[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2018003905A1 - Powder detergent composition and method for producing the same - Google Patents

Powder detergent composition and method for producing the same Download PDF

Info

Publication number
JPWO2018003905A1
JPWO2018003905A1 JP2018525249A JP2018525249A JPWO2018003905A1 JP WO2018003905 A1 JPWO2018003905 A1 JP WO2018003905A1 JP 2018525249 A JP2018525249 A JP 2018525249A JP 2018525249 A JP2018525249 A JP 2018525249A JP WO2018003905 A1 JPWO2018003905 A1 JP WO2018003905A1
Authority
JP
Japan
Prior art keywords
particle group
mass
salt
detergent composition
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018525249A
Other languages
Japanese (ja)
Inventor
陽一 江端
陽一 江端
洋平 野上
洋平 野上
高士 小林
高士 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Publication of JPWO2018003905A1 publication Critical patent/JPWO2018003905A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/28Sulfonation products derived from fatty acids or their derivatives, e.g. esters, amides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

粉末洗剤組成物は、α−スルホ脂肪酸アルキルエステル塩(α−SF塩)の粒子群(A)と、アルキル硫酸塩の粒子群(B)を含み、粒子群(A)中のα−SF塩の純分と粒子群(B)中のアルキル硫酸塩との合計の含有量が50質量%以上であり、粒子群(A)中のα−SF塩の純分100質量部に対して、粒子群(B)中のアルキル硫酸塩が1〜100質量部であり、α−SF塩の粒子とアルキル硫酸塩の粒子とが、それぞれ独立した粒子として存在しており、α−SF塩を高濃度で含みながら固化の抑制性に優れる。  The powder detergent composition comprises a particle group (A) of an α-sulfofatty acid alkyl ester salt (α-SF salt) and a particle group (B) of an alkyl sulfate, and the α-SF salt in the particle group (A) The total content of the pure portion of the polymer and the alkyl sulfate in the particle group (B) is 50% by mass or more, and the particle is based on 100 parts by mass of the pure portion of the α-SF salt in the particle group (A) The alkyl sulfate in the group (B) is 1 to 100 parts by mass, particles of the α-SF salt and particles of the alkyl sulfate exist as independent particles, and the concentration of the α-SF salt is high It is excellent in the suppression of solidification while containing

Description

本発明は、粉末洗剤組成物及びその製造方法に関する。本発明の粉末洗剤組成物は、他の洗剤成分とともに粉末洗剤製品に配合される、添加用の粉末洗剤組成物として好適である。
例えば、本発明の粉末洗剤組成物と他の洗剤成分を乾式混合して粉末洗剤製品を製造する方法に好適に用いられる。
本願は、2016年6月30日に、日本に出願された特願2016−131106号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a powder detergent composition and a method of making the same. The powder detergent composition of the present invention is suitable as an additive powder detergent composition to be formulated into a powder detergent product along with other detergent ingredients.
For example, it can be suitably used in a method of producing a powder detergent product by dry mixing the powder detergent composition of the present invention and other detergent components.
Priority is claimed on Japanese Patent Application No. 2016-131106, filed June 30, 2016, the content of which is incorporated herein by reference.

α−スルホ脂肪酸アルキルエステル塩(以下、α−SF塩ともいう。)は、衣料用粉末洗剤等に配合される界面活性剤として広く用いられている。
近年では、α−SF塩を高濃度で含有する粒子群を製造し、これを他の洗剤成分と粉体混合することで粉末洗剤が製造されるようになってきた。
しかしながら、α−SF塩の粒子群は固化しやすいという問題がある。
かかる問題に対して特許文献1には、α−SF塩粒子にコーティング剤と液体原料を被覆することで、α−SF塩の粒子群を含む粉体組成物の固化を抑制する方法が提案されている。
An α-sulfo fatty acid alkyl ester salt (hereinafter, also referred to as an α-SF salt) is widely used as a surfactant to be blended in a powder detergent for clothing and the like.
In recent years, powder detergents have come to be produced by producing particles containing a high concentration of an α-SF salt and mixing the powder with other detergent components.
However, there is a problem that particles of α-SF salt are easily solidified.
To address this problem, Patent Document 1 proposes a method for suppressing solidification of a powder composition containing particles of an α-SF salt by coating α-SF salt particles with a coating agent and a liquid material. ing.

特開2011−116807号公報JP, 2011-116807, A

しかしながら特許文献1の技術では、固化し難さ(固化の抑制性)の点で未だ改良の余地があった。特に、α−SF塩を高濃度で含有する場合には固化の抑制性が充分でなかった。
本発明は上記事情に鑑みてなされたものであり、α−SF塩を高濃度で含みながら固化の抑制性に優れる粉末洗剤組成物、及びその製造方法の提供を目的とする。
However, the technique of Patent Document 1 still has room for improvement in terms of difficulty in solidifying (inhibition of solidifying). In particular, when the α-SF salt is contained at a high concentration, the inhibition of solidification is not sufficient.
This invention is made in view of the said situation, and aims at provision of the powder detergent composition which is excellent in the suppression property of solidification, containing the alpha-SF salt by high concentration, and its manufacturing method.

本発明は以下の態様を有する。
[1]α−スルホ脂肪酸アルキルエステル塩の粒子群(A)と、アルキル硫酸塩の粒子群(B)を含み、前記粒子群(A)中のα−スルホ脂肪酸アルキルエステル塩の純分と前記粒子群(B)中のアルキル硫酸塩との合計の含有量が50質量%以上であり、前記粒子群(A)中のα−スルホ脂肪酸アルキルエステル塩の純分100質量部に対して、前記粒子群(B)中のアルキル硫酸塩が1〜100質量部であり、前記α−スルホ脂肪酸アルキルエステル塩の粒子と前記アルキル硫酸塩の粒子とが、それぞれ独立した粒子として存在する、粉末洗剤組成物。
[2]α−スルホ脂肪酸アルキルエステル塩の粒子群(A)と、アルキル硫酸塩の粒子群(B)と、無機粉体(C)を含み、前記粒子群(A)中のα−スルホ脂肪酸アルキルエステル塩の純分と前記粒子群(B)中のアルキル硫酸塩との合計の含有量が50質量%以上であり、前記粒子群(A)中のα−スルホ脂肪酸アルキルエステル塩の純分100質量部に対して、前記粒子群(B)中のアルキル硫酸塩が1〜100質量部であり、前記無機粉体(C)の含有量が1〜30質量%であり、前記α−スルホ脂肪酸アルキルエステル塩の粒子と前記アルキル硫酸塩の粒子とが、それぞれ独立した粒子として存在する、粉末洗剤組成物。
[3]前記アルキル硫酸塩の粒子群(B)の平均粒子径が50μm以上、3mm未満であり、前記無機粉体(C)の平均粒子径が0.8〜5μmである、[2]の粉末洗剤組成物。
The present invention has the following aspects.
[1] A particle group (A) of an α-sulfo fatty acid alkyl ester salt, and a particle group (B) of an alkyl sulfate, wherein the pure fraction of the α-sulfo fatty acid alkyl ester salt in the particle group (A) The total content with the alkyl sulfate in the particle group (B) is 50% by mass or more, and the above content relative to 100 parts by mass of the pure content of the α-sulfofatty acid alkyl ester salt in the particle group (A) Powder detergent composition, wherein the amount of the alkyl sulfate in the particle group (B) is 1 to 100 parts by mass, and the particles of the α-sulfofatty acid alkyl ester salt and the particles of the alkyl sulfate are independent of each other object.
[2] A particle group (A) of α-sulfo fatty acid alkyl ester salt, a particle group (B) of alkyl sulfate, and an inorganic powder (C), the α-sulfo fatty acid in the particle group (A) The total content of the pure component of the alkyl ester salt and the alkyl sulfate in the particle group (B) is 50% by mass or more, and the pure component of the α-sulfofatty acid alkyl ester salt in the particle group (A) The alkyl sulfate in the particle group (B) is 1 to 100 parts by mass, and the content of the inorganic powder (C) is 1 to 30% by mass with respect to 100 parts by mass, and the α-sulfo A powder detergent composition, wherein particles of a fatty acid alkyl ester salt and particles of the alkyl sulfate are present as independent particles.
[3] The average particle diameter of the particle group (B) of the alkyl sulfate is 50 μm or more and less than 3 mm, and the average particle diameter of the inorganic powder (C) is 0.8 to 5 μm. Powder detergent composition.

[4] [1]の粉末洗剤組成物を製造する方法であって、α−スルホ脂肪酸アルキルエステル塩の粒子群(A)と、アルキル硫酸塩の粒子群(B)とを乾式混合する、粉末洗剤組成物の製造方法。
[5] [2]または[3]の粉末洗剤組成物を製造する方法であって、α−スルホ脂肪酸アルキルエステル塩粒子群と、アルキル硫酸塩粒子群と、無機粉体を乾式混合する、粉末洗剤組成物の製造方法。
[4] A method for producing the powder detergent composition according to [1], wherein the particles of the α-sulfofatty acid alkyl ester salt (A) and the particles of the alkyl sulfate (B) are dry mixed. Method of making a detergent composition.
[5] A method for producing a powder detergent composition according to [2] or [3], which comprises dry mixing of α-sulfo fatty acid alkyl ester salt particles, alkyl sulfate particles and inorganic powder. Method of making a detergent composition.

[6]前記粒子群(A)中の粒子径が355μm以下の粒子の含有量が、粒子群(A)の総質量に対して20〜70質量%である、[1]〜[3]のいずれかの粉末洗剤組成物。
[7] [1]〜[3]または[6]の粉末洗剤組成物と他の洗剤成分を乾式混合して粉末洗剤製品を製造する方法。
[6] The content of particles having a particle diameter of 355 μm or less in the particle group (A) is 20 to 70% by mass with respect to the total mass of the particle group (A) Any powder detergent composition.
[7] A method for producing a powder detergent product by dry mixing the powder detergent composition of [1] to [3] or [6] with other detergent components.

本発明によれば、α−SF塩を高濃度で含みながら固化の抑制性に優れる粉末洗剤組成物が得られる。
好ましくは、α−SF塩を高濃度で含みながら、他材料に対する粉体付着(粉体付着性)を抑制し、かつ、固化の抑制性に優れる粉末洗剤組成物が得られる。
ADVANTAGE OF THE INVENTION According to this invention, the powder detergent composition which is excellent in the suppression property of solidification is obtained, although it contains (alpha) -SF salt in high concentration.
Preferably, while containing the α-SF salt at a high concentration, powder detergent composition (powder adhesion) to other materials can be suppressed, and a powder detergent composition having excellent solidification suppression property can be obtained.

本発明の粉末洗剤組成物は、α−スルホ脂肪酸アルキルエステル塩の粒子群(A)と、アルキル硫酸塩の粒子群(B)を含む粉末状の組成物である。さらに無機粉体(C)を含む粉末状の組成物が好ましい。   The powder detergent composition of the present invention is a powdery composition comprising particles of an α-sulfo fatty acid alkyl ester salt (A) and particles of an alkyl sulfate (B). Furthermore, the powdery composition containing an inorganic powder (C) is preferable.

<α−SF塩の粒子群(A)>
粒子群(A)はα−SF塩の粒子の群であり、洗浄成分である。α−SF塩の粒子は不純物を含んでもよい。α−SF塩の粒子は水分を含んでもよい。
α−SF塩の粒子は、下記の式(1)で示されるα−スルホ脂肪酸アルキルエステル塩のほかに、α−スルホ脂肪酸アルキルエステル塩の製造上不可避の副生物である、硫酸塩(硫酸ナトリウム等)、アルキル硫酸塩(メチル硫酸ナトリウム等)、α−スルホ脂肪酸ジ塩(α−スルホ脂肪酸ジナトリウム塩等)、または未反応の原料を含んでもよい。α−スルホ脂肪酸ジ塩は界面活性剤としての機能を有する。
本発明において、粒子群(A)中のα−スルホ脂肪酸アルキルエステル塩とα−スルホ脂肪酸ジ塩の合計含有量(質量%)を純分とする。なお、純分は後記の純分の測定方法により測定される。
<Particle Group of α-SF Salt (A)>
The particle group (A) is a group of particles of α-SF salt and is a cleaning component. The particles of the α-SF salt may contain impurities. The particles of the α-SF salt may contain water.
Particles of α-SF salt are sulfate (sodium sulfate), which is an unavoidable by-product in production of α-sulfofatty acid alkyl ester salt, in addition to α-sulfofatty acid alkyl ester salt represented by the following formula (1) Etc.), alkyl sulfates (such as sodium methyl sulfate), α-sulfo fatty acid disalts (such as α-sulfo fatty acid disodium salt), or unreacted raw materials. The α-sulfo fatty acid di salt has a function as a surfactant.
In the present invention, the total content (% by mass) of the α-sulfo fatty acid alkyl ester salt and the α-sulfo fatty acid di salt in the particle group (A) is regarded as a pure part. In addition, pure content is measured by the measuring method of pure content of postscript.

粒子群(A)に含まれるα−SF塩は、以下の式(1)で示される。
−CH(SOM)−COOR ・・・ (1)
[式(1)中、Rは、炭素数6〜20の直鎖状もしくは分岐鎖状のアルキル基又は炭素数6〜20の直鎖状もしくは分岐鎖状のアルケニル基であり、Rは、炭素数1〜6のアルキル基であり、Mは対イオンである。]
の炭素数は、8〜18が好ましく、12〜16がより好ましい。
の炭素数は、1〜3が好ましい。前記Rとしては、例えば、メチル基、エチル基、プロピル基、イソプロピル基が挙げられ、洗浄力がより向上することからメチル基、エチル基、プロピル基が好ましい。
対イオン(M)としては、アルカリ金属イオン、プロトン化したアミン、アンモニウム等が挙げられる。前記対イオンとなり得るアルカリ金属としては、ナトリウム、カリウム等が挙げられる。前記対イオンとなり得るアミンは、第1〜3級アミンのいずれであってもよく、総炭素数が1〜6であることが好ましい。前記アミンは、ヒドロキシ基を有していてもよい。このようなアミンとしては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミンが挙げられる。
これらの中でも、Mはアルカリ金属イオンが好ましく、ナトリウムイオン又はカリウムイオンがより好ましい。
α−SF塩の粒子に含まれるα−スルホ脂肪酸アルキルエステル塩は1種でもよく、Rの炭素数が異なる2種以上のα−スルホ脂肪酸アルキルエステル塩の混合物でもよい。
粒子群(A)を構成するα−SF塩の粒子は1種でもよく、2種以上でもよい。
上記α−SF塩においては、上記一般式(1)において、Rの炭素数が14であるα−SF塩とRの炭素数が16であるα−SF塩の質量比が40:60〜100:0であることが好ましい。また、Rがメチル基であるα−スルホ脂肪酸メチルエステル塩(MES塩)が好ましく、Mはナトリウムイオンであることが好ましい。
The α-SF salt contained in the particle group (A) is represented by the following formula (1).
R 1 -CH (SO 3 M) -COOR 2 (1)
[In formula (1), R 1 is a linear or branched alkyl group having 6 to 20 carbon atoms or a linear or branched alkenyl group having 6 to 20 carbon atoms, and R 2 is And an alkyl group having 1 to 6 carbon atoms, and M is a counter ion. ]
8-18 are preferable and, as for carbon number of R < 1 >, 12-16 are more preferable.
The number of carbon atoms in R 2 is preferably 1 to 3. Examples of R 2 include a methyl group, an ethyl group, a propyl group and an isopropyl group, and a methyl group, an ethyl group and a propyl group are preferable because the detergency is further improved.
Examples of the counter ion (M) include alkali metal ions, protonated amines, ammonium and the like. Examples of the alkali metal which can be the counter ion include sodium and potassium. The amine capable of becoming the counter ion may be any of primary to tertiary amines, and preferably has 1 to 6 carbon atoms in total. The amine may have a hydroxy group. Such amines include alkanolamines such as monoethanolamine, diethanolamine and triethanolamine.
Among these, M is preferably an alkali metal ion, more preferably a sodium ion or a potassium ion.
The α-sulfofatty acid alkyl ester salt contained in the particles of the α-SF salt may be one type, or a mixture of two or more types of α-sulfo fatty acid alkyl ester salts having different carbon numbers of R 1 .
The particles of the α-SF salt constituting the particle group (A) may be one type, or two or more types.
In the above-described alpha-SF salt, in the above general formula (1), the mass ratio of alpha-SF salt a carbon number of 16 alpha-SF salt and R 1 a carbon number of 14 R 1 is 40:60 It is preferable that it is 100: 0. Further, an α-sulfo fatty acid methyl ester salt (MES salt) in which R 2 is a methyl group is preferable, and M is preferably a sodium ion.

粒子群(A)の全体(総質量)に対するα−SF塩の純分の含有量は、70質量%以上が好ましく、80質量%以上がより好ましい。粒子群(A)には、上記α−SF塩以外に、α−スルホ脂肪酸アルキルエステル塩の製造上不可避の副生物である、硫酸塩(硫酸ナトリウム等)、アルキル硫酸塩(メチル硫酸ナトリウム等)、α−スルホ脂肪酸ジ塩(α−スルホ脂肪酸ジナトリウム塩等)や水分が含まれていてもよい。一般に、粒子群(A)には、60〜98質量%のα−SF塩と、1〜10質量%のα−スルホ脂肪酸ジ塩、1〜10質量%のアルキル硫酸塩が含まれる。
粒子群(A)の水分量は、粒子群(A)の総質量に対して10質量%以下が好ましく、5質量%以下がより好ましい。前記水分量が上記範囲であると低温での粘着性が抑制されやすくなり、低温での保存安定性を高めやすくなる。
本明細書において、粒子群(A)の水分量は、カールフィッシャー法により測定される値である。
70 mass% or more is preferable, and, as for the content of the pure part of (alpha) -SF salt with respect to the whole (total mass) of particle group (A), 80 mass% or more is more preferable. In the particle group (A), in addition to the above-mentioned α-SF salts, sulfates (sodium sulfate etc.), alkyl sulfates (methyl sodium sulfate etc.) which are unavoidable by-products in production of α-sulfofatty acid alkyl ester salts , An α-sulfo fatty acid di salt (such as an α-sulfo fatty acid disodium salt) or water may be contained. In general, the particle group (A) contains 60 to 98% by mass of an α-SF salt, 1 to 10% by mass of an α-sulfo fatty acid disalt, and 1 to 10% by mass of an alkyl sulfate.
10 mass% or less is preferable with respect to the total mass of particle group (A), and, as for the water content of particle group (A), 5 mass% or less is more preferable. When the water content is in the above range, the adhesiveness at low temperature is easily suppressed, and the storage stability at low temperature is easily enhanced.
In the present specification, the water content of the particle group (A) is a value measured by the Karl Fischer method.

本発明の粒子群(A)の平均粒子径は、篩分け法による質量基準累積50%径(質量中位径)で表す。具体的には以下の手順に従い測定される値である。
目開きがそれぞれ1700μm、1400μm、1180μm、1000μm、710μm、500μm、355μm、250μm、150μmである9段の篩と受け皿を用いて粒子の分級操作を行なう。
分級操作は、次のように行う。先ず、受け皿上に目開きの小さな篩から目開きの大きな篩の順に積み重ね、最上である1700μmの篩の上から100g/回の粒子を入れ、蓋をしてロータップ型ふるい振盪機(ダルトン株式会社製、タッピング:125回/分、ローリング:250回/分)に取り付け、3.5分間振動させる。その後、それぞれの篩及び受け皿上に残留したサンプルを篩目ごとに回収する。この分級操作を繰り返すことによって、1400μm超1700μm以下(1400μm.on)、1180μm超1400μm以下(1180μm.on)、1000μm超1180μm以下(1000μm.on)、710μm超1000μm以下(710μm.on)、500μm超710μm以下(500μm.on)、355μm超500μm以下(355μm.on)、250μm超355μm以下(250μm.on)、150μm超250μm以下(150μm.on)、皿〜150μm以下(150μm.pass)の各粒子径の分級サンプルを得る。得られた分級サンプルを用いて、質量頻度(%)を算出する。
篩の目開きをXとし、目開きXとXより大きい目開きの篩の上に回収された分級サンプルの質量頻度(%)の総和をYとする。
logXに対してlog{log(100/Y)}をプロットした時の最小2乗近似直線の傾きをa、切片をyとする(logは常用対数)。ただし、Yが5%以下及びYが95%以上となる点は上記プロットからは除外する。
このa及びyを用いて次式によって平均粒子径を求めることができる。
平均粒子径(質量50%径)=10((−0.521−y)/a)
The average particle size of the particle group (A) of the present invention is represented by the mass-based cumulative 50% diameter (mass median diameter) by sieving method. Specifically, it is a value measured according to the following procedure.
The classification operation of the particles is carried out using nine stages of sieves and trays having openings of 1700 μm, 1400 μm, 1180 μm, 1000 μm, 710 μm, 500 μm, 355 μm, 250 μm and 150 μm, respectively.
Classification operation is performed as follows. First, stack small sieves with large openings on the receiving tray in the order of large sieves, put 100 g / piece of particles from the top of the 1700 μm sieve on top, cover it, and cover with a low-tap sieve shaker (Dalton Co., Ltd. Made, tapping: 125 times / min, rolling: 250 times / min) and shake for 3.5 minutes. Thereafter, the samples remaining on the respective sieves and pans are collected every sieve. By repeating this classification operation, more than 1400 μm to less than 1700 μm (1400 μm. On), more than 1180 μm to less than 1400 μm (1180 μm. On), more than 1000 μm to 1180 μm (1000 μm. On), more than 710 μm to less than 1000 μm (710 μm. On), more than 500 μm Each particle of 710 μm or less (500 μm. On), 355 μm to 500 μm (355 μm. On), 250 μm to 355 μm or less (250 μm. On), 150 μm to 250 μm or less (150 μm. On), dish to 150 μm or less (150 μm. Pass) Obtain a classified sample of diameter. Mass frequency (%) is calculated using the obtained classified sample.
Let X be the mesh size of the sieve, and Y be the sum of mass frequencies (%) of the classified samples collected on the mesh sizes X and X larger than the mesh size.
The slope of the least squares approximate line when plotting log {log (100 / Y)} against log X is a, and the intercept is y (log is a common logarithm). However, points at which Y is 5% or less and Y is 95% or more are excluded from the above plot.
The average particle diameter can be determined by the following equation using a and y.
Average particle size (mass 50% diameter) = 10 ((−0.521−y) / a)

粒子群(A)の平均粒子径は、250〜3000μmであることが好ましく、350〜1000μmであることがより好ましい。粒子群(A)の平均粒子径が250μm以上であると、本発明の粉末洗剤組成物の固化がより抑制されやすくなる。粒子群(A)の平均粒子径が3000μm以下であると、粒子群(A)が粉末洗剤等に配合される際に、他の成分の粒子径との差が大きくなりすぎず分離が生じにくい。   The average particle size of the particle group (A) is preferably 250 to 3000 μm, and more preferably 350 to 1000 μm. When the average particle size of the particle group (A) is 250 μm or more, solidification of the powder detergent composition of the present invention is more easily suppressed. When the average particle diameter of the particle group (A) is 3000 μm or less, when the particle group (A) is blended in a powder detergent or the like, the difference with the particle diameters of other components becomes too large and separation hardly occurs. .

粒子群(A)には、粒子径が355μm以下の粒子(以下、「微粉」ともいう)が含まれていてもよい。微粉の含有量が多いと保存中に固化が進みやすい。一方、微粉を少なくするために、後述の分級操作によって多くの微粉を取り除くと生産性が低下する。
本発明において、粒子群(A)の微粉の含有量(以下、微粉率ともいう。)は、特に限定されない。後述の分級操作を省略でき、生産性を高められる点からは、粒子群(A)における微粉の含有量が、粒子群(A)の総質量に対して70質量%以下であることが好ましく、60質量%以下であることがより好ましく、50質量%以下であることがさらに好ましい。また、本発明の固化抑制効果をより顕著に得ることができる点からは、粒子群(A)における微粉の含有量が、20質量%以上であることが好ましく、30質量%以上であることがより好ましい。一方、微粉の含有量が多いと、粒子群(A)の平均粒子径が小さくなる。また、粒子群(A)を粉末洗剤製品に配合した場合に、粒子群(A)の粒子径と他の成分との粒子径の差が大きくなり、分離等の問題を生じる可能性がある。そのため、この点からは粒子群(A)中の微粉の含有量は、粒子群(A)に対して50質量%以下であることが好ましい。
The particle group (A) may contain particles having a particle diameter of 355 μm or less (hereinafter, also referred to as “fine powder”). If the content of fine powder is large, solidification tends to proceed during storage. On the other hand, if a large amount of fine powder is removed by classification operation described later in order to reduce the fine powder, the productivity is reduced.
In the present invention, the content of the fine powder of the particle group (A) (hereinafter, also referred to as a fine powder ratio) is not particularly limited. The content of the fine powder in the particle group (A) is preferably 70% by mass or less based on the total mass of the particle group (A) from the viewpoint of omitting the classification operation described later and enhancing the productivity. It is more preferable that it is 60 mass% or less, and it is further more preferable that it is 50 mass% or less. In addition, the content of the fine powder in the particle group (A) is preferably 20% by mass or more, and 30% by mass or more from the viewpoint that the solidification suppressing effect of the present invention can be more remarkably obtained. More preferable. On the other hand, when the content of the fine powder is large, the average particle size of the particle group (A) decreases. In addition, when the particle group (A) is blended in a powder detergent product, the difference between the particle diameter of the particle group (A) and the particle diameter of other components becomes large, which may cause problems such as separation. Therefore, it is preferable that content of the fine powder in particle group (A) is 50 mass% or less with respect to particle group (A) from this point.

α−SF塩を含有する粒子群(A)には、準安定な結晶状態と、粒子群(A)を結晶化することで形成される安定な結晶状態とが存在することが知られている。
そして、安定な結晶状態の粒子群(A)(以下、「安定固体」ともいう)は、準安定な結晶状態の粒子群(A)(以下、「準安定固体」ともいう)よりも、固化の抑制性に優れることが知られている(国際公開第2009/054406号参照)。
It is known that a particle group (A) containing an α-SF salt has a metastable crystalline state and a stable crystalline state formed by crystallizing the particle group (A). .
And, the particle group (A) in stable crystalline state (hereinafter also referred to as "stable solid") is solidified more than the particle group (A) in metastable state (hereinafter referred to as "metastable solid") Are known to be excellent in the inhibitory properties of (see WO 2009/054406).

一般に、高純度のα−SF塩からは準安定固体は形成されにくい。しかしながら、脂肪酸アルキルエステルを出発原料として用いて、後述の製造方法を経てα−SF塩を得ると、通常、α−SF塩以外に、アルキル硫酸塩及びα−スルホ脂肪酸ジ塩等の副生物が生じる。粒子群(A)にこのような副生物が含まれると、α−SF塩含有固形物は準安定状態となりやすい。   In general, metastable solids are less likely to be formed from high purity α-SF salts. However, when fatty acid alkyl ester is used as a starting material and α-SF salt is obtained through the below-mentioned production method, usually, in addition to α-SF salt, by-products such as alkyl sulfate and α-sulfo fatty acid di salt are It occurs. When such a by-product is included in the particle group (A), the α-SF salt-containing solid tends to be in a metastable state.

本発明においては、α−SF塩の粒子群(A)と、アルキル硫酸塩の粒子群(B)とを含み、α−SF塩の粒子と、アルキル硫酸塩の粒子とが、それぞれ独立した粒子として存在することにより、固化の抑制性を高められることから、粒子群(A)が準安定固体であっても、良好な固化の抑制性が得られる。
したがって、粒子群(A)としては、準安定固体を用いてもよく、安定固体を用いてもよい。熟成工程を省略でき、生産性を高められる点からは、粒子群(A)として準安定固体を用いることが好ましい。
In the present invention, particles of α-SF salt particles (A) and particles of alkyl sulfate (B) are contained, and particles of α-SF salt and particles of alkyl sulfate are independent of each other. Since the suppression of solidification can be enhanced by the presence as P., even if the particle group (A) is a metastable solid, good suppression of solidification can be obtained.
Therefore, as the particle group (A), a metastable solid may be used or a stable solid may be used. It is preferable to use a metastable solid as the particle group (A) from the viewpoint of omitting the ripening step and increasing the productivity.

<粒子群(A)の製造方法>
粒子群(A)(以下、(A)成分ともいう。)は公知の方法で製造することもできるし、市販品を使用することもできる。
例えば、α−SF塩を含有するペーストを調製する工程(ペースト化工程)、前記ペーストからフレークを調製する工程(フレーク化工程)、前記フレークからヌードルを調製する工程(ヌードル化工程)、前記ヌードルからペレットを調整する工程(ペレット化工程)、前記フレーク、ヌードル又はペレットを粉砕して粒子を得る工程(粉砕工程)を有する方法が挙げられる。
なお、上記(ヌードル化工程)及び(ペレット化工程)は、任意の工程であり省略してもよい。また、上記(粉砕工程)の後に、粒子群を分級する工程(分級工程)を設けてもよい。さらに、上記(フレーク化工程)、(ヌードル化工程)又は(ペレット化工程)の後、粉砕工程の前に、フレーク、ヌードル又はペレットを熟成する工程(熟成工程)を設けてもよい。
<Production Method of Particle Group (A)>
The particle group (A) (hereinafter, also referred to as component (A)) can be produced by a known method, or a commercially available product can be used.
For example, a step of preparing a paste containing an α-SF salt (pasting step), a step of preparing flakes from the paste (flaking step), a step of preparing noodles from the flakes (noodleing step), the noodles And the step of preparing pellets (pelletizing step), and the step of pulverizing the flakes, noodles or pellets to obtain particles (pulverizing step).
The above (noodleing step) and (pelletizing step) are optional steps and may be omitted. Moreover, you may provide the process (classification process) which classifies particle groups after the above (grind process). Furthermore, after the above (flaking step), (noodleing step) or (pelletizing step), a step (aging step) of aging the flakes, noodles or pellets may be provided before the grinding step.

(熟成工程)
熟成工程を行うことにより、α−SF塩の粒子の結晶状態を準安定な状態(準安定固体)から安定な状態(安定固体)に変換することができる。準安定固体を安定固体に変換することにより固化の抑制性がより向上する。
準安定固体を、安定固体に変換する方法は公知であり、かかる方法としては、例えば下記(I−1)〜(I−3)の方法が挙げられる。
(I−1)準安定固体を、30℃以上、200000Pa以下の圧力において、少なくとも48時間維持する方法。
(I−2)準安定固体を溶融して得られた溶融物を、準安定固体の融点以上で、かつ、安定固体の融点以下の温度で、5分間以上維持する方法。
(I−3)準安定固体を溶融して得られた溶融物に対して、準安定固体の融点以上、かつ、80℃以下の温度において、100(1/s)以上の剪断速度で剪断力を与える方法。
なお、準安定固体と、安定固体とは、示差走査熱分析計による熱分析で容易に判別できる。示差走査熱分析計で熱分析した際に観測される50〜130℃における熱吸収ピーク面積をS1、0〜130℃における熱吸収ピーク面積をS2としたときの、100×S1/S2で求められる結晶化度(単位:%)の値が、準安定固体は50%未満であり、安定固体は50%以上である。
(Aging process)
By performing the aging step, the crystalline state of the particles of the α-SF salt can be converted from a metastable state (metastable solid) to a stable state (stable solid). Converting a metastable solid to a stable solid further improves the inhibition of solidification.
The method of converting a metastable solid into a stable solid is known, and such methods include, for example, the following methods (I-1) to (I-3).
(I-1) A method of maintaining a metastable solid at a pressure of 30 ° C. or more and 200,000 Pa or less for at least 48 hours.
(I-2) A method of maintaining a melt obtained by melting a metastable solid at a temperature not lower than the melting point of the metastable solid and not higher than the melting point of the stable solid for 5 minutes or more.
(I-3) With respect to a melt obtained by melting a metastable solid, shear force is applied at a shear rate of 100 (1 / s) or higher at a temperature of 80 ° C. or higher and a temperature above the melting point of the metastable solid How to give.
A metastable solid and a stable solid can be easily distinguished by thermal analysis using a differential scanning calorimeter. When the heat absorption peak area at 50 to 130 ° C. observed when thermal analysis is performed by a differential scanning calorimeter is S1, and the heat absorption peak area at 0 to 130 ° C. is S2, it is determined by 100 × S1 / S2. The value of crystallinity (unit:%) is less than 50% for a metastable solid and 50% or more for a stable solid.

<アルキル硫酸塩の粒子群(B)>
粒子群(B)(以下、(B)成分ともいう。)は、アルキル硫酸塩の粒子の群であり、粒子群(A)を含む粉末洗剤組成物の固化の抑制に寄与する。またアルキル硫酸塩は粉末洗剤製品を使用する際の泡立ちの向上に寄与する成分である。アルキル硫酸塩の粒子は、アルキル硫酸塩の他に不純物を含んでもよい。アルキル硫酸塩の粒子は水分を含んでもよい。
アルキル硫酸塩は、以下の式(2)で示される。
−OSOM’・・・ (2)
[式(2)中、Rは、炭素数6〜20の直鎖状もしくは分岐鎖状のアルキル基又は炭素数6〜20の直鎖状もしくは分岐鎖状のアルケニル基であり、M’は対イオンである。]
の炭素数は8〜18が好ましく、12〜16がより好ましい。Rは直鎖状のアルキル基またはアルケニル基が好ましい。
対イオン(M’)としては、アルカリ金属イオン、プロトン化したアミン、アンモニウムイオン等が挙げられる。前記対イオンとなり得るアルカリ金属としては、ナトリウム、カリウム等が挙げられる。前記対イオンとなり得るアミンとしては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミンが挙げられる。
これらの中でも、対イオン(M’)はアルカリ金属イオンが好ましく、ナトリウムイオン又はカリウムイオンがより好ましい。
特に好ましいアルキル硫酸塩は、Rが炭素数12〜16の直鎖状もしくは分岐鎖状のアルキル基またはアルケニル基であり、M’がナトリウムイオンである。
<Particle Group of Alkyl Sulfate (B)>
The particle group (B) (hereinafter also referred to as component (B)) is a group of particles of alkyl sulfate and contributes to suppression of solidification of the powder detergent composition containing the particle group (A). In addition, alkyl sulfate is a component that contributes to the improvement of foaming when using a powder detergent product. The particles of alkyl sulfate may contain impurities in addition to the alkyl sulfate. The particles of alkyl sulfate may contain water.
The alkyl sulfate is represented by the following formula (2).
R 3 −OSO 3 M ′ (2)
[In Formula (2), R 3 represents a linear or branched alkyl group having 6 to 20 carbon atoms or a linear or branched alkenyl group having 6 to 20 carbon atoms, and M ′ represents It is a counter ion. ]
The number of carbon atoms of R 3 is 8 to 18 is preferable, 12 to 16 is more preferable. R 3 is preferably a linear alkyl group or an alkenyl group.
Examples of the counter ion (M ′) include alkali metal ions, protonated amines, ammonium ions and the like. Examples of the alkali metal which can be the counter ion include sodium and potassium. Examples of the amine which can be the counter ion include alkanolamines such as monoethanolamine, diethanolamine and triethanolamine.
Among these, the counter ion (M ′) is preferably an alkali metal ion, and more preferably a sodium ion or a potassium ion.
Particularly preferred alkyl sulfates are those in which R 3 is a linear or branched alkyl or alkenyl group having 12 to 16 carbon atoms, and M ′ is a sodium ion.

アルキル硫酸塩の粒子に含まれるアルキル硫酸塩は1種でもよく、Rの炭素数が異なる2種以上のアルキル硫酸塩の混合物でもよい。
粒子群(B)を構成するアルキル硫酸塩の粒子は1種でもよく、2種以上でもよい。
粒子群(B)の全体(総質量)に対するアルキル硫酸塩(純分)の含有量は、70質量%以上が好ましく、80質量%以上がより好ましい。
粒子群(B)の水分量は、粒子群(B)の総質量に対して10質量%以下が好ましく、5質量%以下がより好ましい。前記水分量が上記範囲であると低温での粘着性が抑制されやすくなり、低温での保存安定性を高めやすくなる。
粒子群(B)の平均粒子径は50μm以上、3mm未満が好ましく、60μm以上、1mm未満がより好ましい。上記下限値以上であると固化の抑制効果に優れる。上記上限値以下であると、本発明の粉末洗剤組成物が他の洗剤成分とともに粉末洗剤製品に配合されたときに、他の洗剤成分との粒子径差が大きくなりすぎず分離が生じにくい。
本発明において粒子群(B)の平均粒子径はレーザ回折・散乱法による装置を用い乾式法により測定した体積基準メジアン径で表す。
粒子群(B)は、例えば原料の天然高級アルコールと無水硫酸を反応させる等の公知の方法で製造することができる。また市販品からも入手できる。
The alkyl sulfate contained in the particles of the alkyl sulfate may be one type, or may be a mixture of two or more types of alkyl sulfates having different carbon numbers of R 3 .
The number of particles of the alkyl sulfate constituting the particle group (B) may be one, or two or more.
70 mass% or more is preferable, and, as for content of the alkyl sulfate (pure part) with respect to the whole (total mass) of particle group (B), 80 mass% or more is more preferable.
10 mass% or less is preferable with respect to the total mass of particle group (B), and, as for the water content of particle group (B), 5 mass% or less is more preferable. When the water content is in the above range, the adhesiveness at low temperature is easily suppressed, and the storage stability at low temperature is easily enhanced.
The average particle diameter of the particle group (B) is preferably 50 μm or more and less than 3 mm, and more preferably 60 μm or more and less than 1 mm. It is excellent in the control effect of solidification as it is more than the above-mentioned lower limit. When the powder detergent composition of the present invention is formulated into a powder detergent product together with other detergent components as the above upper limit value or less, the difference in particle size with other detergent components becomes too large and separation hardly occurs.
In the present invention, the average particle diameter of the particle group (B) is represented by a volume-based median diameter measured by a dry method using an apparatus by a laser diffraction / scattering method.
The particle group (B) can be produced by a known method such as, for example, reacting natural higher alcohols as raw materials with sulfuric anhydride. It can also be obtained from commercial products.

<無機粉体(C)>
無機粉体(C)(以下、(C)成分ともいう。)としては、ゼオライト、炭酸ナトリウム、炭酸カルシウム、炭酸マグネシウム、アルカリ土類金属炭酸塩、非晶質シリカ、ホワイトカーボン、珪酸ナトリウム、珪酸カルシウム、珪酸マグネシウム等の珪酸塩、タルク、ベントナイト等の粘度鉱物、二酸化チタン、硫酸ナトリウム、硫酸カリウム、トリポリリン酸ナトリウム等が挙げられる。このうち、ゼオライト、炭酸カルシウム、非晶質シリカ、ホワイトカーボンが好ましい。
ゼオライトとは、結晶性アルミノケイ酸塩の総称である。アルミノケイ酸塩としては、結晶性、非晶質(無定形)のいずれも用いることができるが、カチオン交換能の点から結晶性アルミノケイ酸塩(ゼオライト)が好ましく、A型、X型、Y型、P型ゼオライト等が好適である。特にA型ゼオライトが好ましい。
無機粉体(C)は、粒子群(A)を含む粉末洗剤組成物の固化の抑制に寄与する。無機粉体(C)は1種を単独で用いてもよく、2種以上を併用してもよい。
無機粉体(C)の平均粒子径は0.8〜5μmが好ましく、0.8〜3.8μmがより好ましい。上記の範囲内であると粉末洗剤組成物の固化の抑制効果に優れる。
本発明において無機粉体(C)の平均粒子径はレーザ回折・散乱法による装置を用い乾式法により測定した体積基準メジアン径で表す。
<Inorganic powder (C)>
As the inorganic powder (C) (hereinafter, also referred to as component (C)), zeolite, sodium carbonate, calcium carbonate, magnesium carbonate, alkaline earth metal carbonate, amorphous silica, white carbon, sodium silicate, silicic acid Examples thereof include calcium, silicates such as magnesium silicate, viscosity minerals such as talc and bentonite, titanium dioxide, sodium sulfate, potassium sulfate, sodium tripolyphosphate and the like. Among these, zeolite, calcium carbonate, amorphous silica and white carbon are preferable.
Zeolite is a generic term for crystalline aluminosilicates. As the aluminosilicate, either crystalline or amorphous (amorphous) can be used, but from the viewpoint of cation exchange ability, crystalline aluminosilicate (zeolite) is preferable, and A-type, X-type and Y-type are preferable. And P-type zeolites are preferable. In particular, A-type zeolite is preferred.
The inorganic powder (C) contributes to suppression of solidification of the powder detergent composition containing the particle group (A). The inorganic powder (C) may be used alone or in combination of two or more.
0.8-5 micrometers is preferable and, as for the average particle diameter of inorganic powder (C), 0.8-3.8 micrometers is more preferable. It is excellent in the inhibitory effect of solidification of a powder detergent composition as it is in said range.
In the present invention, the average particle diameter of the inorganic powder (C) is represented by a volume-based median diameter measured by a dry method using an apparatus by a laser diffraction / scattering method.

<各成分の含有量>
粉末洗剤組成物の総質量に対して、粒子群(A)中のα−SF塩の純分と粒子群(B)中のアルキル硫酸塩の合計の含有量が50質量%以上である。
無機粉体(C)を含む場合は、粉末洗剤組成物の総質量に対して、粒子群(A)中のα−SF塩の純分と粒子群(B)中のアルキル硫酸塩の合計の含有量が50質量%以上であり、無機粉体(C)の含有量が1〜30質量%である。
粉末洗剤組成物は、本発明の効果を損なわない範囲で、(A)〜(C)成分のいずれにも該当しない他の粒子群を任意成分として含んでもよい。他の粒子群としては粉末洗剤製品に含まれる公知の粒子群から適宜選択して用いることができる。
粉末洗剤組成物の総質量に対して、他の粒子群の含有量は30質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下がさらに好ましく、ゼロでもよい。
粉末洗剤組成物の総質量に対して、(A)〜(C)成分及び他の粒子群の合計は100質量%である。
<Content of each component>
The total content of the pure portion of the α-SF salt in the particle group (A) and the alkyl sulfate in the particle group (B) is 50% by mass or more based on the total mass of the powder detergent composition.
When the inorganic powder (C) is contained, the total of the pure portion of the α-SF salt in the particle group (A) and the alkyl sulfate in the particle group (B) with respect to the total mass of the powder detergent composition. Content is 50 mass% or more, and content of inorganic powder (C) is 1-30 mass%.
The powder detergent composition may contain, as an optional component, another particle group which does not correspond to any of the components (A) to (C) as long as the effects of the present invention are not impaired. As other particle groups, they can be appropriately selected and used from known particle groups contained in powder detergent products.
The content of the other particle groups is preferably 30% by mass or less, more preferably 20% by mass or less, further preferably 10% by mass or less, and may be zero, with respect to the total mass of the powder detergent composition.
The total of the components (A) to (C) and the other particle groups is 100% by mass based on the total mass of the powder detergent composition.

粉末洗剤組成物が(A)〜(C)成分を含み、他の粒子群を含まない態様において、粉末洗剤組成物の総質量に対して、粒子群(A)中のα−SF塩の純分と粒子群(B)中のアルキル硫酸塩の合計の含有量が50〜99質量%であり、無機粉体(C)の含有量が1〜30質量%であることが好ましい。
より好ましくは、粉末洗剤組成物の総質量に対して、粒子群(A)中のα−SF塩の純分と粒子群(B)中のアルキル硫酸塩の合計の含有量が65〜95質量%であり、無機粉体(C)の含有量が5〜20質量%である。
(A)〜(C)成分及び他の粒子群を含む態様において、粉末洗剤組成物の総質量に対して、粒子群(A)中のα−SF塩の純分と粒子群(B)中のアルキル硫酸塩の合計の含有量が50質量%以上、95質量%未満であり、無機粉体(C)の含有量が5〜20質量%であり、他の粒子群の含有量がゼロ超〜20質量%であることが好ましい。
In the embodiment where the powder detergent composition contains the components (A) to (C) and does not contain other particle groups, the pure of the α-SF salt in the particle group (A) with respect to the total weight of the powder detergent composition It is preferable that content of the sum total of the amount and the alkyl sulfate in particle | grain group (B) is 50-99 mass%, and content of an inorganic powder (C) is 1-30 mass%.
More preferably, the total content of the pure portion of the α-SF salt in the particle group (A) and the alkyl sulfate in the particle group (B) is 65 to 95 mass based on the total mass of the powder detergent composition. %, And the content of the inorganic powder (C) is 5 to 20% by mass.
In the embodiment comprising the components (A) to (C) and the other particle groups, the pure portion of the α-SF salt in the particle groups (A) and the particle groups (B) with respect to the total mass of the powder detergent composition Content of the total of the alkyl sulfate of 50% by mass to less than 95% by mass, the content of the inorganic powder (C) is 5 to 20% by mass, and the content of the other particle groups is more than zero It is preferable that it is -20 mass%.

前記粒子群(A)中のα−SF塩の純分100質量部に対して、前記粒子群(B)中のアルキル硫酸塩は1〜100質量部であり、5〜100質量部が好ましく、5〜50質量部がより好ましく、5〜40質量部がさらに好ましく、5〜20質量部が特に好ましい。α−SF塩の純分100質量部に対してアルキル硫酸塩が1質量部以上であると、粉末洗剤組成物の固化の抑制効果に優れるとともに、前記粉末洗剤組成物が配合された粉末洗剤製品を使用する際の泡立ち向上効果に優れる。
α−SF塩の純分100質量部に対してアルキル硫酸塩が100質量部以下である粉末洗剤組成物は、洗剤成分であるα−SF塩の純分が充分に含まれる。
また、粉体付着の抑制性に優れる点からはアルキル硫酸塩の含有量が少ない方が好ましい。前記の好ましい範囲とすることで本発明の固化の抑制性と粉体付着の抑制性のバランスがとれたものとなる。
The alkyl sulfate in the particle group (B) is 1 to 100 parts by mass, preferably 5 to 100 parts by mass, with respect to 100 parts by mass of the pure component of the α-SF salt in the particle group (A). 5 to 50 parts by mass is more preferable, 5 to 40 parts by mass is further preferable, and 5 to 20 parts by mass is particularly preferable. A powder detergent product in which the powder detergent composition is blended, as well as the effect of suppressing solidification of the powder detergent composition being 1 part by mass or more of the alkyl sulfate relative to 100 parts by mass of the pure content of the α-SF salt It excels in the foaming improvement effect at the time of using.
The powder detergent composition having 100 parts by mass or less of alkyl sulfate relative to 100 parts by mass of the pure portion of the α-SF salt sufficiently contains the pure portion of the α-SF salt which is a detergent component.
Moreover, from the point which is excellent in the suppression property of powder adhesion, the one where there is little content of alkyl sulfate is preferable. By setting it as the above-mentioned preferable range, the suppression of solidification of the present invention and the suppression of powder adhesion can be balanced.

<粉末洗剤組成物>
本発明の一態様において、粉末洗剤組成物は、粒子群(A)と、粒子群(B)と、任意の他の粒子群とを、所定の配合割合で乾式混合する方法で製造される。
さらに無機粉体(C)を含む他の態様において、粉末洗剤組成物は、粒子群(A)と、粒子群(B)と、無機粉体(C)と、任意の他の粒子群とを、所定の配合割合で乾式混合する方法で製造される。
乾式混合する方法は、例えば、粉体を投入して混合する方法を用いることができる。粉体を混合する装置としては、乾式混合に使用する装置であれば特に限定なく使用することができる。具体例としては、容器回転式円筒型混合機、V型混合機、撹拌造粒装置が挙げられるが、これらに限定されるものではない。
本発明の粉末洗剤組成物において、α−SF塩の粒子(粒子群(A)を構成する一粒子)とアルキル硫酸塩の粒子(粒子群(B)を構成する一粒子)とは、それぞれ独立した粒子として存在する。なお、本発明において独立した粒子として存在するとは、乾式混合された場合のように、混合前の元の粒子形状を概ね保った状態で混合された状態をいう。例えば、概ね混合前の粒子形状を保ったα−SF塩の粒子の周囲にアルキル硫酸塩の粒子が付着した状態なども含む。一方、粒子同士が混合前の粒子形状を保たない程度に練り合わされて再造粒されたものは含まない。無機粉体(C)の粒子は、無機粉体(C)以外の粒子表面に付着した状態で存在してもよいし、付着せずに存在してもよいが、固化抑制の観点ではα−SF塩の粒子やアルキル硫酸塩の粒子の表面に付着した状態で存在することが好ましい。
<Powder detergent composition>
In one aspect of the present invention, the powder detergent composition is produced by a method of dry-mixing the particle group (A), the particle group (B) and any other particle group at a predetermined blending ratio.
In yet another embodiment comprising inorganic powder (C), the powder detergent composition comprises particles (A), particles (B), inorganic powder (C) and any other particles. It is manufactured by a method of dry mixing at a predetermined blending ratio.
As a method of dry mixing, for example, a method of charging and mixing powder can be used. As an apparatus for mixing powders, any apparatus used for dry mixing can be used without particular limitation. Specific examples thereof include, but are not limited to, a container-rotating cylindrical mixer, a V-type mixer, and a stirring granulator.
In the powder detergent composition of the present invention, the particles of α-SF salt (one particle constituting particle group (A)) and the particle of alkyl sulfate (one particle constituting particle group (B)) are independent of each other. Present as particles. In the present invention, “being present as independent particles” means a state of being mixed in a state where the original particle shape before mixing is substantially maintained, as in the case of dry mixing. For example, it includes a state in which particles of alkyl sulfate are attached around the particles of the α-SF salt which maintains the particle shape before mixing. On the other hand, it does not include those which are mixed and regranulated so that the particles do not maintain the particle shape before mixing. The particles of the inorganic powder (C) may be present in a state of being attached to the surface of particles other than the inorganic powder (C), or may be present without being attached, but from the viewpoint of solidification inhibition It is preferable to be present in the state of being attached to the surface of the particles of the SF salt or the particles of the alkyl sulfate.

(使用方法)
本発明の粉末洗剤組成物は、他の洗剤成分とともに粉末洗剤製品に配合される、添加用の粉末洗剤組成物として好適である。
例えば、本発明の粉末洗剤組成物と他の洗剤成分を乾式混合して粉末洗剤製品を製造する方法に好適に用いられる。
他の洗剤成分は、粉末洗剤製品に配合される公知の成分を用いることができる。具体例としては、粒子群(A)または粒子群(B)のいずれにも該当しない界面活性剤;硫酸ナトリウム、亜硫酸ナトリウム等の無機ビルダー;炭酸ナトリウム、炭酸カリウム等のアルカリ剤;蛍光剤;漂白剤;漂白活性化剤;酵素;香料;色素;柔軟剤;カチオン化セルロース、粉末セルロース、ポリアクリル酸ナトリウム等の高分子ビルダー等が挙げられる。
粉末洗剤製品の総質量に対して、α−SF塩の含有量が1〜40質量%であることが好ましく、1〜30質量%がより好ましく、1〜20質量%がさらに好ましい。
(how to use)
The powder detergent composition of the present invention is suitable as an additive powder detergent composition to be formulated into a powder detergent product along with other detergent ingredients.
For example, it can be suitably used in a method of producing a powder detergent product by dry mixing the powder detergent composition of the present invention and other detergent components.
Other detergent ingredients may be known ingredients that are formulated into powder detergent products. Specific examples include surfactants that do not fall under either the particle group (A) or the particle group (B); inorganic builders such as sodium sulfate and sodium sulfite; alkaline agents such as sodium carbonate and potassium carbonate; fluorescent agents; Agents; bleaches; agents; perfumes; dyes; softeners; polymeric builders such as cationic cellulose, powdered cellulose, sodium polyacrylate and the like.
The content of the α-SF salt is preferably 1 to 40% by mass, more preferably 1 to 30% by mass, and still more preferably 1 to 20% by mass with respect to the total mass of the powder detergent product.

以下、実施例を示して本発明を詳細に説明するが、本発明は以下の記載によって限定されるものではない。   Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited by the following description.

<測定方法・評価方法>
(粒子群(A)中のα−SF塩の純分の含有量の測定方法)
下記(1)の方法でα−スルホ脂肪酸アルキルエステル塩とα−スルホ脂肪酸ジ塩の合計含有量を測定し、純分の含有量とした。
<Measurement method and evaluation method>
(Method of measuring the content of pure α-SF salt in particle group (A))
The total content of the α-sulfo fatty acid alkyl ester salt and the α-sulfo fatty acid di salt was measured by the following method (1), and the content was regarded as a pure content.

(1)純分の測定方法
試料の約0.2gを、容量200mLメスフラスコに正確に量り取り、イオン交換水(蒸留水)を標線まで加え、超音波で試料をイオン交換水に溶解させた。溶解後、約25℃まで冷却し、この試料水溶液中から5mLをホールピペットで滴定瓶に取り、メチレンブルー指示薬25mLとクロロホルム15mLとを加え、さらに0.004mol/L塩化ベンゼトニウム溶液5mLを加えた後、0.002mol/Lアルキルベンゼンスルホン酸ナトリウム溶液で滴定した。滴定は、その都度、滴定瓶に栓をして激しく振とうした後、静置し、白色板を背景として分離した両層が同一色調になった点を終点とした。
同様に、空試験(試料を使用しない以外は上記と同じ試験)を行い、前記アルキルベンゼンスルホン酸ナトリウム溶液の滴定量の差から、試料中の純分の含有量を下式より算出した。
純分含有量(質量%)=(空試験での滴定量(mL)−滴定量(mL))×0.002(mol/L)×α−SF塩の分子量/(試料採取量(g)×5(mL)/200(mL))/10
(1) Measurement method of pure content Weigh accurately about 0.2 g of the sample into a 200 mL volumetric flask, add ion-exchanged water (distilled water) up to the marked line, and dissolve the sample in ion-exchanged water with ultrasound. The After dissolution, cool to about 25 ° C, take 5 mL of this aqueous sample solution into a titration bottle with a whole pipet, add 25 mL of methylene blue indicator and 15 mL of chloroform, and add 5 mL of a 0.004 mol / L benzethonium chloride solution. The solution was titrated with a 0.002 mol / L sodium alkylbenzene sulfonate solution. In each case, the titration bottle was stoppered and shaken vigorously, and then allowed to stand. The point at which both layers separated with the white plate as the background had the same color was defined as the end point.
Similarly, a blank test (same test as described above except that the sample was not used) was carried out, and the content of the pure portion in the sample was calculated from the following formula from the difference of the titration amount of the sodium alkylbenzene sulfonate solution.
Pure content (mass%) = (titrated value in blank test (mL)-titrated amount (mL)) x 0.002 (mol / L) x molecular weight of α-SF salt / (sampling amount (g) × 5 (mL) / 200 (mL) / 10

(水分の測定方法:カールフィッシャー法)
試料を細かく砕いて粉砕物とした。この粉砕物約0.05gを採取し、カールフィッシャー水分計MKC−210(京都電子工業社製)を用いて前記粉砕物中の水分を測定し、試料中の水分(質量%)を算出した。
(Measuring method of moisture: Karl Fischer method)
The sample was broken into pieces and crushed. About 0.05 g of this pulverized material was collected, the water content in the pulverized material was measured using a Karl Fischer moisture meter MKC-210 (manufactured by Kyoto Denshi Kogyo Co., Ltd.), and the water content (mass%) in the sample was calculated.

(結晶化度の測定方法)
示差走査熱分析計として、SII社製DSC6220を用いた。トリオブレンダー(トリオサイエンス社製)で試料20gを粉砕し、そのうちの5〜30mgを銀製のサンプルパンに入れ、0℃から130℃まで2℃/minの速度で昇温し、熱分析した。
この時の50〜130℃における熱吸収ピーク面積S1と、0〜130℃における熱吸収ピーク面積S2から、100×S1/S2を求め、これを結晶化度(単位:%)とした。結晶化度(単位:%)の値が、準安定固体は50%未満であり、安定固体は50%以上である。
なお、面積S1と面積S2は、示差走査熱分析計に付属しているソフトウエアを用いて、「自動分割積分」処理を行うことにより、それぞれ求めた。また、50〜130℃において発熱ピークが認められた場合には、前記発熱ピーク面積の絶対値を50〜130℃における熱吸収ピーク面積から差し引いた値をS1とし、0〜130℃において発熱ピークが認められた場合には、前記発熱ピーク面積の絶対値を0〜130℃における熱吸収ピーク面積から差し引いた値をS2とした。
(Method of measuring crystallinity)
A DSC 6220 manufactured by SII was used as a differential scanning calorimeter. 20 g of a sample was ground with a trio blender (manufactured by Trio Science Co., Ltd.), 5 to 30 mg of it was placed in a silver sample pan, the temperature was raised from 0 ° C. to 130 ° C. at a rate of 2 ° C./min, and thermal analysis was performed.
100 * S1 / S2 was calculated | required from heat absorption peak area S1 in 50-130 degreeC at this time, and heat absorption peak area S2 in 0-130 degreeC, and this was made into crystallinity degree (unit:%). The value of crystallinity (unit:%) is less than 50% for a metastable solid and 50% or more for a stable solid.
The area S1 and the area S2 were obtained by performing “automatic division integration” processing using software attached to the differential scanning calorimeter. When an exothermic peak is observed at 50 to 130 ° C., a value obtained by subtracting the absolute value of the exothermic peak area from the heat absorption peak area at 50 to 130 ° C. is S1, and the exothermic peak is 0 to 130 ° C. When it recognizes, the value which deducted the absolute value of the exothermic peak area from the heat absorption peak area in 0-130 ° C was made into S2.

(微粉率の測定方法)
試料を目開き355μmの篩を用いて篩い、篩を通過した微粉の量から下記式により微粉率(単位:質量%)を算出した。
微粉率=(篩を通過した微粉の質量/篩にかけた試料の総質量)×100
(粒子群(B)、無機粉体(C)の平均粒子径の測定方法)
レーザ回折・散乱法による粒度分布測定装置(LS13 320、ベックマン・コールター株式会社製)を用いて乾式測定を実施し、体積基準のメジアン径を平均粒子径とした。
(Measurement method of fine powder rate)
The sample was sieved using a 355 μm sieve, and the fine powder ratio (unit: mass%) was calculated from the amount of fine powder passed through the sieve according to the following equation.
Fine powder rate = (mass of fine powder passing through sieve / total mass of sieved sample) × 100
(Method of measuring average particle size of particle group (B), inorganic powder (C))
Dry measurement was carried out using a particle size distribution measuring apparatus (LS 13 320, manufactured by Beckman Coulter, Inc.) by a laser diffraction / scattering method, and the volume-based median diameter was defined as the average particle size.

(固化の抑制性の評価方法)
内径50mm、高さ100mmの円筒状のセルに試料を80g入れ、40℃雰囲気で、2kgの荷重で1週間静置して円柱状の成形体とした。
前記成形体を取り出し、IMADA製FORCE GAUGE(モデルNo、本体:MX−500N、検知部:ZP−500N)を用いて上部から5.32mm/秒の条件で検知部を降下させ、成形体の上面全体に荷重を徐々に加え、成形体が破壊するまでにかかった最大荷重(単位:kgf)を測定した。この測定を3回行い、その平均値を求めた。尚、最大荷重が50kgfを超過する成形体に対しては、IMADA製FORCE GAUGE(モデルNo、本体:MX−5000N、検知部:ZTS−5000N)を用いて上記と同条件にて測定した。
最大荷重が小さい方が固化の抑制性に優れる。
(Evaluation method of inhibition of solidification)
80 g of a sample was placed in a cylindrical cell having an inner diameter of 50 mm and a height of 100 mm, and left at rest at a load of 2 kg for 1 week in an atmosphere of 40 ° C. to obtain a cylindrical molded body.
The molded body is taken out, and the detection portion is lowered from above at a condition of 5.32 mm / sec using FORCE GAUGE made by IMADA (model No., main body: MX-500N, detection portion: ZP-500N), and the upper surface of the molded body A load was gradually applied to the whole, and the maximum load (unit: kgf) applied until the molded body broke was measured. This measurement was performed three times, and the average value was determined. In addition, with respect to the molded object whose largest load exceeds 50 kgf, it measured on the said conditions using IMADA FORCE GAUGE (model No., main body: MX-5000N, detection part: ZTS-5000N).
The smaller the maximum load, the better the control of solidification.

(粉体付着の抑制性の評価方法)
内径50mm、高さ100mmの円筒状のセル(プラモールド(φ50×100(mm)),株式会社フローリック製)に試料を80g入れ、40℃雰囲気で、2kgの荷重で1週間静置して円柱状の成形体とした。
前記成形体を取り出し、円筒状のセル壁面への粉体の付着状況を目視にて評価した。
<評価基準>
◎・・・セル壁面に粉体の付着が見られない。
○・・・セル壁面の一部に粉体の付着が見られる。
×・・・セル壁面全体に粉体の付着が見られる。
(Evaluation method of suppression of powder adhesion)
80 g of the sample is placed in a cylindrical cell (Plamold (φ 50 × 100 (mm), made by Floric Co., Ltd.) with an inner diameter of 50 mm and a height of 100 mm, and left standing for 1 week under a load of 2 kg at 40 ° C. It was set as a cylindrical-shaped molded object.
The molded body was taken out, and the adhesion state of the powder to the cylindrical cell wall surface was visually evaluated.
<Evaluation criteria>
・ ・ ・ ... no adhesion of powder on cell wall.
○: adhesion of powder is observed on part of the cell wall surface.
X: adhesion of powder is observed on the entire cell wall surface.

(使用原料)
<粒子群(A)>
(a−1):下記製造例1で製造したα−SF塩の粒子群、純分91質量%、水分2質量%、結晶化度30〜35%の準安定固体。
(a−2):下記製造例2で製造したα−SF塩の粒子群、純分91質量%、水分2質量%、結晶化度30〜35%の準安定固体。
(a−3):下記製造例3で製造したα−SF塩の粒子群、純分91質量%、水分2質量%、結晶化度70%〜80%の安定性固体。
(a−4):下記製造例4で製造したα−SF塩の粒子群、純分91質量%、水分2質量%、結晶化度70%〜80%の安定性固体。
(a−1)〜(a−4)中のα−スルホ脂肪酸アルキルエステル塩は、いずれも上記一般式(1)において、Rが炭素数14〜16のアルキル基、Rがメチル基、Mがナトリウムイオンである化合物である。(a−1)〜(a−4)の結晶状態、微粉率、平均粒子径を表1、2に示す。
(Raw material used)
<Particle group (A)>
(A-1): A particle group of an α-SF salt produced in the following Production Example 1, 91% by mass of a pure component, 2% by mass of water, and a metastable solid having a crystallinity of 30 to 35%.
(A-2): A particle group of an α-SF salt produced in the following Production Example 2, 91 mass% pure, 2 mass% water, metastable solid with a crystallinity of 30 to 35%.
(A-3): The particle group of the α-SF salt produced in the following Production Example 3, 91% by mass of pure component, 2% by mass of water, stable solid with 70% to 80% of crystallinity.
(A-4): particle group of α-SF salt produced in the following Production Example 4, stable solid with 91% by mass of pure water, 2% by mass of water, and 70% to 80% of crystallinity.
The α-sulfofatty acid alkyl ester salts in (a-1) to (a-4) are each an alkyl group in which R 1 is a C 14-16 carbon atom, R 2 is a methyl group in the general formula (1). It is a compound in which M is a sodium ion. The crystalline states (a-1) to (a-4), the fine particle ratio, and the average particle size are shown in Tables 1 and 2.

<アルキル硫酸塩の粒子群(B)>
(b−1):ラウリル硫酸ナトリウム(Texapon OC−P,BASF)、純分94質量%。
(b−2):ラウリル硫酸ナトリウム(Shanghai YouYang Indastrial)、純分95質量%。
(b−3):ラウリル硫酸ナトリウム(EMAL 10P HD,花王)、純分98質量%。
(b−4):ラウリル硫酸ナトリウム(EMERSENSE AS 956−P,Emery)、純分95質量%。
(b−1)〜(b−4)の平均粒子径を表1、2に示す。
<無機粉体(C)>
(c−1):A型ゼオライト(タイシリケートケミカル社製の4Aゼオライト)。(c−1)の平均粒子径を表1、2に示す。
(c−2):A型ゼオライト(Chalco社製の4Aゼオライト)。(c−2)の平均粒子径を表1、2に示す。
<Particle Group of Alkyl Sulfate (B)>
(B-1): sodium lauryl sulfate (Texapon OC-P, BASF), pure 94% by mass.
(B-2): sodium lauryl sulfate (Shanghai YouYang Indastrial), pure 95% by mass.
(B-3): sodium lauryl sulfate (EMAL 10P HD, Kao), 98% by mass in pure part.
(B-4): sodium lauryl sulfate (EMERSENSE AS 956-P, Emery), pure 95% by mass.
The average particle diameters of (b-1) to (b-4) are shown in Tables 1 and 2.
<Inorganic powder (C)>
(C-1): A-type zeolite (4A zeolite manufactured by Thai Silicate Chemical Co., Ltd.). The average particle diameter of (c-1) is shown in Tables 1 and 2.
(C-2): A-type zeolite (4A zeolite manufactured by Chalco). The average particle diameter of (c-2) is shown in Tables 1 and 2.

(製造例1:(a−1)の製造)
[ペースト化工程]
パルミチン酸メチル(ライオン株式会社製、商品名「パステルM−16」)と、ステアリン酸メチル(ライオン株式会社製、商品名「パステルM−180」)とを、80:20(質量比)となるように混合した。
撹拌機を備えた容量1kLの反応装置に、前記脂肪酸メチルエステル混合物330kgと、着色抑制剤として、無水硫酸ナトリウムを、脂肪酸メチルエステル混合物の5質量%となる量で投入し、撹拌しながら、窒素ガスで4容量%に希釈したSOガス(スルホン化ガス)110kgをバブリングしながら3時間かけて等速で吹き込み反応させた。反応温度は80℃に保った。脂肪酸メチルエステル混合物に対するスルホン化ガスのモル比(スルホン化ガス/脂肪酸メチルエステル混合物)は、1.10であった。
上記反応物を、エステル化槽に移し、メタノール14kgを供給して、80℃においてエステル化反応を行った。反応終了後のエステル化物をエステル化槽から抜き出し、ラインミキサーで当量の水酸化ナトリウム水溶液を添加して連続的に中和した。
ついで、この中和物を漂白剤混合ラインに注入し、濃度35質量%の過酸化水素水を純分換算で、α−SF塩に対して1〜2質量%となる量で供給し、80℃に保ちながら混合し漂白して、α−SF塩含有ペーストを得た。
(Production Example 1: Production of (a-1))
[Paste formation process]
80:20 (Mass ratio) of methyl palmitate (Lion Corporation, trade name "Pastel M-16") and methyl stearate (Lion Corporation, trade name "Pastel M-180") Mixed as.
In a 1 kL reactor equipped with a stirrer, 330 kg of the fatty acid methyl ester mixture and anhydrous sodium sulfate as a coloring inhibitor are added in an amount of 5% by mass of the fatty acid methyl ester mixture, and while stirring, nitrogen While bubbling, 110 kg of SO 3 gas (sulfonated gas) diluted to 4% by volume with gas was blown at a constant speed for reaction for 3 hours. The reaction temperature was kept at 80 ° C. The molar ratio of sulfonated gas to fatty acid methyl ester mixture (sulfonated gas / fatty acid methyl ester mixture) was 1.10.
The above reaction product was transferred to an esterification tank, and 14 kg of methanol was supplied to carry out an esterification reaction at 80 ° C. After completion of the reaction, the esterified product was withdrawn from the esterification tank, and was neutralized continuously by adding an equivalent aqueous sodium hydroxide solution with a line mixer.
Next, this neutralized product is injected into the bleaching agent mixing line, and a 35% by weight aqueous hydrogen peroxide solution is supplied in an amount of 1 to 2% by mass with respect to the α-SF salt in terms of pure part. The mixture was mixed and bleached while keeping the temperature at .degree. C. to obtain an .alpha.-SF salt-containing paste.

[フレーク化工程]
得られたα−SF塩含有ペーストを、真空薄膜蒸発機(伝熱面:4m、Ballestra社製)に200kg/hrで導入し、内壁加熱温度100〜160℃、真空度0.01〜0.03MPaにて濃縮し、温度100〜130℃の溶融物として取り出した。
この溶融物をベルトクーラー(株式会社日本ベルティング製)を用いて、20〜30℃まで0.5分間で冷却し、さらに解砕機(株式会社日本ベルティング製)を用いてα−SF塩含有フレークを得た。
[粉砕工程]
上記α−SF塩含有フレークを粉砕機(Fitzmill)に投入し1300rpmで粉砕して、α−SF塩の粒子群を得た。
[Flake process]
The obtained paste containing α-SF salt is introduced into a vacuum thin film evaporator (heat transfer surface: 4 m 2 , manufactured by Ballestra) at 200 kg / hr, inner wall heating temperature 100 to 160 ° C., vacuum degree 0.01 to 0 The solution was concentrated at .03 MPa and taken out as a melt at a temperature of 100 to 130.degree.
This molten material is cooled to 20-30 ° C. in 0.5 minutes using a belt cooler (made by Nippon Belting Co., Ltd.), and further containing α-SF salt by using a crusher (made by Nippon Belting Co., Ltd.) I got the flakes.
[Crushing process]
The said (alpha) -SF salt containing flakes were thrown into the grinder (Fitzmill), and it ground at 1300 rpm, and obtained the particle group of (alpha) -SF salt.

[分級工程]
得られたα−SF塩の粒子群を目開き355μmの篩を用いて篩い、篩を通過した微粉をカットした。次に、微粉率が15%となるように、カットした微粉をα−SF塩の粒子群に還元(混合)して(a−1)とした。
[Classification process]
The resulting particles of the α-SF salt were sieved using a 355 μm sieve, and the fine powder passing through the sieve was cut. Next, the cut fine powder was reduced (mixed) to particles of an α-SF salt so as to have a fine powder ratio of 15% to obtain (a-1).

(製造例2:(a−2)の製造)
製造例1において、微粉率が40%となるように分級工程を行ったほかは同様にして(a−2)を調製した。
(Production Example 2: Production of (a-2))
(A-2) was prepared in the same manner as in Production Example 1, except that the classification step was carried out so that the fine powder ratio was 40%.

(製造例3:(a−3)の製造)
製造例1において、フレーク化工程と粉砕工程の間で下記熟成工程を行った。それ以外は製造例1と同様にして、(a−1)よりも結晶化度が高い(a−3)を調製した。
[熟成工程]
α−SF塩含有フレーク600kgを、1mのフレキシブルコンテナバックに充填し、30℃以上の環境で4週間維持した。
(Production Example 3: Production of (a-3))
In Production Example 1, the following ripening step was performed between the flaking step and the grinding step. Other than that was carried out similarly to manufacture example 1, and prepared crystallinity degree (a-3) higher than (a-1).
[Aging process]
The alpha-SF salt containing flakes 600 kg, was packed in a flexible container bag of 1 m 3, that was maintained for 4 weeks at 30 ° C. or higher environment.

(製造例4:(a−4)の製造)
製造例3において、微粉率が40%となるように分級工程を行ったほかは同様にして(a−4)を調製した。
(Production Example 4: Production of (a-4))
(A-4) was prepared in the same manner as in Production Example 3, except that the classification step was carried out so that the fine powder ratio was 40%.

<実施例1〜14>
表1、2に示す配合で粒子群(A)と粒子群(B)と無機粉体(C)を、容器回転式混合機に投入し乾式混合して粉末洗剤組成物を製造した。
得られた粉末洗剤組成物について上記の方法で固化の抑制性及び粉体付着の抑制性を評価した。結果を表1、2に示す(以下、同様。)。
Examples 1 to 14
The powder group (A), the particle group (B) and the inorganic powder (C) were mixed into the container rotary mixer according to the formulations shown in Tables 1 and 2 and dry mixed to produce a powder detergent composition.
With respect to the obtained powder detergent composition, the inhibition of solidification and the inhibition of powder adhesion were evaluated by the methods described above. The results are shown in Tables 1 and 2 (the same applies hereinafter).

<実施例15>
実施例15は無機粉体(C)を含有しない例である。
表2に示す配合で粒子群(A)と粒子群(B)を、実施例1と同様にして容器回転式混合機に投入し乾式混合して粉末洗剤組成物を製造し、実施例1と同様に評価した。
<比較例1、2、4、6>
比較例1、2、4、6は粒子群(B)を含有しない例である。
表2に示す配合で粒子群(A)と無機粉体(C)を、実施例1と同様にして容器回転式混合機に投入し乾式混合して粉末洗剤組成物を製造し、実施例1と同様に評価した。
Example 15
Example 15 is an example which does not contain the inorganic powder (C).
In the same manner as in Example 1, the particle group (A) and the particle group (B) were mixed in the composition shown in Table 2 into a container rotary mixer and dry-mixed to produce a powder detergent composition. It evaluated similarly.
<Comparative Examples 1, 2, 4, 6>
Comparative Examples 1, 2, 4 and 6 are examples in which the particle group (B) is not contained.
In the same manner as in Example 1, the particle group (A) and the inorganic powder (C) were mixed in the composition shown in Table 2 into a container rotary mixer and dry-mixed to produce a powder detergent composition, Example 1 It evaluated similarly.

<比較例3>
比較例3は粒子群(B)及び無機粉体(C)を含有しない例である。
表2に示す粒子群(A)のみからなる粉末洗剤組成物について、実施例1と同様に評価した。
<比較例5>
比較例5は粒子群(A)及び無機粉体(C)を含有しない例である。
表2に示す粒子群(B)のみからなる粉末洗剤組成物について、実施例1と同様に評価した。
Comparative Example 3
The comparative example 3 is an example which does not contain particle group (B) and inorganic powder (C).
The powder detergent composition consisting of only the particle group (A) shown in Table 2 was evaluated in the same manner as Example 1.
Comparative Example 5
The comparative example 5 is an example which does not contain particle group (A) and inorganic powder (C).
The powder detergent composition consisting of only the particle group (B) shown in Table 2 was evaluated in the same manner as Example 1.

Figure 2018003905
Figure 2018003905

Figure 2018003905
Figure 2018003905

表1、2の結果より、実施例1〜15の粉末洗剤組成物は、比較例3に比べて固化がより抑制された。
実施例1〜3と比較例1、実施例4〜8と比較例6、実施例9、10と比較例2とを比べると、粒子群(B)を配合することにより固化性が改善することがわかる。
実施例1〜3と 実施例4,5,7とをそれぞれ比べると、粒子群(A)の結晶状態を安定固体とすることで固化の抑制性が更に改善することがわかる。
実施例11〜14と比較例4の結果より、粒子群(A)中のα−SF塩の純分100質量部に対して、粒子群(B)中のアルキル硫酸塩が1質量部以上となるように配合することで、固化の抑制効果が得られることがわかる。
実施例9、10と比較例2とを比べると、粒子群(A)の微粉率が40%と高い場合でも、粒子群(B)を配合することによって固化性が改善し、特に粒子群(B)の平均粒子径が大きい方がその改善効果が大きいことがわかる。
実施例15と比較例3とを比べると、粒子群(A)の微粉率が40%と高い場合でも、粒子群(B)を配合することによって固化性が改善することがわかる。
実施例11〜14の結果より、粒子群(B)の含有量が多いほど固化性の改善効果が高く、粒子群(B)の含有量が少ないほど粉体付着が抑制されることがわかる。すなわち粒子群(B)の含有量を適切な範囲とすることによって、固化の抑制性と粉体付着の抑制性を両立させることができる。
From the results of Tables 1 and 2, in the powder detergent compositions of Examples 1 to 15, solidification was further suppressed as compared with Comparative Example 3.
Comparison of Examples 1 to 3 with Comparative Example 1, Examples 4 to 8 with Comparative Example 6 and Examples 9 and 10 with Comparative Example 2 improves the solidifying property by blending the particle group (B). I understand.
Comparing Examples 1 to 3 with Examples 4, 5 and 7, respectively, it is understood that the suppression of solidification is further improved by making the crystalline state of the particle group (A) a stable solid.
From the results of Examples 11 to 14 and Comparative Example 4, 1 part by mass or more of the alkyl sulfate in the particle group (B) is based on 100 parts by mass of the pure portion of the α-SF salt in the particle group (A). It turns out that the inhibitory effect of solidification is acquired by mix | blending so that it becomes.
When Examples 9 and 10 and Comparative Example 2 are compared, the solidifying property is improved by blending the particle group (B) even when the fine powder ratio of the particle group (A) is as high as 40%, and in particular, the particle group ( It can be seen that the larger the average particle diameter of B), the greater the improvement effect.
When Example 15 and Comparative Example 3 are compared, it can be seen that, even when the fine particle rate of the particle group (A) is as high as 40%, the solidifying property is improved by blending the particle group (B).
From the results of Examples 11 to 14, it is understood that the effect of improving the solidifying property is higher as the content of the particle group (B) is larger, and the powder adhesion is suppressed as the content of the particle group (B) is smaller. That is, by setting the content of the particle group (B) in an appropriate range, it is possible to achieve both the suppression of solidification and the suppression of powder adhesion.

上述の粉末洗剤組成物は、α−SF塩を高濃度で含みながら固化の抑制性に優れる。
上述の粉末洗剤組成物は、他の洗剤成分とともに配合して粉末洗剤製品の製造に好適に用いられる。
The above-mentioned powder detergent composition is excellent in the inhibition of solidification while containing the α-SF salt at a high concentration.
The above-mentioned powder detergent compositions are suitably used together with other detergent ingredients for the production of powder detergent products.

Claims (5)

α−スルホ脂肪酸アルキルエステル塩の粒子群(A)と、アルキル硫酸塩の粒子群(B)を含み、
粉末洗剤組成物の総質量に対して、前記粒子群(A)中のα−スルホ脂肪酸アルキルエステル塩の純分と前記粒子群(B)中のアルキル硫酸塩との合計の含有量が50質量%以上であり、
前記粒子群(A)中のα−スルホ脂肪酸アルキルエステル塩の純分100質量部に対して、前記粒子群(B)中のアルキル硫酸塩が1〜100質量部であり、
前記α−スルホ脂肪酸アルキルエステル塩の粒子と前記アルキル硫酸塩の粒子とが、それぞれ独立した粒子として存在する、粉末洗剤組成物。
a particle group of an α-sulfo fatty acid alkyl ester salt (A) and a particle group of an alkyl sulfate (B),
The total content of the pure component of the α-sulfofatty acid alkyl ester salt in the particle group (A) and the alkyl sulfate in the particle group (B) is 50 mass based on the total mass of the powder detergent composition. % Or more,
The amount of the alkyl sulfate in the particle group (B) is 1 to 100 parts by mass with respect to 100 parts by mass of the pure portion of the α-sulfofatty acid alkyl ester salt in the particle group (A),
A powder detergent composition, wherein the particles of the α-sulfo fatty acid alkyl ester salt and the particles of the alkyl sulfate are present as independent particles.
α−スルホ脂肪酸アルキルエステル塩の粒子群(A)と、アルキル硫酸塩の粒子群(B)と、無機粉体(C)を含み、
粉末洗剤組成物の総質量に対して、前記粒子群(A)中のα−スルホ脂肪酸アルキルエステル塩の純分と前記粒子群(B)中のアルキル硫酸塩との合計の含有量が50質量%以上であり、
前記粒子群(A)中のα−スルホ脂肪酸アルキルエステル塩の純分100質量部に対して、前記粒子群(B)中のアルキル硫酸塩が1〜100質量部であり、
粉末洗剤組成物の総質量に対して、前記無機粉体(C)の含有量が1〜30質量%であり、
前記α−スルホ脂肪酸アルキルエステル塩の粒子と前記アルキル硫酸塩の粒子とが、それぞれ独立した粒子として存在する、粉末洗剤組成物。
particles of an α-sulfo fatty acid alkyl ester salt (A), particles of an alkyl sulfate (B), and inorganic powder (C),
The total content of the pure component of the α-sulfofatty acid alkyl ester salt in the particle group (A) and the alkyl sulfate in the particle group (B) is 50 mass based on the total mass of the powder detergent composition. % Or more,
The amount of the alkyl sulfate in the particle group (B) is 1 to 100 parts by mass with respect to 100 parts by mass of the pure portion of the α-sulfofatty acid alkyl ester salt in the particle group (A),
The content of the inorganic powder (C) is 1 to 30% by mass with respect to the total mass of the powder detergent composition,
A powder detergent composition, wherein the particles of the α-sulfo fatty acid alkyl ester salt and the particles of the alkyl sulfate are present as independent particles.
前記粒子群(B)の平均粒子径が50μm以上、3mm未満であり、前記無機粉体(C)の平均粒子径が0.8〜5μmである、請求項2に記載の粉末洗剤組成物。   The powder detergent composition according to claim 2, wherein the average particle diameter of the particle group (B) is 50 μm or more and less than 3 mm, and the average particle diameter of the inorganic powder (C) is 0.8 to 5 μm. 請求項1に記載の粉末洗剤組成物を製造する方法であって、
前記α−スルホ脂肪酸アルキルエステル塩の粒子群(A)と、前記アルキル硫酸塩の粒子群(B)とを乾式混合する、粉末洗剤組成物の製造方法。
A method of producing a powder detergent composition according to claim 1, comprising
The manufacturing method of the powder detergent composition which dry-mixes particle group (A) of the said (alpha) -sulfo fatty-acid alkylester salt, and particle group (B) of the said alkyl sulfate.
請求項2または3に記載の粉末洗剤組成物を製造する方法であって、
前記α−スルホ脂肪酸アルキルエステル塩の粒子群(A)と、前記アルキル硫酸塩の粒子群(B)と、前記無機粉体(C)を乾式混合する、粉末洗剤組成物の製造方法。
A method of producing the powder detergent composition according to claim 2 or 3,
The manufacturing method of the powder detergent composition which dry-mixes particle group (A) of the said (alpha) -sulfo fatty-acid alkylester salt, particle group (B) of the said alkyl sulfate, and the said inorganic powder (C).
JP2018525249A 2016-06-30 2017-06-29 Powder detergent composition and method for producing the same Pending JPWO2018003905A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016131106 2016-06-30
JP2016131106 2016-06-30
PCT/JP2017/023870 WO2018003905A1 (en) 2016-06-30 2017-06-29 Powdered detergent composition and method for producing same

Publications (1)

Publication Number Publication Date
JPWO2018003905A1 true JPWO2018003905A1 (en) 2019-04-25

Family

ID=60785129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018525249A Pending JPWO2018003905A1 (en) 2016-06-30 2017-06-29 Powder detergent composition and method for producing the same

Country Status (4)

Country Link
JP (1) JPWO2018003905A1 (en)
CN (1) CN109477034A (en)
CO (1) CO2019000751A2 (en)
WO (1) WO2018003905A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088100A (en) * 1983-10-21 1985-05-17 ライオン株式会社 Granular detergent composition
JPH0873888A (en) * 1994-09-09 1996-03-19 Lion Corp Production of high bulk density granular detergent composition
JP2006161002A (en) * 2004-12-10 2006-06-22 Lion Corp HIGH-CONCENTRATION alpha-SULFOFATTY ACID ALKYL ESTER SALT-CONTAINING PARTICLE AND METHOD FOR PRODUCING THE SAME AND DETERGENT
JP2008063419A (en) * 2006-09-06 2008-03-21 Lion Corp Moderate bulk-density powdery detergent for clothing and its manufacturing method
JP2011116807A (en) * 2009-12-01 2011-06-16 Lion Corp COVERED alpha-SULFOFATTY ACID ALKYL ESTER SALT PARTICLE AND METHOD OF MANUFACTURING THE SAME
JP2011121996A (en) * 2009-12-08 2011-06-23 Lion Corp PARTICLE COMPOSITION FOR DETERGENT CONTAINING alpha-SULFOFATTY ACID ALKYL ESTER SALT, AND SOLID DETERGENT COMPOSITION CONTAINING PARTICLES FOR DETERGENT CONTAINING alpha-SULFOFATTY ACID ALKYL ESTER SALT
JP2012107165A (en) * 2010-11-19 2012-06-07 Kao Corp Method for manufacturing detergent particle group

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5758380B2 (en) * 2010-04-16 2015-08-05 ライオン株式会社 Granular detergent composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088100A (en) * 1983-10-21 1985-05-17 ライオン株式会社 Granular detergent composition
JPH0873888A (en) * 1994-09-09 1996-03-19 Lion Corp Production of high bulk density granular detergent composition
JP2006161002A (en) * 2004-12-10 2006-06-22 Lion Corp HIGH-CONCENTRATION alpha-SULFOFATTY ACID ALKYL ESTER SALT-CONTAINING PARTICLE AND METHOD FOR PRODUCING THE SAME AND DETERGENT
JP2008063419A (en) * 2006-09-06 2008-03-21 Lion Corp Moderate bulk-density powdery detergent for clothing and its manufacturing method
JP2011116807A (en) * 2009-12-01 2011-06-16 Lion Corp COVERED alpha-SULFOFATTY ACID ALKYL ESTER SALT PARTICLE AND METHOD OF MANUFACTURING THE SAME
JP2011121996A (en) * 2009-12-08 2011-06-23 Lion Corp PARTICLE COMPOSITION FOR DETERGENT CONTAINING alpha-SULFOFATTY ACID ALKYL ESTER SALT, AND SOLID DETERGENT COMPOSITION CONTAINING PARTICLES FOR DETERGENT CONTAINING alpha-SULFOFATTY ACID ALKYL ESTER SALT
JP2012107165A (en) * 2010-11-19 2012-06-07 Kao Corp Method for manufacturing detergent particle group

Also Published As

Publication number Publication date
CN109477034A (en) 2019-03-15
WO2018003905A1 (en) 2018-01-04
CO2019000751A2 (en) 2019-02-19

Similar Documents

Publication Publication Date Title
US8501972B2 (en) Solid fatty alkyl ester sulfonate metal salt and method for producing powder thereof with sharp particle size distribution
JPH07509267A (en) Process and composition of compact detergent
WO2016047788A1 (en) Granular detergent and detergent product
JP2008063419A (en) Moderate bulk-density powdery detergent for clothing and its manufacturing method
JPH11504363A (en) Preparation of granular detergent components or compositions
JPH07504696A (en) Granular detergent composition
JP5538235B2 (en) Process for producing α-sulfo fatty acid alkyl ester salt aqueous solution
JPWO2018003905A1 (en) Powder detergent composition and method for producing the same
WO2012067227A1 (en) Method for producing detergent particle group
US8455425B2 (en) Particles containing alkali
JP5875226B2 (en) Surfactant composition
JP6774798B2 (en) Coated α-sulfofatty acid alkyl ester salt particles
KR101840074B1 (en) Powder detergent composition and method for producing same
JP4488211B2 (en) Method for producing α-sulfo fatty acid alkyl ester salt-containing particles
JP2013170260A (en) Granular detergent and method for producing the same
JP6644000B2 (en) Coated α-sulfofatty acid alkyl ester salt particles, method for producing the same, and powder detergent
JP2011116807A (en) COVERED alpha-SULFOFATTY ACID ALKYL ESTER SALT PARTICLE AND METHOD OF MANUFACTURING THE SAME
JP4379586B2 (en) Method for producing high bulk density granular detergent composition
JP2000351999A (en) Base granule cluster
JPWO2016104799A1 (en) Coated α-sulfo fatty acid alkyl ester salt particles, production method thereof, and powder detergent
AU2006334038B2 (en) Method for producing detergent particles
EP1212399A1 (en) Process for preparing high-bulk density detergent compositions
JP2000192096A (en) Group of detergent particles having high bulk density
JP2007045865A (en) Method for producing mononuclear detergent granular mass
JP2016069394A (en) Granular detergent, method for producing the same and detergent product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210914