[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2019026625A1 - Optical film - Google Patents

Optical film Download PDF

Info

Publication number
JPWO2019026625A1
JPWO2019026625A1 JP2019534030A JP2019534030A JPWO2019026625A1 JP WO2019026625 A1 JPWO2019026625 A1 JP WO2019026625A1 JP 2019534030 A JP2019534030 A JP 2019534030A JP 2019534030 A JP2019534030 A JP 2019534030A JP WO2019026625 A1 JPWO2019026625 A1 JP WO2019026625A1
Authority
JP
Japan
Prior art keywords
thermoplastic resin
unit
optical film
group
compound hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019534030A
Other languages
Japanese (ja)
Other versions
JP7092133B2 (en
Inventor
斗馬 辻野
斗馬 辻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Publication of JPWO2019026625A1 publication Critical patent/JPWO2019026625A1/en
Application granted granted Critical
Publication of JP7092133B2 publication Critical patent/JP7092133B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2353/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polarising Elements (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

熱可塑性樹脂からなる光学フィルムであって、前記熱可塑性樹脂は、環式炭化水素基含有化合物水素化物単位[I]を主成分とする、1分子あたり2つ以上の重合体ブロック[D]と、鎖状炭化水素化合物水素化物単位[II]、又は前記単位[I]及び前記単位[II]の組み合わせを主成分とする1分子あたり1つ以上の重合体ブロック[E]とを含む水素化ブロック共重合体[G]を含み、前記熱可塑性樹脂は、G”/G’>0.95又は(η|ε=2−η|ε=1)>−1.0×104Pa・sを満たす。但しG’は前記熱可塑性樹脂の貯蔵弾性率であり、G”は前記熱可塑性樹脂の損失弾性率であり、(η|ε=2−η|ε=1)は前記熱可塑性樹脂の伸長粘度の傾きである。An optical film made of a thermoplastic resin, wherein the thermoplastic resin contains two or more polymer blocks [D] per molecule containing a hydride unit [I] of a cyclic hydrocarbon group-containing compound as a main component. , A chain hydrocarbon compound hydride unit [II], or one or more polymer blocks [E] per molecule containing the combination of the unit [I] and the unit [II] as a main component The block copolymer [G] is included, and the thermoplastic resin satisfies G″/G′>0.95 or (η|ε=2-η|ε=1)>−1.0×10 4 Pa·s Where G′ is the storage elastic modulus of the thermoplastic resin, G″ is the loss elastic modulus of the thermoplastic resin, and (η|ε=2-η|ε=1) is the elongation of the thermoplastic resin. It is the slope of viscosity.

Description

本発明は光学フィルムに関する。 The present invention relates to an optical film.

液晶表示装置などの表示装置には、様々な光学フィルムが設けられる。例えば、液晶表示装置は通常偏光板を備え、かかる偏光板は、通常、ポリビニルアルコール等の樹脂により構成された偏光子と、偏光子を保護するための保護フィルムを備える。保護フィルムの材料としては、様々な材料が提案されている。例えば、芳香族ビニル化合物水素化物のブロックと、ジエン化合物水素化物のブロックとを含むブロック共重合体の使用が提案されている(特許文献1及び2)。光学フィルムは、例えば押出成形により効率的に製造しうる。 A display device such as a liquid crystal display device is provided with various optical films. For example, a liquid crystal display device usually includes a polarizing plate, and such a polarizing plate usually includes a polarizer made of a resin such as polyvinyl alcohol, and a protective film for protecting the polarizer. Various materials have been proposed as materials for the protective film. For example, it has been proposed to use a block copolymer containing a block of an aromatic vinyl compound hydride and a block of a diene compound hydride (Patent Documents 1 and 2). The optical film can be efficiently manufactured by, for example, extrusion molding.

国際公開第2017/086265号International Publication No. 2017/086265 特開2010−031253号公報JP, 2010-031253, A

しかしながら、ブロック共重合体を含む樹脂を材料として、押出成形により光学フィルムを製造する場合、ドローレゾナンスが発生し、膜厚ムラが大きくなる場合がある。 However, when an optical film is manufactured by extrusion molding using a resin containing a block copolymer as a material, draw resonance may occur and the film thickness unevenness may increase.

従って、本発明の目的は、押出成形におけるドローレゾナンスの発生による膜厚ムラが低減され、効率的に高品質なものとして製造しうる、光学フィルムを提供することにある。 Therefore, it is an object of the present invention to provide an optical film in which film thickness unevenness due to generation of draw resonance in extrusion molding is reduced and which can be efficiently manufactured as a high quality film.

上記課題を解決するため検討した結果、本発明者は、光学フィルムを構成する材料として、特定の熱可塑性樹脂を採用することにより、上記課題を解決しうることを見出した。
すなわち、本発明によれば、以下の〔1〕〜〔3〕が提供される。
As a result of studies to solve the above problems, the present inventor has found that the above problems can be solved by adopting a specific thermoplastic resin as a material forming the optical film.
That is, according to the present invention, the following [1] to [3] are provided.

〔1〕 熱可塑性樹脂からなる光学フィルムであって、
前記熱可塑性樹脂は、
環式炭化水素基含有化合物水素化物単位[I]を主成分とする、1分子あたり2つ以上の重合体ブロック[D]と、
鎖状炭化水素化合物水素化物単位[II]、又は前記単位[I]及び前記単位[II]の組み合わせを主成分とする1分子あたり1つ以上の重合体ブロック[E]と
を含む水素化ブロック共重合体[G]を含み、
前記熱可塑性樹脂は、式(1)又は式(2)を満たす、光学フィルム:
G”/G’>0.95 式(1)
(η|ε=2−η|ε=1)>−1.0×10Pa・s 式(2)
但しG’は前記熱可塑性樹脂の貯蔵弾性率であり、G”は前記熱可塑性樹脂の損失弾性率であり、
前記貯蔵弾性率及び損失弾性率は、Ts+90℃、1rad/secの条件で測定された値であり、
(η|ε=2−η|ε=1)は前記熱可塑性樹脂の伸長粘度の傾きであり、
前記伸長粘度は、Ts+80℃、1s−1の条件で測定された値であり、
TsはTMAにより測定した前記熱可塑性樹脂の軟化温度である。
〔2〕 正面位相差Reおよび厚み方向の位相差の絶対値|Rth|がともに3nm以下である、〔1〕に記載の光学フィルム。
〔3〕 前記環式炭化水素基含有化合物水素化物単位[I]が芳香族ビニル化合物水素化物単位であり、
前記鎖状炭化水素化合物水素化物単位[II]が共役ジエン化合物水素化物単位である、〔1〕または〔2〕に記載の光学フィルム。
[1] An optical film made of a thermoplastic resin,
The thermoplastic resin is
Two or more polymer blocks [D] per molecule having a cyclic hydride group-containing compound hydride unit [I] as a main component;
A chain hydrocarbon compound hydride unit [II], or a hydrogenation block containing one or more polymer blocks [E] per molecule containing the combination of the unit [I] and the unit [II] as a main component Including a copolymer [G],
The thermoplastic resin satisfies the formula (1) or the formula (2):
G"/G'>0.95 Formula (1)
(Η| ε=2 −η| ε=1 )>−1.0×10 4 Pa·s Formula (2)
Where G′ is the storage elastic modulus of the thermoplastic resin, G″ is the loss elastic modulus of the thermoplastic resin,
The storage elastic modulus and the loss elastic modulus are values measured under the conditions of Ts+90° C. and 1 rad/sec,
(Η| ε=2- η| ε= 1 ) is the slope of extensional viscosity of the thermoplastic resin,
The extensional viscosity is a value measured under the conditions of Ts+80° C. and 1 s −1 ,
Ts is the softening temperature of the thermoplastic resin measured by TMA.
[2] The optical film according to [1], wherein both the front retardation Re and the absolute value |Rth| of the retardation in the thickness direction are 3 nm or less.
[3] The cyclic hydride group-containing compound hydride unit [I] is an aromatic vinyl compound hydride unit,
The optical film as described in [1] or [2], wherein the chain hydrocarbon compound hydride unit [II] is a conjugated diene compound hydride unit.

本発明によれば、押出成形におけるドローレゾナンスの発生による膜厚ムラが低減され、効率的に高品質なものとして製造しうる、光学フィルムが提供される。 ADVANTAGE OF THE INVENTION According to this invention, the film thickness unevenness by the generation of draw resonance in extrusion molding is reduced, and the optical film which can be efficiently manufactured as a high quality film is provided.

以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものでは無く、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be described in detail by showing embodiments and exemplifications. However, the present invention is not limited to the embodiments and exemplifications shown below, and may be implemented by being arbitrarily modified within the scope of the claims of the present invention and the scope of equivalents thereof.

以下の説明において、ある層の正面位相差Reは、Re=(nx−ny)×dで表される値を示し、また、ある層の厚み方向の位相差Rthとは、Rth=[{(nx+ny)/2}−nz]×dで表される値を示す。nxは、層の面内方向(厚み方向に垂直な方向)であって最大の屈折率を与える方向の屈折率を表し、nyは、層の面内方向であってnxの方向に直交する方向の屈折率を表し、nzは、層の厚み方向の屈折率を表し、dは、層の厚みを表す。 In the following description, the front phase difference Re of a certain layer has a value represented by Re=(nx−ny)×d, and the phase difference Rth in the thickness direction of a certain layer is Rth=[{( nx+ny)/2}-nz]×d. nx represents the refractive index in the in-plane direction of the layer (direction perpendicular to the thickness direction) and gives the maximum refractive index, and ny is the in-plane direction of the layer and orthogonal to the nx direction. , Nz represents the refractive index in the thickness direction of the layer, and d represents the thickness of the layer.

以下の説明において、別に断らない限り、屈折率の測定波長は、590nmである。 In the following description, the measurement wavelength of the refractive index is 590 nm unless otherwise specified.

以下の説明において、樹脂の固有複屈折値の正負は、樹脂の成形物を延伸した場合における、かかる成形物の屈折率の挙動によって規定される。即ち、正の固有複屈折値を有する樹脂とは、延伸方向における当該成形物の屈折率が、延伸前に比べて大きくなる樹脂である。また、負の固有複屈折値を有する樹脂とは、延伸方向における当該成形物の屈折率が、延伸前に比べて小さくなる樹脂である。固有複屈折値は、誘電率分布から計算しうる。 In the following description, whether the intrinsic birefringence value of the resin is positive or negative is defined by the behavior of the refractive index of the resin molded product when the molded product is stretched. That is, a resin having a positive intrinsic birefringence value is a resin in which the refractive index of the molded product in the stretching direction is higher than that before stretching. The resin having a negative intrinsic birefringence value is a resin in which the refractive index of the molded product in the stretching direction is smaller than that before stretching. The intrinsic birefringence value can be calculated from the dielectric constant distribution.

さらに、ある特定の重合単位が正の固有複屈折値を有するとは、当該重合単位のみからなる重合体が、正の固有複屈折値を有することをいい、ある特定の重合単位が負の固有複屈折値を有するとは、当該重合単位のみからなる重合体が、負の固有複屈折値を有することをいう。したがって、重合単位の固有複屈折値の正負は、当該重合単位のみからなる単独重合体を調製し、当該重合体を任意の形状の成形物とし、当該成形物を延伸し、その光学特性を測定することにより容易に判定しうる。一般に、アルケン、ジエン等の炭化水素の重合単位及びそれらの水素化物の多くは正の固有複屈折値を有することが知られている一方、スチレン、ビニルナフタレン等の側鎖に芳香環を有する炭化水素の重合体及びそれらの水素化物であって環状の炭化水素基を有する化合物の多くは負の固有複屈折値を有することが知られている。 Furthermore, a certain specific polymerized unit has a positive intrinsic birefringence value means that a polymer composed of only the polymerized unit has a positive intrinsic birefringence value, and a specific polymerized unit has a negative intrinsic birefringence value. Having a birefringence value means that a polymer composed of only the polymerized units has a negative intrinsic birefringence value. Therefore, the positive and negative of the intrinsic birefringence value of the polymerized unit, the homopolymer consisting only of the polymerized unit is prepared, the polymer into a molded article of any shape, the molded article is stretched, and the optical characteristics are measured. By doing so, it can be easily determined. It is generally known that many polymerized units of hydrocarbons such as alkenes and dienes and their hydrides have a positive intrinsic birefringence value, while carbonized units having an aromatic ring in the side chain such as styrene and vinylnaphthalene. It is known that many polymers of hydrogen and their hydrides having a cyclic hydrocarbon group have a negative intrinsic birefringence value.

以下の説明において、環式炭化水素基とは、芳香環、シクロアルカン、シクロアルケン等の、環状の構造を含む炭化水素の基である。また、鎖状炭化水素化合物とは、かかる環式炭化水素基を含まない炭化水素化合物である。 In the following description, the cyclic hydrocarbon group is a hydrocarbon group having a cyclic structure such as an aromatic ring, cycloalkane, and cycloalkene. The chain hydrocarbon compound is a hydrocarbon compound that does not contain such a cyclic hydrocarbon group.

以下の説明において、「偏光板」とは、別に断らない限り、剛直な部材だけでなく、例えば樹脂製のフィルムのように可撓性を有する部材も含む。 In the following description, the term “polarizing plate” includes not only a rigid member but also a flexible member such as a resin film unless otherwise specified.

〔1.光学フィルムの概要〕
本発明の光学フィルムは、特定の熱可塑性樹脂からなる光学フィルムである。即ち、本発明の光学フィルムは、特定の熱可塑性樹脂のみから構成された光学フィルムである。
[1. Overview of optical film]
The optical film of the present invention is an optical film made of a specific thermoplastic resin. That is, the optical film of the present invention is an optical film composed of only a specific thermoplastic resin.

光学フィルムを構成する熱可塑性樹脂は、特定の水素化ブロック共重合体[G]を含む。水素化ブロック共重合体[G]は、2つ以上の重合体ブロック[D]と、1つ以上の重合体ブロック[E]とを含む。重合体ブロック[D]は、環式炭化水素基含有化合物水素化物単位[I]を主成分とするブロックである。重合体ブロック[E]は、鎖状炭化水素化合物水素化物単位[II]、又は単位[I]及び単位[II]の組み合わせを主成分とするブロックである。単位[I]は通常負の固有複屈折値を有し、一方単位[II]は通常正の固有複屈折値を有する。水素化ブロック共重合体[G]がこれらの単位を組み合わせて含むことにより、光学フィルムの位相差の発現を抑制することができる。その結果、偏光板保護フィルムとして用いるのに適した、低位相差の光学フィルムを容易に得ることができる。 The thermoplastic resin forming the optical film contains a specific hydrogenated block copolymer [G]. The hydrogenated block copolymer [G] contains two or more polymer blocks [D] and one or more polymer blocks [E]. The polymer block [D] is a block containing a cyclic hydride group-containing compound hydride unit [I] as a main component. The polymer block [E] is a block containing a chain hydrocarbon compound hydride unit [II] or a combination of the unit [I] and the unit [II] as a main component. Unit [I] usually has a negative intrinsic birefringence value, while unit [II] usually has a positive intrinsic birefringence value. When the hydrogenated block copolymer [G] contains these units in combination, expression of retardation of the optical film can be suppressed. As a result, an optical film with a low retardation suitable for use as a polarizing plate protective film can be easily obtained.

〔2.環式炭化水素基含有化合物水素化物単位[I]〕
環式炭化水素基含有化合物水素化物単位[I]は、環式炭化水素基含有化合物を重合し、さらに、かかる重合により得られた単位が不飽和結合を有していればその不飽和結合を水素化して得られる構造を有する構造単位である。ただし、環式炭化水素基含有化合物水素化物単位[I]は、当該構造を有する限りにおいて、どのような製造方法で得られた単位をも含む。
[2. Cyclic hydrocarbon group-containing compound hydride unit [I]
The cyclic hydrocarbon group-containing compound hydride unit [I] is obtained by polymerizing a cyclic hydrocarbon group-containing compound, and further, if the unit obtained by such polymerization has an unsaturated bond, the unsaturated bond is formed. It is a structural unit having a structure obtained by hydrogenation. However, the cyclic hydrocarbon group-containing compound hydride unit [I] includes a unit obtained by any production method as long as it has the structure.

環式炭化水素基含有化合物水素化物単位[I]は、好ましくは、芳香族ビニル化合物の重合により得られる構造単位である。より具体的には、芳香族ビニル化合物を重合し、その不飽和結合を水素化して得られる構造を有する構造単位(芳香族ビニル化合物水素化物単位[I])である。ただし、芳香族ビニル化合物水素化物単位[I]は、当該構造を有する限りにおいて、どのような製造方法で得られた単位をも含む。 The cyclic hydrocarbon group-containing compound hydride unit [I] is preferably a structural unit obtained by polymerization of an aromatic vinyl compound. More specifically, it is a structural unit (aromatic vinyl compound hydride unit [I]) having a structure obtained by polymerizing an aromatic vinyl compound and hydrogenating its unsaturated bond. However, the aromatic vinyl compound hydride unit [I] includes a unit obtained by any manufacturing method as long as it has the structure.

同様に、本願においては、例えばスチレンを重合し、その不飽和結合を水素化して得られる構造を有する構造単位を、スチレン水素化物単位と呼ぶことがある。スチレン水素化物単位も、当該構造を有する限りにおいて、どのような製造方法で得られた単位をも含む。 Similarly, in the present application, for example, a structural unit having a structure obtained by polymerizing styrene and hydrogenating its unsaturated bond may be referred to as a styrene hydride unit. The styrene hydride unit also includes a unit obtained by any manufacturing method as long as it has the structure.

芳香族ビニル化合物水素化物単位[I]の例としては、以下の構造式(1)で表される構造単位が挙げられる。 Examples of the aromatic vinyl compound hydride unit [I] include a structural unit represented by the following structural formula (1).

Figure 2019026625
Figure 2019026625

構造式(1)において、Rは脂環式炭化水素基を表す。Rの例を挙げると、シクロヘキシル基等のシクロヘキシル基類;デカヒドロナフチル基類等が挙げられる。In Structural Formula (1), R c represents an alicyclic hydrocarbon group. Examples of R c include cyclohexyl groups such as cyclohexyl group; decahydronaphthyl groups and the like.

構造式(1)において、R、R及びRは、それぞれ独立に、水素原子、鎖状炭化水素基、ハロゲン原子、アルコキシ基、ヒドロキシル基、エステル基、シアノ基、アミド基、イミド基、シリル基、又は、極性基(ハロゲン原子、アルコキシ基、ヒドロキシル基、エステル基、シアノ基、アミド基、イミド基、又はシリル基)で置換された鎖状炭化水素基を表す。中でもR、R及びRとしては、耐熱性、低複屈折性及び機械強度等の観点から水素原子及び炭素原子数1〜6個の鎖状炭化水素基のいずれかであることが好ましい。鎖状炭化水素基としては飽和炭化水素基が好ましく、アルキル基がより好ましい。In Structural Formula (1), R 1 , R 2 and R 3 are each independently a hydrogen atom, a chain hydrocarbon group, a halogen atom, an alkoxy group, a hydroxyl group, an ester group, a cyano group, an amide group or an imide group. Represents a chain hydrocarbon group substituted with a silyl group or a polar group (a halogen atom, an alkoxy group, a hydroxyl group, an ester group, a cyano group, an amide group, an imide group, or a silyl group). Among them, R 1 , R 2 and R 3 are preferably any one of a hydrogen atom and a chain hydrocarbon group having 1 to 6 carbon atoms from the viewpoint of heat resistance, low birefringence and mechanical strength. .. As the chain hydrocarbon group, a saturated hydrocarbon group is preferable, and an alkyl group is more preferable.

芳香族ビニル化合物水素化物単位[I]の好ましい具体例としては、下記式(1−1)で表される構造単位が挙げられる。式(1−1)で表される構造単位は、スチレン水素化物単位である。 Specific preferred examples of the aromatic vinyl compound hydride unit [I] include structural units represented by the following formula (1-1). The structural unit represented by the formula (1-1) is a styrene hydride unit.

Figure 2019026625
Figure 2019026625

環式炭化水素基含有化合物水素化物単位[I]の例示物において立体異性体を有するものは、そのいずれの立体異性体も使用することができる。環式炭化水素基含有化合物水素化物単位[I]は、1種類だけ用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Any of the stereoisomers of the cyclic hydride-containing compound hydride unit [I] having stereoisomers can be used. As the cyclic hydride group-containing compound hydride unit [I], only one type may be used, or two or more types may be used in combination at any ratio.

〔3.鎖状炭化水素化合物水素化物単位[II]〕
鎖状炭化水素化合物水素化物単位[II]は、鎖状炭化水素化合物を重合し、さらに、かかる重合により得られた単位が不飽和結合を有していればその不飽和結合を水素化して得られる構造を有する構造単位である。ただし、鎖状炭化水素化合物水素化物単位[II]は、当該構造を有する限りにおいて、どのような製造方法で得られた単位をも含む。
[3. Chain hydrocarbon compound hydride unit [II]]
The chain hydrocarbon compound hydride unit [II] is obtained by polymerizing a chain hydrocarbon compound and further hydrogenating the unsaturated bond if the unit obtained by such polymerization has an unsaturated bond. Is a structural unit having a structure described below. However, the chain hydrocarbon compound hydride unit [II] includes a unit obtained by any production method as long as it has the structure.

鎖状炭化水素化合物水素化物単位[II]は、好ましくは、ジエン化合物の重合により得られる構造単位である。より具体的には、ジエン化合物を重合し、さらに、かかる重合により得られた単位が不飽和結合を有していればその不飽和結合を水素化して得られる構造を有する構造単位(ジエン化合物水素化物単位[II])である。但し、ジエン化合物水素化物単位[II]は、当該構造を有する限りにおいて、どのような製造方法で得られた単位をも含む。 The chain hydrocarbon compound hydride unit [II] is preferably a structural unit obtained by polymerization of a diene compound. More specifically, a structural unit having a structure obtained by polymerizing a diene compound and further hydrogenating the unsaturated bond, if the unit obtained by such polymerization has an unsaturated bond (diene compound hydrogen Compound unit [II]). However, the diene compound hydride unit [II] includes a unit obtained by any manufacturing method as long as it has the structure.

同様に、本願においては、例えばイソプレンを重合し、その不飽和結合を水素化して得られる構造を有する構造単位を、イソプレン水素化物単位と呼ぶことがある。イソプレン水素化物単位も、当該構造を有する限りにおいて、どのような製造方法で得られた単位をも含む。 Similarly, in the present application, a structural unit having a structure obtained by polymerizing isoprene and hydrogenating its unsaturated bond may be referred to as an isoprene hydride unit. The isoprene hydride unit also includes a unit obtained by any manufacturing method as long as it has the structure.

ジエン化合物水素化物単位[II]は、共役ジエン化合物の重合により得られる構造単位であることが好ましい。より具体的には、鎖状共役ジエン化合物等の共役ジエン化合物を重合し、その不飽和結合を水素化して得られる構造を有する構造単位(共役ジエン化合物水素化物単位)であることが好ましい。その例としては、以下の構造式(2)で表される構造単位、及び構造式(3)で表される構造単位が挙げられる。 The diene compound hydride unit [II] is preferably a structural unit obtained by polymerization of a conjugated diene compound. More specifically, it is preferably a structural unit (conjugated diene compound hydride unit) having a structure obtained by polymerizing a conjugated diene compound such as a chain conjugated diene compound and hydrogenating the unsaturated bond. Examples thereof include a structural unit represented by the following structural formula (2) and a structural unit represented by the structural formula (3).

Figure 2019026625
Figure 2019026625

構造式(2)において、R〜Rは、それぞれ独立に、水素原子、鎖状炭化水素基、ハロゲン原子、アルコキシ基、ヒドロキシル基、エステル基、シアノ基、アミド基、イミド基、シリル基、又は、極性基(ハロゲン原子、アルコキシ基、ヒドロキシル基、エステル基、シアノ基、アミド基、イミド基、又はシリル基)で置換された鎖状炭化水素基を表す。中でもR〜Rとしては、耐熱性、低複屈折性及び機械強度等の観点から水素原子及び炭素原子数1〜6個の鎖状炭化水素基のいずれかであることが好ましい。鎖状炭化水素基としては飽和炭化水素基が好ましく、アルキル基がより好ましい。In Structural Formula (2), R 4 to R 9 are each independently a hydrogen atom, a chain hydrocarbon group, a halogen atom, an alkoxy group, a hydroxyl group, an ester group, a cyano group, an amide group, an imide group, a silyl group. Or represents a chain hydrocarbon group substituted with a polar group (halogen atom, alkoxy group, hydroxyl group, ester group, cyano group, amide group, imide group, or silyl group). Among them, R 4 to R 9 are preferably any one of a hydrogen atom and a chain hydrocarbon group having 1 to 6 carbon atoms from the viewpoint of heat resistance, low birefringence, mechanical strength and the like. As the chain hydrocarbon group, a saturated hydrocarbon group is preferable, and an alkyl group is more preferable.

Figure 2019026625
Figure 2019026625

構造式(3)において、R10〜R15は、それぞれ独立に、水素原子、鎖状炭化水素基、ハロゲン原子、アルコキシ基、ヒドロキシル基、エステル基、シアノ基、アミド基、イミド基、シリル基、又は、極性基(ハロゲン原子、アルコキシ基、ヒドロキシル基、エステル基、シアノ基、アミド基、イミド基、又はシリル基)で置換された鎖状炭化水素基を表す。中でもR10〜R15としては、耐熱性、低複屈折性及び機械強度等の観点から水素原子及び炭素原子数1〜6個の鎖状炭化水素基のいずれかであることが好ましい。鎖状炭化水素基としては飽和炭化水素基が好ましく、アルキル基がより好ましい。In Structural Formula (3), R 10 to R 15 are each independently a hydrogen atom, a chain hydrocarbon group, a halogen atom, an alkoxy group, a hydroxyl group, an ester group, a cyano group, an amide group, an imide group, a silyl group. Or represents a chain hydrocarbon group substituted with a polar group (halogen atom, alkoxy group, hydroxyl group, ester group, cyano group, amide group, imide group, or silyl group). Among them, R 10 to R 15 are preferably any one of a hydrogen atom and a chain hydrocarbon group having 1 to 6 carbon atoms from the viewpoint of heat resistance, low birefringence, mechanical strength and the like. As the chain hydrocarbon group, a saturated hydrocarbon group is preferable, and an alkyl group is more preferable.

ジエン化合物水素化物単位[II]の好ましい具体例としては、下記式(2−1)〜(2−3)で表される構造単位が挙げられる。式(2−1)〜(2−3)で表される構造単位は、イソプレン水素化物単位である。 Specific preferred examples of the diene compound hydride unit [II] include structural units represented by the following formulas (2-1) to (2-3). The structural units represented by formulas (2-1) to (2-3) are isoprene hydride units.

Figure 2019026625
Figure 2019026625

鎖状炭化水素化合物水素化物単位[II]の例示物において立体異性体を有するものは、そのいずれの立体異性体も使用することができる。鎖状炭化水素化合物水素化物単位[II]は、1種類だけ用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Any of the stereoisomers of the chain hydrocarbon compound hydride unit [II] having stereoisomers can be used. As the chain hydrocarbon compound hydride unit [II], only one type may be used, or two or more types may be used in combination at an arbitrary ratio.

〔4.水素化ブロック共重合体[G]の詳細〕
水素化ブロック共重合体[G]は、1分子あたり1つのブロック[E]と、その両端に連結された1分子当たり2つのブロック[D]とを有するトリブロック分子構造を有することが好ましい。すなわち、水素化ブロック共重合体[G]は、1分子あたり1つのブロック[E]と;ブロック[E]の一端に連結され、環式炭化水素基含有化合物水素化物単位[I]を有する、1分子あたり1つのブロック[Da]と;ブロック[E]の他端に連結され、環式炭化水素基含有化合物水素化物単位[I]を有する、1分子あたり1つのブロック[Db]と;を含むトリブロック共重合体[Da]−[E]−[Db]であることが好ましい。
[4. Details of Hydrogenated Block Copolymer [G]]
The hydrogenated block copolymer [G] preferably has a triblock molecular structure having one block [E] per molecule and two blocks [D] connected to both ends thereof per molecule. That is, the hydrogenated block copolymer [G] has one block [E] per molecule; and a cyclic hydride group-containing compound hydride unit [I] linked to one end of the block [E], One block [Da] per molecule; one block [Db] per molecule having a cyclic hydrocarbon group-containing compound hydride unit [I] linked to the other end of the block [E]; It is preferably a triblock copolymer [Da]-[E]-[Db] containing.

熱可塑性樹脂は、水素化ブロック共重合体[G]を85質量%以上含有することが好ましい。水素化ブロック共重合体[G]として、1種類の重合体のみを含んでもよいが、2種類以上の重合体を含んでもよい。好ましくは、熱可塑性樹脂は、水素化ブロック共重合体[G]として、2種類以上の重合体を含む。熱可塑性樹脂が水素化ブロック共重合体[G]として2種類以上の重合体を含むことにより、所望の特性を有する熱可塑性樹脂を、容易に調製することができる。 The thermoplastic resin preferably contains the hydrogenated block copolymer [G] in an amount of 85% by mass or more. The hydrogenated block copolymer [G] may contain only one kind of polymer, but may contain two or more kinds of polymers. Preferably, the thermoplastic resin contains two or more polymers as the hydrogenated block copolymer [G]. When the thermoplastic resin contains two or more kinds of polymers as the hydrogenated block copolymer [G], a thermoplastic resin having desired properties can be easily prepared.

特に、熱可塑性樹脂は、水素化ブロック共重合体[G]として、対称性の異なる複数のトリブロック共重合体を含むことが好ましい。本願において、トリブロック共重合体[Da]−[E]−[Db]の対称性とは、ブロック[Da]の重量Daとブロック[Db]の重量Db(但しDa≧Da)の比Da/Dbに関する特性であり、Da/Dbが小さく、1または1に近いトリブロック共重合体を、対称性が高いトリブロック共重合体といい、Da/Dbが大きいトリブロック共重合体を、対称性が低いトリブロック共重合体という。 In particular, the thermoplastic resin preferably contains, as the hydrogenated block copolymer [G], a plurality of triblock copolymers having different symmetries. In the present application, the symmetry of the triblock copolymer [Da]-[E]-[Db] means the ratio Da of the weight Da of the block [Da] and the weight Db of the block [Db] (provided that Da≧Da). A triblock copolymer having a small Da/Db value of 1 or close to 1 is a triblock copolymer having a high symmetry, which is a property relating to Db, and a triblock copolymer having a large Da/Db is a symmetry Low triblock copolymer.

好ましい例として、熱可塑性樹脂が、水素化ブロック共重合体[G]として、対称性が低いトリブロック共重合体[G]及び対称性が高いトリブロック共重合体[G]を含む例を、以下に説明する。この例において、トリブロック共重合体[G]は、重合体ブロック[D]としてのブロック[Da]及び[Db]、並びに重合体ブロック[E]としてのブロック[E]を含むトリブロック共重合体[Da]−[E]−[Db]である。トリブロック共重合体[G]は、重合体ブロック[D]としてのブロック[Da]及び[Db]、並びに重合体ブロック[E]としてのブロック[E]を含むトリブロック共重合体[Da]−[E]−[Db]である。As a preferred example, the thermoplastic resin contains, as the hydrogenated block copolymer [G], a triblock copolymer [G X ] having low symmetry and a triblock copolymer [G Y ] having high symmetry. Will be described below. In this example, a triblock copolymer [G X] includes blocks [Da X] as the polymer block [D] and [Db X], as well as a block [E X] as the polymer block [E] triblock copolymer [Da X] - [E X ] - a [Db X]. The triblock copolymer [G Y ] is a triblock copolymer including the blocks [Da Y ] and [Db Y ] as the polymer block [D] and the block [E Y ] as the polymer block [E]. The combination is [Da Y ]-[E Y ]-[Db Y ].

トリブロック共重合体[G]におけるブロック[Da]及び[Db]の重量比Da/Dbは、3以上であり、好ましくは4以上、より好ましくは5以上であり、好ましくは11以下、より好ましくは10以下、特に好ましくは9以下である。トリブロック共重合体[G]におけるブロック[Da]及び[Db]の重量比Da/Dbは、1以上3未満であり、好ましくは2以下であり、より好ましくは1.5以下である。このような、異なる対称性を有するトリブロック共重合体[G]及び[G]を含むことにより、耐熱性及び強靭性を兼ね備える等の非対称トリブロック共重合体の利点を享受しながら、且つドローレゾナンスの発生による膜厚ムラを低減し、膜厚ムラの少ない光学フィルムとすることができる。The weight ratio Da X /Db X of the blocks [Da X ] and [Db X ] in the triblock copolymer [G X ] is 3 or more, preferably 4 or more, more preferably 5 or more, and preferably It is 11 or less, more preferably 10 or less, and particularly preferably 9 or less. The weight ratio Da Y /Db Y of the blocks [Da Y ] and [Db Y ] in the triblock copolymer [G Y ] is 1 or more and less than 3, preferably 2 or less, more preferably 1.5. It is as follows. By including such triblock copolymers [G X ] and [G Y ] having different symmetries, while enjoying the advantages of the asymmetric triblock copolymer having both heat resistance and toughness, In addition, it is possible to reduce the film thickness unevenness due to the occurrence of draw resonance, and to obtain an optical film with less film thickness unevenness.

熱可塑性樹脂における、対称性が低いトリブロック共重合体[G]及び対称性が高いトリブロック共重合体[G]の好ましい割合は、所望の特性を有する光学フィルムが得られる範囲に適宜調整しうる。トリブロック共重合体[G]及びトリブロック共重合体[G]の合計に対するトリブロック共重合体[G]の割合は、好ましくは70重量%以上、より好ましくは75重量%以上であり、一方好ましくは85重量%以下、より好ましくは83重量%以下である。The preferable ratio of the triblock copolymer [G X ] having a low symmetry and the triblock copolymer [G Y ] having a high symmetry in the thermoplastic resin is appropriately set within a range in which an optical film having desired properties can be obtained. Can be adjusted. The ratio of the triblock copolymer [G X ] to the total of the triblock copolymer [G X ] and the triblock copolymer [G Y ] is preferably 70% by weight or more, more preferably 75% by weight or more. On the other hand, it is preferably 85% by weight or less, more preferably 83% by weight or less.

熱可塑性樹脂における水素化ブロック共重合体[G]については、好ましい特性を有する光学フィルムを容易に得る観点から、ブロック[Da]及びブロック[Db]の合計と、ブロック[E]との重量比(Da+Db)/Eが、特定の範囲内であることが好ましい。具体的には、重量比(Da+Db)/Eは、好ましくは65/35以上、より好ましくは70/30以上であり、好ましくは90/10以下、より好ましくは85/15以下である。熱可塑性樹脂が水素化ブロック共重合体[G]として複数種類の重合体を含む場合、これらの全体における重量比(Da+Db)/Eが前記範囲内であることが好ましい。 Regarding the hydrogenated block copolymer [G] in the thermoplastic resin, the weight ratio of the total of the block [Da] and the block [Db] to the block [E] is used from the viewpoint of easily obtaining an optical film having preferable properties. It is preferable that (Da+Db)/E is within a specific range. Specifically, the weight ratio (Da+Db)/E is preferably 65/35 or more, more preferably 70/30 or more, preferably 90/10 or less, more preferably 85/15 or less. When the thermoplastic resin contains a plurality of kinds of polymers as the hydrogenated block copolymer [G], the weight ratio (Da+Db)/E in the whole of them is preferably within the above range.

熱可塑性樹脂における水素化ブロック共重合体[G]の重量平均分子量Mwは、好ましくは40000以上、より好ましくは55000以上、特に好ましくは60000以上であり、好ましくは85000以下、より好ましくは80000以下、特に好ましくは75000以下である。重量平均分子量Mwが前記範囲にあることにより、好ましい特性を有する光学フィルムを容易に得ることができる。熱可塑性樹脂が水素化ブロック共重合体[G]として複数種類の重合体を含む場合、主成分である水素化ブロック共重合体が前記範囲内であることが好ましい。 The weight average molecular weight Mw of the hydrogenated block copolymer [G] in the thermoplastic resin is preferably 40,000 or more, more preferably 55,000 or more, particularly preferably 60,000 or more, preferably 85,000 or less, more preferably 80,000 or less, It is particularly preferably 75,000 or less. When the weight average molecular weight Mw is within the above range, an optical film having preferable characteristics can be easily obtained. When the thermoplastic resin contains a plurality of types of polymers as the hydrogenated block copolymer [G], the hydrogenated block copolymer as the main component is preferably within the above range.

ブロック[Da]及びブロック[Db]は、それぞれ独立に、環式炭化水素基含有化合物水素化物単位[I]のみからなることが好ましいが、環式炭化水素基含有化合物水素化物単位[I]以外に任意の単位を含みうる。任意の構造単位の例としては、環式炭化水素基含有化合物水素化物単位[I]以外のビニル化合物に基づく構造単位が挙げられる。ブロック[D]における任意の構造単位の含有率は、好ましくは10重量%以下、より好ましくは5重量%以下、特に好ましくは1重量%以下である。 It is preferable that each of the block [Da] and the block [Db] independently comprises only the cyclic hydrocarbon group-containing compound hydride unit [I], but other than the cyclic hydrocarbon group-containing compound hydride unit [I]. Can include any unit. Examples of the optional structural unit include structural units based on vinyl compounds other than the cyclic hydrocarbon group-containing compound hydride unit [I]. The content of any structural unit in the block [D] is preferably 10% by weight or less, more preferably 5% by weight or less, and particularly preferably 1% by weight or less.

ブロック[E]は、鎖状炭化水素化合物水素化物単位[II]のみからなるか、又は環式炭化水素基含有化合物水素化物単位[I]及び鎖状炭化水素化合物水素化物単位[II]のみからなることが好ましいが、単位[I]及び[II]以外に任意の単位を含みうる。任意の構造単位の例としては、単位[I]及び[II]以外のビニル化合物に基づく構造単位が挙げられる。ブロック[E]における任意の構造単位の含有率は、好ましくは10重量%以下、より好ましくは5重量%以下、特に好ましくは1重量%以下である。 The block [E] is composed of only a chain hydrocarbon compound hydride unit [II], or is composed only of a cyclic hydrocarbon group-containing compound hydride unit [I] and a chain hydrocarbon compound hydride unit [II]. However, it may contain any unit other than the units [I] and [II]. Examples of the optional structural unit include structural units based on vinyl compounds other than the units [I] and [II]. The content of any structural unit in the block [E] is preferably 10% by weight or less, more preferably 5% by weight or less, and particularly preferably 1% by weight or less.

ブロック[E]が、環式炭化水素基含有化合物水素化物単位[I]及び鎖状炭化水素化合物水素化物単位[II]を含む場合、ブロック[E]中の単位[I]及び[II]の重量比[I]/[II]は、好ましくは0.1以上、より好ましくは0.2以上、特に好ましくは0.3以上であり、好ましくは1.5以下、より好ましくは1.4以下、特に好ましくは1.3以下である。 When the block [E] contains a cyclic hydride group-containing compound hydride unit [I] and a chain hydrocarbon compound hydride unit [II], the units [I] and [II] in the block [E] The weight ratio [I]/[II] is preferably 0.1 or more, more preferably 0.2 or more, particularly preferably 0.3 or more, preferably 1.5 or less, more preferably 1.4 or less. And particularly preferably 1.3 or less.

また、水素化ブロック共重合体[G]全体における、単位[I]及び[II]の重量比[I]/[II]は、好ましくは70/30以上、より好ましくは75/25以上であり、好ましくは90/10以下、より好ましくは85/15以下である。単位[I]及び[II]の比率が前記範囲にあることにより、好ましい特性を有する光学フィルムを容易に得ることができる。具体的には、負の固有複屈折値を有する単位[I]と、通常正の固有複屈折値を有する単位[II]とを、好ましい比率で含むことにより、光学フィルムの位相差の発現を抑制することができる。その結果、偏光板保護フィルムとして用いるのに適した、低位相差の光学フィルムを容易に得ることができる。 The weight ratio [I]/[II] of the units [I] and [II] in the entire hydrogenated block copolymer [G] is preferably 70/30 or more, more preferably 75/25 or more. , Preferably 90/10 or less, more preferably 85/15 or less. When the ratio of the units [I] and [II] is within the above range, an optical film having preferable characteristics can be easily obtained. Specifically, by containing a unit [I] having a negative intrinsic birefringence value and a unit [II] usually having a positive intrinsic birefringence value in a preferable ratio, the retardation of the optical film is expressed. Can be suppressed. As a result, an optical film with a low retardation suitable for use as a polarizing plate protective film can be easily obtained.

水素化ブロック共重合体[G]の製造方法は、特に限定されず任意の製造方法を採用しうる。水素化ブロック共重合体[G]は、例えば、環式炭化水素基含有化合物水素化物単位[I]及び鎖状炭化水素化合物水素化物単位[II]に対応する単量体を用意し、これらを重合させ、得られた重合体[F]を水素化することにより製造しうる。具体的な製造は、例えば国際公開第WO2016/152871号に記載される方法及びその他の既知の方法を適宜組み合わせて実施しうる。水素化反応における水素化率は、通常90%以上、好ましくは95%以上、より好ましくは97%以上である。水素化率を高くすることにより、水素化ブロック共重合体[G]の低複屈折性及び熱安定性等を高めることができる。水素化率はH−NMRにより測定できる。The method for producing the hydrogenated block copolymer [G] is not particularly limited, and any production method can be adopted. As the hydrogenated block copolymer [G], for example, a monomer corresponding to the cyclic hydrocarbon group-containing compound hydride unit [I] and the chain hydrocarbon compound hydride unit [II] is prepared, and these are prepared. It can be produced by polymerizing and polymerizing the obtained polymer [F]. Specific production can be carried out by appropriately combining, for example, the method described in International Publication WO2016/152871 and other known methods. The hydrogenation rate in the hydrogenation reaction is usually 90% or more, preferably 95% or more, more preferably 97% or more. By increasing the hydrogenation rate, the low birefringence and thermal stability of the hydrogenated block copolymer [G] can be increased. The hydrogenation rate can be measured by 1 H-NMR.

熱可塑性樹脂は、水素化ブロック共重合体[G]のみからなるものであってもよく、水素化ブロック共重合体[G]以外の任意成分を含有するものであってもよい。任意成分の例は、紫外線吸収剤、酸化防止剤、熱安定剤、光安定剤、帯電防止剤、分散剤、塩素捕捉剤、難燃剤、結晶化核剤、強化剤、ブロッキング防止剤、防曇剤、離型剤、顔料、有機又は無機の充填剤、中和剤、滑剤、分解剤、金属不活性化剤、汚染防止剤、及び抗菌剤が挙げられる。任意成分の含有量は、熱可塑性樹脂100重量%当たり0.5〜5重量%が好ましい。 The thermoplastic resin may be composed of only the hydrogenated block copolymer [G] or may contain an arbitrary component other than the hydrogenated block copolymer [G]. Examples of optional components include ultraviolet absorbers, antioxidants, heat stabilizers, light stabilizers, antistatic agents, dispersants, chlorine scavengers, flame retardants, crystallization nucleating agents, strengthening agents, antiblocking agents, antifogging agents. Agents, release agents, pigments, organic or inorganic fillers, neutralizing agents, lubricants, decomposing agents, metal deactivators, antifouling agents, and antibacterial agents. The content of the optional component is preferably 0.5 to 5% by weight based on 100% by weight of the thermoplastic resin.

〔5.熱可塑性樹脂の特性〕
熱可塑性樹脂は、式(1)及び式(2)の一方又は両方を満たす。
G”/G’>0.95 式(1)
(η|ε=2−η|ε=1)>−1.0×10Pa・s 式(2)
[5. Characteristics of thermoplastic resin]
The thermoplastic resin satisfies one or both of formula (1) and formula (2).
G"/G'>0.95 Formula (1)
(Η| ε=2 −η| ε=1 )>−1.0×10 4 Pa·s Formula (2)

式(1)において、G’は熱可塑性樹脂の貯蔵弾性率であり、G”は熱可塑性樹脂の損失弾性率である。G”/G’の値は、より好ましくは1.2以上、さらにより好ましくは1.3以上である。G”/G’の値の上限は、特に限定されないが例えば10.0以下としうる。 In the formula (1), G′ is the storage elastic modulus of the thermoplastic resin, and G″ is the loss elastic modulus of the thermoplastic resin. The value of G″/G′ is more preferably 1.2 or more, It is more preferably 1.3 or more. The upper limit of the value of G″/G′ is not particularly limited, but may be 10.0 or less, for example.

貯蔵弾性率及び損失弾性率は、動的粘弾性測定により、Ts+90℃、1rad/secの条件で測定された値である。Tsは熱可塑性樹脂の軟化温度である。弾性率の測定においては、測定対象の熱可塑性樹脂をシートの形状に成形し、これを試料として測定に供しうる。測定装置としては、TAインスツルメント社製の歪制御型粘弾性測定装置(パラレルプレート方式)を用いうる。 The storage elastic modulus and the loss elastic modulus are values measured by dynamic viscoelasticity measurement under the conditions of Ts+90° C. and 1 rad/sec. Ts is the softening temperature of the thermoplastic resin. In measuring the elastic modulus, the thermoplastic resin to be measured can be molded into a sheet shape and used as a sample for measurement. As the measuring device, a strain control type viscoelasticity measuring device (parallel plate method) manufactured by TA Instruments can be used.

熱可塑性樹脂の軟化温度Tsは、TMA(熱機械分析)により求めうる。具体的には、測定対象の熱可塑性樹脂を幅5mm×長さ20mm×厚さ0.5mmのシートとし、試料の長手方向に50mNの張力を加えた状態で温度を変化させる。線膨張が3%変化した時の温度(℃)を、軟化温度Tsとしうる。測定装置としては、TMA/SS7100(エスアイアイ・ナノテクノロジー株式会社製)を用いうる。熱可塑性樹脂の軟化温度Tsは、特に限定されないが100〜150℃としうる。 The softening temperature Ts of the thermoplastic resin can be obtained by TMA (thermomechanical analysis). Specifically, the thermoplastic resin to be measured is a sheet having a width of 5 mm, a length of 20 mm, and a thickness of 0.5 mm, and the temperature is changed while a tension of 50 mN is applied in the longitudinal direction of the sample. The temperature (° C.) when the linear expansion changes by 3% can be defined as the softening temperature Ts. As the measuring device, TMA/SS7100 (manufactured by SII Nanotechnology Inc.) can be used. The softening temperature Ts of the thermoplastic resin is not particularly limited, but may be 100 to 150°C.

式(2)において、(η|ε=2−η|ε=1)は熱可塑性樹脂の伸長粘度の傾きである。傾き(η|ε=2−η|ε=1)は、より好ましくは−9.0×10Pa・s以上、さらにより好ましくは−8.0×10Pa・s以上である。傾きの上限は、特に限定されないが例えば1.0×10Pa・s以下としうる。In the formula (2), (η| ε=2- η| ε =1 ) is the slope of elongational viscosity of the thermoplastic resin. The gradient (η| ε=2- η| ε= 1 ) is more preferably −9.0×10 3 Pa·s or more, still more preferably −8.0×10 3 Pa·s or more. The upper limit of the inclination is not particularly limited, but may be 1.0×10 2 Pa·s or less, for example.

本願において、伸長粘度の傾きとは、熱可塑性樹脂の伸長ひずみと伸長粘度との関係における伸長粘度の傾きをいう。より具体的には、測定対象の熱可塑性樹脂を幅5mm×長さ20mm×厚さ0.5mmのシートとし、Ts+80℃においてひずみ速度1s−1の条件で伸長ひずみと伸長粘度との関係を求める。伸長ひずみ1及び2またはそれらに近い値(例えば1±0.05及び2±0.05の範囲内の値)における測定値から、傾きを求めうる。測定装置としては、Anton paar製レオメーター MCR302を用いうる。In the present application, the slope of extensional viscosity refers to the slope of extensional viscosity in the relationship between extensional strain and extensional viscosity of the thermoplastic resin. More specifically, the thermoplastic resin to be measured is a sheet having a width of 5 mm, a length of 20 mm, and a thickness of 0.5 mm, and the relationship between the elongation strain and the elongation viscosity is calculated at a strain rate of 1 s −1 at Ts+80° C. .. The slope can be obtained from the measured values at the elongation strains 1 and 2 or values close thereto (for example, values within the range of 1±0.05 and 2±0.05). An Rheometer MCR302 manufactured by Anton Paar can be used as the measuring device.

本発明者が見出したところによれば、熱可塑性樹脂が式(1)及び式(2)の一方又は両方を満たすことにより、光学フィルムの製造において発生するドローレゾナンスによる膜厚ムラを低減することができ、光学フィルムを、効率的に高品質なものとして製造しうる。 The present inventors have found that the thermoplastic resin satisfies one or both of the formula (1) and the formula (2) to reduce film thickness unevenness due to draw resonance generated in the production of an optical film. Therefore, the optical film can be efficiently manufactured as a high quality product.

〔6.光学フィルムの特性及び寸法等〕
本発明の光学フィルムの正面位相差Re及び厚み方向の位相差Rthの絶対値|Rth|は、いずれも好ましくは3nm以下であり、より好ましくは2nm以下である。Re及びRthの値は、位相差計(例えばAxoscan、AXOMETRICS社製)を用いて測定しうる。Re及び|Rth|の下限は、特に限定されないが、いずれも、理想的に0である。ドローレゾナンス等の現象により膜厚が周期的に変動する場合は、膜厚の周期が観察される範囲で観察を行い、その平均値を、光学フィルムのRe及びRthとしうる。
[6. Characteristics and dimensions of optical film]
The absolute value |Rth| of both the front retardation Re and the thickness direction retardation Rth of the optical film of the present invention is preferably 3 nm or less, and more preferably 2 nm or less. The values of Re and Rth can be measured using a phase difference meter (for example, Axoscan, manufactured by AXOMETRICS). The lower limits of Re and |Rth| are not particularly limited, but both are ideally 0. When the film thickness periodically changes due to a phenomenon such as draw resonance, observation is performed within a range in which the film thickness cycle is observed, and the average value thereof can be used as Re and Rth of the optical film.

本発明の光学フィルムは、フィルムを構成する樹脂として、上に述べた特定の熱可塑性樹脂を採用することにより、低い位相差と低い膜厚ムラの両方を達成することができる。 The optical film of the present invention can achieve both low retardation and low film thickness unevenness by employing the above-mentioned specific thermoplastic resin as the resin constituting the film.

本発明の光学フィルムの厚さは、通常10μm以上、好ましくは15μm以上、より好ましくは20μm以上であり、通常75μm以下、好ましくは60μm以下、より好ましくは50μm以下である。厚さを前記範囲の下限以上にすることで、偏光板保護フィルムとして使用する際に偏光板の破損防止能及びハンドリング性を向上させることができ、上限以下にすることで偏光板を薄くすることができる。 The thickness of the optical film of the present invention is usually 10 μm or more, preferably 15 μm or more, more preferably 20 μm or more, and usually 75 μm or less, preferably 60 μm or less, more preferably 50 μm or less. By making the thickness not less than the lower limit of the above range, it is possible to improve the damage preventing ability and handling property of the polarizing plate when used as a polarizing plate protective film, and making the thickness thinner than the upper limit makes the polarizing plate thinner You can

本発明の光学フィルムは、ドローレゾナンスの発生による膜厚ムラを低減した製造が可能であるため、その膜厚ムラが小さいものとすることができる。膜厚ムラは、膜厚の周期が観察される範囲で膜厚の観察を行い、当該周期における最大厚みtmax、最小厚みtmin、平均厚みtaveから下記式に従い計算しうる。
膜厚ムラ(%)=((tmax−tmin)/tave)×100
Since the optical film of the present invention can be manufactured with reduced film thickness unevenness due to generation of draw resonance, the film thickness unevenness can be made small. The film thickness unevenness can be calculated from the maximum thickness t max , the minimum thickness t min , and the average thickness t ave by observing the film thickness within a range in which the film thickness cycle is observed, according to the following formula.
Thickness unevenness (%)=((t max −t min )/t ave )×100

本発明の光学フィルムの膜厚ムラは、好ましくは20%以下、より好ましくは10%以下としうる。膜厚ムラがかかる低い値であることにより、光学フィルムを、偏光板保護フィルム等の用途に特に好適に用いることができる。 The thickness unevenness of the optical film of the present invention can be preferably 20% or less, more preferably 10% or less. Due to such a low value of unevenness in film thickness, the optical film can be particularly suitably used for applications such as a polarizing plate protective film.

本発明の光学フィルムは、通常、透明な層であり可視光線を良好に透過させる。具体的な光線透過率は本発明のフィルムの用途に応じて適宜選択しうる。例えば、波長420〜780nmにおける光線透過率としては、好ましくは85%以上、より好ましくは88%以上である。このように高い光線透過率を有することにより、光学フィルムを、偏光板保護フィルム等の用途に特に好適に用いることができる。 The optical film of the present invention is usually a transparent layer and transmits visible light well. The specific light transmittance can be appropriately selected according to the application of the film of the present invention. For example, the light transmittance at a wavelength of 420 to 780 nm is preferably 85% or more, more preferably 88% or more. By having such a high light transmittance, the optical film can be particularly suitably used for applications such as a polarizing plate protective film.

〔7.光学フィルムの製造方法〕
本発明の光学フィルムの製造方法は特に限定されず、任意の製造方法を採用しうる。例えば、下記工程S1及びS2を含む製造方法を採用しうる。
工程S1:対称性が低いトリブロック共重合体[G]及び対称性が高いトリブロック共重合体[G]を混合し、混合物を得る工程。
工程S2:混合物を、押出成形法により成形し、光学フィルムを得る工程。
以下において、当該製造方法を、本発明の光学フィルムの製造方法として説明する。
[7. Optical film production method]
The manufacturing method of the optical film of the present invention is not particularly limited, and any manufacturing method can be adopted. For example, a manufacturing method including the following steps S1 and S2 can be adopted.
Step S1: A step of mixing a triblock copolymer [G X ] having low symmetry and a triblock copolymer [G Y ] having high symmetry to obtain a mixture.
Step S2: A step of molding the mixture by an extrusion molding method to obtain an optical film.
Below, the said manufacturing method is demonstrated as a manufacturing method of the optical film of this invention.

工程S1は、例えば、トリブロック共重合体[G]及びトリブロック共重合体[G]を含むペレットの形状の成形物を得る工程としうる。具体的には、トリブロック共重合体[G]のペレットとトリブロック共重合体[G]のペレットとを混合し、混合ペレットとすることにより行いうる。又は、トリブロック共重合体[G]とトリブロック共重合体[G]とを溶融させ、溶融物をペレットの形状に成形することにより行いうる。これらの工程に加え、必要に応じて任意成分を添加する混合を行うこともできる。混合物におけるトリブロック共重合体[G]及びトリブロック共重合体[G]の割合は、上に述べた、熱可塑性樹脂におけるこれらの好ましい割合としうる。The step S1 can be, for example, a step of obtaining a pellet-shaped molded product containing the triblock copolymer [G X ] and the triblock copolymer [G Y ]. Specifically, it can be performed by mixing the pellets of the triblock copolymer [G X ] and the pellets of the triblock copolymer [G Y ] into mixed pellets. Alternatively, it can be performed by melting the triblock copolymer [G X ] and the triblock copolymer [G Y ] and molding the melt into a pellet shape. In addition to these steps, mixing may be performed by adding optional components as necessary. The proportions of the triblock copolymer [G X ] and the triblock copolymer [G Y ] in the mixture can be the above-mentioned preferable proportions in the thermoplastic resin.

工程S2は、通常の押出成形法により行いうる。押出成形法による成形を行った場合、効率的な製造が可能である。しかしながら、成形の材料として、トリブロック共重合体[G]を用いた場合ドローレゾナンスが発生しやすい。本発明者が見出したところによれば、材料としてトリブロック共重合体[G]及びトリブロック共重合体[G]の混合物を用いることにより、かかるドローレゾナンスによる膜厚ムラの発生を低減することができる。Step S2 can be performed by a usual extrusion molding method. When the molding is performed by the extrusion molding method, efficient manufacturing is possible. However, when a triblock copolymer [G X ] is used as a molding material, draw resonance is likely to occur. According to the finding of the present inventor, by using a mixture of a triblock copolymer [G X ] and a triblock copolymer [G Y ] as a material, generation of film thickness unevenness due to such draw resonance is reduced. can do.

押出成形法による成形を行うと、長尺のフィルムを得ることができる。長尺のフィルムとは、幅に対して5倍以上の長さを有する形状をいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムの形状をいう。幅に対する長さの割合の上限は、特に限定されないが、例えば100,000倍以下としうる。 A long film can be obtained by molding by the extrusion molding method. The long film refers to a shape having a length 5 times or more the width, preferably 10 times or more, and specifically, is wound into a roll or stored or It refers to the shape of a film that is long enough to be transported. The upper limit of the ratio of the length to the width is not particularly limited, but may be 100,000 times or less, for example.

フィルムの形状に成形された熱可塑性樹脂は、そのまま本発明の光学フィルムとしうる。又は、フィルムの形状に成形された熱可塑性樹脂を、さらに任意の処理に供し、それにより得られたものを本発明の光学フィルムとしうる。かかる任意の処理としては、延伸処理が挙げられる。熱可塑性樹脂を構成する材料の割合を適宜調整することにより、延伸によりフィルムに発現する位相差を少なくすることが可能であるので、かかる延伸処理を行うことにより、厚みが薄く面積が大きく且つ品質が良好な光学フィルムを容易に製造することが可能となる。 The thermoplastic resin molded into a film shape can be used as it is as the optical film of the present invention. Alternatively, the thermoplastic resin molded into the shape of a film may be further subjected to any treatment, and the product thus obtained may be used as the optical film of the present invention. Examples of such optional treatment include stretching treatment. By appropriately adjusting the proportion of the material that constitutes the thermoplastic resin, it is possible to reduce the retardation that appears in the film by stretching. Therefore, by performing such stretching, the thickness is thin and the area is large and the quality is high. It becomes possible to easily manufacture an optical film having good quality.

〔8.光学フィルムの用途:偏光板〕
本発明の光学フィルムは、高い耐熱性、低い水蒸気透過率、低いRe及び|Rth|等の特性を有するため、液晶表示装置などの表示装置において、他の層を保護する保護フィルムとして好適に用いうる。特に、本発明の光学フィルムは、偏光子保護フィルムとして特に良好に機能することができる。
[8. Optical film application: Polarizing plate]
The optical film of the present invention has properties such as high heat resistance, low water vapor transmission rate, low Re and |Rth|, and thus is suitably used as a protective film for protecting other layers in a display device such as a liquid crystal display device. sell. In particular, the optical film of the present invention can function particularly well as a polarizer protective film.

具体的には、本発明の光学フィルムと、偏光子層とを組み合わせて、これらを備える偏光板を得うる。偏光板において、光学フィルムは、偏光子保護フィルムとして機能しうる。偏光板はさらに、光学フィルムと偏光子層との間に、これらを接着するための接着剤層を備えてもよい。 Specifically, the optical film of the present invention and a polarizer layer can be combined to obtain a polarizing plate including them. In the polarizing plate, the optical film can function as a polarizer protective film. The polarizing plate may further include an adhesive layer between the optical film and the polarizer layer for bonding them.

偏光子層は、特に限定されず、任意の既知の偏光子の層を用いうる。偏光子の例としては、ポリビニルアルコールフィルムに、ヨウ素、二色性染料等の材料を吸着させた後、延伸加工したものが挙げられる。接着剤層を構成する接着剤としては、各種の重合体をベースポリマーとしたものが挙げられる。かかるベースポリマーの例としては、例えば、アクリル重合体、シリコーン重合体、ポリエステル、ポリウレタン、ポリエーテル、及び合成ゴムが挙げられる。 The polarizer layer is not particularly limited, and any known polarizer layer can be used. Examples of the polarizer include those obtained by adsorbing a material such as iodine and a dichroic dye on a polyvinyl alcohol film and then stretching the polyvinyl alcohol film. Examples of the adhesive constituting the adhesive layer include those using various polymers as base polymers. Examples of such base polymers include, for example, acrylic polymers, silicone polymers, polyesters, polyurethanes, polyethers, and synthetic rubbers.

偏光板が備える偏光子層と保護フィルムの層の数は任意であるが、偏光板は、通常は、1層の偏光子層と、その両面に設けられた2層の保護フィルムを備えうる。かかる2層の保護フィルムのうち、両方が本発明の光学フィルムであってもよく、どちらか一方のみが本発明の光学フィルムであってもよい。特に、光源及び液晶セルを備え、かかる液晶セルの光源側及び表示面側の両方に偏光板を有する液晶表示装置において、表示面側の偏光子よりも光源側の位置において用いる保護フィルムとして、本発明の光学フィルムを備えることが特に好ましい。かかる構成を有することにより、高い膜厚の均一性、低いRe及び|Rth|等の特性を生かし、良好な表示品質を有する液晶表示装置を容易に構成することができる。 Although the number of polarizer layers and protective film layers included in the polarizing plate is arbitrary, the polarizing plate can usually include one polarizer layer and two protective films provided on both surfaces thereof. Of such two-layer protective films, both may be the optical film of the present invention, or only one of them may be the optical film of the present invention. In particular, in a liquid crystal display device having a light source and a liquid crystal cell and having polarizing plates on both the light source side and the display surface side of the liquid crystal cell, as a protective film used at a position closer to the light source than the display surface side polarizer, It is particularly preferred to include the inventive optical film. By having such a configuration, it is possible to easily configure a liquid crystal display device having good display quality by making use of high film thickness uniformity and low characteristics such as Re and |Rth|.

以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下に説明する操作は、別に断らない限り、常温常圧大気中において行った。
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the examples described below, and may be implemented by being arbitrarily modified within the scope of the claims of the present invention and the scope of equivalents thereof.
In the following description, "%" and "parts" representing amounts are by weight unless otherwise specified. Unless otherwise specified, the operations described below were performed in the normal temperature and normal pressure atmosphere.

〔評価方法〕
(軟化温度)
測定対象の熱可塑性樹脂のペレットを、加熱プレスし、厚み0.05mmのフィルムを得た。但し、測定対象のペレットが複数種類のペレットからなる混合ペレットである場合は、それを二軸押出機にて溶融し、混練し、ペレットに成形し、これを加熱プレスに供した。
得られたフィルムを切り出し、5mm×20mmの形状の試料とし、これをTMA(熱機械的分析)に供した。測定装置としては、TMA/SS7100(エスアイアイ・ナノテクノロジー株式会社製)を用いた。TMAにおいては、試料の長手方向に50mNの張力を加えた状態で、温度を変化させた。線膨張が3%変化した時の温度(℃)を、軟化温度Tsとした。
〔Evaluation method〕
(Softening temperature)
The thermoplastic resin pellets to be measured were hot pressed to obtain a film having a thickness of 0.05 mm. However, when the pellets to be measured were mixed pellets composed of a plurality of types of pellets, the pellets were melted by a twin-screw extruder, kneaded, molded into pellets, and subjected to hot pressing.
The obtained film was cut out and used as a sample having a shape of 5 mm×20 mm, which was subjected to TMA (thermo-mechanical analysis). As the measuring device, TMA/SS7100 (manufactured by SII Nanotechnology Inc.) was used. In TMA, the temperature was changed while a tension of 50 mN was applied in the longitudinal direction of the sample. The temperature (° C.) when the linear expansion changed by 3% was defined as the softening temperature Ts.

(動的粘弾性)
測定対象の熱可塑性樹脂のペレットを、加熱プレスし、厚み2mmのシートを得た。但し、測定対象のペレットが複数種類のペレットからなる混合ペレットである場合は、それを二軸押出機にて溶融し、混練し、ペレットに成形し、これを加熱プレスに供した。
得られたシートを試料とし、これを動的粘弾性の測定に供した。測定装置としては、TAインスツルメント社製の歪制御型粘弾性測定装置(パラレルプレート方式)を用いた。測定条件は、昇温速度5℃/min、周波数1rad/secとした。かかる測定により、貯蔵弾性率G’及び損失弾性率G”の温度分散を得た。これを元に、Ts+90℃におけるG’及びG”を求めた。
(Dynamic viscoelasticity)
The thermoplastic resin pellets to be measured were hot pressed to obtain a sheet having a thickness of 2 mm. However, when the pellets to be measured were mixed pellets composed of a plurality of types of pellets, the pellets were melted by a twin-screw extruder, kneaded, molded into pellets, and subjected to hot pressing.
The obtained sheet was used as a sample and subjected to measurement of dynamic viscoelasticity. As a measuring device, a strain control type viscoelasticity measuring device (parallel plate method) manufactured by TA Instruments was used. The measurement conditions were a temperature rising rate of 5° C./min and a frequency of 1 rad/sec. By such measurement, temperature dispersion of storage elastic modulus G′ and loss elastic modulus G″ was obtained. Based on this, G′ and G″ at Ts+90° C. were obtained.

(伸長粘度)
測定対象の熱可塑性樹脂のペレットを、加熱プレスし、厚み0.5mmのシートを得た。但し、測定対象のペレットが複数種類のペレットからなる混合ペレットである場合は、それを二軸押出機にて溶融し、混練し、ペレットに成形し、これを加熱プレスに供した。
得られたシートを切り出し、5mm×15mmの形状の試料とし、伸長粘度の測定に供した。測定装置としては、Anton paar製レオメーター MCR302を用いた。測定条件は、温度Ts+80℃、ひずみ速度1s−1とした。伸長ひずみと伸長粘度(Pa・s)との関係を求め、伸長ひずみ1又はそれに近い値における伸長ひずみ及び伸長粘度の値、並びに伸長ひずみ2又はそれに近い値における伸長ひずみ及び伸長粘度の値から、伸長粘度の傾き(η|ε=2−η|ε=1)を求めた。
(Extension viscosity)
The thermoplastic resin pellets to be measured were hot pressed to obtain a sheet having a thickness of 0.5 mm. However, when the pellets to be measured were mixed pellets composed of a plurality of types of pellets, the pellets were melted by a twin-screw extruder, kneaded, molded into pellets, and subjected to hot pressing.
The obtained sheet was cut out and used as a sample with a shape of 5 mm×15 mm, and the extensional viscosity was measured. An Rheometer MCR302 manufactured by Anton Paar was used as a measuring device. The measurement conditions were temperature Ts+80° C. and strain rate 1s −1 . The relationship between the elongation strain and the elongation viscosity (Pa·s) is obtained, and from the values of the elongation strain and the elongation viscosity at the elongation strain 1 or a value close thereto, and the values of the elongation strain and the elongation viscosity at the elongation strain 2 or a value close thereto, The slope of elongational viscosity (η| ε=2- η| ε=1 ) was determined.

(正面位相差Re及び厚み方向の位相差Rth)
光学フィルムの正面位相差Re及び厚み方向の位相差の絶対値|Rth|を、波長590nmにて測定した。測定装置としては、位相差測定装置(Axometric社製 製品名「Axoscan」)を用いた。ドローレゾナンスにより膜厚が周期的に変動したため、膜厚の周期が観察される範囲で観察を行い、その平均値を、光学フィルムの正面位相差Re及び厚み方向の位相差Rthとした。
(Front phase difference Re and thickness direction phase difference Rth)
The front retardation Re and the absolute value |Rth| of the retardation in the thickness direction of the optical film were measured at a wavelength of 590 nm. As the measuring device, a phase difference measuring device (product name “Axoscan” manufactured by Axometric) was used. Since the film thickness periodically fluctuated due to the draw resonance, the film thickness was observed within the range in which the period was observed, and the average values thereof were taken as the front retardation Re and the thickness direction retardation Rth.

(膜厚)
搬送される長尺の光学フィルムの幅方向中央部の膜厚を連続的に測定した。測定装置としては、ケー・エス・イー社製の二次元膜厚計を用いた。膜厚の周期が観察される範囲で観察を行い、当該周期における最大厚みtmax、最小厚みtmin、平均厚みtaveを求めた。これらを元に、下式に従い膜厚ムラ(%)を算出した。
膜厚ムラ(%)=((tmax−tmin)/tave)×100
(Film thickness)
The thickness of the conveyed long optical film in the widthwise central portion was continuously measured. A two-dimensional film thickness meter manufactured by KSE Co. was used as a measuring device. Observation was performed within a range in which the film thickness cycle was observed, and the maximum thickness t max , the minimum thickness t min , and the average thickness t ave in the cycle were determined. Based on these, the film thickness unevenness (%) was calculated according to the following formula.
Thickness unevenness (%)=((t max −t min )/t ave )×100

〔製造例1〕
(P1−1.ブロック共重合体[F1])
攪拌装置を備え、内部が十分に窒素置換された反応器に、脱水シクロヘキサン270部、脱水スチレン75部及びジブチルエーテル7.0部を入れた。全容を60℃で攪拌しながら、n−ブチルリチウム(15%シクロヘキサン溶液)5.6部を加えて重合を開始させた。引続き全容を60℃で60分間攪拌した。反応温度は、反応停止まで60℃を維持した。この時点(重合第1段階)で反応液をGC(ガスクロマトグラフィー)及びGPC(ゲル浸透クロマトグラフィー)により分析した結果、重合転化率は99.4%であった。
[Production Example 1]
(P1-1. Block copolymer [F1])
270 parts of dehydrated cyclohexane, 75 parts of dehydrated styrene, and 7.0 parts of dibutyl ether were placed in a reactor equipped with a stirrer and whose inside was sufficiently replaced with nitrogen. While stirring the whole volume at 60° C., 5.6 parts of n-butyllithium (15% cyclohexane solution) was added to initiate polymerization. The whole volume was subsequently stirred at 60° C. for 60 minutes. The reaction temperature was maintained at 60°C until the reaction was stopped. At this point (first stage of polymerization), the reaction liquid was analyzed by GC (gas chromatography) and GPC (gel permeation chromatography), and as a result, the polymerization conversion rate was 99.4%.

次に、反応液に、脱水イソプレン15部を40分間に亘って連続的に添加し、添加終了後そのまま30分間攪拌を続けた。この時点(重合第2段階)で、反応液をGC及びGPCにより分析した結果、重合転化率は99.8%であった。
その後、更に、反応液に脱水スチレン10部を、30分間に亘って連続的に添加し、添加終了後そのまま30分攪拌した。この時点(重合第3段階)で、反応液をGC及びGPCにより分析した結果、重合転化率はほぼ100%であった。
Next, 15 parts of dehydrated isoprene was continuously added to the reaction liquid over 40 minutes, and after completion of the addition, stirring was continued for 30 minutes. At this point (second stage of polymerization), the reaction liquid was analyzed by GC and GPC, and as a result, the conversion of polymerization was 99.8%.
Then, 10 parts of dehydrated styrene was further added to the reaction solution continuously over 30 minutes, and after the addition was completed, the mixture was stirred for 30 minutes as it was. At this point (third stage of polymerization), the reaction solution was analyzed by GC and GPC, and as a result, the polymerization conversion rate was almost 100%.

ここで、イソプロピルアルコール1.0部を加えて反応を停止させることによって、[Da]−[E]−[Db]型のブロック共重合体[F1]を含む重合体溶液を得た。得られたブロック共重合体[F1]においては、Mw[F1]=82,400、Mw/Mnは1.32、wA:wB=85:15であった。 Here, 1.0 part of isopropyl alcohol was added to stop the reaction to obtain a polymer solution containing a [Da]-[E]-[Db] type block copolymer [F1]. In the obtained block copolymer [F1], Mw[F1]=82,400, Mw/Mn was 1.32, and wA:wB=85:15.

(P1−2.水素化ブロック共重合体[G1])
(P1−1)で得た重合体溶液を、攪拌装置を備えた耐圧反応器に移送し、水素化触媒として、珪藻土担持型ニッケル触媒(製品名「E22U」、ニッケル担持量60%、日揮触媒化成社製)4.0部、及び脱水シクロヘキサン30部を添加して混合した。反応器内部を水素ガスで置換し、さらに溶液を攪拌しながら水素を供給し、温度190℃、圧力4.5MPaにて6時間水素化反応を行った。
水素化反応により得られた反応溶液には、水素化ブロック共重合体[G1]が含まれていた。水素化ブロック共重合体のMw[G1]は71,800、分子量分布Mw/Mnは1.30、水素化率はほぼ100%であった。
(P1-2. Hydrogenated block copolymer [G1])
The polymer solution obtained in (P1-1) was transferred to a pressure resistant reactor equipped with a stirrer, and as a hydrogenation catalyst, a diatomaceous earth supported nickel catalyst (product name "E22U", nickel supported amount 60%, JGC catalyst). (Manufactured by Kasei) 4.0 parts and 30 parts of dehydrated cyclohexane were added and mixed. The inside of the reactor was replaced with hydrogen gas, hydrogen was supplied while stirring the solution, and a hydrogenation reaction was carried out at a temperature of 190° C. and a pressure of 4.5 MPa for 6 hours.
The reaction solution obtained by the hydrogenation reaction contained the hydrogenated block copolymer [G1]. The hydrogenated block copolymer had an Mw[G1] of 71,800, a molecular weight distribution Mw/Mn of 1.30, and a hydrogenation rate of almost 100%.

水素化反応終了後、反応溶液を濾過して水素化触媒を除去した後、フェノール系酸化防止剤であるペンタエリスリチル・テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート](製品名「AO60」、ADEKA社製)0.3部を溶解したキシレン溶液2.0部を添加して溶解し、溶液とした。
次いで、上記溶液を、円筒型濃縮乾燥器(製品名「コントロ」、日立製作所社製)を用いて、温度260℃、圧力0.001MPa以下で処理し、溶液からシクロヘキサン、キシレン及びその他の揮発成分を除去し、溶融した樹脂を得た。これをダイからストランド状に押出し、冷却し、ペレタイザーによりペレットに成形した。これにより、水素化ブロック共重合体[G1]を含む、樹脂[G1]のペレット95部を製造した。
得られた樹脂[G1]における水素化ブロック共重合体[G1]は、Mw[G1]=68,500、Mw/Mn=1.30、Ts=139℃であった。
After completion of the hydrogenation reaction, the reaction solution was filtered to remove the hydrogenation catalyst, and then pentaerythrityl tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl) which was a phenolic antioxidant. ) Propionate] (product name "AO60", manufactured by ADEKA), 2.0 parts of xylene solution containing 0.3 parts thereof was added and dissolved to obtain a solution.
Next, the solution was treated at a temperature of 260° C. and a pressure of 0.001 MPa or less using a cylindrical concentrating dryer (product name “Contro”, manufactured by Hitachi, Ltd.), and cyclohexane, xylene, and other volatile components were removed from the solution. Was removed to obtain a molten resin. This was extruded in a strand form from a die, cooled, and formed into pellets by a pelletizer. This produced 95 parts of pellets of the resin [G1] containing the hydrogenated block copolymer [G1].
The hydrogenated block copolymer [G1] in the obtained resin [G1] had Mw[G1]=68,500, Mw/Mn=1.30 and Ts=139° C.

〔製造例2〕
(P2−1.ブロック共重合体[F2])
攪拌装置を備え、内部が十分に窒素置換された反応器に、脱水シクロヘキサン270部、脱水スチレン70部及びジブチルエーテル7.0部を入れた。全容を60℃で攪拌しながら、n−ブチルリチウム(15%シクロヘキサン溶液)5.6部を加えて重合を開始させた。引続き全容を60℃で60分間攪拌した。反応温度は、反応停止まで60℃を維持した。この時点(重合第1段階)で反応液をGC及びGPCにより分析した結果、重合転化率は99.4%であった。
[Production Example 2]
(P2-1. Block copolymer [F2])
270 parts of dehydrated cyclohexane, 70 parts of dehydrated styrene and 7.0 parts of dibutyl ether were placed in a reactor equipped with a stirrer and the inside of which was sufficiently replaced with nitrogen. While stirring the whole volume at 60° C., 5.6 parts of n-butyllithium (15% cyclohexane solution) was added to initiate polymerization. The whole volume was subsequently stirred at 60° C. for 60 minutes. The reaction temperature was maintained at 60°C until the reaction was stopped. At this point (first stage of polymerization), the reaction solution was analyzed by GC and GPC, and as a result, the polymerization conversion rate was 99.4%.

次に、反応液に、脱水イソプレン20部を40分間に亘って連続的に添加し、添加終了後そのまま30分間攪拌を続けた。この時点(重合第2段階)で、反応液をGC及びGPCにより分析した結果、重合転化率は99.8%であった。
その後、更に、反応液に脱水スチレン10部を、30分間に亘って連続的に添加し、添加終了後そのまま30分攪拌した。この時点(重合第3段階)で、反応液をGC及びGPCにより分析した結果、重合転化率はほぼ100%であった。
Next, 20 parts of dehydrated isoprene was continuously added to the reaction liquid over 40 minutes, and after the addition was completed, stirring was continued for 30 minutes as it was. At this point (second stage of polymerization), the reaction liquid was analyzed by GC and GPC, and as a result, the conversion of polymerization was 99.8%.
Then, 10 parts of dehydrated styrene was further added to the reaction solution continuously over 30 minutes, and after the addition was completed, the mixture was stirred for 30 minutes as it was. At this point (third stage of polymerization), the reaction solution was analyzed by GC and GPC, and as a result, the polymerization conversion rate was almost 100%.

ここで、イソプロピルアルコール1.0部を加えて反応を停止させることによって、[Da]−[E]−[Db]型のブロック共重合体[F2]を含む重合体溶液を得た。得られたブロック共重合体[F2]においては、Mw[F2]=83,400、Mw/Mnは1.32、wA:wB=80:20であった。 Here, 1.0 part of isopropyl alcohol was added to stop the reaction to obtain a polymer solution containing a [Da]-[E]-[Db] type block copolymer [F2]. In the obtained block copolymer [F2], Mw[F2]=83,400, Mw/Mn was 1.32, and wA:wB=80:20.

(P2−2.水素化ブロック共重合体[G2])
(P2−1)で得た重合体溶液を、攪拌装置を備えた耐圧反応器に移送し、水素化触媒として、珪藻土担持型ニッケル触媒(製品名「E22U」、ニッケル担持量60%、日揮触媒化成社製)4.0部、及び脱水シクロヘキサン30部を添加して混合した。反応器内部を水素ガスで置換し、さらに溶液を攪拌しながら水素を供給し、温度190℃、圧力4.5MPaにて6時間水素化反応を行った。
水素化反応により得られた反応溶液には、水素化ブロック共重合体[G2]が含まれていた。水素化ブロック共重合体[G2]のMw[G2]は72,800、分子量分布Mw/Mnは1.30、水素化率はほぼ100%であった。
(P2-2. Hydrogenated block copolymer [G2])
The polymer solution obtained in (P2-1) was transferred to a pressure resistant reactor equipped with a stirrer, and as a hydrogenation catalyst, a diatomaceous earth supported nickel catalyst (product name "E22U", nickel supported amount 60%, JGC catalyst). (Manufactured by Kasei) 4.0 parts and 30 parts of dehydrated cyclohexane were added and mixed. The inside of the reactor was replaced with hydrogen gas, hydrogen was supplied while stirring the solution, and a hydrogenation reaction was carried out at a temperature of 190° C. and a pressure of 4.5 MPa for 6 hours.
The reaction solution obtained by the hydrogenation reaction contained the hydrogenated block copolymer [G2]. The hydrogenated block copolymer [G2] had an Mw[G2] of 72,800, a molecular weight distribution Mw/Mn of 1.30 and a hydrogenation rate of almost 100%.

水素化反応終了後、反応溶液を濾過して水素化触媒を除去した後、フェノール系酸化防止剤であるペンタエリスリチル・テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート](製品名「AO60」、ADEKA社製)0.3部を溶解したキシレン溶液2.0部を添加して溶解し、溶液とした。
次いで、上記溶液を、円筒型濃縮乾燥器(製品名「コントロ」、日立製作所社製)を用いて、温度260℃、圧力0.001MPa以下で処理し、溶液からシクロヘキサン、キシレン及びその他の揮発成分を除去し、溶融した樹脂を得た。これをダイからストランド状に押出し、冷却し、ペレタイザーによりペレットに成形した。これにより、水素化ブロック共重合体[G2]を含む、樹脂[G2]のペレット95部を製造した。
得られた樹脂[G2]における水素化ブロック共重合体[G2]は、Mw[G2]=69,500、Mw/Mn=1.30、Ts=138℃であった。
After completion of the hydrogenation reaction, the reaction solution was filtered to remove the hydrogenation catalyst, and then pentaerythrityl tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl) which was a phenolic antioxidant. ) Propionate] (product name "AO60", manufactured by ADEKA), 2.0 parts of xylene solution containing 0.3 parts thereof was added and dissolved to obtain a solution.
Next, the solution was treated at a temperature of 260° C. and a pressure of 0.001 MPa or less using a cylindrical concentrating dryer (product name “Contro”, manufactured by Hitachi, Ltd.), and cyclohexane, xylene, and other volatile components were removed from the solution. Was removed to obtain a molten resin. This was extruded in a strand form from a die, cooled, and formed into pellets by a pelletizer. This produced 95 parts of pellets of the resin [G2] containing the hydrogenated block copolymer [G2].
The hydrogenated block copolymer [G2] in the obtained resin [G2] had Mw[G2]=69,500, Mw/Mn=1.30 and Ts=138°C.

〔製造例3〕
(P3−1.ブロック共重合体[F3])
十分に乾燥し窒素置換した、攪拌装置を備えたステンレス鋼製反応器に、脱水シクロヘキサン256部、脱水スチレン25.0部、及びn−ジブチルエーテル0.65部を仕込み、60℃で攪拌しながらn−ブチルリチウム(15%シクロヘキサン溶液)1.35部を添加して重合反応を開始した。さらに、攪拌しながら60℃で60分反応させた。この時点での重合転化率は99.5%であった(ガスクロマトグラフィーにより測定、以下にて同じ。)。次に、脱水イソプレン50.0部を加え、同温度で30分攪拌を続けた。この時点での重合転化率は99%であった。その後、更に、脱水スチレンを25.0部加え、同温度で60分攪拌した。この時点での重合転化率はほぼ100%であった。次いで、反応液にイソプロピルアルコール0.5部を加えて反応を停止させ、ブロック共重合体[F3]を含む重合反応溶液を得た。得られたブロック共重合体[F3]の重量平均分子量(Mw)は44,900、分子量分布(Mw/Mn)は1.03であった。
[Production Example 3]
(P3-1. Block copolymer [F3])
A fully dried and nitrogen-substituted stainless steel reactor equipped with a stirrer was charged with 256 parts of dehydrated cyclohexane, 25.0 parts of dehydrated styrene, and 0.65 part of n-dibutyl ether, and stirred at 60°C. 1.35 parts of n-butyllithium (15% cyclohexane solution) was added to initiate the polymerization reaction. Furthermore, the mixture was reacted at 60° C. for 60 minutes while stirring. The polymerization conversion rate at this time was 99.5% (measured by gas chromatography, the same applies below). Next, 50.0 parts of dehydrated isoprene was added, and stirring was continued at the same temperature for 30 minutes. The polymerization conversion rate at this time was 99%. Thereafter, 25.0 parts of dehydrated styrene was further added, and the mixture was stirred at the same temperature for 60 minutes. The polymerization conversion rate at this point was almost 100%. Next, 0.5 part of isopropyl alcohol was added to the reaction solution to stop the reaction, and a polymerization reaction solution containing the block copolymer [F3] was obtained. The weight average molecular weight (Mw) of the obtained block copolymer [F3] was 44,900, and the molecular weight distribution (Mw/Mn) was 1.03.

(P3−2.水素化ブロック共重合体[G3])
(P3−1)で得た重合反応溶液を、攪拌装置を備えた耐圧反応器に移送し、水素化触媒としてシリカ−アルミナ担持型ニッケル触媒(E22U、ニッケル担持量60%;日揮化学工業社製)4.0部及び脱水シクロヘキサン350部を添加して混合した。反応器内部を水素ガスで置換し、さらに溶液を攪拌しながら水素を供給し、温度170℃、圧力4.5MPaにて6時間水素化反応を行った。
(P3-2. Hydrogenated block copolymer [G3])
The polymerization reaction solution obtained in (P3-1) was transferred to a pressure resistant reactor equipped with a stirrer, and a silica-alumina-supporting nickel catalyst (E22U, nickel loading 60%; manufactured by JGC Corporation) as a hydrogenation catalyst. ) 4.0 parts and 350 parts of dehydrated cyclohexane were added and mixed. The inside of the reactor was replaced with hydrogen gas, hydrogen was further supplied while stirring the solution, and a hydrogenation reaction was carried out at a temperature of 170° C. and a pressure of 4.5 MPa for 6 hours.

水素化反応終了後、反応溶液をろ過して水素化触媒を除去した。ろ液に、フェノール系酸化防止剤であるペンタエリスリチル・テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート](コーヨ化学研究所社製、製品名「Songnox1010」)0.1部を溶解したキシレン溶液1.0部を添加して溶解させた。次いで、上記溶液を、円筒型濃縮乾燥器(日立製作所社製、製品名「コントロ」)を用いて、温度260℃、圧力0.001MPa以下で、溶液から溶媒であるシクロヘキサン、キシレン及びその他の揮発成分を除去した。連続して溶融ポリマーを、濃縮乾燥器に連結した孔径20μmのステンレス製焼結フィルターを備えたポリマーフィルター(富士フィルター社製)により、温度260℃でろ過した後、ダイから溶融ポリマーをストランド状に押出し、冷却後、ペレタイザーによりペレットに成形した。これにより水素化ブロック共重合体[G3]を含む、樹脂[G3]のペレットを得た。 After completion of the hydrogenation reaction, the reaction solution was filtered to remove the hydrogenation catalyst. In the filtrate, pentaerythrityl tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate] which is a phenolic antioxidant (manufactured by Koyo Chemical Laboratory Co., Ltd., product name "Songnox 1010"). ) 0.1 part of xylene solution 1.0 part was added and dissolved. Then, using a cylindrical concentrating dryer (manufactured by Hitachi, Ltd., product name "Contro"), the solution is evaporated from the solution at a temperature of 260°C and a pressure of 0.001 MPa or less by using cyclohexane, xylene and other solvents. The component was removed. The molten polymer was continuously filtered at a temperature of 260° C. by a polymer filter (manufactured by Fuji Filter Co.) equipped with a stainless sintered filter having a pore diameter of 20 μm connected to a concentrating dryer, and then the molten polymer was formed into a strand from a die. After extruding and cooling, it was formed into pellets by a pelletizer. Thereby, pellets of the resin [G3] containing the hydrogenated block copolymer [G3] were obtained.

得られた水素化ブロック共重合体[G3]は、スチレン由来の繰り返し単位を含有するブロック(St)、及びイソプレン由来の繰り返し単位を含有するブロック(Ip)からなる3元ブロック共重合体であり、それぞれのブロックの重量比は、St:Ip:St=25:50:25であった。該水素化ブロック共重合体[G3]のMwは45,100、Mw/Mnは1.04、主鎖及び芳香環の水素化率はほぼ100%であった。 The obtained hydrogenated block copolymer [G3] is a ternary block copolymer composed of a block (St) containing a repeating unit derived from styrene and a block (Ip) containing a repeating unit derived from isoprene. The weight ratio of each block was St:Ip:St=25:50:25. The hydrogenated block copolymer [G3] had an Mw of 45,100, an Mw/Mn of 1.04, and the hydrogenation rates of the main chain and the aromatic ring were almost 100%.

〔実施例1〕
(1−1.熱可塑性樹脂)
製造例1で得た樹脂[G1]のペレット80部と、製造例3で得た樹脂[G3]のペレット20部とを混合し、混合ペレットを得た。この混合ペレットについて、軟化温度、動的粘弾性及び伸長粘度を測定した。
[Example 1]
(1-1. Thermoplastic resin)
80 parts of resin [G1] pellets obtained in Production Example 1 and 20 parts of resin [G3] pellets obtained in Production Example 3 were mixed to obtain mixed pellets. The softening temperature, dynamic viscoelasticity and extensional viscosity of the mixed pellets were measured.

(1−2.光学フィルム)
(1−1)で得た混合ペレットを、押出機(Optical Control System社製)において加熱し溶融させ、その状態でフィルムの形状に押出すことにより押出成形を行った。これにより、厚さ40μmの長尺の光学フィルムを、連続的に形成した。形成した光学フィルムは、巻取り軸に巻き取り、フィルムロールを得た。巻取り軸に巻き取る直前において搬送される光学フィルムの位相差及び膜厚を測定し、Re、Rth及び膜厚ムラを求めた。
(1-2. Optical film)
The mixed pellet obtained in (1-1) was heated and melted in an extruder (manufactured by Optical Control System) and extruded into a film shape in that state to perform extrusion molding. As a result, a long optical film having a thickness of 40 μm was continuously formed. The formed optical film was wound around a winding shaft to obtain a film roll. The retardation and the film thickness of the optical film conveyed immediately before being wound on the winding shaft were measured, and Re, Rth and the film thickness unevenness were obtained.

〔実施例2〕
製造例1で得た樹脂[G1]のペレットに代えて、製造例2で得た樹脂[G2]のペレットを用いた他は、実施例1と同じ操作により、光学フィルムを得て評価した。
[Example 2]
An optical film was obtained and evaluated by the same operation as in Example 1 except that the pellets of the resin [G2] obtained in Production Example 2 were used instead of the pellets of the resin [G1] obtained in Production Example 1.

〔比較例1〕
混合ペレットに代えて、製造例1で得た樹脂[G1]のペレットをそのまま用いた他は、実施例1と同じ操作により、光学フィルムを得て評価した。
[Comparative Example 1]
An optical film was obtained and evaluated by the same operation as in Example 1 except that the pellet of the resin [G1] obtained in Production Example 1 was used as it was instead of the mixed pellet.

〔比較例2〕
混合ペレットに代えて、製造例2で得た樹脂[G2]のペレットをそのまま用いた他は、実施例1と同じ操作により、光学フィルムを得て評価した。
[Comparative Example 2]
An optical film was obtained and evaluated by the same operation as in Example 1 except that the pellet of the resin [G2] obtained in Production Example 2 was used as it was instead of the mixed pellet.

〔比較例3〕
混合ペレットを構成する、樹脂[G1]のペレットの割合を90部、及び樹脂[G3]のペレットの割合を10部に変更した他は、実施例1と同じ操作により、光学フィルムを得て評価した。
[Comparative Example 3]
An optical film was obtained and evaluated by the same operation as in Example 1 except that the proportion of the resin [G1] pellets and the proportion of the resin [G3] pellets constituting the mixed pellets were changed to 90 parts and 10 parts, respectively. did.

〔比較例4〕
混合ペレットを構成する、樹脂[G2]のペレットの割合を90部、及び樹脂[G3]のペレットの割合を10部に変更した他は、実施例2と同じ操作により、光学フィルムを得て評価した。
[Comparative Example 4]
An optical film was obtained and evaluated by the same operation as in Example 2 except that the ratio of the resin [G2] pellets and the ratio of the resin [G3] pellets constituting the mixed pellets were changed to 90 parts and 10 parts, respectively. did.

〔比較例5〕
混合ペレットに代えて非晶性の脂環式構造含有重合体を含む樹脂G4(日本ゼオン社製、Ts=128℃)のペレットを用いた他は、実施例1と同じ操作により、光学フィルムを得て評価した。
[Comparative Example 5]
An optical film was prepared in the same manner as in Example 1 except that pellets of resin G4 (manufactured by Zeon Corporation, Ts=128° C.) containing an amorphous alicyclic structure-containing polymer were used instead of the mixed pellets. Obtained and evaluated.

実施例及び比較例の結果を表1に示す。 The results of Examples and Comparative Examples are shown in Table 1.

Figure 2019026625
Figure 2019026625

※ブレンド比:対称性が低いトリブロック共重合体(共重合体[G1]又は[G2])と、対称性が高いトリブロック共重合体(共重合体[G3])との比率。 *Blend ratio: A ratio of a triblock copolymer having low symmetry (copolymer [G1] or [G2]) and a triblock copolymer having high symmetry (copolymer [G3]).

実施例及び比較例の結果から明らかな通り、複数種類の重合体の配合により本発明の要件を満たすG”/G’及び伸長粘度の傾きを得た実施例1及び実施例2の光学フィルムは、比較例の光学フィルムに比べて、低い位相差と抑制された膜厚ムラとを両立した光学フィルムとすることができた。 As is clear from the results of the Examples and Comparative Examples, the optical films of Examples 1 and 2 in which G″/G′ and the elongation viscosity gradient satisfying the requirements of the present invention were obtained by blending a plurality of types of polymers were used. In comparison with the optical film of Comparative Example, it was possible to obtain an optical film having both low retardation and suppressed unevenness in film thickness.

Claims (3)

熱可塑性樹脂からなる光学フィルムであって、
前記熱可塑性樹脂は、
環式炭化水素基含有化合物水素化物単位[I]を主成分とする、1分子あたり2つ以上の重合体ブロック[D]と、
鎖状炭化水素化合物水素化物単位[II]、又は前記単位[I]及び前記単位[II]の組み合わせを主成分とする1分子あたり1つ以上の重合体ブロック[E]と
を含む水素化ブロック共重合体[G]を含み、
前記熱可塑性樹脂は、式(1)又は式(2)を満たす、光学フィルム:
G”/G’>0.95 式(1)
(η|ε=2−η|ε=1)>−1.0×10Pa・s 式(2)
但しG’は前記熱可塑性樹脂の貯蔵弾性率であり、G”は前記熱可塑性樹脂の損失弾性率であり、
前記貯蔵弾性率及び損失弾性率は、Ts+90℃、1rad/secの条件で測定された値であり、
(η|ε=2−η|ε=1)は前記熱可塑性樹脂の伸長粘度の傾きであり、前記伸長粘度は、Ts+80℃、1s−1の条件で測定された値であり、
TsはTMAにより測定した前記熱可塑性樹脂の軟化温度である。
An optical film made of a thermoplastic resin,
The thermoplastic resin is
Two or more polymer blocks [D] per molecule having a cyclic hydride group-containing compound hydride unit [I] as a main component;
A chain hydrocarbon compound hydride unit [II], or a hydrogenation block containing one or more polymer blocks [E] per molecule containing the combination of the unit [I] and the unit [II] as a main component Including a copolymer [G],
The thermoplastic resin satisfies the formula (1) or the formula (2):
G"/G'>0.95 Formula (1)
(Η| ε=2 −η| ε=1 )>−1.0×10 4 Pa·s Formula (2)
Where G′ is the storage elastic modulus of the thermoplastic resin, G″ is the loss elastic modulus of the thermoplastic resin,
The storage elastic modulus and the loss elastic modulus are values measured under the conditions of Ts+90° C. and 1 rad/sec,
(Η| ε=2- η| ε= 1 ) is the gradient of the extensional viscosity of the thermoplastic resin, and the extensional viscosity is a value measured under the conditions of Ts+80° C. and 1s −1 ,
Ts is the softening temperature of the thermoplastic resin measured by TMA.
正面位相差Reおよび厚み方向の位相差の絶対値|Rth|がともに3nm以下である、請求項1に記載の光学フィルム。 The optical film according to claim 1, wherein both the front phase difference Re and the absolute value |Rth| of the phase difference in the thickness direction are 3 nm or less. 前記環式炭化水素基含有化合物水素化物単位[I]が芳香族ビニル化合物水素化物単位であり、
前記鎖状炭化水素化合物水素化物単位[II]が共役ジエン化合物水素化物単位である、請求項1または2に記載の光学フィルム。
The cyclic hydride group-containing compound hydride unit [I] is an aromatic vinyl compound hydride unit,
The optical film according to claim 1, wherein the chain hydrocarbon compound hydride unit [II] is a conjugated diene compound hydride unit.
JP2019534030A 2017-07-31 2018-07-18 Optical film Active JP7092133B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017148526 2017-07-31
JP2017148526 2017-07-31
PCT/JP2018/026977 WO2019026625A1 (en) 2017-07-31 2018-07-18 Optical film

Publications (2)

Publication Number Publication Date
JPWO2019026625A1 true JPWO2019026625A1 (en) 2020-07-09
JP7092133B2 JP7092133B2 (en) 2022-06-28

Family

ID=65233352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019534030A Active JP7092133B2 (en) 2017-07-31 2018-07-18 Optical film

Country Status (5)

Country Link
JP (1) JP7092133B2 (en)
KR (1) KR102557788B1 (en)
CN (1) CN110741289B (en)
TW (1) TWI754083B (en)
WO (1) WO2019026625A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105151A (en) * 2000-09-29 2002-04-10 Nippon Zeon Co Ltd Film and sheet
WO2011083690A1 (en) * 2010-01-08 2011-07-14 コニカミノルタオプト株式会社 Hard coat film, polarizing plate and liquid crystal display device
JP2015143016A (en) * 2013-12-25 2015-08-06 株式会社カネカ Method for producing film
WO2016060070A1 (en) * 2014-10-15 2016-04-21 日本ゼオン株式会社 Block copolymer hydride and stretched film formed from same
WO2017086265A1 (en) * 2015-11-18 2017-05-26 日本ゼオン株式会社 Optical film and polarizing plate
WO2017086270A1 (en) * 2015-11-18 2017-05-26 日本ゼオン株式会社 Optical film and polarizing plate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0908318B1 (en) * 2008-05-07 2020-01-28 Dow Global Technologies Inc optical film, image display device or apparatus, liquid crystal display (lcd) device and polarizing assembly
CN102027048A (en) * 2008-05-12 2011-04-20 株式会社日本触媒 Stretched optical film and polarizing plate and image display device using the same
JP5619378B2 (en) 2008-06-27 2014-11-05 ポリプラスチックス株式会社 Cyclic olefin resin composition for melt extrusion and film using the same
KR20170007783A (en) * 2014-05-20 2017-01-20 니폰 제온 가부시키가이샤 Method for manufacturing optical film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105151A (en) * 2000-09-29 2002-04-10 Nippon Zeon Co Ltd Film and sheet
WO2011083690A1 (en) * 2010-01-08 2011-07-14 コニカミノルタオプト株式会社 Hard coat film, polarizing plate and liquid crystal display device
JP2015143016A (en) * 2013-12-25 2015-08-06 株式会社カネカ Method for producing film
WO2016060070A1 (en) * 2014-10-15 2016-04-21 日本ゼオン株式会社 Block copolymer hydride and stretched film formed from same
WO2017086265A1 (en) * 2015-11-18 2017-05-26 日本ゼオン株式会社 Optical film and polarizing plate
WO2017086270A1 (en) * 2015-11-18 2017-05-26 日本ゼオン株式会社 Optical film and polarizing plate

Also Published As

Publication number Publication date
TW201910369A (en) 2019-03-16
CN110741289B (en) 2021-12-14
KR102557788B1 (en) 2023-07-19
CN110741289A (en) 2020-01-31
WO2019026625A1 (en) 2019-02-07
TWI754083B (en) 2022-02-01
KR20200037215A (en) 2020-04-08
JP7092133B2 (en) 2022-06-28

Similar Documents

Publication Publication Date Title
WO2015002020A1 (en) Optical film and production method for same
JP7452581B2 (en) Retardation film and manufacturing method
JP6398975B2 (en) Stretched film and method for producing the same
JP6631810B2 (en) Block copolymer hydride and stretched film comprising the same
WO2015178370A1 (en) Method for manufacturing optical film
JP2017142331A (en) Optical film, production method, polarizing plate and display device
JP6711065B2 (en) Optical film, polarizing plate, and display device
JP7484969B2 (en) Retardation film and manufacturing method
JP7452580B2 (en) Retardation film and manufacturing method
JP7092133B2 (en) Optical film
TWI788510B (en) Stacked film, manufacturing method thereof, and polarizing plate
JPWO2018124137A1 (en) Optical film and polarizing plate
JP7059722B2 (en) A method for manufacturing a retardation film, and a method for manufacturing a polarizing plate, an organic electroluminescence display device, and a liquid crystal display device.
JPWO2020110672A1 (en) Optical film, retardation film, and their manufacturing method
JPWO2020110673A1 (en) Optical film, retardation film, and their manufacturing method
JPWO2018079563A1 (en) LAMINATED FILM, ITS MANUFACTURING METHOD, POLARIZING PLATE, AND DISPLAY DEVICE
JPWO2018180498A1 (en) Optical film, polarizing plate, and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220530

R150 Certificate of patent or registration of utility model

Ref document number: 7092133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150