[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2019188431A1 - 金属材料の複合溶接方法および金属材料の突合せ溶接部材 - Google Patents

金属材料の複合溶接方法および金属材料の突合せ溶接部材 Download PDF

Info

Publication number
JPWO2019188431A1
JPWO2019188431A1 JP2020510661A JP2020510661A JPWO2019188431A1 JP WO2019188431 A1 JPWO2019188431 A1 JP WO2019188431A1 JP 2020510661 A JP2020510661 A JP 2020510661A JP 2020510661 A JP2020510661 A JP 2020510661A JP WO2019188431 A1 JPWO2019188431 A1 JP WO2019188431A1
Authority
JP
Japan
Prior art keywords
welding
metal material
metal
laser
butt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020510661A
Other languages
English (en)
Other versions
JP7160090B2 (ja
Inventor
小川 健司
健司 小川
榊 正仁
正仁 榊
延時 智和
智和 延時
冨村 宏紀
宏紀 冨村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPWO2019188431A1 publication Critical patent/JPWO2019188431A1/ja
Application granted granted Critical
Publication of JP7160090B2 publication Critical patent/JP7160090B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/035Aligning the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/211Bonding by welding with interposition of special material to facilitate connection of the parts

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

窪み深さを低減可能な金属材料の複合溶接方法を提供する。金属材料の複合溶接方法は、一方の金属材料(2)側から他方の金属材料(1)の端面上もしくはその延長上の面上の狙い位置(P)へレーザビーム(3)を照射して溶接ビードを形成する工程と、溶接ビード上に、2つの金属材料の表面側から溶接ワイヤまたは溶加材を伴う溶接を行う工程と、を含み、レーザビームの狙い位置の深さDは、一方の金属材料の厚みtに対して0.8t≦D≦1.8tの範囲内である。

Description

本発明は、金属材料を突合せた時に間隙が形成される場合であっても優れた接合強度の突合せ部材が得られる複合溶接方法と突合せ溶接部材に関する。
レーザビームは、高エネルギー密度の熱源であることから、近年様々な分野において利用されている。特に、接合・溶接の分野においては、MIG(Metal Insert Gas)・MAG(Metal Active Gas)・TIG(Tungsten Insert Gas)等のアーク溶接法と組合せることで、アーク溶接法単体では困難な溶込み深さ改善や溶接速度の高速化を目的としてレーザ+アークハイブリッド溶接は認知されつつある。また、前記アーク溶接の替わりに溶加材+レーザ溶接によりアーク溶接と同等程度の溶接部を得ることができるレーザ溶接方法もレーザ+ハイブリッド溶接として使用可能である。
レーザ溶接は、高速かつ低入熱、溶込み深さといった接合特性を生かして、鋼材の溶接・接合方法や各種金属材料の接合手段に利用されつつあるが、溶加材を用いないレーザ溶接単体では工業生産品への適用例が少ない。この原因として、レーザ溶接機本体が高価であることの他、レーザ単体での溶接ビードには窪みが形成される場合があることが挙げられる。レーザ単体溶接においてもT字継手および突合せ継手等の溶接継手を得ること自体はできる。ただし、溶接材料間の隙間量の大きさによっては溶接ビードに形成される窪みの深さが増加し、接合強度が低下することが考えられる。溶接ビードの窪みを低減するためには、レーザビームの狙い位置と被溶接材の突合せ隙間量とを厳密に管理する必要があった。
本願発明者らは、工業生産において被溶接材の突合せ隙間量を厳密に管理することは難しいと考えた。本願発明者らは、厚みが異なる二つの板材の溶接面を、該溶接面に隣接する表面が面一となるように突合せた後、面一とした表面の薄板側から上記の突合せ面に向けて斜めにレーザビームを入射させるレーザ溶接方法の有用性を見出した。当該有用性に基づき、本願発明者らは、レーザ狙い位置、入射角、突合せ間隔を適正範囲内に制御することで、厚板の厚みにかかわらず、効率的に優れた溶接強度と仕上がりとが得られる差厚材のレーザ溶接方法を提供することを主たる目的として、特許文献1に記載の「差厚材のレーザ溶接方法及び該方法を用いた差厚溶接部材」を開発した。
日本国公開特許公報「特開2016−68092号公報」
上記差厚材のレーザ溶接方法ではレーザ照射時に入射角度を与えることで、材料間に突合せ隙間がある場合でも溶接ビードの形成が可能であり、隙間量を管理することで優れた接合強度が得られる溶接ビードが形成可能になることを見出した。ただし、突合せ隙間量によっては窪み深さが極端に大きくなる場合があり、当該窪みが溶接欠陥となって接合強度の低下が生じる可能性があった。このため、上記のレーザ溶接方法では、材料の突合せ隙間は1mm以下であることが望ましいとしている。しかしながら、実際の工業製品への適用において隙間量が1mm以下である場合でも接合強度が不足する場合があり前記溶接法を適用しようとした場合、接合強度不足の原因となる窪み深さが大きくなる可能性が懸念された。
本発明は、窪み深さを低減可能な金属材料の複合溶接方法などを提供することを目的とする。
上記の課題を解決するため、本発明に係る金属材料の複合溶接方法は、2つの金属材料の表面が面一となるように突合せた状態で、一方の金属材料側から、他方の金属材料の端面上もしくはその延長上の面上の狙い位置へレーザビームを斜めに照射して溶接ビードを形成する工程と、前記レーザビームの照射により形成された溶接ビード上に、前記2つの金属材料の表面側から溶接ワイヤまたは溶加材を伴う溶接を行う工程と、を含む金属材料の複合溶接方法であって、前記レーザビームの狙い位置の深さDは、前記金属材料の厚みtに対して0.8t≦D≦1.8tの範囲内である。
本発明によれば、窪み深さを低減可能な金属材料の複合溶接方法などを提供できる。
本発明の技術で試作したレーザ溶接工程後の断面を示した図である。 従来技術で試作した本発明のレーザ溶接工程後の断面を示した図である。 本発明のレーザ溶接工程を模式的に示す図である。 本発明の技術で試作したレーザ+アーク溶接(レーザ先行)した断面を示した図である。
本願発明者らは、詳細な研究の結果、被溶接材の接合面を、該接合面に隣接する表面が面一となるように突合せた後、面一とした表面の片側から上記の接合面あるいは接合面の延長線上に向けて斜めにレーザビームを入射させるレーザ溶接方法において、レーザ狙い位置および入射角を適正範囲内に制御することで、一定の突合せ隙間に対して窪み形状を伴うレーザ溶接ビードが形成され、かつその溶接継手の裏面に未溶融部が形成され難いという有用性を見出した。また、本願発明者らは、レーザ溶接後のアーク溶接施工によりレーザ溶接ビードとアーク溶接ビードの界面が融合することで、効率的に、優れた接合強度が得られたことから本発明を完成した。
なお、本発明では、被溶接材の表面が面一(ツライチ)となるように突合せた突合せ面を後に溶接して構成した溶接継手において、その面一となった面(図4における上面)を「溶接継手の表面」、段差が生じる面(図4における下面)を「溶接継手の裏面」と称する場合もある。
以下、図面を参照しつつ本発明を説明する。
図3は、本発明のハイブリッド溶接(複合溶接方法)での先行レーザ溶接を模式的に示す。図3に示すように、レーザ狙い位置(P)は、金属材料(1)の端面(1a)または端面の延長上の面(1b)におけるレーザビーム(3)の狙い位置である。入射角(θ)は、金属材料(1)の端面(1a)または端面の延長上の面(1b)に対する、レーザビーム(3)の照射方向の、金属材料(2)の側への傾斜角度である。突合せ間隔Gは、金属材料(1)の端面(1a)と、端面(1a)に対向する金属材料(2)の面との間隔である。
本発明のハイブリッド溶接は、以下の工程を含む。金属材料(1)(一方の金属材料)および金属材料(2)(他方の金属材料)の表面が面一となるように突合せた状態で、一方の金属材料側からその突合せ面(1a)(端面)上もしくはその延長上の面(1b)上にレーザビーム(3)を斜めに照射して溶接ビードを形成する。その後に、レーザ溶接により形成される窪みを伴う溶接ビード上に、溶接ワイヤまたは溶加材を伴うアーク溶接やレーザ溶接を行う。以上の工程により、本発明に係る金属材料の突合せ溶接部材を得る。
前記レーザビーム(3)を、前記面一とした金属材料(2)の表面側から突合せ端面(1a)または端面の延長線上(1b)に向けて斜めに入射させ、当該レーザビーム(3)の狙い位置(P)を上記金属材料(1)の突合せ端面または端面の延長線上にすると共に、前記レーザビーム(3)入射側金属材料(2)の表面からの狙い位置深さDを下記(1)式の範囲内にする。
0.8t≦D≦1.8t …(1)式
(但し、tは金属材料(2)の厚みであり、D,t共に単位はmm。)
さらに望ましい範囲は1.0t≦D≦1.5tである。
レーザビーム(3)の入射角(θ)を、金属材料(1)と金属材料(2)の突合せ端面(1a)に対して金属材料(2)側に10°〜40°傾斜した方向とする。
さらに望ましくは、レーザビーム(3)の入射角(θ)を傾斜させる角度範囲を15°〜30°とする。
金属材料(1)と金属材料(2)との突合せ間隔(G)をt/6以下にすることで、レーザ溶接を行っても溶け込んだ金属が突合せ隙間に落ち込むことを抑制し、レーザ溶接後における溶接部裏側の窪みが板厚の5%以下である溶接部材を得る。
本発明におけるレーザビーム(3)の種類は特に限定されない。例えば、比較的出力が大きい炭酸ガスレーザ、YAGレーザ、ファイバーレーザ、またはディスクレーザ等を用いることができる。ファイバーレーザまたはディスクレーザは光ファイバーで伝送でき、かつビーム品質が優れるので好適である。なお、レーザ出力およびビーム径は溶接する金属材料の種類および板厚等に応じて適宜選択すればよい。
レーザ溶接先行後の後行溶接方法は、溶接ワイヤまたは溶加材を用いたMIG、MAG、TIG等のアーク溶接法であってもよく、または再度レーザ溶接を行ってもよい。使用する溶接ワイヤまたは溶加材は、被溶接材との混合により希釈されることから、一般的に各溶接ワイヤまたは溶加材のメーカーが推奨する、被溶接材に合せた品種を使用することが望ましい。但し、使用することにより被溶接材に相変態(マルテンサイト変態など)を生じさせるなど、構造体に悪影響を及ぼすものは望ましくない。
また、後溶接により形成される溶接ビードにはブローホールおよびピットなどの溶接欠陥がないことが望ましい。また、材料表面に防錆目的のめっき金属が存在する場合には防錆効果範囲のために、めっき損傷が少なく、補修塗装の範囲が狭くなるように溶接ワイヤ等による余盛金属が少ないほうが望ましい。
本発明で、被溶接材の種類は特に限定されない。低炭素鋼、ステンレス鋼、またはこれらにZn系めっき、Al系めっき、Zn−Al系合金めっき、Al−Si系合金めっき、Zn−Al−Mg系合金めっき、Zn−Al−Mg−Si系合金めっき等を施したものであってよい。また、鋼材同士の溶接に限らずAl等の非鉄金属同士および鋼材と非鉄金属のハイブリッド溶接にも本発明は適用できる。さらに、被溶接材の切断方法も限定されない。シャー等の一般的な切断方法を用いればよい。また、切断後、機械研磨仕上げしてもよい。
本発明において、金属材料1、2の厚みは限定されない。板材に限らず、ブロック状でもかまわない。金属材料1と金属材料2との厚みが互いに異なる場合は、厚みの薄い金属材料を金属材料2とすればよい。
以下に、実施例を挙げて本発明をより具体的に説明するが、本発明はこの実施例に限定されるものではない。
(供試材)
先ず始めに、供試材として表1に示す、低炭素鋼を原板とする溶融Zn−6質量%Al−3質量%Mgめっきを準備した。板厚は、3.2mmおよび6.0mmの2種類である。片面あたりのめっき付着量は90g/mである。
Figure 2019188431
そして、全ての供試材を、シャー、チップソー、バンドソーにより切断し、幅50mm、長さ150mmのサイズに切り出した。また、一部の供試材については切断端面を機械研磨仕上げした。
切り出した供試材の中から、板厚が同一のもの2つを選んで、その2つの供試材の表面が面一となるように突合せた。
(突合せ隙間の測定)
続いて、レーザ溶接前に隙間ゲージで突合せ部の幅100mmの間の最大突合せ隙間の大きさを測定した。なお、厚み0.05mmの隙間ゲージが突合せ部に入らない場合は最大突合せ間隔0.05mm以下とした。
(先行溶接)
そして、突合せ部に対し、ファイバーレーザ溶接機を用いて、表2に記載したレーザビームの狙い位置深さDとレーザビームの入射角θの条件により、突合せレーザ溶接のみを行なった。なお、表2には、隙間ゲージを用いて測定した突合せ部の突合せ隙間の大きさも記載している。レーザ溶接の条件は以下のとおりである。
出力:4kW、
ビームスポット径:0.6mm、
デフォーカス:7mm、
シールドガス: なし
レーザ溶接速度は板厚に応じて次のように変化させた。
板厚 6.0mm: 0.75m/min、
板厚 3.2mm: 1.2 m/min
Figure 2019188431
図1は、レーザ溶接のみを行なった状態の本発明例No.1の供試材を光学顕微鏡で観察した溶接部の断面写真である。図2は、レーザ溶接のみを行なった状態の比較例No.11の供試材を光学顕微鏡で観察した溶接部の断面写真である。
(後行溶接)
続いて、溶接ビードが形成できた継手に対し、後行の溶接として次の条件によりアーク溶接を実施した。また、評価として溶接継手裏側の形状観察および引張試験を行った。
後行のアーク溶接条件は以下のとおりである。
溶接電流、電圧 :160A、20.3V、
シールドガス、流量:CO、20L/min
溶接ワイヤ :MG−50T、φ1.2mm
アーク溶接速度は、先行のレーザ溶接速度と同じとした。
(溶接継手裏側の形状観察)
後行溶接後における溶接継手裏側の形状を評価した。具体的には、溶接継手裏面の窪みの深さを測定し、その深さを溶接前の板厚tに対するパーセントで評価した。得られた結果を表3に示す。
Figure 2019188431
発明例No.1〜No.9は、本発明の範囲であるレーザ狙い位置Dが0.8t≦D≦1.8t(t:板厚)を満足しており、継手裏側窪み量の溶接前板厚に対する比率(%)は5.0%以下と良好である。さらに、レーザビームの入射角(θ)が10°〜40°で、突合せ隙間間隔(G)がt/6以下(t:板厚)であるNo.1、2,4,6,8の継手裏側窪み量は2.0%と特に優れている。
一方、比較例No.10〜No.17は継手裏側窪み量の溶接前板厚に対する比率(%)は5.0%を越えている。
(引張試験)
引張試験の結果についても表3に示す。後行の溶接を行った発明例No.1〜No.9は、引張試験は全て母材破断という結果であった。すなわち、溶接不良による強度低下はなかった。図4は本発明例No.4の光学顕微鏡で観察した溶接継手裏側の形状観察である。
本発明は金属材料1、2同士の突合せ溶接において、突合せ部に隙間があっても金属材料1、2を溶融して隙間を埋めて金属材料1、2同士を溶接する方法に利用することができる。これは、自動車分野、産業機器分野、家電、配電盤、住宅分野、さらには道路資材等の部材接合に適用できる。
1 金属材料1(他方の金属材料)
2 金属材料2(一方の金属材料)
1a 金属材料1の突合せ端面
1b 金属材料1の突合せ端面の延長上の面
3 レーザビーム
P 狙い位置
D 狙い位置深さ

Claims (4)

  1. 2つの金属材料の表面が面一となるように突合せた状態で、一方の金属材料側から、他方の金属材料の端面上もしくはその延長上の面上の狙い位置へレーザビームを斜めに照射して溶接ビードを形成する工程と、
    前記レーザビームの照射により形成された溶接ビード上に、前記2つの金属材料の表面側から溶接ワイヤまたは溶加材を伴う溶接を行う工程と、
    を含む金属材料の複合溶接方法であって、
    前記レーザビームの狙い位置の深さDは、前記一方の金属材料の厚みtに対して0.8t≦D≦1.8tの範囲内であることを特徴とする金属材料の複合溶接方法。
  2. 前記レーザビームの照射方向は、前記端面またはその延長上の面に対して、前記一方の金属材料の側に10°〜40°傾斜した方向であることを特徴とする請求項1に記載の金属材料の複合溶接方法。
  3. 前記他方の金属材料と前記一方の金属材料との突合せ間隔は、t/6以下であることを特徴とする請求項1または2に記載の金属材料の複合溶接方法。
  4. 請求項1〜3のいずれか1項に記載の金属材料の複合溶接方法を用いた、溶接部裏側の窪みが板厚の5%以下であることを特徴とする金属材料の突合せ溶接部材。
JP2020510661A 2018-03-29 2019-03-15 金属材料の複合溶接方法および金属材料の突合せ溶接部材 Active JP7160090B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018066089 2018-03-29
JP2018066089 2018-03-29
PCT/JP2019/010898 WO2019188431A1 (ja) 2018-03-29 2019-03-15 金属材料の複合溶接方法および金属材料の突合せ溶接部材

Publications (2)

Publication Number Publication Date
JPWO2019188431A1 true JPWO2019188431A1 (ja) 2021-04-01
JP7160090B2 JP7160090B2 (ja) 2022-10-25

Family

ID=68058817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020510661A Active JP7160090B2 (ja) 2018-03-29 2019-03-15 金属材料の複合溶接方法および金属材料の突合せ溶接部材

Country Status (3)

Country Link
JP (1) JP7160090B2 (ja)
TW (1) TW201941859A (ja)
WO (1) WO2019188431A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965348A (ja) * 1972-10-27 1974-06-25
JPS6027473A (ja) * 1983-07-26 1985-02-12 Mitsubishi Heavy Ind Ltd プラズマ溶接法
JP2015229171A (ja) * 2014-06-04 2015-12-21 日本車輌製造株式会社 レーザアークハイブリッド溶接方法
JP2016068092A (ja) * 2014-09-26 2016-05-09 日新製鋼株式会社 差厚材のレーザ溶接方法及び該方法を用いた差厚溶接部材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965348A (ja) * 1972-10-27 1974-06-25
JPS6027473A (ja) * 1983-07-26 1985-02-12 Mitsubishi Heavy Ind Ltd プラズマ溶接法
JP2015229171A (ja) * 2014-06-04 2015-12-21 日本車輌製造株式会社 レーザアークハイブリッド溶接方法
JP2016068092A (ja) * 2014-09-26 2016-05-09 日新製鋼株式会社 差厚材のレーザ溶接方法及び該方法を用いた差厚溶接部材

Also Published As

Publication number Publication date
JP7160090B2 (ja) 2022-10-25
TW201941859A (zh) 2019-11-01
WO2019188431A1 (ja) 2019-10-03

Similar Documents

Publication Publication Date Title
JP5873658B2 (ja) ハイブリッドレーザアーク溶接プロセス及び装置
Thomy et al. Laser-MIG hybrid welding of aluminium to steel—effect of process parameters on joint properties
JP5869972B2 (ja) レーザ・アーク複合溶接法
JP2004306084A (ja) レーザ溶接とア−ク溶接の複合溶接方法
Churiaque et al. Improvements of hybrid laser arc welding for shipbuilding T-joints with 2F position of 8 mm thick steel
JP6089323B2 (ja) 差厚材のレーザ溶接方法
Frank Flux-free laser joining of aluminum and galvanized steel
JP5416422B2 (ja) レーザ・アーク複合溶接法
JP4978121B2 (ja) 金属板の突合せ接合方法
WO2018003341A1 (ja) レーザ溶接継手およびレーザ溶接継手の製造方法
JP6495987B2 (ja) 板材の突合せレーザ溶接法およびレーザ溶接部材
JP7160090B2 (ja) 金属材料の複合溶接方法および金属材料の突合せ溶接部材
JP7230606B2 (ja) 亜鉛系めっき鋼板の複合溶接方法
WO2020179029A1 (ja) 板材の突合せレーザ溶接法およびレーザ溶接部材
JPH07266068A (ja) アルミニウム又はアルミニウム合金部材のレーザ溶接方法
JP6965071B2 (ja) プラズマキーホール溶接方法
JP7435834B2 (ja) レーザビーム溶接方法とその溶接機ならびに突合せ溶接継手の製造方法
EP4282571A1 (en) Laser brazing joining method
Spina et al. T-joints of Ti alloys with hybrid laser-MIG welding: macro-graphic and micro-hardness analyses
JP7485250B1 (ja) 片面サブマージアーク溶接方法および溶接継手の製造方法
WO2022185989A1 (ja) レーザーブレージング接合方法
JP5483553B2 (ja) レーザ・アーク複合溶接法
JP7332872B2 (ja) 複合溶接方法
Mithun et al. An Analysis of Geometrical and Failure Characteristics of Laser Micro-Welded SS304 and DSS2205
Dhote et al. WELDING TECHNOLOGY: A REVIEW

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20200421

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220926

R151 Written notification of patent or utility model registration

Ref document number: 7160090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151