[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2017179192A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JPWO2017179192A1
JPWO2017179192A1 JP2018511854A JP2018511854A JPWO2017179192A1 JP WO2017179192 A1 JPWO2017179192 A1 JP WO2017179192A1 JP 2018511854 A JP2018511854 A JP 2018511854A JP 2018511854 A JP2018511854 A JP 2018511854A JP WO2017179192 A1 JPWO2017179192 A1 JP WO2017179192A1
Authority
JP
Japan
Prior art keywords
temperature
indoor
compressor
pipe
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018511854A
Other languages
Japanese (ja)
Other versions
JP6559333B2 (en
Inventor
淳平 工藤
淳平 工藤
亮 大矢
亮 大矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2017179192A1 publication Critical patent/JPWO2017179192A1/en
Application granted granted Critical
Publication of JP6559333B2 publication Critical patent/JP6559333B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空気調和機は、圧縮機、室外熱交換器、膨張弁、及び室内熱交換器が冷媒配管を介して接続された冷媒回路と、室内熱交換器が設置された室内の室内温度を検知する室内温度センサと、室内熱交換器の配管温度を検知する配管温度センサと、室内温度センサと配管温度センサとの検知結果に基づき圧縮機を制御する制御装置とを備え、制御装置は、室内温度センサにより検知された室内温度と設定温度とを用いて圧縮機の駆動周波数を設定すると共に、室内温度センサにより検知された室内温度から目標蒸発温度を設定する運転条件設定部と、配管温度センサにより検知された配管温度と目標蒸発温度との差分が高温閾値より小さいか否かを判定する運転条件判定部と、運転条件判定部の判定において、配管温度と目標蒸発温度との差分が高温閾値以上の場合に、駆動周波数よりも高い周波数で圧縮機を駆動させる圧縮機制御部とを有するものである。  The air conditioner has a refrigerant circuit in which a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are connected via a refrigerant pipe, and an indoor temperature that detects the indoor temperature of the room in which the indoor heat exchanger is installed. A temperature sensor; a pipe temperature sensor that detects a pipe temperature of the indoor heat exchanger; and a control device that controls the compressor based on detection results of the indoor temperature sensor and the pipe temperature sensor. Set the compressor drive frequency using the room temperature and the set temperature detected by the operation temperature, set the target evaporation temperature from the room temperature detected by the room temperature sensor, and the pipe temperature sensor The difference between the pipe temperature and the target evaporation temperature is high in the operation condition determination unit that determines whether or not the difference between the measured pipe temperature and the target evaporation temperature is smaller than the high temperature threshold. If less than the threshold value, and it has a compressor control unit for driving the compressor at a frequency higher than the drive frequency.

Description

本発明は、湿度制御を行う空気調和機に関するものである。   The present invention relates to an air conditioner that performs humidity control.

従来の空気調和機は、室内温度と設定温度とが離れている場合には、最初に設定温度を目標とする温度差に基づく冷房運転を行い、室内温度を設定温度に近づけ、室内温度と設定温度とが近接すると、蒸発温度を目標とする運転に切り替えるものがある(例えば、特許文献1参照)。   When the room temperature and the set temperature are far from each other, the conventional air conditioner first performs a cooling operation based on the temperature difference targeting the set temperature, bringing the room temperature close to the set temperature and setting the room temperature and the set temperature. When the temperature is close, there is one that switches to an operation that targets the evaporation temperature (for example, see Patent Document 1).

特開平9−14724号公報Japanese Patent Laid-Open No. 9-14724

しかし、特許文献1の空気調和機は、室内温度が設定温度に達した後に除湿を目標とした運転に切り替える。このとき、温度を目標値に近づけた後に湿度を目標値に近づけるため、温度と湿度とを素早く目標値に近づけることができない。   However, the air conditioner of Patent Document 1 switches to an operation aimed at dehumidification after the room temperature reaches the set temperature. At this time, since the humidity is brought close to the target value after the temperature is brought close to the target value, the temperature and humidity cannot be brought close to the target value quickly.

本発明は、上記のような課題を解決するためになされたもので、温度と湿度とを素早く目標値に近づけることで快適な空調を行うことができる空気調和機を提供するものである。   The present invention has been made to solve the above problems, and provides an air conditioner that can perform comfortable air conditioning by quickly bringing temperature and humidity close to target values.

本発明に係る空気調和機は、圧縮機、室外熱交換器、膨張弁、及び室内熱交換器が冷媒配管を介して接続された冷媒回路と、室内熱交換器が設置された室内の室内温度を検知する室内温度センサと、室内熱交換器の配管温度を検知する配管温度センサと、室内温度センサと配管温度センサとの検知結果に基づき圧縮機を制御する制御装置と、を備え、制御装置は、室内温度センサにより検知された室内温度と設定温度とを用いて圧縮機の駆動周波数を設定すると共に、室内温度センサにより検知された室内温度から目標蒸発温度を設定する運転条件設定部と、配管温度センサにより検知された配管温度と目標蒸発温度との差分が高温閾値より小さいか否かを判定する運転条件判定部と、運転条件判定部の判定において、配管温度と目標蒸発温度との差分が高温閾値以上の場合に、駆動周波数よりも高い周波数で圧縮機を駆動させる圧縮機制御部と、を有するものである。   An air conditioner according to the present invention includes a compressor, an outdoor heat exchanger, an expansion valve, a refrigerant circuit in which an indoor heat exchanger is connected via a refrigerant pipe, and an indoor temperature in which the indoor heat exchanger is installed. An indoor temperature sensor for detecting the temperature, a pipe temperature sensor for detecting the pipe temperature of the indoor heat exchanger, and a control device for controlling the compressor based on the detection results of the indoor temperature sensor and the pipe temperature sensor. Is configured to set the drive frequency of the compressor using the indoor temperature detected by the indoor temperature sensor and the set temperature, and to set the target evaporation temperature from the indoor temperature detected by the indoor temperature sensor; In the determination of the operation condition determination unit that determines whether or not the difference between the pipe temperature detected by the pipe temperature sensor and the target evaporation temperature is smaller than the high temperature threshold, the pipe temperature and the target evaporation temperature The difference between the in the case of more than high temperature threshold, those having a compressor control unit for driving the compressor at a frequency higher than the drive frequency.

本発明の空気調和機は、冷房運転開始当初から目標蒸発温度ETmが設定され、室内機の配管温度ETと目標蒸発温度Etmとの差分を設定閾値と比較して圧縮機の運転周波数が制御されている。この構成により、本発明の空気調和機は、室内温度を設定温度にする冷房運転条件だけではなく除湿運転条件も調整している。その結果、冷房運転開始時から温度と湿度とを素早く目標値に近づけることで快適な空調を行うことができる。   In the air conditioner of the present invention, the target evaporation temperature ETm is set from the beginning of the cooling operation, and the operation frequency of the compressor is controlled by comparing the difference between the piping temperature ET of the indoor unit and the target evaporation temperature Etm with a set threshold value. ing. With this configuration, the air conditioner of the present invention adjusts not only the cooling operation condition for setting the room temperature to the set temperature but also the dehumidifying operation condition. As a result, comfortable air conditioning can be performed by quickly bringing the temperature and humidity close to the target values from the start of the cooling operation.

本発明の実施の形態1に係る空気調和機の冷媒回路の構成図である。It is a block diagram of the refrigerant circuit of the air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和機の制御装置の機能ブロック図である。It is a functional block diagram of the control apparatus of the air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和機の制御フローを示す図である。It is a figure which shows the control flow of the air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る空気調和機の制御装置の機能ブロック図である。It is a functional block diagram of the control apparatus of the air conditioner which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る空気調和機の制御フローを示す図である。It is a figure which shows the control flow of the air conditioner which concerns on Embodiment 2 of this invention.

実施の形態1.
図1は、本発明の実施の形態1に係る空気調和機の冷媒回路の構成図である。空気調和機1は、空調対象空間を空気調和するものであり、室外機11及び室内機12を備え、室外機11と、室内機12とは冷媒配管13を介して接続されている。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a refrigerant circuit of an air conditioner according to Embodiment 1 of the present invention. The air conditioner 1 is for air conditioning an air-conditioning target space, and includes an outdoor unit 11 and an indoor unit 12, and the outdoor unit 11 and the indoor unit 12 are connected via a refrigerant pipe 13.

室外機11は、圧縮機21、流路切替器22、室外熱交換器23、膨張弁24、室外送風機31及び制御装置40を備えている。室内機12は、室内熱交換器25、室内送風機32、配管温度センサ33、室内温度センサ34及び室内送風機回転数センサ36を備えている。また、空気調和機1は、圧縮機21、室外熱交換器23、膨張弁24及び室内熱交換器25が冷媒配管13を介して接続された冷媒回路15を備え、冷媒回路15内を冷媒が循環することにより、冷凍サイクルが形成されるものである。   The outdoor unit 11 includes a compressor 21, a flow path switch 22, an outdoor heat exchanger 23, an expansion valve 24, an outdoor blower 31, and a control device 40. The indoor unit 12 includes an indoor heat exchanger 25, an indoor fan 32, a pipe temperature sensor 33, an indoor temperature sensor 34, and an indoor fan rotation speed sensor 36. The air conditioner 1 also includes a refrigerant circuit 15 in which a compressor 21, an outdoor heat exchanger 23, an expansion valve 24, and an indoor heat exchanger 25 are connected via a refrigerant pipe 13. A refrigeration cycle is formed by circulation.

圧縮機21は、例えばスクロール式またはロータリー式等の公知技術を用いて形成されるものであり、冷媒を圧縮して吐出する。圧縮機21は、コンプレッサモータ(CM)の周波数が、例えばインバータ等によって可変に調整されることで容量が制御される。流路切替器22は、例えば四方弁であり、冷媒の流路方向を切り替える。流路切替器22は、冷房運転時には圧縮機21の吐出側と室外熱交換器23とを接続し、圧縮機21の吸入側と室内熱交換器25とを接続する冷媒回路を形成する。一方、流路切替器22は、暖房運転時には圧縮機21の吐出側と室内熱交換器25とを接続し、圧縮機21の吸入側と室外熱交換器23とを接続する冷媒回路を形成する。   The compressor 21 is formed using a known technique such as a scroll type or a rotary type, for example, and compresses and discharges the refrigerant. The capacity of the compressor 21 is controlled by variably adjusting the frequency of the compressor motor (CM) by, for example, an inverter. The flow path switch 22 is, for example, a four-way valve, and switches the flow path direction of the refrigerant. The flow path switch 22 forms a refrigerant circuit that connects the discharge side of the compressor 21 and the outdoor heat exchanger 23 and connects the suction side of the compressor 21 and the indoor heat exchanger 25 during the cooling operation. On the other hand, the flow path switch 22 connects the discharge side of the compressor 21 and the indoor heat exchanger 25 during the heating operation, and forms a refrigerant circuit that connects the suction side of the compressor 21 and the outdoor heat exchanger 23. .

室外熱交換器23は、例えばフィンチューブで形成され、冷房運転時には凝縮器として機能し、暖房運転時には蒸発器として機能する。室外送風機31は、室外熱交換器23と対向し、室外ファンを回転させることにより室外熱交換器23に空気を供給する。室内熱交換器25は、例えばフィンチューブで形成され、冷房運転時には蒸発器として機能し、暖房運転時には凝縮器として機能する。室内送風機32は、室内熱交換器25と対向し、室内ファンを回転させることにより室内熱交換器25に空気を供給する。室外送風機31と室内送風機32とは、ファンモータ(FM)の回転数が、例えばインバータ等によって可変に調整されることで回転数が制御される。膨張弁24は、例えば電子膨張弁で形成され、開度を調整することにより冷媒配管13を流通する冷媒の流量を調整するものである。   The outdoor heat exchanger 23 is formed of, for example, a fin tube, and functions as a condenser during cooling operation and functions as an evaporator during heating operation. The outdoor blower 31 faces the outdoor heat exchanger 23 and supplies air to the outdoor heat exchanger 23 by rotating the outdoor fan. The indoor heat exchanger 25 is formed of, for example, a fin tube, and functions as an evaporator during cooling operation, and functions as a condenser during heating operation. The indoor blower 32 faces the indoor heat exchanger 25 and supplies air to the indoor heat exchanger 25 by rotating the indoor fan. The rotational speed of the outdoor blower 31 and the indoor blower 32 is controlled by variably adjusting the rotational speed of the fan motor (FM), for example, by an inverter or the like. The expansion valve 24 is formed of, for example, an electronic expansion valve, and adjusts the flow rate of the refrigerant flowing through the refrigerant pipe 13 by adjusting the opening degree.

配管温度センサ33は、室内熱交換器25の配管に設けられ、室内熱交換器25の配管温度ETを検知するものである。室内温度センサ34は、室内機12に設けられ、制御装置40に室内熱交換器25が配置されている室内の室内温度Trを検知するものである。室内送風機回転数センサ36は、室内送風機32に設けられ、室内送風機32の回転数Rmを検知するものである。   The pipe temperature sensor 33 is provided in the pipe of the indoor heat exchanger 25 and detects the pipe temperature ET of the indoor heat exchanger 25. The indoor temperature sensor 34 is provided in the indoor unit 12 and detects the indoor temperature Tr in the room where the indoor heat exchanger 25 is disposed in the control device 40. The indoor fan rotation speed sensor 36 is provided in the indoor fan 32 and detects the rotation speed Rm of the indoor fan 32.

制御装置40は、圧縮機21及び室内送風機32の駆動を制御するものである。制御装置40は、配管温度センサ33から配管温度ET及び室内温度センサ34から室内温度Trを取得する。また、制御装置40は、室内送風機回転数センサ36から室内送風機32の回転数Rmを取得する。図1では、制御装置40は、室外機11に設けられているが、室内機12に設けられていてもよい。   The control device 40 controls driving of the compressor 21 and the indoor blower 32. The control device 40 acquires the pipe temperature ET from the pipe temperature sensor 33 and the room temperature Tr from the room temperature sensor 34. Further, the control device 40 acquires the rotation speed Rm of the indoor fan 32 from the indoor fan rotation speed sensor 36. In FIG. 1, the control device 40 is provided in the outdoor unit 11, but may be provided in the indoor unit 12.

図2は、本発明の実施の形態1に係る空気調和機の制御装置の機能ブロック図である。図2の制御装置40の機能構成は、マイコン、コンピュータ等のハードウェア上でプログラムを実行させることにより、構築されたものである。制御装置40は、運転条件設定部51、運転条件判定部53及び圧縮機制御部55を備えるものである。   FIG. 2 is a functional block diagram of the control device for the air conditioner according to Embodiment 1 of the present invention. The functional configuration of the control device 40 in FIG. 2 is constructed by executing a program on hardware such as a microcomputer or a computer. The control device 40 includes an operation condition setting unit 51, an operation condition determination unit 53, and a compressor control unit 55.

運転条件設定部51は、駆動周波数設定部61と、目標蒸発温度設定部63と、設定条件記憶部65とを備えている。駆動周波数設定部61は、室内温度センサ34によって検知された室内温度Trと、例えば遠隔操作器である操作部37によって設定された設定温度Tsetとから、圧縮機21の駆動周波数fzdを設定する。例えば、室内温度Trと設定温度Tsetとの差分が大きい場合は周波数を高くするように設定される。   The operation condition setting unit 51 includes a drive frequency setting unit 61, a target evaporation temperature setting unit 63, and a setting condition storage unit 65. The drive frequency setting unit 61 sets the drive frequency fzd of the compressor 21 from the room temperature Tr detected by the room temperature sensor 34 and the set temperature Tset set by the operation unit 37 that is a remote controller, for example. For example, when the difference between the room temperature Tr and the set temperature Tset is large, the frequency is set to be high.

目標蒸発温度設定部63は、例えば、設定条件記憶部65に記憶されている湿度と露点温度の相関関係のテーブル等を用いて、室内温度Trから求める露点温度を算出し、露点温度を目標蒸発温度ETmと設定する。露点温度は、例えば、湿度60%として算出する。   The target evaporation temperature setting unit 63 calculates the dew point temperature obtained from the room temperature Tr using, for example, a correlation table between the humidity and the dew point temperature stored in the setting condition storage unit 65, and the dew point temperature is the target evaporation. Set to temperature ETm. The dew point temperature is calculated as a humidity of 60%, for example.

運転条件判定部53は、配管温度センサ33により検知された配管温度ETと目標蒸発温度ETmとの差分が設定閾値より小さいか否かを判定する。   The operating condition determination unit 53 determines whether or not the difference between the pipe temperature ET detected by the pipe temperature sensor 33 and the target evaporation temperature ETm is smaller than a set threshold value.

具体的には、運転条件判定部53は、配管温度ETと目標蒸発温度ETmとの温度差ΔET(ΔET=ET−ETm)が、例えば低温閾値(例えば−2℃)より小さい(ΔET<−2)か否かを判定する。温度差ΔETが低温閾値以上(ΔET≧−2)の場合は、さらに、温度差ΔETが、例えば高温閾値(例えば0℃)より小さい(ΔET<0)か否かを判定する。   Specifically, the operating condition determination unit 53 has a temperature difference ΔET (ΔET = ET−ETm) between the pipe temperature ET and the target evaporation temperature ETm, for example, smaller than a low temperature threshold (for example, −2 ° C.) (ΔET <−2). ) Or not. When the temperature difference ΔET is equal to or higher than the low temperature threshold (ΔET ≧ −2), it is further determined whether or not the temperature difference ΔET is smaller than, for example, a high temperature threshold (for example, 0 ° C.) (ΔET <0).

圧縮機制御部55は、運転条件判定部53による判定結果に基づき、コンプレッサモータ(CM)の周波数を調整して圧縮機21の容量を制御することで、室内熱交換器の配管温度を調整し、室内温度の調整及び湿度の調整を行う。   The compressor control unit 55 adjusts the piping temperature of the indoor heat exchanger by adjusting the frequency of the compressor motor (CM) and controlling the capacity of the compressor 21 based on the determination result by the operating condition determination unit 53. Adjust the room temperature and humidity.

具体的には、温度差ΔETが、ΔET<−2の場合は、配管温度Etが目標蒸発温度Etmより低いために室内熱交換器25で室内空気の水蒸気が結露する。よって、十分に除湿できる状態である。そのため、圧縮機制御部55は、設定された駆動周波数fzdに基づき、圧縮機21の回転数を制御して室内温度の調整を行う。   Specifically, when the temperature difference ΔET is ΔET <−2, since the pipe temperature Et is lower than the target evaporation temperature Etm, water vapor in the room air is condensed in the indoor heat exchanger 25. Therefore, it is a state which can fully dehumidify. Therefore, the compressor control unit 55 adjusts the room temperature by controlling the rotation speed of the compressor 21 based on the set drive frequency fzd.

温度差ΔETが、ΔET≧−2かつΔET<0の場合は、配管温度Etは目標蒸発温度Etmより低いために除湿できている状態であるが、これ以上配管温度Etが上がると除湿できない状態となる。そこで、圧縮機制御部55は、圧縮機21の回転数を下げず、蒸発温度を上げないで結露する状態を維持する。設定された駆動周波数fzdが圧縮機21の回転数を上げることにより配管温度Etを低くできる場合は、設定された駆動周波数fzdに基づき、圧縮機21の回転数を制御して室内温度と湿度の調整を行う。   When the temperature difference ΔET is ΔET ≧ −2 and ΔET <0, the pipe temperature Et is lower than the target evaporation temperature Etm, so that the dehumidification is possible. Become. Therefore, the compressor control unit 55 maintains the state of condensation without reducing the rotation speed of the compressor 21 and without increasing the evaporation temperature. When the set drive frequency fzd can lower the piping temperature Et by increasing the rotation speed of the compressor 21, the rotation speed of the compressor 21 is controlled based on the set drive frequency fzd to control the room temperature and humidity. Make adjustments.

温度差ΔETが、ΔET≧0の場合は、配管温度Etは、目標蒸発温度Etmと高いか等しいために除湿できないか除湿能力が低い状態である。そこで、圧縮機制御部55は、設定された駆動周波数fzdによらず、周波数を上昇させ、配管温度Etが除湿可能な温度にまで低下させる。   When the temperature difference ΔET is ΔET ≧ 0, the pipe temperature Et is higher or equal to the target evaporation temperature Etm, so that it cannot be dehumidified or has a low dehumidifying ability. Therefore, the compressor control unit 55 increases the frequency regardless of the set drive frequency fzd, and reduces the pipe temperature Et to a dehumidifying temperature.

図3は、本発明の実施の形態1に係る空気調和機の制御フローを示す図である。操作部37に室内の設定温度Tsetが入力され(ステップST1)、冷房運転が開始される(ステップST2)。室内温度センサ34が検知した室内温度Trが、運転条件設定部51に入力される(ステップST3)。運転条件設定部51は、設定温度Tsetと、室内温度Trとに基づき圧縮機の出力を演算し、駆動周波数fzdを設定する(ステップST4)。目標蒸発温度設定部63は、室内温度Trから求める露点温度を算出し、露点温度を目標蒸発温度ETmとして設定する(ステップST5)。   FIG. 3 is a diagram showing a control flow of the air conditioner according to Embodiment 1 of the present invention. The indoor set temperature Tset is input to the operation unit 37 (step ST1), and the cooling operation is started (step ST2). The room temperature Tr detected by the room temperature sensor 34 is input to the operating condition setting unit 51 (step ST3). The operating condition setting unit 51 calculates the output of the compressor based on the set temperature Tset and the room temperature Tr, and sets the drive frequency fzd (step ST4). The target evaporation temperature setting unit 63 calculates the dew point temperature obtained from the room temperature Tr, and sets the dew point temperature as the target evaporation temperature ETm (step ST5).

運転条件判定部53は、配管温度センサ33から配管温度ETを取得する(ステップST6)。運転条件判定部53は、配管温度ETと目標蒸発温度ETmとの温度差ΔET(ΔET=ET−ETm)が低温閾値(例えば−2℃)より小さい(ΔET<−2)か否かを判定する(ステップST7)。   The operating condition determination unit 53 acquires the pipe temperature ET from the pipe temperature sensor 33 (step ST6). The operating condition determination unit 53 determines whether or not the temperature difference ΔET (ΔET = ET−ETm) between the pipe temperature ET and the target evaporation temperature ETm is smaller than a low temperature threshold (for example, −2 ° C.) (ΔET <−2). (Step ST7).

運転条件判定部53が、温度差ΔETが−2℃より小さい(ΔET<−2)と判定した場合(ステップST7がYES)は、圧縮機制御部55が、圧縮機21に設定された駆動周波数fzdを出力する(ステップST8)。   When the operating condition determination unit 53 determines that the temperature difference ΔET is smaller than −2 ° C. (ΔET <−2) (YES in step ST7), the compressor control unit 55 sets the drive frequency set in the compressor 21. fzd is output (step ST8).

運転条件判定部53が、温度差ΔETが−2℃以上(ΔET≧−2)と判定した場合(ステップST7がNO)は、運転条件判定部53が、温度差ΔET(ΔET=ET−ETm)が高温閾値(例えば0℃)より小さい(ΔET<0)か否かをさらに判定する(ステップST9)。   When the operating condition determining unit 53 determines that the temperature difference ΔET is −2 ° C. or more (ΔET ≧ −2) (NO in step ST7), the operating condition determining unit 53 determines the temperature difference ΔET (ΔET = ET−ETm). It is further determined whether or not is smaller than a high temperature threshold (for example, 0 ° C.) (ΔET <0) (step ST9).

運転条件判定部53が、温度差ΔETが0℃より小さい(ΔET<0)と判定した場合(ステップST9がYES)には、圧縮機制御部55は、周波数をダウンさせない(ステップST10)。圧縮機制御部55は、駆動周波数fzdが周波数を上昇させる場合のみ出力する。   When the operating condition determination unit 53 determines that the temperature difference ΔET is smaller than 0 ° C. (ΔET <0) (YES in step ST9), the compressor control unit 55 does not decrease the frequency (step ST10). The compressor control unit 55 outputs only when the drive frequency fzd increases the frequency.

運転条件判定部53が、温度差ΔETが0℃以上(ΔET≧0)と判定した場合(ステップST9がNO)は、圧縮機制御部55は、周波数を上昇させる(ステップST11)。   When the operating condition determination unit 53 determines that the temperature difference ΔET is 0 ° C. or more (ΔET ≧ 0) (NO in step ST9), the compressor control unit 55 increases the frequency (step ST11).

その後、(ステップST8)、(ステップST10)及び(ステップST11)で制御された圧縮機21の駆動に基づき変化した室内温度Trが室内温度センサ34によって検知され(ステップST3)、上記一例の処理が繰り返される(ステップST3〜ステップST11)。   Thereafter, the indoor temperature sensor 34 detects the changed indoor temperature Tr based on the driving of the compressor 21 controlled in (Step ST8), (Step ST10), and (Step ST11) (Step ST3). Repeated (step ST3 to step ST11).

以上のように、冷房運転開始当初から目標蒸発温度ETmが設定され、室内機の配管温度ETと目標蒸発温度Etmとの差分を設定閾値と比較して圧縮機の運転周波数が制御されている。この構成により、室内温度を設定温度にする冷房運転条件だけではなく除湿運転条件も調整している。その結果、冷房運転開始時から温度と湿度とを素早く目標値に近づけることで快適な空調を行うことができる。すなわち、従来は冷房運転と除湿運転とを順番に行っていたが、実施の形態1では常に除湿状態で冷房運転を行うことができる。   As described above, the target evaporation temperature ETm is set from the beginning of the cooling operation, and the operation frequency of the compressor is controlled by comparing the difference between the piping temperature ET of the indoor unit and the target evaporation temperature Etm with the set threshold value. With this configuration, not only the cooling operation condition for setting the room temperature to the set temperature but also the dehumidification operation condition are adjusted. As a result, comfortable air conditioning can be performed by quickly bringing the temperature and humidity close to the target values from the start of the cooling operation. That is, the cooling operation and the dehumidifying operation are conventionally performed in order, but in the first embodiment, the cooling operation can always be performed in the dehumidified state.

実施の形態2.
図4は、本発明の実施の形態2に係る空気調和機の制御装置の機能ブロック図である。図1〜図3の空気調和機と同一の構成を有する部位には同一の符号を付してその説明を省略する。実施の形態1では、温度差ΔETにより圧縮機出力を制御するようにしたものであるが、次に温度差ΔTj(室内温度Tr−設定温度Tset)が設定閾値より小さく、かつ、室内送風機32の回転数Rmが最小回転数で無い場合に室内送風機32の回転数を制御する実施の形態2を説明する。
Embodiment 2. FIG.
FIG. 4 is a functional block diagram of a control device for an air conditioner according to Embodiment 2 of the present invention. The part which has the same structure as the air conditioner of FIGS. 1-3 is attached | subjected with the same code | symbol, and the description is abbreviate | omitted. In the first embodiment, the compressor output is controlled by the temperature difference ΔET. Next, the temperature difference ΔTj (indoor temperature Tr−set temperature Tset) is smaller than the set threshold value, and the indoor fan 32 Embodiment 2 in which the rotational speed of the indoor fan 32 is controlled when the rotational speed Rm is not the minimum rotational speed will be described.

図4の制御装置40の機能構成は、マイコン、コンピュータ等のハードウェア上でプログラムを実行させることにより、構築されたものである。制御装置40は、運転条件設定部51、運転条件判定部53、圧縮機制御部55及び室内送風機制御部57を備えるものである。   The functional configuration of the control device 40 in FIG. 4 is constructed by executing a program on hardware such as a microcomputer or a computer. The control device 40 includes an operation condition setting unit 51, an operation condition determination unit 53, a compressor control unit 55, and an indoor fan control unit 57.

運転条件判定部53は、配管温度センサ33により検知された配管温度ETと目標蒸発温度ETmとの差分が設定閾値より小さいか否かを判定する。運転条件判定部53は、さらに、室内温度Trと設定温度Tsetとの差分が設定閾値より小さいか否か、かつ、室内送風機32の回転数Rmが最小回転数でないかを判定する。   The operating condition determination unit 53 determines whether or not the difference between the pipe temperature ET detected by the pipe temperature sensor 33 and the target evaporation temperature ETm is smaller than a set threshold value. The operating condition determination unit 53 further determines whether or not the difference between the room temperature Tr and the set temperature Tset is smaller than a set threshold value, and whether the rotation speed Rm of the indoor blower 32 is not the minimum rotation speed.

具体的には、運転条件判定部53は、配管温度ETと目標蒸発温度ETmとの温度差ΔET(ΔET=ET−ETm)が、低温閾値(例えば−2℃)より小さい(ΔET<−2)か否かを判定する。温度差ΔETが−2℃以上の場合(ΔET≧−2)は、さらに、温度差ΔETが、高温閾値(例えば0℃)より小さい(ΔET<0)か否かを判定する。温度差ΔETが0℃より小さい場合(ΔET<0)は、さらに、温度差ΔTj(室内温度Tr−設定温度Tset)が室温閾値(例えば2℃)より小さい(ΔTj<2)か、かつ、室内送風機32の回転数Rmが最小回転数でない(Rm≠Min)か否かを判定する。温度差ΔETが0℃以上の場合(ΔET≧0)もまた、温度差ΔTj(室内温度Tr−設定温度Tset)が、室温閾値(例えば2℃)より小さい(ΔTj<2)か、かつ、室内送風機32の回転数Rmが最小回転数でない(Rm≠Min)か否かを判定する。   Specifically, the operating condition determination unit 53 determines that the temperature difference ΔET (ΔET = ET−ETm) between the pipe temperature ET and the target evaporation temperature ETm is smaller than a low temperature threshold (for example, −2 ° C.) (ΔET <−2). It is determined whether or not. When the temperature difference ΔET is −2 ° C. or more (ΔET ≧ −2), it is further determined whether or not the temperature difference ΔET is smaller than a high temperature threshold (for example, 0 ° C.) (ΔET <0). When the temperature difference ΔET is smaller than 0 ° C. (ΔET <0), the temperature difference ΔTj (room temperature Tr−set temperature Tset) is further smaller than the room temperature threshold (for example, 2 ° C.) (ΔTj <2), and the room It is determined whether or not the rotational speed Rm of the blower 32 is not the minimum rotational speed (Rm ≠ Min). When the temperature difference ΔET is 0 ° C. or more (ΔET ≧ 0), the temperature difference ΔTj (room temperature Tr−set temperature Tset) is also smaller than the room temperature threshold (for example, 2 ° C.) (ΔTj <2), and the room It is determined whether or not the rotational speed Rm of the blower 32 is not the minimum rotational speed (Rm ≠ Min).

室内送風機制御部57は、運転条件判定部53からの判定結果に基づき、室内送風機32のファンモータ(FM)の回転数を調整することで室内送風機32の回転数を制御し、室内熱交換器の配管温度の調整を行う。   The indoor blower control unit 57 controls the rotational speed of the indoor blower 32 by adjusting the rotational speed of the fan motor (FM) of the indoor blower 32 based on the determination result from the operating condition determination unit 53, and the indoor heat exchanger Adjust the pipe temperature.

具体的には、温度差ΔETが、温度差ΔET<−2ではない場合、すなわち、配管温度Etが、目標蒸発温度Etmに近いか目標蒸発温度Etmより大きい場合は、これ以上配管温度Etが上がると除湿できない状態であるか、除湿できていない状態である。室内送風機制御部57は、ΔTj<2かつRm≠Minの場合、すなわち、室内温度Trが設定温度Tsetに近いか又は設定温度Tsetより低い場合、かつ、室内送風機32の回転数Rmが最小回転数でない場合には、室内送風機32の回転数を下げる。室内送風機32の回転数が下げることにより、室内熱交換機の熱交換が抑えられ、潜熱能力が増大する。   Specifically, when the temperature difference ΔET is not the temperature difference ΔET <−2, that is, when the pipe temperature Et is close to the target evaporation temperature Etm or higher than the target evaporation temperature Etm, the pipe temperature Et further increases. It is in a state where it cannot be dehumidified or in a state where it cannot be dehumidified. The indoor blower control unit 57 determines that when ΔTj <2 and Rm ≠ Min, that is, when the room temperature Tr is close to the set temperature Tset or lower than the set temperature Tset, and the rotational speed Rm of the indoor blower 32 is the minimum rotational speed. If not, the rotational speed of the indoor blower 32 is reduced. By reducing the rotation speed of the indoor blower 32, heat exchange of the indoor heat exchanger is suppressed, and the latent heat capacity is increased.

図5は、本発明の実施の形態2に係る空気調和機の制御フローを示す図である。操作部37に室内の設定温度が入力され(ステップST21)、冷房運転が開始される(ステップST22)。室内温度センサ34が検知した室内温度Trが、運転条件設定部51に入力される(ステップST23)。運転条件設定部51は、設定温度Tsetと、室内温度Trとに基づき圧縮機の出力を演算し、駆動周波数fzdを設定する(ステップST24)。目標蒸発温度設定部63は、室内温度Trから求める露点温度を算出し、露点温度を目標蒸発温度ETmとして設定する(ステップST25)。   FIG. 5 is a diagram showing a control flow of the air conditioner according to Embodiment 2 of the present invention. The indoor set temperature is input to the operation unit 37 (step ST21), and the cooling operation is started (step ST22). The room temperature Tr detected by the room temperature sensor 34 is input to the operating condition setting unit 51 (step ST23). The operating condition setting unit 51 calculates the output of the compressor based on the set temperature Tset and the room temperature Tr, and sets the drive frequency fzd (step ST24). The target evaporation temperature setting unit 63 calculates the dew point temperature obtained from the room temperature Tr, and sets the dew point temperature as the target evaporation temperature ETm (step ST25).

運転条件判定部53は、配管温度センサ33から配管温度ETを取得する(ステップST26)。運転条件判定部53は、配管温度ETと目標蒸発温度ETmとの温度差ΔET(ΔET=ET−ETm)が低温閾値(例えば−2℃)より小さい(ΔET<−2)か否かを判定する(ステップST27)。   The operating condition determination unit 53 acquires the pipe temperature ET from the pipe temperature sensor 33 (step ST26). The operating condition determination unit 53 determines whether or not the temperature difference ΔET (ΔET = ET−ETm) between the pipe temperature ET and the target evaporation temperature ETm is smaller than a low temperature threshold (for example, −2 ° C.) (ΔET <−2). (Step ST27).

運転条件判定部53が、温度差ΔETが−2℃より小さい(ΔET<−2)と判定した場合(ステップST27がYES)は、圧縮機制御部55が、圧縮機21に設定された駆動周波数fzdを出力する(ステップST28)。   When the operating condition determination unit 53 determines that the temperature difference ΔET is smaller than −2 ° C. (ΔET <−2) (YES in step ST27), the compressor control unit 55 sets the drive frequency set in the compressor 21. fzd is output (step ST28).

運転条件判定部53が、温度差ΔETが−2℃以上(ΔET≧−2)と判定した場合(ステップST27がNO)は、運転条件判定部53は、温度差ΔETが高温閾値(例えば0℃)より小さい(ΔET<0)か否かをさらに判定する(ステップST29)。   When the operating condition determining unit 53 determines that the temperature difference ΔET is −2 ° C. or more (ΔET ≧ −2) (NO in step ST27), the operating condition determining unit 53 determines that the temperature difference ΔET is a high temperature threshold (for example, 0 ° C.). It is further determined whether or not (ΔET <0) (step ST29).

運転条件判定部53が、温度差ΔETが0℃より小さい(ΔET<0)と判定した場合(ステップST29がYES)は、運転条件判定部53が、温度差ΔTj(室内温度Tr−設定温度Tset)が室温閾値(例えば2℃)より小さい(ΔTj<2)か、かつ、室内送風機32の回転数Rmが最小回転数でない(Rm≠Min)か否かをさらに判定する(ステップST30)。   When the operating condition determining unit 53 determines that the temperature difference ΔET is smaller than 0 ° C. (ΔET <0) (YES in step ST29), the operating condition determining unit 53 determines the temperature difference ΔTj (indoor temperature Tr−set temperature Tset). ) Is smaller than a room temperature threshold (for example, 2 ° C.) (ΔTj <2), and it is further determined whether or not the rotational speed Rm of the indoor fan 32 is not the minimum rotational speed (Rm ≠ Min) (step ST30).

運転条件判定部53が、温度差ΔTjが2℃より小さく(ΔTj<2)、かつ、室内送風機32の回転数Rmが最小回転数でない(Rm≠Min)と判定した場合(ステップST30がYES)は、室内送風機制御部57は、室内送風機32の回転数Rmを減少させる(ステップST31)。   When the operating condition determination unit 53 determines that the temperature difference ΔTj is smaller than 2 ° C. (ΔTj <2) and the rotation speed Rm of the indoor fan 32 is not the minimum rotation speed (Rm ≠ Min) (YES in step ST30). The indoor blower control unit 57 decreases the rotational speed Rm of the indoor blower 32 (step ST31).

運転条件判定部53が、温度差ΔETが0℃より小さい(ΔET<0)と判定した場合(ステップST29がYES)には、ステップST30の結果に関わらず、圧縮機制御部55は、周波数をダウンさせない(ステップST32)。圧縮機制御部55は、駆動周波数fzdが運転周波数より大きい場合にのみ出力する。   When the operating condition determination unit 53 determines that the temperature difference ΔET is smaller than 0 ° C. (ΔET <0) (YES in step ST29), the compressor control unit 55 sets the frequency regardless of the result of step ST30. It is not brought down (step ST32). The compressor control unit 55 outputs only when the drive frequency fzd is higher than the operation frequency.

運転条件判定部53が、温度差ΔETが0℃以上(ΔET≧0)と判定した場合(ステップST29がNO)は、運転条件判定部53が、温度差ΔTjが2℃より小さい(ΔTj<2)か、かつ、室内送風機32の回転数Rmが最小回転数でない(Rm≠Min)か否かを判定する(ステップST33)。   When the operating condition determining unit 53 determines that the temperature difference ΔET is 0 ° C. or more (ΔET ≧ 0) (NO in step ST29), the operating condition determining unit 53 has a temperature difference ΔTj smaller than 2 ° C. (ΔTj <2 ) And the rotational speed Rm of the indoor fan 32 is not the minimum rotational speed (Rm ≠ Min) (step ST33).

運転条件判定部53が、温度差ΔTjが2℃より小さく(ΔTj<2)、かつ、室内送風機32の回転数Rmが最小回転数でない(Rm≠Min)と判定した場合(ステップST33がYES)は、室内送風機制御部57は、室内送風機32の回転数Rmを減少させる(ステップST34)。   When the operating condition determination unit 53 determines that the temperature difference ΔTj is smaller than 2 ° C. (ΔTj <2) and the rotation speed Rm of the indoor fan 32 is not the minimum rotation speed (Rm ≠ Min) (YES in step ST33). The indoor fan control unit 57 decreases the rotational speed Rm of the indoor fan 32 (step ST34).

運転条件判定部53が、温度差ΔETが0℃以上(ΔET≧0)と判定した場合(ステップST29がNO)は、ステップST33の結果に関わらず、圧縮機制御部55は、周波数を上昇させる(ステップST35)。   When the operating condition determination unit 53 determines that the temperature difference ΔET is 0 ° C. or more (ΔET ≧ 0) (NO in step ST29), the compressor control unit 55 increases the frequency regardless of the result of step ST33. (Step ST35).

その後、(ステップST28)、(ステップST32)及び(ステップST35)で制御された圧縮機21及び室内送風機32の駆動に基づき変化した室内温度Trが室内温度センサ34によって検知され(ステップST23)、上記一例の処理が繰り返される(ステップST23〜ステップST35)。   Thereafter, the room temperature Tr that has changed based on the driving of the compressor 21 and the indoor blower 32 controlled in (Step ST28), (Step ST32), and (Step ST35) is detected by the indoor temperature sensor 34 (Step ST23). An example process is repeated (steps ST23 to ST35).

以上のように、室内送風機の回転数が制御され、室内熱交換器25における熱交換が調整されることで配管温度ETの蒸発温度が調整される。その結果、冷房運転開始時から温度と湿度とを素早く目標値に近づけることで快適な空調を行うことができる。   As described above, the rotation speed of the indoor blower is controlled, and the heat exchange in the indoor heat exchanger 25 is adjusted to adjust the evaporation temperature of the pipe temperature ET. As a result, comfortable air conditioning can be performed by quickly bringing the temperature and humidity close to the target values from the start of the cooling operation.

なお、本発明の実施の形態は、上記実施の形態1、2に限定されない。例えば、ここでは圧縮機21の一例として、スクロール型、ロータリー型圧縮機を一例に示したが、レシプロ型等その圧縮構造を問わない。また、冷媒回路15に、流路切替器やアキュムレーター等が設けられていてもよい。また、操作部37は、遠隔操作器であるが、室内機12に設けられていてもよい。   The embodiment of the present invention is not limited to the first and second embodiments. For example, as an example of the compressor 21, a scroll type or rotary type compressor is shown as an example here, but any compression structure such as a reciprocating type may be used. The refrigerant circuit 15 may be provided with a flow path switch, an accumulator, and the like. The operation unit 37 is a remote controller, but may be provided in the indoor unit 12.

1 空気調和機、11 室外機、12 室内機、13 冷媒配管、15 冷媒回路、21 圧縮機、22 流路切替器、23 室外熱交換器、24 膨張弁、25 室内熱交換機、31 室外送風機、32 室内送風機、33 配管温度センサ、34 室内温度センサ、36 室内送風機回転数センサ、37 操作部、40 制御装置、51 運転条件設定部、53 運転条件判定部、55 圧縮機制御部、57 室内送風機制御部、61 駆動周波数設定部、63 目標蒸発温度設定部、65 設定条件記憶部。   DESCRIPTION OF SYMBOLS 1 Air conditioner, 11 Outdoor unit, 12 Indoor unit, 13 Refrigerant piping, 15 Refrigerant circuit, 21 Compressor, 22 Flow path switch, 23 Outdoor heat exchanger, 24 Expansion valve, 25 Indoor heat exchanger, 31 Outdoor fan, 32 indoor blower, 33 piping temperature sensor, 34 indoor temperature sensor, 36 indoor blower rotation speed sensor, 37 operation unit, 40 control device, 51 operating condition setting unit, 53 operating condition determination unit, 55 compressor control unit, 57 indoor blower Control part, 61 Drive frequency setting part, 63 Target evaporation temperature setting part, 65 Setting condition storage part.

本発明に係る空気調和機は、圧縮機、室外熱交換器、膨張弁、及び室内熱交換器が冷媒配管を介して接続された冷媒回路と、室内熱交換器が設置された室内の室内温度を検知する室内温度センサと、室内熱交換器の配管温度を検知する配管温度センサと、室内温度センサと配管温度センサとの検知結果に基づき圧縮機を制御する制御装置と、を備え、制御装置は、室内温度センサにより検知された室内温度と設定温度とを用いて圧縮機の駆動周波数を設定すると共に、室内温度センサにより検知された室内温度から目標蒸発温度を設定する運転条件設定部と、配管温度センサにより検知された配管温度と目標蒸発温度との差分が高温閾値より小さいか否かを判定する運転条件判定部と、運転条件判定部の判定において、配管温度と目標蒸発温度との差分が高温閾値以上の場合に、駆動周波数よりも高い周波数で圧縮機を駆動させる圧縮機制御部と、を有し、運転条件判定部は、配管温度センサにより検知された配管温度と目標蒸発温度との差分が低温閾値より小さいか否かをさらに判定し、圧縮機制御部は、運転条件判定部の判定において、配管温度と目標蒸発温度との差分が高温閾値より小さく低温閾値以上である場合に、圧縮機の運転周波数を下げず、駆動周波数が圧縮機の運転周波数より大きい場合にのみ駆動周波数で圧縮機を駆動させるものである。 An air conditioner according to the present invention includes a compressor, an outdoor heat exchanger, an expansion valve, a refrigerant circuit in which an indoor heat exchanger is connected via a refrigerant pipe, and an indoor temperature in which the indoor heat exchanger is installed. An indoor temperature sensor for detecting the temperature, a pipe temperature sensor for detecting the pipe temperature of the indoor heat exchanger, and a control device for controlling the compressor based on the detection results of the indoor temperature sensor and the pipe temperature sensor. Is configured to set the drive frequency of the compressor using the indoor temperature detected by the indoor temperature sensor and the set temperature, and to set the target evaporation temperature from the indoor temperature detected by the indoor temperature sensor; In the determination of the operation condition determination unit that determines whether or not the difference between the pipe temperature detected by the pipe temperature sensor and the target evaporation temperature is smaller than the high temperature threshold, the pipe temperature and the target evaporation temperature If the difference is greater than the high temperature threshold and, have a, a compressor control unit for driving the compressor at a higher frequency than the driving frequency, the operating condition determination unit, pipe temperature and the target detected by the piping temperature sensor The compressor control unit further determines whether or not the difference from the evaporation temperature is smaller than the low temperature threshold, and the compressor control unit determines that the difference between the pipe temperature and the target evaporation temperature is smaller than the high temperature threshold and equal to or higher than the low temperature threshold. In some cases, the operating frequency of the compressor is not lowered, and the compressor is driven at the driving frequency only when the driving frequency is higher than the operating frequency of the compressor .

Claims (5)

圧縮機、室外熱交換器、膨張弁、及び室内熱交換器が冷媒配管を介して接続された冷媒回路と、
前記室内熱交換器が設置された室内の室内温度を検知する室内温度センサと、
前記室内熱交換器の配管温度を検知する配管温度センサと、
前記室内温度センサと前記配管温度センサとの検知結果に基づき前記圧縮機を制御する制御装置と、
を備え、
前記制御装置は、
前記室内温度センサにより検知された室内温度と設定温度とを用いて前記圧縮機の駆動周波数を設定すると共に、前記室内温度センサにより検知された室内温度から目標蒸発温度を設定する運転条件設定部と、
前記配管温度センサにより検知された配管温度と前記目標蒸発温度との差分が高温閾値より小さいか否かを判定する運転条件判定部と、
前記運転条件判定部の判定において、前記配管温度と前記目標蒸発温度との差分が前記高温閾値以上の場合に、前記駆動周波数よりも高い周波数で前記圧縮機を駆動させる圧縮機制御部と、
を有する、空気調和機。
A refrigerant circuit in which a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are connected via a refrigerant pipe;
An indoor temperature sensor for detecting the indoor temperature of the room where the indoor heat exchanger is installed;
A pipe temperature sensor for detecting the pipe temperature of the indoor heat exchanger;
A control device for controlling the compressor based on detection results of the indoor temperature sensor and the pipe temperature sensor;
With
The control device includes:
An operating condition setting unit that sets a drive frequency of the compressor using an indoor temperature detected by the indoor temperature sensor and a set temperature, and sets a target evaporation temperature from the indoor temperature detected by the indoor temperature sensor; ,
An operating condition determination unit that determines whether or not a difference between the pipe temperature detected by the pipe temperature sensor and the target evaporation temperature is smaller than a high temperature threshold;
In the determination of the operating condition determination unit, when the difference between the pipe temperature and the target evaporation temperature is equal to or higher than the high temperature threshold, a compressor control unit that drives the compressor at a frequency higher than the drive frequency;
Having an air conditioner.
前記運転条件判定部は、
前記配管温度センサにより検知された配管温度と前記目標蒸発温度との差分が低温閾値より小さいか否かをさらに判定し、
前記圧縮機制御部は、
前記運転条件判定部の判定において、前記配管温度と前記目標蒸発温度との差分が前記高温閾値より小さく前記低温閾値以上である場合に、前記圧縮機の運転周波数を下げず、前記駆動周波数が圧縮機の運転周波数より大きい場合にのみ前記駆動周波数で前記圧縮機を駆動させる請求項1に記載の空気調和機。
The operating condition determination unit
It is further determined whether or not the difference between the pipe temperature detected by the pipe temperature sensor and the target evaporation temperature is smaller than a low temperature threshold,
The compressor controller is
In the determination of the operating condition determination unit, when the difference between the pipe temperature and the target evaporation temperature is smaller than the high temperature threshold and equal to or higher than the low temperature threshold, the driving frequency is compressed without lowering the operation frequency of the compressor. The air conditioner according to claim 1, wherein the compressor is driven at the driving frequency only when the operating frequency is higher than the operating frequency of the machine.
前記圧縮機制御部は、
前記運転条件判定部の判定において、前記配管温度と前記目標蒸発温度との差分が前記低温閾値より小さい場合に、前記駆動周波数で前記圧縮機を駆動させる請求項2に記載の空気調和機。
The compressor controller is
The air conditioner according to claim 2, wherein the compressor is driven at the drive frequency when a difference between the pipe temperature and the target evaporation temperature is smaller than the low temperature threshold in the determination of the operation condition determination unit.
前記運転条件設定部は、前記室内温度センサが検知した室内温度から露点温度を算出し、前記露点温度を前記目標蒸発温度と設定する相関関係のテーブルを有する請求項1〜3のいずれか1項に記載の空気調和機。   The said operation condition setting part calculates a dew point temperature from the indoor temperature which the said indoor temperature sensor detected, and has a correlation table which sets the said dew point temperature with the said target evaporation temperature. Air conditioner as described in. 前記室内熱交換器に対向する室内送風機をさらに備え、
前記運転条件判定部は、前記室内温度と設定温度との差分が室温閾値より小さいか否か、かつ、前記室内送風機の回転数が最小回転数であるか否かをさらに判定し、
前記室内温度と設定温度との差分が前記室温閾値より小さく、かつ、前記室内送風機の回転数が最小回転数でない場合に前記室内送風機の回転数を下げて前記室内送風機を駆動させる室内送風機制御部をさらに有する、請求項1〜4のいずれか1項に記載の空気調和機。
Further comprising an indoor fan facing the indoor heat exchanger;
The operating condition determination unit further determines whether or not a difference between the room temperature and a set temperature is smaller than a room temperature threshold, and whether or not the rotation speed of the indoor fan is a minimum rotation speed,
When the difference between the room temperature and the set temperature is smaller than the room temperature threshold and the rotation speed of the indoor blower is not the minimum rotation speed, the indoor blower control unit drives the indoor blower by lowering the rotation speed of the indoor blower The air conditioner according to any one of claims 1 to 4, further comprising:
JP2018511854A 2016-04-15 2016-04-15 Air conditioner Active JP6559333B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/062116 WO2017179192A1 (en) 2016-04-15 2016-04-15 Air conditioner

Publications (2)

Publication Number Publication Date
JPWO2017179192A1 true JPWO2017179192A1 (en) 2018-11-08
JP6559333B2 JP6559333B2 (en) 2019-08-14

Family

ID=60042442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018511854A Active JP6559333B2 (en) 2016-04-15 2016-04-15 Air conditioner

Country Status (2)

Country Link
JP (1) JP6559333B2 (en)
WO (1) WO2017179192A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109855254A (en) * 2019-02-15 2019-06-07 青岛海尔空调器有限总公司 Air conditioner and its control method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108361954B (en) * 2018-01-31 2020-12-25 青岛海尔空调器有限总公司 Air conditioner condensation prevention control method and device and computer storage medium
CN108413554A (en) * 2018-01-31 2018-08-17 青岛海尔空调器有限总公司 The method, apparatus and computer storage media of the anti-condensation control of air-conditioning
CN108195053B (en) * 2018-01-31 2020-12-25 青岛海尔空调器有限总公司 Air conditioner condensation prevention control method and device and computer storage medium
CN108375186A (en) * 2018-01-31 2018-08-07 青岛海尔空调器有限总公司 The method, apparatus and computer storage media of the anti-condensation control of air-conditioning
CN108375174B (en) * 2018-01-31 2020-12-25 青岛海尔空调器有限总公司 Air conditioner condensation prevention control method and device and computer storage medium
CN108489025B (en) * 2018-03-09 2020-07-03 广东美的制冷设备有限公司 Air conditioner, control method thereof, and computer-readable storage medium
CN108679807B (en) * 2018-05-31 2019-09-06 宁波奥克斯电气股份有限公司 A kind of frequency-conversion air-conditioning system energy-saving control method
CN109855269A (en) * 2019-02-15 2019-06-07 青岛海尔空调器有限总公司 Air conditioner and its control method
CN111271848B (en) * 2019-07-17 2021-07-06 宁波奥克斯电气股份有限公司 Control method of air conditioner and air conditioner thereof
CN110454951B (en) * 2019-08-05 2021-05-25 广东美的制冷设备有限公司 Air conditioning system and control method thereof
CN110940058B (en) * 2019-11-22 2020-12-11 珠海格力电器股份有限公司 Air conditioner condensation prevention control method and device, storage medium and air conditioner
WO2021176975A1 (en) * 2020-03-05 2021-09-10 三菱電機株式会社 Air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307705A (en) * 1993-04-20 1994-11-01 Toshiba Corp Humidity control method for air conditioner
JPH0914724A (en) * 1995-06-27 1997-01-17 Daikin Ind Ltd Operation control device of air conditioner
JP2002071191A (en) * 2000-08-29 2002-03-08 Sanyo Electric Co Ltd Air conditioning apparatus
JP2006170503A (en) * 2004-12-15 2006-06-29 Hitachi Home & Life Solutions Inc Air conditioner
JP2014052114A (en) * 2012-09-06 2014-03-20 Panasonic Corp Air conditioner
JP2014153008A (en) * 2013-02-12 2014-08-25 Sharp Corp Air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307705A (en) * 1993-04-20 1994-11-01 Toshiba Corp Humidity control method for air conditioner
JPH0914724A (en) * 1995-06-27 1997-01-17 Daikin Ind Ltd Operation control device of air conditioner
JP2002071191A (en) * 2000-08-29 2002-03-08 Sanyo Electric Co Ltd Air conditioning apparatus
JP2006170503A (en) * 2004-12-15 2006-06-29 Hitachi Home & Life Solutions Inc Air conditioner
JP2014052114A (en) * 2012-09-06 2014-03-20 Panasonic Corp Air conditioner
JP2014153008A (en) * 2013-02-12 2014-08-25 Sharp Corp Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109855254A (en) * 2019-02-15 2019-06-07 青岛海尔空调器有限总公司 Air conditioner and its control method

Also Published As

Publication number Publication date
WO2017179192A1 (en) 2017-10-19
JP6559333B2 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
JP6559333B2 (en) Air conditioner
JP4468682B2 (en) Power-saving dehumidifying operation method of air conditioner
US7856836B2 (en) Refrigerating air conditioning system
JP2004233046A (en) Power dehumidification operating method for air conditioner
JP4494809B2 (en) Health dehumidification operation method of air conditioner
JP6071648B2 (en) Air conditioner
JP2008175490A (en) Air conditioner
WO2018173120A1 (en) Dehumidifier
JP6004670B2 (en) Air conditioner control device, air conditioner control method, air conditioner program, and air conditioner equipped with the same
JP3835453B2 (en) Air conditioner
JP6785987B2 (en) Refrigeration cycle equipment
JP2016008742A (en) Air conditioning device
JP2017067301A (en) Air conditioning device
JPH10325621A (en) Air-conditioning device
JP2016109413A (en) air conditioner
WO2018029763A1 (en) Air conditioner
WO2020003490A1 (en) Air conditioning device
KR102500807B1 (en) Air conditioner and a method for controlling the same
JP2006138580A (en) Air conditioner
KR101153421B1 (en) Condensation volume control method for air conditioner
JP6656400B2 (en) Air conditioner indoor unit and air conditioner
JP2003240365A (en) Refrigeration unit
JP6573507B2 (en) Air conditioner
JP2019020093A (en) Air conditioner
JP2015148414A (en) air conditioner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190716

R150 Certificate of patent or registration of utility model

Ref document number: 6559333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250