[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2019092641A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019092641A5
JPWO2019092641A5 JP2020544697A JP2020544697A JPWO2019092641A5 JP WO2019092641 A5 JPWO2019092641 A5 JP WO2019092641A5 JP 2020544697 A JP2020544697 A JP 2020544697A JP 2020544697 A JP2020544697 A JP 2020544697A JP WO2019092641 A5 JPWO2019092641 A5 JP WO2019092641A5
Authority
JP
Japan
Prior art keywords
sonotrode
melting
tip
input material
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020544697A
Other languages
Japanese (ja)
Other versions
JP2021503044A (en
JP7228274B2 (en
Publication date
Priority claimed from PL423410A external-priority patent/PL423410A1/en
Priority claimed from PL424869A external-priority patent/PL424869A1/en
Priority claimed from PL425803A external-priority patent/PL425803A1/en
Application filed filed Critical
Priority claimed from PCT/IB2018/058809 external-priority patent/WO2019092641A1/en
Publication of JP2021503044A publication Critical patent/JP2021503044A/en
Publication of JPWO2019092641A5 publication Critical patent/JPWO2019092641A5/ja
Application granted granted Critical
Publication of JP7228274B2 publication Critical patent/JP7228274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

デバイスは、100W/mK超過の導電性を有する材料で作られ溶融先端を備え冷却された不融性ソノトロードに、導波管によって接続された圧電変換器と、入力材料送達システムと、材料溶融システムと、処理チャンバ、高電圧発生器と、真空ポンプとを備える。圧電変換器は、材料噴霧に使用される機械的エネルギー源であり、20kHz超過の作業周波数を有し、高電圧発生器によって電力供給される。圧電変換器は、デバイス・フレームへの取付け具として作用し変換器の振動振幅を増加させる、ねじ締結具を通して導波管に接続される。導波管は、ねじ締結具を通して不融性ソノトロードに接続される。不融性ソノトロードは、流動する冷却媒体によって処理チャンバの内部で冷却され、同時に、溶融先端のためのラジエータとして作用する。ソノトロードの二重の役割(振動の伝達と熱の除去)により、熱伝導率が高く、即ち100W/mKであり、100 HV5の硬度を有する材料を使用する必要がある。冷却媒体の漏れおよび処理チャンバ内への浸入を防ぐシールは、ゼロ振幅振動ノードに、即ち導波管およびソノトロードの長さの半分のところに配置される。冷却媒体は、空気またはジエチレングリコールである。溶融先端は、ねじ締結具によってソノトロードに接続されるか、または拡散接合によって固定される。溶融システムは熱エネルギーを溶融先端に送達する。入力材料に応じて、溶融システムは、不融性タングステン電極およびアーク放電出力源もしくはプラズマ・トーチ、アーク放電出力源およびプラズマ・ガス吹込みシステム、またはレンズおよびレーザー出力源から成ってもよい。同時に、デバイスは、入力材料を溶融先端に送達するシステムを備える。入力材料の形態に応じて、システムは、当該分野で知られているワイヤ・フィーダおよび処理チャンバにつながるチャネル、不規則な顆粒または粉末の形態の材料の振動フィーダ、ロッドの形態の入力材料を溶融先端に導入する機械的プッシャの形で実現することができる。処理チャンバは、当該分野で知られているように冷却され、保護ガスおよび入力材料チャネル、ならびに真空ポンプとの接続部の役割を果たすチャネルを備える。 The device consists of a piezoelectric transducer connected by a waveguide to a cooled infusible sonotrode made of a material with a conductivity greater than 100 W/mK and equipped with a melting tip, an input material delivery system, and a material melting system. , a process chamber, a high voltage generator, and a vacuum pump. A piezoelectric transducer is a mechanical energy source used for material atomization, has a working frequency of over 20 kHz and is powered by a high voltage generator. The piezoelectric transducer is connected to the waveguide through screw fasteners that act as attachments to the device frame and increase the vibration amplitude of the transducer. The waveguide is connected to the infusible sonotrode through a threaded fastener. The infusible sonotrode is cooled inside the processing chamber by a flowing cooling medium and at the same time acts as a radiator for the melting tip. The dual role of the sonotrode (vibration transmission and heat removal) requires the use of materials with high thermal conductivity, ie >100 W/mK, and hardness > 100 HV5. A seal that prevents leakage of the cooling medium and entry into the process chamber is placed at the zero amplitude vibration node, ie half the length of the waveguide and sonotrode. The cooling medium is air or diethylene glycol. The fusion tip is connected to the sonotrode by a threaded fastener or fixed by diffusion bonding. A melting system delivers thermal energy to the melting tip. Depending on the input material, the melting system may consist of an infusible tungsten electrode and arc discharge power source or plasma torch, an arc discharge power source and plasma gas blowing system, or a lens and laser power source. At the same time, the device includes a system for delivering input material to the melting tip. Depending on the form of the input material, the system will melt the input material in the form of rods, vibrating feeders for materials in the form of irregular granules or powders, channels leading to wire feeders and processing chambers known in the art. It can be realized in the form of a mechanical pusher introduced at the tip. The processing chamber is cooled as is known in the art and comprises protective gas and input material channels, as well as channels that serve as connections to vacuum pumps.

JP2020544697A 2017-11-09 2018-11-09 Device for producing spherical metal powder by ultrasonic atomization method Active JP7228274B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
PL423410A PL423410A1 (en) 2017-11-09 2017-11-09 Device for producing spherical metal powders by ultrasonic atomisation method
PLP.423410 2017-11-09
PL424869A PL424869A1 (en) 2018-03-13 2018-03-13 Device for ultrasonic atomisation of metallic materials and method for cleaning it
PLP.424869 2018-03-13
PLP.425803 2018-06-03
PL425803A PL425803A1 (en) 2018-06-03 2018-06-03 Ultrasonic atomiser
PCT/IB2018/058809 WO2019092641A1 (en) 2017-11-09 2018-11-09 Device for the manufacturing of spherical metal powders by an ultrasonic atomization method

Publications (3)

Publication Number Publication Date
JP2021503044A JP2021503044A (en) 2021-02-04
JPWO2019092641A5 true JPWO2019092641A5 (en) 2022-12-09
JP7228274B2 JP7228274B2 (en) 2023-02-24

Family

ID=66437676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020544697A Active JP7228274B2 (en) 2017-11-09 2018-11-09 Device for producing spherical metal powder by ultrasonic atomization method

Country Status (6)

Country Link
EP (1) EP3638442A1 (en)
JP (1) JP7228274B2 (en)
KR (1) KR102539861B1 (en)
CN (1) CN111315513A (en)
RU (1) RU2020118274A (en)
WO (1) WO2019092641A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019092641A1 (en) * 2017-11-09 2019-05-16 3D Lab Sp. Z O.O. Device for the manufacturing of spherical metal powders by an ultrasonic atomization method
PL430595A1 (en) * 2019-07-15 2021-01-25 3D Lab Spółka Z Ograniczoną Odpowiedzialnością Sonotrode for a device for ultrasonic atomization of metals and their alloys
PL430614A1 (en) 2019-07-16 2021-01-25 3D Lab Spółka Z Ograniczoną Odpowiedzialnością Method for removing powder produced by ultrasonic atomization process and a device for implementing this method
CN110303162A (en) * 2019-08-14 2019-10-08 北京七弟科技有限公司 A kind of ultrasonic wave prepares metal ball shaped powder device
CN112643038B (en) * 2020-12-16 2022-12-06 杭州电子科技大学 Device and method for preparing core-shell structure soft magnetic material through gas atomization
CN114054765A (en) * 2021-11-12 2022-02-18 广州赛隆增材制造有限责任公司 Powder making device and powder making method
PL441817A1 (en) * 2022-07-22 2024-01-29 Politechnika Wrocławska System for ultrasonic atomization of metal powders and metal alloys
PL441819A1 (en) * 2022-07-22 2024-01-29 Politechnika Wrocławska Device for producing metal powders and metal alloys
US20240227009A9 (en) * 2022-10-20 2024-07-11 Divergent Technologies, Inc. Alloying via ultrasonic atomization

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3275787A (en) * 1963-12-30 1966-09-27 Gen Electric Process and apparatus for producing particles by electron melting and ultrasonic agitation
DE2656330C2 (en) * 1976-12-13 1984-03-15 Battelle-Institut E.V., 6000 Frankfurt Process and device for the production of powders or granulates from metals and alloys
CN1422718A (en) * 2001-12-04 2003-06-11 北京有色金属研究总院 Method and apparatus for making globular metallic powder by ultrasonic atomising
JP2009062573A (en) * 2007-09-05 2009-03-26 National Institute For Materials Science Rotary disk used for centrifugal atomization method, and centrifugal atomization method using the same
CN201208649Y (en) * 2008-03-31 2009-03-18 东莞优诺电子焊接材料有限公司 Apparatus for preparing spherical tin-base alloy powder by supersonic vibration atomization method
CN102773493B (en) * 2012-08-24 2014-02-26 哈尔滨工业大学 Device and method for preparing metal microballoons by using ultrasonic surface standing waves
CN103433499B (en) * 2013-08-27 2015-08-12 湖南航天工业总公司 A kind of ultrasonic atomizatio preparation facilities of globular metallic powder and preparation method
EP3099440A2 (en) * 2014-01-27 2016-12-07 Rovalma, S.A. Centrifugal atomization of iron-based alloys
CN104259469B (en) * 2014-09-11 2017-08-22 南京大学 The manufacture method of micron and the spherical powder of nano metal
TR201903245T4 (en) * 2014-10-07 2019-03-21 Constellium Issoire The ultrasound inspection process of a liquid metal.
CN104550988A (en) * 2015-01-28 2015-04-29 大连理工大学 Method and device for preparation of superfine spherical metal powder on basis of uniform droplet spray method
CN105855558B (en) * 2016-05-31 2018-01-16 宝鸡万品金属科技有限公司 The equipment and technique of fine ball-type metal powder are prepared with ultrasonic activation atomization
CN107138733B (en) * 2017-07-10 2019-07-02 山东科技大学 Ultrasonic vibration atomization prepares device, method and the 3D printing system of metal powder
WO2019092641A1 (en) * 2017-11-09 2019-05-16 3D Lab Sp. Z O.O. Device for the manufacturing of spherical metal powders by an ultrasonic atomization method

Similar Documents

Publication Publication Date Title
JP7228274B2 (en) Device for producing spherical metal powder by ultrasonic atomization method
JPWO2019092641A5 (en)
US6787011B2 (en) Cylindrical target and its production method
US10399274B2 (en) Method for using transverse sonotrode in ultrasonic welding
US3017792A (en) Vibratory device
TWI413553B (en) Device for producing ultrasonic vibrations
US20080173641A1 (en) Microwave plasma apparatus and method for materials processing
Zhixin et al. Ultrasonic vibration pulse electro-discharge machining of holes in engineering ceramics
CN206838452U (en) A kind of ultrasonic system
AU2015211135A1 (en) Ultrasonic sonotrode for transversely aligned transducer
JP2002155356A (en) Cylindrical target and its manufacturing method
CN108321665A (en) A kind of encapsulating structure inhibiting lath and Static wavefront distortion after cooler welding
US11938557B2 (en) Sonotrode for processing of liquid metals and a method for processing of liquid metals
WO1988001552A1 (en) Gas laser apparatus
RU2670629C9 (en) Method of ultrasonic gas laser cutting of sheet metal and device for ultrasonic gas laser cutting of sheet metal (options)
JPH0298098A (en) Static eliminator
JP2681251B2 (en) Restraint tip for plasma jet torch
KR102637677B1 (en) A heat conduction shielding rod for nozzle connection with a heat conductivity of 45 kcal/℃ due to radiant heat during welding Double thermal conduction shielding type two-wire hand laser welding machine consisting of ceramic, sealing and ceramic three shielding plates
KR102038914B1 (en) Apparatus for Ultrasonic Waves Welding Handgun with Enhanced Cooling Efficiency
JPH02187177A (en) Ultrasonic oscillator using ceramic horn
JP5426815B2 (en) Droplet generating apparatus and droplet generating method
Biswas et al. Indigenous development of a 2 kW RF-excited fast axial flow CO 2 laser
TWI257336B (en) Laser-aided cutting device
JPS6420682A (en) Gas laser apparatus excited by high frequency discharge
JPS63181387A (en) Pulse gas laser