval between them was marked as ◯ (failed).
図1から明らかなように、C+Nを0.09%以上とする事によって、焼入れ後の硬度は38HRC以上になり、制動力が上がる事が分かる。また、C+Nが0.015%超になると、硬度が44HRC以上になると共に、鳴きが発生する事が分かる。本発明では、焼入れ後の硬度は38〜44HRCを狙いとしている。 As can be seen from FIG. 1, by setting C + N to 0.09% or more, the hardness after quenching is 38 HRC or more, and the braking force is increased. It can also be seen that when C + N exceeds 0.015%, the hardness becomes 44 HRC or more and squeal occurs. In the present invention, the hardness after quenching is aimed at 38 to 44 HRC.
なお、図1に示す関係を調査すべく用いたマルテンサイト系ステンレス鋼の鋼組成は、12.3%Cr、0.3%Si、1.1%Mn、0.04%〜0.14%C、0.02%N、0.027%P、0.008%S、0.2%Ni、0.02%Cu、0.04%V、0.008%Alである。 The steel composition of the martensitic stainless steel used to investigate the relationship shown in FIG. 1 is 12.3% Cr, 0.3% Si, 1.1% Mn, 0.04% to 0.14%. C, 0.02% N, 0.027% P, 0.008% S, 0.2% Ni, 0.02% Cu, 0.04% V, 0.008% Al.
図2では、本実施形態にかかるマルテンサイト系ステンレス鋼を鋼塊に鋳造した後、仕上げ熱延温度を850℃として、板厚5mmに熱間圧延した。その後、780℃で巻き取った後、熱延板焼鈍を850℃で4時間行い、炉内で常温まで緩冷却した。熱延鋼板をショットブラストし、硫酸酸洗してデスケーリングした後、表面を研削して、1.8〜5.0mmとした。引き続き冷間圧延によって、板厚1.8mmの冷間圧延製品とした。製品の表面硬度をロックウエル硬度計で測定した。製品から、自転車用のディスクブレーキロータ形状にプレス成形した後、プレス孔のだれ量を測定した。だれ量の評価は、ポンチ外径18mm、ダイス内径19mm、クリアランス0.5mmで打ち抜き速度700mm/minでプレス試験を行った後、だれの高さを円周に渡って測定し、その平均を求めた。だれの平均高さが100μm以上を×(不合格)、50μm以上で100μm未満を○(不合格)、50μm未満を◎(合格レベルであって優れたもの)とした。 In FIG. 2, after martensitic stainless steel according to the present embodiment was cast into a steel ingot, the hot rolling temperature was set to 850 ° C. and hot rolled to a plate thickness of 5 mm. Then, after winding up at 780 degreeC, hot-rolled sheet annealing was performed at 850 degreeC for 4 hours, and it cooled slowly to normal temperature in the furnace. The hot rolled steel sheet was shot blasted, washed with sulfuric acid and descaled, and then the surface was ground to 1.8 to 5.0 mm. Subsequently, a cold rolled product having a thickness of 1.8 mm was obtained by cold rolling. The surface hardness of the product was measured with a Rockwell hardness meter. The product was pressed into a disc brake rotor shape for bicycles, and the amount of dripping in the press holes was measured. For the evaluation of the amount of drool, after performing a press test with a punch outer diameter of 18 mm, a die inner diameter of 19 mm, a clearance of 0.5 mm and a punching speed of 700 mm / min, the height of the person is measured over the circumference and the average is obtained. It was. An average height of 100 μm or more was evaluated as x (failed), 50 μm or more and less than 100 μm was evaluated as ◯ (failed), and less than 50 μm was evaluated as ◎ (acceptable level and excellent).
図2から明らかなように、冷間圧延を20%以上にすることによって、製品の硬度が220HV以上になると共に、だれの量が低減する事が分かる。硬度は冷間圧延率の増加と共に、高くなり、冷間圧延率70%では270HVとなるため、プレス成形時の金型への負荷が大きくなり望ましくない。 As is apparent from FIG. 2, it can be seen that by setting the cold rolling to 20% or more, the hardness of the product becomes 220 HV or more, and the amount of anyone decreases. Hardness increases with an increase in the cold rolling rate, and becomes 270 HV at a cold rolling rate of 70%, which is undesirable because the load on the mold during press molding increases.
なお、図2に示す関係を調査すべく用いたマルテンサイト系ステンレス鋼の鋼組成は、12.3%Cr、0.3%Si、1.1%Mn、0.08%C、0.02%N、0.026%P、0.008%S、0.2%Ni、0.02%Cu、0.04%V、0.003%Alである。 The steel composition of the martensitic stainless steel used to investigate the relationship shown in FIG. 2 is 12.3% Cr, 0.3% Si, 1.1% Mn, 0.08% C, 0.02. % N, 0.026% P, 0.008% S, 0.2% Ni, 0.02% Cu, 0.04% V, 0.003% Al.
図3では、本実施形態にかかるマルテンサイト系ステンレス鋼を鋼塊に鋳造した後、仕上げ熱延温度を850℃として、板厚4mmに熱間圧延した。その後、780℃で巻き取った後、熱延板焼鈍を850℃で4時間行い、炉内で常温まで緩冷却した。熱延鋼板をショットブラストし、硫酸で酸洗してデスケーリングした後、冷間圧延によって、板厚1.8mmの冷間圧延製品とした。製品から、自転車用のディスクブレーキロータ形状にプレス成形した後、種々の加熱温度、時間、冷却速度に於いて焼入れ処理を行い、表面研磨をおこなって、ディスクブレーキロータとした。ディスクブレーキロータから、20×30mmの板を切り出して、全面を600番の紙やすりで研磨した後、SPEED法によって、析出物を抽出し、抽出した析出物を化学分析して、析出中のFe、Cr量を測定した。ディスクブレーキの耐食性を24時間の塩水噴霧試験後におけるさびの面積率によって評点付けした。塩水噴霧試験は、JIS Z2371に準拠して行った。さびの面積率が、10%未満を◎(合格レベルであって優れたもの)、10%以上で30%未満を○(不合格)、30%以上を×(不合格)とした。 In FIG. 3, after martensitic stainless steel according to the present embodiment was cast into a steel ingot, the hot rolling temperature was set to 850 ° C. and hot rolled to a plate thickness of 4 mm. Then, after winding up at 780 degreeC, hot-rolled sheet annealing was performed at 850 degreeC for 4 hours, and it cooled slowly to normal temperature in the furnace. The hot-rolled steel sheet was shot blasted, pickled with sulfuric acid, descaled, and then cold-rolled to obtain a cold-rolled product having a thickness of 1.8 mm. The product was press-molded into a disc brake rotor shape for bicycles, then subjected to quenching treatment at various heating temperatures, times and cooling rates, and surface polishing was performed to obtain a disc brake rotor. A 20 × 30 mm plate was cut out from the disc brake rotor, and the entire surface was polished with sandpaper No. 600, and then the precipitate was extracted by the SPEED method, and the extracted precipitate was chemically analyzed to obtain Fe in the precipitation. The amount of Cr was measured. The corrosion resistance of the disc brake was rated by the rust area ratio after a 24-hour salt spray test. The salt spray test was performed according to JIS Z2371. The area ratio of the rust was less than 10% (excellent at an acceptable level), 10% or more and less than 30% was evaluated as ◯ (failed), and 30% or more was evaluated as x (failed).
図3から明らかなように、Fe析出物の量が高くなると、塩水噴霧試験での発銹率が高くなり耐食性のランクが低下している。 As is clear from FIG. 3, when the amount of Fe precipitates is increased, the rusting rate in the salt spray test is increased and the corrosion resistance rank is decreased.
なお、図3に示す関係を調査すべく用いたマルテンサイト系ステンレス鋼の鋼組成は、13.1%Cr、0.3%Si、1.4%Mn、0.2Ni、0.085%C、0.015%N、0.017%P、0.003%S、0.1%Ni、0.2%Cu、0.01%V、0.01%Alである。 The steel composition of the martensitic stainless steel used for investigating the relationship shown in FIG. 3 is 13.1% Cr, 0.3% Si, 1.4% Mn, 0.2Ni, 0.085% C. 0.015% N, 0.017% P, 0.003% S, 0.1% Ni, 0.2% Cu, 0.01% V, 0.01% Al.
以上のように、本発明に係るマルテンサイト系ステンレス鋼によれば、C+Nを0.09%〜0.15%としているため、焼入れ硬度が38HRC〜44HRCにすることが出来る。その結果、自転車のディスクブレーキロータとして必要な制動性、鳴き低減を可能にする事が出来る。 As described above, according to the martensitic stainless steel according to the present invention, since C + N is 0.09% to 0.15%, the quenching hardness can be 38 HRC to 44 HRC. As a result, it is possible to achieve the braking performance and noise reduction necessary for a disc brake rotor of a bicycle.
本発明に係るマルテンサイト系ステンレス鋼の製造方法によれば、冷間圧延率を最適化し、プレス成形前の硬度を制御する事によって、プレス成形時のだれを低減する事が可能になり、焼入れ後の研磨量を低減できる。また、研磨負荷を平準化できるなど生産性の向上が可能となる。
焼入れ処理は、加熱温度範囲を800℃以上、好ましくは950℃以上、さらに好ましくは1000℃以上で1100℃以下とし、保定時間を1秒〜20分、冷却速度を0.1〜1000℃/sの条件で行なうとよい。例えば、真空炉の場合は、800〜1100℃(加熱温度)×1秒〜20分間(保定時間)で冷却速度を0.1〜10℃/sで行なうことができる。連続焼鈍炉では、800〜1100℃(加熱温度)×1〜600秒(保定時間)で冷却速度を0.5〜70℃/s、或いは油冷、水冷、金型焼入れで行なうことができる。According to the method for producing martensitic stainless steel according to the present invention, by optimizing the cold rolling rate and controlling the hardness before press forming, it becomes possible to reduce dripping during press forming and quenching. The amount of subsequent polishing can be reduced. Further, productivity can be improved, for example, the polishing load can be leveled.
In the quenching treatment, the heating temperature range is 800 ° C. or higher, preferably 950 ° C. or higher, more preferably 1000 ° C. or higher and 1100 ° C. or lower, the holding time is 1 second to 20 minutes, and the cooling rate is 0.1 to 1000 ° C./s. This should be done under the following conditions. For example, in the case of a vacuum furnace, the cooling rate can be 0.1 to 10 ° C./s at 800 to 1100 ° C. (heating temperature) × 1 second to 20 minutes (holding time). In a continuous annealing furnace, the cooling rate can be 0.5 to 70 ° C./s at 800 to 1100 ° C. (heating temperature) × 1 to 600 seconds (holding time), or oil cooling, water cooling, or die quenching.
本発明に係るマルテンサイト系ステンレス鋼のディスクブレーキロータは、未固溶炭化物[(FeCr)23C6]の量を制御する事により、耐食性を高める事が可能になり、ブレーキ性能以外の付加価値を高める事が出来る。The martensitic stainless steel disc brake rotor according to the present invention can increase the corrosion resistance by controlling the amount of undissolved carbide [(FeCr) 23 C 6 ], and can add value other than brake performance. Can be increased.
以下、実施例により本発明の効果を説明するが、本発明は、以下の実施例で用いた条件に限定されるものではない。 Hereinafter, the effects of the present invention will be described with reference to examples, but the present invention is not limited to the conditions used in the following examples.
本発明では、まず、表1、2に示す成分組成の鋼(残部はFeおよび不可避不純物)を溶製してスラブに鋳造した。表1,2では、成分に関して本発明を満足するものを本発明例としている。なお、鋼材No.28、37〜41、28−2、37−2、39−2は、選択元素(Mo、Sn、Nb、B、Ti)の含有量が不可避的不純物レベルを超えており、なおかつ選択元素の含有量の上限も超えているものである。このスラブを1230℃に加熱後、仕上げ温度を800〜950℃の範囲内として、板厚2.5〜5.0mmまで熱間圧延し、780℃で巻き取って熱延鋼帯とした。 In the present invention, first, steel having the composition shown in Tables 1 and 2 (the balance is Fe and inevitable impurities) was melted and cast into a slab. In Tables 1 and 2, examples satisfying the present invention regarding the components are examples of the present invention. In addition, steel material No. 28, 37 to 41, 28-2, 37-2, 39-2, the content of the selective element (Mo, Sn, Nb, B, Ti) exceeds the inevitable impurity level, and the content of the selective element The upper limit of the amount is also exceeded. After heating this slab to 1230 degreeC, finishing temperature was made into the range of 800-950 degreeC, it hot-rolled to plate thickness 2.5-5.0 mm, and it wound up at 780 degreeC, and was set as the hot-rolled steel strip.
引き続き、熱延鋼板に850℃で4時間の熱延板焼鈍を行った後、炉内で緩冷却した。熱延焼鈍板をショットブラストし、硫酸酸洗して、スケールを除去した。冷間圧延を行って1.8mmの冷間圧延製品とした。冷間圧延に際しては、一部の材料に於いて、750℃で中間焼鈍し、酸洗を行った。また、一部の材料では、冷間圧延後に700℃で仕上げ焼鈍し、酸洗を行った。これらの製造条件については表2に示した。この様にして製造した冷間圧延製品、冷間圧延焼鈍酸洗製品について、表面硬度をロックウエル硬度計で測定した。ロックウエル硬さ試験はJIS Z2245に準拠して行った。 Subsequently, the hot-rolled steel sheet was annealed at 850 ° C. for 4 hours, and then slowly cooled in a furnace. The hot-rolled annealed plate was shot blasted and washed with sulfuric acid to remove scale. Cold rolling was performed to obtain a 1.8 mm cold rolled product. In cold rolling, some materials were subjected to intermediate annealing at 750 ° C. and pickling. In addition, some materials were subjected to finish annealing at 700 ° C. after cold rolling and pickling. These manufacturing conditions are shown in Table 2. The surface hardness of the cold-rolled product and the cold-rolled annealed pickled product thus manufactured was measured with a Rockwell hardness meter. The Rockwell hardness test was performed according to JIS Z2245.
冷間圧延製品、冷間圧延焼鈍酸洗製品から、自転車のディスクブレーキロータをプレス成形した。打ち抜き穴のだれを測定し、比較評価によるランク付けを行った。更に、表3、4に示す種々の条件で焼入れし、表面を研磨した後、付帯部品を取り付けて、自転車のディスクブレーキロータとした。実車走行試験によって、ブレーキ特性を評価した。ブレーキ特性とは、制動力、鳴きを評価した。また、ディスクブレーキロータの耐食性を塩水噴霧試験24時間で評価した。塩水噴霧試験は、JIS Z2371に準拠して行った。これらの評価試験方法及び評点付けについては、前述の方法を用いた。 Bicycle disc brake rotors were press-molded from cold-rolled products and cold-rolled annealed pickled products. The punched holes were measured and ranked by comparative evaluation. Furthermore, after quenching under various conditions shown in Tables 3 and 4 and polishing the surface, incidental parts were attached to form a disc brake rotor for a bicycle. Brake characteristics were evaluated by actual vehicle running tests. The braking characteristics were evaluated as braking force and squeal. Further, the corrosion resistance of the disc brake rotor was evaluated in a salt spray test for 24 hours. The salt spray test was performed according to JIS Z2371. The above-described methods were used for these evaluation test methods and scoring.
以上の製造条件および評価結果を表3、4に示す。 The above production conditions and evaluation results are shown in Tables 3 and 4.
仕上げ焼鈍温度は、(1)600〜700℃、(2)700〜800℃で行った。 The final annealing temperatures were (1) 600 to 700 ° C and (2) 700 to 800 ° C.
表3、4から明らかなように、本発明を適用した成分組成で製造した本発明例(試験No.1〜32、54〜83)の場合、比較例に較べて、ブレーキ制動性、鳴き特性が良好であることが分かる。また、ディスクブレーキの耐食性に優れる事が分かる。また、本発明の成分組成に加えて、冷間圧延条件をも満足する実施例では、ブレーキ制動性、鳴き特性、耐食性に加えて、プレス成形時のだれが少なく生産性にも優れる事が分かる。つまり、本発明を適用した成分、製造方法によると、自転車のディスクブレーキロータに必要な焼入れ後のブレーキ特性、更には耐食性にも優れ、プレス形成性にも優れたマルテンサイト系ステンレス鋼冷間圧延製品、冷間圧延−焼鈍−酸洗製品を得る事が出来る。 As is apparent from Tables 3 and 4, in the case of the present invention examples (test Nos. 1 to 32 and 54 to 83) manufactured with the component composition to which the present invention was applied, the brake braking performance and squeal characteristics were compared with the comparative examples. Is found to be good. It can also be seen that the disc brake has excellent corrosion resistance. In addition, in addition to the component composition of the present invention, in the examples that also satisfy the cold rolling conditions, it can be seen that in addition to brake braking performance, squealing characteristics, and corrosion resistance, there is little dripping during press molding and excellent productivity. . In other words, according to the components and manufacturing methods to which the present invention is applied, the martensitic stainless steel cold-rolled excellent in brake characteristics after quenching required for a bicycle disc brake rotor, and also in corrosion resistance and press formability. Products, cold rolled-annealed-pickled products can be obtained.
一方、本発明から外れる比較例(試験No.33〜53、84〜96)では、冷間圧延製品、或いは冷間圧延−焼鈍−酸洗製品の焼入れ後の硬度、自転車のディスクブレーキロータとしてのブレーキ制動性、鳴き特性、耐食性の少なくとも1つが低かった。これにより、比較例におけるマルテンサイト系ステンレス鋼板の、自転車のディスクブレーキロータ素材としての性能が低下してしまったことが分かる。 On the other hand, in comparative examples (test Nos. 33 to 53, 84 to 96) that depart from the present invention, the hardness after quenching of cold rolled products or cold rolled-annealed-pickled products, as a disc brake rotor of a bicycle At least one of braking performance, squealing characteristics, and corrosion resistance was low. Thereby, it turns out that the performance as a disc brake rotor material of a bicycle of the martensitic stainless steel plate in a comparative example has fallen.
具体的に、比較例における特性値と成分、製造条件の対応について説明する。 Specifically, correspondence between characteristic values, components, and manufacturing conditions in the comparative example will be described.
試験No.(以下単にNo.と記す)33、No.84は、焼入れ条件が不適切(焼き入れ加熱時間が短くかつ冷却速度が遅い、即ち1030℃で1秒加熱後に0.5℃/sで冷却)であったため、析出Fe量が大きくなり、焼入れ硬さが低くなった。このため、ブレーキ制動性能が低下し、また耐食性も低化した。No.34は、C量が低かったため、焼入れ硬度が低くなり、ブレーキ制動性能が低下した。No.85はC量が高かったため、焼入れ硬度が高くなりすぎて、鳴き特性が劣化した。No.35はSi量が低かったため、精錬時間が長くなり生産性が低下した。No.36、No.86はSi量が高かったため、No.37、No.87はMn量が低かったため、No.42、No.91はCr量が高かったため、No.49、No.95はMo量が高かったため、γpが低下し、焼入れ後にフェライトが残存し焼入れ硬さを低下させ、ブレーキ制動性能が低下した。No.38はMn量が高かったため、鳴き特性が低下すると共に、耐食性が低下した。No.39、No.88はPが高かったため、熱延焼鈍板の靭性が低下した。No.40、No.89は、S、Bが高かったため、耐食性が低下した。No.41、No.90はCr量が低かったため、耐食性が不良であった。更に、C+Nが高かったため、焼入れ硬度が高くなりすぎて、鳴き特性が劣化した。No.43は、Ni量が高く、No.50はSnが高かったため、原料コストが高くなった。No.44、No.92はAl量が高かったため、スラグの塩基度が高くなり、水溶性の介在物CaSが鋼中に晶出し、耐食性を低下させた。No.45、No.93はV量が高かったため、硬質のV炭化物によって鳴き特性が劣化した。No.46は窒素が低かったため、C+Nが低くなり、焼入れ硬さが低下し、ブレーキ制動性能が劣化した。No.47、No.94は窒素が高かったため、スラブに気泡系欠陥が出来、製品の表面品質を劣化させた。また、C+N量が高くなりすぎたため、焼入れ硬度が高くなり、鳴き特性を劣化させた。No.48はCu量が高かったため、鳴き特性が劣化した。No.51、No.96はNbが高く、No.52はTiが高く、No.53はZrが高かったため、鳴き特性が劣化した。 Test No. (Hereinafter simply referred to as No.) 33, No. No. 84 was inadequate in quenching conditions (the quenching heating time was short and the cooling rate was slow, ie, heating at 1030 ° C. for 1 second and then cooling at 0.5 ° C./s), so the amount of precipitated Fe increased and quenching occurred. The hardness became low. For this reason, brake braking performance was lowered and corrosion resistance was also lowered. No. No. 34 had a low C content, so the quenching hardness was low and the brake braking performance was lowered. No. Since 85 had a high C content, the quenching hardness was too high, and the squeal characteristics deteriorated. No. Since 35 had a low Si content, the refining time became longer and the productivity decreased. No. 36, no. No. 86 had a high Si content. 37, no. No. 87 had a low Mn content. 42, no. No. 91 had a high Cr content. 49, no. Since No. 95 had a high amount of Mo, γp decreased, ferrite remained after quenching to reduce the quenching hardness, and the brake braking performance decreased. No. Since No. 38 had a high Mn content, the squeal characteristics were lowered and the corrosion resistance was lowered. No. 39, no. Since 88 had a high P, the toughness of the hot-rolled annealed sheet was lowered. No. 40, no. No. 89 had high S and B, so the corrosion resistance decreased. No. 41, no. Since 90 had a low Cr content, the corrosion resistance was poor. Furthermore, since C + N was high, the quenching hardness was too high, and the squealing characteristics deteriorated. No. No. 43 has a high Ni content. Since 50 had high Sn, the raw material cost became high. No. 44, no. Since No. 92 had a high Al content, the basicity of the slag became high, and the water-soluble inclusion CaS crystallized in the steel, thereby reducing the corrosion resistance. No. 45, no. Since No. 93 had a high V content, the squeal characteristics were degraded by the hard V carbide. No. Since No. 46 was low in nitrogen, C + N was low, quenching hardness was lowered, and braking performance was deteriorated. No. 47, no. Since No. 94 was high in nitrogen, bubble-type defects were formed in the slab, which deteriorated the surface quality of the product. Moreover, since the amount of C + N was too high, the quenching hardness was increased and the squealing characteristics were deteriorated. No. Since No. 48 had a high amount of Cu, the squeal characteristics deteriorated. No. 51, no. No. 96 has a high Nb. No. 52 is high in Ti. Since 53 had a high Zr, squeal characteristics deteriorated.
これらの結果から、上述した知見を確認する事ができ、また、上述した各鋼組成及び構成を限定する根拠を裏付ける事ができた。 From these results, the above-mentioned knowledge could be confirmed, and the grounds for limiting the above-mentioned respective steel compositions and configurations could be supported.
以上の説明から明らかなように、本発明のマルテンサイト系ステンレス鋼の鋼組成、製造方法によれば、自転車のディスクブレーキロータのブレーキ性能を向上させることが可能になり、また、自転車のディスクブレーキロータの製造工程に於いて生産性を向上させる事が出来ると共に、ディスクブレーキロータの耐食性などの付加価値も向上する事が可能になる。つまり、本発明は産業上の利用価値を十分に有する。 As is apparent from the above description, according to the steel composition and manufacturing method of martensitic stainless steel of the present invention, it becomes possible to improve the brake performance of the disc brake rotor of the bicycle, and the disc brake of the bicycle. In the rotor manufacturing process, productivity can be improved, and added value such as corrosion resistance of the disc brake rotor can be improved. That is, the present invention has sufficient industrial utility value.
【0004】
できる。しかし、焼き戻しを省略する技術に対しては、オートバイのディスクブレーキロータ用のステンレス鋼を用いようとすると、鳴きが38HRCでも生じるため、制動力と鳴き防止を両立する硬度範囲を見出す事が出来なかった。
[0013]
このことは、オートバイのディスクブレーキロータで問題となる、鳴きと呼ばれる、摺動音(異音)の問題に類似している。オートバイのディスクブレーキロータでは、鳴きを防止するために硬度を38HRC以下にする事が一般的であり、制動力を得るために必要な32HRC以上とし、鳴きを生じ始める38HRC以下に硬度を制御している。
自転車では、必要とされる制動力を得るためには38HRC以上のディスクブレーキロータの硬度が必要である。焼入れ後の硬度のバラツキも考慮すると硬度範囲として38〜43HRCは必要と考えられる。
この硬度範囲に於いて、鳴きを抑制する方法を検討した結果、摺動時にディスクブレーキロータ表面に形成される僅かな酸化被膜を介して、母材成分が影響している事、鳴きを抑制するには、母材のCu量を0.1%以下に制限すると共に、Mn量を1.0〜1.4%の範囲にする事が必要である事を見出した。更に、ディスクブレーキロータの耐食性を高めるためには、焼入れ後の組織をマルテンサイト母地に僅かに炭化物が分散した組織とする事が望ましく、その析出量は、Feの重量%で0.04%以下にすることが必要である。
[0014]
上記の知見に基づいて完成させた本発明の要旨は、下記の自転車のディスクブレーキロータ用マルテンサイト系ステンレス鋼板およびその製造方法にある。
[0015]
(1)質量%で、
C:0.070〜0.120%、
N:0.015〜0.060%、
Si:0.10〜0.50%、
Mn:1.0〜1.4%、[0004]
it can. However, for the technology that omits tempering, if stainless steel is used for motorcycle disc brake rotors, squealing occurs even at 38 HRC, so it is possible to find a hardness range that achieves both braking force and squeal prevention. There wasn't.
[0013]
This is similar to the problem of sliding noise (abnormal noise), called squeal, which is a problem with motorcycle disc brake rotors. In order to prevent squealing in motorcycle disc brake rotors, the hardness is generally set to 38 HRC or less, and the hardness is controlled to 32 HRC or more necessary for obtaining braking force, and the hardness is controlled to 38 HRC or less which starts to squeal. Yes.
In a bicycle, in order to obtain a required braking force, the hardness of the disc brake rotor of 38 HRC or more is required. Considering the variation in hardness after quenching, the hardness range of 38 to 43 HRC is considered necessary.
As a result of examining methods for suppressing squealing in this hardness range, the influence of the base material component through the slight oxide film formed on the disc brake rotor surface during sliding, squealing is suppressed. In addition, the present inventors have found that it is necessary to limit the Cu content of the base material to 0.1% or less and to make the Mn content in the range of 1.0 to 1.4%. Furthermore, in order to improve the corrosion resistance of the disc brake rotor, it is desirable that the structure after quenching is a structure in which carbides are slightly dispersed in the martensite matrix, and the precipitation amount is 0.04% in terms of the weight percentage of Fe. It is necessary to:
[0014]
The gist of the present invention completed based on the above knowledge resides in the following martensitic stainless steel plate for a disc brake rotor of a bicycle and a manufacturing method thereof.
[0015]
(1) In mass%,
C: 0.070 to 0.120%,
N: 0.015-0.060%,
Si: 0.10 to 0.50%,
Mn: 1.0 to 1.4%
【0005】
P:0.035%以下、
S:0.015%以下
Ni:0.3%以下、
Cr:11.5〜13.5%、
Cu:0.1%以下
V:0.3%以下
Al:0.001%〜0.010%
を含み、C+N:0.09〜0.15%を満足し、かつ次式(1)で表される熱間圧延時の相バランスを表す指標であるγpが80〜120を満足し、残部がFeおよび不可避的不純物からなり、焼入れ後の硬さがHRCで38〜44であることを特徴とする自転車のディスクブレーキロータ用マルテンサイト系ステンレス鋼板。
γp=420[%C]+470[%N]+23[%Ni]+9[%Cu]+7[%Mn]−11.5[%Cr〕−11.5[%Si]−52[%Al]−12[%Mo]−47[%Nb]−7[%Sn]−49[%Ti]−48[%Zr]−49[%V]+189 ・・・(1)
[%C]は、炭素(C)の含有量(質量%)を示す。
以下同様に、[%N][%Ni][%Cu][%Mn][%Cr][%Si][%Al][%Mo][%Nb][%Sn][%Ti][%Zr][%V]は、それぞれN、Ni、Cu、Mn、Cr、Si、Al、Mo、Nb、Sn、Ti、Zr、V
の含有量(質量%)を示す。
元素が含まれていないときは0とする。
[0016]
(2)さらに、質量%で、
Mo:0.05〜0.5%、
Sn:0.003〜0.5%、
Ti:0.05%以下、[0005]
P: 0.035% or less,
S: 0.015% or less Ni: 0.3% or less,
Cr: 11.5 to 13.5%,
Cu: 0.1% or less V: 0.3% or less Al: 0.001% to 0.010%
And C + N: 0.09 to 0.15% is satisfied, and γp, which is an index representing the phase balance during hot rolling represented by the following formula (1), satisfies 80 to 120, and the balance is A martensitic stainless steel plate for a disc brake rotor of a bicycle comprising Fe and inevitable impurities and having a hardness after quenching of 38 to 44 in HRC.
γp = 420 [% C] +470 [% N] +23 [% Ni] +9 [% Cu] +7 [% Mn] −11.5 [% Cr] −11.5 [% Si] −52 [% Al] − 12 [% Mo] -47 [% Nb] -7 [% Sn] -49 [% Ti] -48 [% Zr] -49 [% V] +189 (1)
[% C] indicates the content (% by mass) of carbon (C).
Similarly, [% N] [% Ni] [% Cu] [% Mn] [% Cr] [% Si] [% Al] [% Mo] [% Nb] [% Sn] [% Ti] [% Zr] [% V] is N, Ni, Cu, Mn, Cr, Si, Al, Mo, Nb, Sn, Ti, Zr, V, respectively.
Content (mass%).
0 when no element is contained.
[0016]
(2) Furthermore, in mass%,
Mo: 0.05-0.5%
Sn: 0.003-0.5%,
Ti: 0.05% or less,
【0006】
Zr:0.05%以下、
B:0.0005〜0.0030%、
の1種以上を含むことを特徴とする(1)に記載の自転車のディスクブレーキロータ用マルテンサイト系ステンレス鋼板。
[0017]
(3)上記(1)または(2)に記載の鋼組成を有するマルテンサイト系ステンレス鋼板を焼き入れて自転車のディスクブレーキロータとした際に、未固溶炭化物の析出量が、そのFeの量として0.04%以下であることを特徴とする自転車のディスクブレーキロータ用マルテンサイト系ステンレス鋼板。
[0018]
(4)上記(1)または(2)に記載の成分のステンレス鋼の熱延板を焼鈍後に、総圧下率20〜70%の冷間圧延を1回行なうか、又は中間焼鈍を挟んで2回冷間圧延を行うと共に、仕上げ冷間圧延の冷間圧延率を20%以上とし、冷間圧延製品、或いは冷間圧延後焼鈍し酸洗を施した製品の硬度を220HV〜260HVとすることを特徴とする、自転車のディスクブレーキロータ用マルテンサイト系ステンレス鋼板の製造方法。
発明の効果
[0019]
以上のように、本発明によれば、自転車のディスクブレーキロータとして優れた制動特性、例えば制動力や鳴き防止性能に優れた、焼入れたままで使用に供する自転車のディスクブレーキロータ用マルテンサイト系ステンレス鋼板が安価に提供できるため、工業的効果は非常に大きい。
図面の簡単な説明
[0020]
[図1]本実施形態におけるマルテンサイト系ステンレス冷間圧延製品を焼き入れて製造した自転車ディスクブレーキロータのブレーキ制動性能や鋼板硬さに及ぼす成分C+Nの影響を示す図である。図1(a)は、C+Nとロックウエル硬さの関係を示す図であり、図1(b)は、C+Nと自転車のブレーキ制動性能や、鳴きの関係を示す図である。
[図2]本実施形態におけるマルテンサイト系ステンレス鋼冷間圧延製品のビッカース硬さと、プレス成形時のだれに及ぼす、仕上げ冷間圧延の圧下率(圧[0006]
Zr: 0.05% or less,
B: 0.0005 to 0.0030%,
The martensitic stainless steel plate for disc brake rotors of bicycles according to (1), characterized in that it contains one or more of the following.
[0017]
(3) When a martensitic stainless steel plate having the steel composition described in (1) or (2) above is quenched to form a disc brake rotor for a bicycle, the amount of undissolved carbide precipitated is the amount of Fe. A martensitic stainless steel plate for a disc brake rotor of a bicycle, characterized by being 0.04% or less.
[0018]
(4) After annealing the stainless steel hot-rolled sheet of the component described in (1) or (2) above, cold rolling with a total rolling reduction of 20 to 70% is performed once, or intermediate annealing is performed 2 While performing cold rolling, the cold rolling rate of finish cold rolling should be 20% or more, and the hardness of the cold rolled product or the product after annealing after cold rolling and pickling should be 220HV to 260HV. A method for producing a martensitic stainless steel sheet for a disc brake rotor of a bicycle.
Effects of the Invention [0019]
As described above, according to the present invention, a martensitic stainless steel plate for a disc brake rotor for a bicycle that is excellent in braking characteristics as a disc disc rotor for a bicycle, for example, excellent in braking force and squealing performance, and used for quenching. However, the industrial effect is very large.
BRIEF DESCRIPTION OF THE DRAWINGS [0020]
FIG. 1 is a diagram showing the influence of component C + N on brake braking performance and steel plate hardness of a bicycle disc brake rotor manufactured by quenching a martensitic stainless cold-rolled product in this embodiment. FIG. 1A is a diagram showing the relationship between C + N and Rockwell hardness, and FIG. 1B is a diagram showing the relationship between C + N and bicycle braking performance and squeal.
[FIG. 2] The effect of the finish cold rolling reduction (pressure reduction) on the Vickers hardness of the cold-rolled martensitic stainless steel product in this embodiment and the droop during press forming.
【0012】
−11.5[%Cr]−11.5[%Si]−52[%Al]−12[%Mo]−47[%Nb]−7[%Sn]−49[%Ti]−48[%Zr]−49[%V]+189 ・・・(1)
ここで、上記式中に記載の成分は鋼中に含有されている成分の質量%を意味する。
なお、γpの式(1)は1100℃加熱時に生成するオーステナイト量の最大値を示す指標であり、「Metal Treatment」1964、p.230〜245の文献で紹介されているCastroの式を改良したもので、γ相の最大相分率を推定する経験式として公知の式である。
[0038]
また、本発明では、上記元素に加えて、Mo:0.05〜0.5%、Sn:0.003〜0.5%、Ti:0.05%以下、Zr:0.05%以下、B:0.0005〜0.0030%、の1種以上を添加する、或いは高純度原料を使用して上限規制を行う事が好ましい。
[0039]
(Mo:0.05〜0.5%)
Moは、耐食性を高めるために必要に応じて添加すれば良く、その効果を発揮させるため、下限を0.05%とすることが好ましい。一方、MoはCrと同様にフェライトフォーマーであり、過度の添加は焼入れ加熱時のオーステナイト分率を低下させ、焼入れ硬度を低下させるために、0.5%以下とする。但し、高価な元素であり、添加に見合った耐食性向上効果を発揮させると共に、原料コスト増加を抑制するためには、0.1%〜0.3%が望ましい。
[0040]
(Sn:0.003〜0.5%)
Snは、耐食性を高めるために必要に応じて添加すれば良く、その効果を発揮させるためには、下限を0.003%、好ましくは0.03%とする。一方、SnはCr、Moと同様にフェライトフォーマーであり、過度の添加は焼入れ加熱時のオーステナイト分率を低下させ、焼入れ硬度を低下させるために、0.5%以下とする。但し、高価な元素であり、添加に見合った耐[0012]
-11.5 [% Cr] -11.5 [% Si] -52 [% Al] -12 [% Mo] -47 [% Nb] -7 [% Sn] -49 [% Ti] -48 [% Zr] −49 [% V] +189 (1)
Here, the component described in the above formula means mass% of the component contained in the steel.
Note that γp equation (1) is an index indicating the maximum value of the amount of austenite generated during heating at 1100 ° C., “Metal Treatment” 1964, p. This is an improvement of the Castro equation introduced in the literatures 230 to 245, and is a well-known equation as an empirical equation for estimating the maximum phase fraction of the γ phase.
[0038]
In the present invention, in addition to the above elements, Mo: 0.05 to 0.5%, Sn: 0.003 to 0.5%, Ti: 0.05% or less, Zr: 0.05% or less, B: It is preferable to add one or more of 0.0005 to 0.0030%, or to perform upper limit regulation using a high-purity raw material.
[0039]
(Mo: 0.05-0.5%)
Mo may be added as necessary to enhance corrosion resistance, and the lower limit is preferably made 0.05% in order to exert its effect. On the other hand, Mo is a ferrite former like Cr, and excessive addition reduces the austenite fraction at the time of quenching heating and lowers the quenching hardness, so is 0.5% or less. However, it is an expensive element, and 0.1% to 0.3% is desirable in order to exhibit an effect of improving corrosion resistance commensurate with the addition and to suppress an increase in raw material cost.
[0040]
(Sn: 0.003-0.5%)
Sn may be added as necessary to enhance the corrosion resistance, and in order to exert its effect, the lower limit is made 0.003%, preferably 0.03%. On the other hand, Sn is a ferrite former like Cr and Mo, and excessive addition reduces the austenite fraction during quenching heating and lowers the quenching hardness, so is 0.5% or less. However, it is an expensive element and has a resistance to the addition.
【0013】
食性向上効果を発揮させると共に、原料コスト増加を抑制するためには、0.01%〜0.3%が望ましい。
[0041]
[0042]
(Ti:0.05%以下)
Tiは、硬質の粗大な窒化物TiNとして析出することで、ブレーキディスクロータの鳴きを促進するために、必要に応じて上限規制を行う事が好ましい。粗大なTiN析出を抑制するためには、上限を0.05%以下とする事が好ましい。但し、他の合金原料に不純物として含まれるために、極度に低減する事は高純度原料の使用が必須になり原料コストの増加につながるために、下限を0.0005%とすることが好ましい。
[0043]
(Zr:0.05%以下)
Zrは、硬質の粗大な窒化物ZrNとして析出することで、ブレーキディスクロータの鳴きを促進するために、必要に応じて上限規制を行う事が好ましい。粗大なZrN析出を抑制するためには、上限を0.05%以下とする事が好ましい。但し、他の合金原料に不純物として含まれるために、極度の低減する事は高純度原料の使用が必須になり原料コストの増加につながるために、下限を0.0005%とすることが好ましい。
[0044]
(B:0.0005%〜0.0030%)
Bは、熱間圧延時の高温延性を向上させ、熱延板の耳割れによる歩留まり低下を低減するために、必要に応じて添加すれば良く、その効果を発揮させるためには、下限を0.0005%以上とする事が望ましい。しかし、過度な添加は、Cr2B、(Cr、Fe)23(C、B)6の析出により、靭性[0013]
0.01% to 0.3% is desirable in order to exert an effect of improving food quality and suppress an increase in raw material cost.
[0041]
[0042]
(Ti: 0.05% or less)
In order to promote the squeal of the brake disc rotor by precipitating Ti as hard coarse nitride TiN, it is preferable to perform upper limit regulation as necessary. In order to suppress coarse TiN precipitation, the upper limit is preferably 0.05% or less. However, since it is contained as an impurity in other alloy raw materials, it is preferable to use a high-purity raw material to reduce it extremely, leading to an increase in raw material cost, so the lower limit is preferably made 0.0005%.
[0043]
(Zr: 0.05% or less)
Zr is preferably precipitated as hard coarse nitride ZrN so as to promote the squealing of the brake disc rotor, and the upper limit is preferably set as necessary. In order to suppress coarse ZrN precipitation, the upper limit is preferably 0.05% or less. However, since it is contained as an impurity in other alloy raw materials, extreme reduction makes it necessary to use high-purity raw materials and leads to an increase in raw material costs. Therefore, the lower limit is preferably made 0.0005%.
[0044]
(B: 0.0005% to 0.0030%)
B may be added as necessary in order to improve the hot ductility during hot rolling and to reduce the yield reduction due to the ear cracks of the hot-rolled sheet, and in order to exert its effect, the lower limit is 0. .0005% or more is desirable. However, excessive addition causes toughness due to precipitation of Cr2B, (Cr, Fe) 23 (C, B) 6.
【0020】
延率を最適化し、プレス成形前の硬度を制御する事によって、プレス成形時のだれを低減する事が可能になり、焼入れ後の研磨量を低減できる。また、研磨負荷を平準化できるなど生産性の向上が可能となる。
焼入れ処理は、加熱温度範囲を800℃以上、好ましくは950℃以上、さらに好ましくは1000℃以上で1100℃以下とし、保定時間を1秒〜20分、冷却速度を0.1〜1000℃/sの条件で行なうとよい。例えば、真空炉の場合は、800〜1100℃(加熱温度)×1秒〜20分間(保定時間)で冷却速度を0.1〜10℃/sで行なうことができる。連続焼鈍炉では、800〜1100℃(加熱温度)×1〜600秒(保定時間)で冷却速度を0.5〜70℃/s、或いは油冷、水冷、金型焼入れで行なうことができる。
[0067]
本発明に係るマルテンサイト系ステンレス鋼のディスクブレーキロータは、未固溶炭化物[(FeCr)23C6]の量を制御する事により、耐食性を高める事が可能になり、ブレーキ性能以外の付加価値を高める事が出来る。
実施例
[0068]
以下、実施例により本発明の効果を説明するが、本発明は、以下の実施例で用いた条件に限定されるものではない。
[0069]
本発明では、まず、表1、2に示す成分組成の鋼(残部はFeおよび不可避不純物)を溶製してスラブに鋳造した。表1,2では、成分に関して本発明を満足するものを本発明例としている。なお、鋼材No.37〜41、37−2、39−2は、選択元素(Mo、Sn、B、Ti)の含有量が不可避的不純物レベルを超えており、なおかつ選択元素の含有量の上限も超えているものである。このスラブを1230℃に加熱後、仕上げ温度を800〜950℃の範囲内として、板厚2.5〜5.0mmまで熱間圧延し、780℃で巻き取って熱延鋼帯とした。
[0070]
引き続き、熱延鋼板に850℃で4時間の熱延板焼鈍を行った後、炉内で緩冷却した。熱延焼鈍板をショットブラストし、硫酸酸洗して、スケールを除去した。冷間圧延を行って1.8mmの冷間圧延製品とした。冷間圧延に[0020]
By optimizing the ductility and controlling the hardness before press forming, it becomes possible to reduce dripping during press forming, and the amount of polishing after quenching can be reduced. Further, productivity can be improved, for example, the polishing load can be leveled.
In the quenching treatment, the heating temperature range is 800 ° C. or higher, preferably 950 ° C. or higher, more preferably 1000 ° C. or higher and 1100 ° C. or lower, the holding time is 1 second to 20 minutes, and the cooling rate is 0.1 to 1000 ° C./s. This should be done under the following conditions. For example, in the case of a vacuum furnace, the cooling rate can be 0.1 to 10 ° C./s at 800 to 1100 ° C. (heating temperature) × 1 second to 20 minutes (holding time). In a continuous annealing furnace, the cooling rate can be 0.5 to 70 ° C./s at 800 to 1100 ° C. (heating temperature) × 1 to 600 seconds (holding time), or oil cooling, water cooling, or die quenching.
[0067]
The martensitic stainless steel disc brake rotor according to the present invention can increase the corrosion resistance by controlling the amount of undissolved carbide [(FeCr) 23 C 6 ], and can add value other than brake performance. Can be increased.
Example [0068]
Hereinafter, the effects of the present invention will be described with reference to examples, but the present invention is not limited to the conditions used in the following examples.
[0069]
In the present invention, first, steel having the composition shown in Tables 1 and 2 (the balance is Fe and inevitable impurities) was melted and cast into a slab. In Tables 1 and 2, examples satisfying the present invention regarding the components are examples of the present invention. In addition, steel material No. 37 to 41, 37-2, 39-2, the content of the selective element (Mo, Sn, B, Ti) exceeds the unavoidable impurity level, and also exceeds the upper limit of the content of the selective element It is. After heating this slab to 1230 degreeC, finishing temperature was made into the range of 800-950 degreeC, it hot-rolled to plate thickness 2.5-5.0 mm, and it wound up at 780 degreeC, and was set as the hot-rolled steel strip.
[0070]
Subsequently, the hot-rolled steel sheet was annealed at 850 ° C. for 4 hours, and then slowly cooled in a furnace. The hot-rolled annealed plate was shot blasted and washed with sulfuric acid to remove scale. Cold rolling was performed to obtain a 1.8 mm cold rolled product. For cold rolling
【0022】
[表1]
[0074][0022]
[Table 1]
[0074]
【0023】
[表2]
[0075][0023]
[Table 2]
[0075]
【0024】
[表3]
[0076][0024]
[Table 3]
[0076]
【0025】
[表4]
[0077]
仕上げ焼鈍温度は、(1)600〜700℃、(2)700〜800℃で行った。
[0078]
表3、4から明らかなように、本発明を適用した成分組成で製造した本発明例(試験No.1〜32、54〜83)の場合、比較例に較べて、ブレーキ制動性、鳴き特性が良好であることが分かる。また、ディスクブレーキの耐食性に優れる事が分かる。また、本発明の成分組成に加えて、冷間圧延条件をも満足する実施例では、ブレーキ制動性、鳴き特性、耐食性に加えて、[0025]
[Table 4]
[0077]
The final annealing temperatures were (1) 600 to 700 ° C and (2) 700 to 800 ° C.
[0078]
As is apparent from Tables 3 and 4, in the case of the present invention examples (test Nos. 1 to 32 and 54 to 83) manufactured with the component composition to which the present invention was applied, the brake braking performance and squeal characteristics were compared with the comparative examples. Is found to be good. It can also be seen that the disc brake has excellent corrosion resistance. Moreover, in addition to the component composition of the present invention, in the examples that also satisfy the cold rolling conditions, in addition to brake braking performance, squeal characteristics, corrosion resistance,
【0026】
プレス成形時のだれが少なく生産性にも優れる事が分かる。つまり、本発明を適用した成分、製造方法によると、自転車のディスクブレーキロータに必要な焼入れ後のブレーキ特性、更には耐食性にも優れ、プレス形成性にも優れたマルテンサイト系ステンレス鋼冷間圧延製品、冷間圧延−焼鈍−酸洗製品を得る事が出来る。
[0079]
一方、本発明から外れる比較例(試験No.33〜53、84〜95)では、冷間圧延製品、或いは冷間圧延−焼鈍−酸洗製品の焼入れ後の硬度、自転車のディスクブレーキロータとしてのブレーキ制動性、鳴き特性、耐食性の少なくとも1つが低かった。これにより、比較例におけるマルテンサイト系ステンレス鋼板の、自転車のディスクブレーキロータ素材としての性能が低下してしまったことが分かる。
[0080]
具体的に、比較例における特性値と成分、製造条件の対応について説明する。
[0081]
試験No.(以下単にNo.と記す)33、No.84は、焼入れ条件が不適切(焼き入れ加熱時間が短くかつ冷却速度が遅い、即ち1030℃で1秒加熱後に0.5℃/sで冷却)であったため、析出Fe量が大きくなり、焼入れ硬さが低くなった。このため、ブレーキ制動性能が低下し、また耐食性も低化した。No.34は、C量が低かったため、焼入れ硬度が低くなり、ブレーキ制動性能が低下した。No.85はC量が高かったため、焼入れ硬度が高くなりすぎて、鳴き特性が劣化した。No.35はSi量が低かったため、精錬時間が長くなり生産性が低下した。No.36、No.86はSi量が高かったため、No.37、No.87はMn量が低かったため、No.42、No.91はCr量が高かったため、No.49、No.95はMo量が高かったため、γpが低下し、焼入れ後にフェライトが残存し焼入れ硬さを低下させ、ブレーキ制動性能が低下した。No.38はMn量が高かったため、鳴き特性が低下すると共に、耐食性が低下した。No.39、No.88はPが高かったため、熱延焼鈍板の靭性が低下した。No.40、No.89は、S、Bが高かったため、耐食性が低下した。No.41、N[0026]
It can be seen that there is little dripping during press molding and the productivity is excellent. In other words, according to the components and manufacturing methods to which the present invention is applied, the martensitic stainless steel cold-rolled excellent in brake characteristics after quenching required for a bicycle disc brake rotor, and also in corrosion resistance and press formability. Products, cold rolled-annealed-pickled products can be obtained.
[0079]
On the other hand, in comparative examples (test Nos. 33 to 53, 84 to 95) that depart from the present invention, the hardness after quenching of a cold rolled product or cold rolled-annealed-pickled product, as a disc brake rotor of a bicycle At least one of braking performance, squealing characteristics, and corrosion resistance was low. Thereby, it turns out that the performance as a disc brake rotor material of a bicycle of the martensitic stainless steel plate in a comparative example has fallen.
[0080]
Specifically, correspondence between characteristic values, components, and manufacturing conditions in the comparative example will be described.
[0081]
Test No. (Hereinafter simply referred to as No.) 33, No. No. 84 was inadequate in quenching conditions (the quenching heating time was short and the cooling rate was slow, ie, heating at 1030 ° C. for 1 second and then cooling at 0.5 ° C./s), so the amount of precipitated Fe increased and quenching occurred. The hardness became low. For this reason, brake braking performance was lowered and corrosion resistance was also lowered. No. No. 34 had a low C content, so the quenching hardness was low and the brake braking performance was lowered. No. Since 85 had a high C content, the quenching hardness was too high, and the squeal characteristics deteriorated. No. Since 35 had a low Si content, the refining time became longer and the productivity decreased. No. 36, no. No. 86 had a high Si content. 37, no. No. 87 had a low Mn content. 42, no. No. 91 had a high Cr content. 49, no. Since No. 95 had a high amount of Mo, γp decreased, ferrite remained after quenching to reduce the quenching hardness, and the brake braking performance decreased. No. Since No. 38 had a high Mn content, the squeal characteristics were lowered and the corrosion resistance was lowered. No. 39, no. Since 88 had a high P, the toughness of the hot-rolled annealed sheet was lowered. No. 40, no. No. 89 had high S and B, so the corrosion resistance decreased. No. 41, N
【0027】
o.90はCr量が低かったため、耐食性が不良であった。更に、C+Nが高かったため、焼入れ硬度が高くなりすぎて、鳴き特性が劣化した。No.43は、Ni量が高く、No.50はSnが高かったため、原料コストが高くなった。No.44、No.92はAl量が高かったため、スラグの塩基度が高くなり、水溶性の介在物CaSが鋼中に晶出し、耐食性を低下させた。No.45、No.93はV量が高かったため、硬質のV炭化物によって鳴き特性が劣化した。No.46は窒素が低かったため、C+Nが低くなり、焼入れ硬さが低下し、ブレーキ制動性能が劣化した。No.47、No.94は窒素が高かったため、スラブに気泡系欠陥が出来、製品の表面品質を劣化させた。また、C+N量が高くなりすぎたため、焼入れ硬度が高くなり、鳴き特性を劣化させた。No.48はCu量が高かったため、鳴き特性が劣化した。No.52はTiが高く、No.53はZrが高かったため、鳴き特性が劣化した。
[0082]
これらの結果から、上述した知見を確認する事ができ、また、上述した各鋼組成及び構成を限定する根拠を裏付ける事ができた。
産業上の利用可能性
[0083]
以上の説明から明らかなように、本発明のマルテンサイト系ステンレス鋼の鋼組成、製造方法によれば、自転車のディスクブレーキロータのブレーキ性能を向上させることが可能になり、また、自転車のディスクブレーキロータの製造工程に於いて生産性を向上させる事が出来ると共に、ディスクブレーキロータの耐食性などの付加価値も向上する事が可能になる。つまり、本発明は産業上の利用価値を十分に有する。[0027]
o. Since 90 had a low Cr content, the corrosion resistance was poor. Furthermore, since C + N was high, the quenching hardness was too high, and the squealing characteristics deteriorated. No. No. 43 has a high Ni content. Since 50 had high Sn, the raw material cost became high. No. 44, no. Since No. 92 had a high Al content, the basicity of the slag became high, and the water-soluble inclusion CaS crystallized in the steel, thereby reducing the corrosion resistance. No. 45, no. Since No. 93 had a high V content, the squeal characteristics were degraded by the hard V carbide. No. Since No. 46 was low in nitrogen, C + N was low, quenching hardness was lowered, and braking performance was deteriorated. No. 47, no. Since No. 94 was high in nitrogen, bubble-type defects were formed in the slab, which deteriorated the surface quality of the product. Moreover, since the amount of C + N was too high, the quenching hardness was increased and the squealing characteristics were deteriorated. No. Since No. 48 had a high amount of Cu, the squeal characteristics deteriorated. No. No. 52 is high in Ti. Since 53 had a high Zr, squeal characteristics deteriorated.
[0082]
From these results, the above-mentioned knowledge could be confirmed, and the grounds for limiting the above-mentioned respective steel compositions and configurations could be supported.
Industrial applicability [0083]
As is apparent from the above description, according to the steel composition and manufacturing method of martensitic stainless steel of the present invention, it becomes possible to improve the brake performance of the disc brake rotor of the bicycle, and the disc brake of the bicycle. In the rotor manufacturing process, productivity can be improved, and added value such as corrosion resistance of the disc brake rotor can be improved. That is, the present invention has sufficient industrial utility value.
Claims (4)
C:0.070〜0.120%、
N:0.015〜0.060%、
Si:0.10〜0.50%、
Mn:1.0〜1.4%、
P:0.035%以下、
S:0.015%以下
Ni:0.3%以下、
Cr:11.5〜13.5%、
Cu:0.1%以下
V:0.3%以下
Al:0.001%〜0.010%
を含み、C+N:0.09〜0.15%を満足し、かつ次式(1)で表される熱間圧延時の相バランスを表す指標であるγpが80〜120を満足し、残部がFeおよび不可避的不純物からなり、焼入れ後の硬さがHRCで38〜44であることを特徴とする自転車のディスクブレーキロータ用マルテンサイト系ステンレス鋼板。
γp=420[%C]+470[%N]+23[%Ni]+9[%Cu]+7[%Mn]−11.5[%Cr]−11.5[%Si]−52[%Al]−12[%Mo]−47[%Nb]−7[%Sn]−49[%Ti]−48[%Zr]−49[%V]+189 ・・・(1)
ここで、[%C]は、炭素(C)の含有量(質量%)を示す。
以下同様に、[%N][%Ni][%Cu][%Mn][%Cr][%Si][%Al][%Mo][%Nb][%Sn][%Ti][%Zr][%V]は、それぞれN、Cu、Mn、Cr、Si、Al、Mo、Nb、Sn、Ti、Zr、Vの含有量(質量%)を示す。
元素が含まれていないときは0とする。
% By mass
C: 0.070 to 0.120%,
N: 0.015-0.060%,
Si: 0.10 to 0.50%,
Mn: 1.0 to 1.4%
P: 0.035% or less,
S: 0.015% or less Ni: 0.3% or less,
Cr: 11.5 to 13.5%,
Cu: 0.1% or less V: 0.3% or less Al: 0.001% to 0.010%
And C + N: 0.09 to 0.15% is satisfied, and γp, which is an index representing the phase balance during hot rolling represented by the following formula (1), satisfies 80 to 120, and the balance is A martensitic stainless steel plate for a disc brake rotor of a bicycle comprising Fe and inevitable impurities and having a hardness after quenching of 38 to 44 in HRC.
γp = 420 [% C] +470 [% N] +23 [% Ni] +9 [% Cu] +7 [% Mn] −11.5 [% Cr] −11.5 [% Si] −52 [% Al] − 12 [% Mo] -47 [% Nb] -7 [% Sn] -49 [% Ti] -48 [% Zr] -49 [% V] +189 (1)
Here, [% C] indicates the content (mass%) of carbon (C).
Similarly, [% N] [% Ni] [% Cu] [% Mn] [% Cr] [% Si] [% Al] [% Mo] [% Nb] [% Sn] [% Ti] [% Zr] [% V] represents the content (% by mass) of N, Cu, Mn, Cr, Si, Al, Mo, Nb, Sn, Ti, Zr, and V, respectively.
0 when no element is contained.
Mo:0.05〜0.5%、
Sn:0.003〜0.5%、
Nb:0.03〜0.15%、
Ti:0.05%以下、
Zr:0.05%以下、
B:0.0005〜0.0030%、
の1種以上を含むことを特徴とする請求項1に記載の自転車のディスクブレーキロータ用マルテンサイト系ステンレス鋼板。
Furthermore, in mass%,
Mo: 0.05-0.5%
Sn: 0.003-0.5%,
Nb: 0.03-0.15%,
Ti: 0.05% or less,
Zr: 0.05% or less,
B: 0.0005 to 0.0030%,
The martensitic stainless steel plate for a disc brake rotor of a bicycle according to claim 1, comprising at least one of the following.
When the martensitic stainless steel plate having the steel composition according to claim 1 or 2 is quenched to form a disc brake rotor for a bicycle, the amount of precipitated undissolved carbide is 0.04% or less as the amount of Fe. A martensitic stainless steel plate for a disc brake rotor of a bicycle, characterized by
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013515182A JP5863785B2 (en) | 2011-05-16 | 2012-05-16 | Martensitic stainless steel sheet for bicycle disc brake rotor and method for manufacturing the same |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011109271 | 2011-05-16 | ||
JP2011109271 | 2011-05-16 | ||
JP2012007802 | 2012-01-18 | ||
JP2012007802 | 2012-01-18 | ||
JP2013515182A JP5863785B2 (en) | 2011-05-16 | 2012-05-16 | Martensitic stainless steel sheet for bicycle disc brake rotor and method for manufacturing the same |
PCT/JP2012/062534 WO2012157680A1 (en) | 2011-05-16 | 2012-05-16 | Martensitic stainless steel plate for bicycle disc brake rotor and manufacturing method therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2012157680A1 true JPWO2012157680A1 (en) | 2014-07-31 |
JP5863785B2 JP5863785B2 (en) | 2016-02-17 |
Family
ID=47176997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013515182A Active JP5863785B2 (en) | 2011-05-16 | 2012-05-16 | Martensitic stainless steel sheet for bicycle disc brake rotor and method for manufacturing the same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5863785B2 (en) |
CN (1) | CN103534377B (en) |
WO (1) | WO2012157680A1 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101930860B1 (en) * | 2013-03-19 | 2018-12-19 | 제이에프이 스틸 가부시키가이샤 | Stainless hot-rolled steel sheet |
CN103255343A (en) * | 2013-04-24 | 2013-08-21 | 宝钢不锈钢有限公司 | Stanniferous martensitic stainless steel with excellent performance and manufacturing method thereof |
JP6124930B2 (en) * | 2014-05-02 | 2017-05-10 | 日新製鋼株式会社 | Martensitic stainless steel sheet and metal gasket |
CN104294160A (en) * | 2014-09-09 | 2015-01-21 | 宝钢不锈钢有限公司 | High-hardness high-toughness low-carbon martensite stainless steel and manufacturing method thereof |
WO2016043050A1 (en) * | 2014-09-17 | 2016-03-24 | 新日鐵住金ステンレス株式会社 | Martensitic stainless steel for brake disk and method for producing said steel |
JP6417252B2 (en) * | 2014-09-17 | 2018-11-07 | 新日鐵住金ステンレス株式会社 | Martensitic stainless steel for brake disc and its manufacturing method |
US10344817B2 (en) * | 2015-11-30 | 2019-07-09 | Hyundai Motor Company | Vehicle brake pad |
CN105543725A (en) * | 2015-12-24 | 2016-05-04 | 芜湖恒耀汽车零部件有限公司 | Composite stainless steel strip for vehicle exhaust pipe and production process thereof |
KR102169859B1 (en) | 2016-04-12 | 2020-10-26 | 제이에프이 스틸 가부시키가이샤 | Martensite stainless steel plate |
JP6772085B2 (en) * | 2017-02-09 | 2020-10-21 | 日鉄ステンレス株式会社 | Martensitic stainless steel hot-rolled steel sheet and its manufacturing method |
JP6526765B2 (en) * | 2017-10-05 | 2019-06-05 | 日鉄ステンレス株式会社 | Martensitic stainless cold-rolled steel sheet for bicycle disc brake rotor excellent in hardenability and corrosion resistance, steel strip and manufacturing method thereof |
JP7049142B2 (en) * | 2018-03-15 | 2022-04-06 | 日鉄ステンレス株式会社 | Martensitic stainless steel sheet and its manufacturing method and spring members |
CN111020401A (en) * | 2018-10-09 | 2020-04-17 | 中国电力科学研究院有限公司 | Stainless steel for power transmission and transformation engineering and production method thereof |
EP4026920A4 (en) * | 2019-09-03 | 2024-08-14 | Nippon Steel Stainless Steel Corp | Martensitic stainless steel plate and martensitic stainless steel member |
KR20220097991A (en) * | 2019-12-19 | 2022-07-08 | 닛테츠 스테인레스 가부시키가이샤 | Martensitic stainless steel for high hardness and corrosion resistance with excellent cold workability and manufacturing method therefor |
JP2023046414A (en) * | 2020-01-22 | 2023-04-05 | 日鉄ステンレス株式会社 | Martensitic stainless steel sheet and martensitic stainless steel member |
AT17380U1 (en) | 2021-02-10 | 2022-02-15 | Plansee Se | BRAKE DISC FOR A DISC BRAKE |
CN115491609B (en) * | 2022-10-12 | 2024-03-15 | 福建青拓特钢技术研究有限公司 | Low-carbon martensitic stainless steel for brake disc and manufacturing method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002146482A (en) * | 2000-11-01 | 2002-05-22 | Nisshin Steel Co Ltd | Steel sheet for disk brake having improved warpage resistance and disk |
JP2002173740A (en) * | 2000-12-04 | 2002-06-21 | Nisshin Steel Co Ltd | Precipitation hardening martensitic stainless steel strip having excellent shape flatness and its production method |
JP4569360B2 (en) * | 2005-04-06 | 2010-10-27 | Jfeスチール株式会社 | Brake disc with excellent temper softening resistance and toughness |
JP4788421B2 (en) * | 2006-03-17 | 2011-10-05 | Jfeスチール株式会社 | High heat-resistant Cr-containing steel for brake discs |
US8333849B2 (en) * | 2008-04-25 | 2012-12-18 | Jfe Steel Corporation | Low-carbon martensitic chromium-containing steel |
JP5476809B2 (en) * | 2009-06-23 | 2014-04-23 | Jfeスチール株式会社 | Low carbon martensitic Cr-containing steel with excellent heat resistance |
-
2012
- 2012-05-16 CN CN201280023714.3A patent/CN103534377B/en active Active
- 2012-05-16 JP JP2013515182A patent/JP5863785B2/en active Active
- 2012-05-16 WO PCT/JP2012/062534 patent/WO2012157680A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN103534377A (en) | 2014-01-22 |
JP5863785B2 (en) | 2016-02-17 |
WO2012157680A1 (en) | 2012-11-22 |
CN103534377B (en) | 2016-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5863785B2 (en) | Martensitic stainless steel sheet for bicycle disc brake rotor and method for manufacturing the same | |
KR100765661B1 (en) | Low carbon martensitic stainless steel and production method thereof | |
JP5700172B2 (en) | Stainless steel sheet | |
TWI390051B (en) | Cr-containing low-carbon terrestrial steel | |
JP5200332B2 (en) | Brake disc with high resistance to temper softening | |
WO2004097058A1 (en) | Martensitic stainless steel for disc brake | |
JP6631860B2 (en) | Method for producing martensitic stainless steel member, and martensitic stainless steel component and method for producing same | |
KR20140041930A (en) | Hot-rolled steel sheet having excellent cold working properties and hardening properties, and method for producing same | |
JP6537659B1 (en) | Martensitic stainless hot rolled steel sheet, method of manufacturing disc brake rotor using the same | |
JP2017172038A (en) | Martensitic stainless steel for brake disc, and blake disc | |
JP6275767B2 (en) | Martensitic stainless cold-rolled steel sheet for bicycle disc brake rotor with excellent hardenability and method for producing the same | |
CN105063492A (en) | Hot-rolled steel for car friction plate and preparation method of hot-rolled steel | |
JP4788421B2 (en) | High heat-resistant Cr-containing steel for brake discs | |
TWI810810B (en) | Asada loose iron-based stainless steel plate for brake disc rotor, brake disc rotor, and manufacturing method of asada loose iron-based stainless steel plate for brake disc rotor | |
JP4496908B2 (en) | Brake disc excellent in tempering softening resistance and manufacturing method thereof | |
JP2020152959A (en) | Martensitic stainless steel sheet for brake disc, production method therefor, brake disc and martensitic stainless steel slab | |
JP4830239B2 (en) | Manufacturing method of low carbon martensitic stainless hot rolled steel sheet with excellent punchability | |
JP4517850B2 (en) | Stainless steel plate for disc brakes with excellent heat stress cracking resistance | |
CN117794656A (en) | Forged steel roll for cold rolling | |
JP3900169B2 (en) | Martensitic stainless steel for disc brakes | |
JP3371952B2 (en) | Manufacturing method of soft high carbon steel sheet for processing that can omit pickling process | |
JP4453258B2 (en) | Hot-rolled steel sheet excellent in rotating ironing workability and manufacturing method thereof | |
JP2011225948A (en) | Cr-containing hot rolled steel sheet for brake disk, and the brake disk | |
JP2023046414A (en) | Martensitic stainless steel sheet and martensitic stainless steel member | |
JP2020164901A (en) | Ferritic stainless steel for disc rotors and disc rotors for brakes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150901 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151028 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151222 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5863785 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |