[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2017018372A1 - Light source device and projection device - Google Patents

Light source device and projection device Download PDF

Info

Publication number
JPWO2017018372A1
JPWO2017018372A1 JP2017530854A JP2017530854A JPWO2017018372A1 JP WO2017018372 A1 JPWO2017018372 A1 JP WO2017018372A1 JP 2017530854 A JP2017530854 A JP 2017530854A JP 2017530854 A JP2017530854 A JP 2017530854A JP WO2017018372 A1 JPWO2017018372 A1 JP WO2017018372A1
Authority
JP
Japan
Prior art keywords
light
light source
polarization separation
excitation
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017530854A
Other languages
Japanese (ja)
Inventor
雄樹 小野
雄樹 小野
三森 満
満 三森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2017018372A1 publication Critical patent/JPWO2017018372A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

光学系の構成を簡素化できると共に、元の励起光とこれから得た照明光とをより効率的に分離でき、光の利用効率を高めた光源装置、及びかかる光源装置を組み込んだ投影装置を提供する。励起光ELを射出する励起光源であるレーザーアレイ51と、励起光ELの照射を受けて蛍光光FLを含む照明光L2を射出する被照射体41と、被照射体41から射出された照明光L2を導く照明光学系と、励起光源と被照射体との光路間に配置され、照明光L2を透過及び反射の別によって励起光ELの光路から分離する偏光分離面32aを有する偏光分離素子32とを備え、偏光分離素子32は、偏光分離面32aの法線と照明光学系の光軸SXとのなす角が50°以上80°以下となるよう配置されている。Provided are a light source device capable of simplifying the configuration of the optical system, more efficiently separating the original excitation light and the illumination light obtained therefrom, and improving the light use efficiency, and a projection device incorporating such a light source device To do. A laser array 51 that is an excitation light source that emits the excitation light EL, an irradiated object 41 that emits the illumination light L2 including the fluorescent light FL when irradiated with the excitation light EL, and an illumination light emitted from the irradiated object 41 A polarization separation element 32 having a polarization separation surface 32a disposed between the illumination optical system for guiding L2 and the optical path between the excitation light source and the irradiated object and separating the illumination light L2 from the optical path of the excitation light EL by transmission and reflection. The polarization separation element 32 is arranged so that the angle formed by the normal line of the polarization separation surface 32a and the optical axis SX of the illumination optical system is 50 ° or more and 80 ° or less.

Description

本発明は、投影装置に組み込まれる画像表示素子の照明に適する光源装置、及びかかる光源装置を組み込んだ投影装置に関する。   The present invention relates to a light source device suitable for illumination of an image display element incorporated in a projection device, and a projection device incorporating such a light source device.

近年、プロジェクターの光源に半導体レーザー(LD)や発光ダイオード(LED)が採用されることが増えてきている。   In recent years, semiconductor lasers (LDs) and light emitting diodes (LEDs) are increasingly used as light sources for projectors.

オフィス等で用いる大型のプロジェクターには、一般的には高圧水銀ランプが用いられているが、半導体レーザーで蛍光体を励起させ光源とする製品が増えてきている。例えば、半導体レーザーを励起光源として用いて、照明用の3原色を作り出す手法が公知となっている(特許文献1〜2参照)。   High-pressure mercury lamps are generally used for large projectors used in offices and the like, but an increasing number of products use a semiconductor laser to excite a phosphor as a light source. For example, a technique for creating three primary colors for illumination using a semiconductor laser as an excitation light source is known (see Patent Documents 1 and 2).

しかしながら、特許文献1では、蛍光体ホイールを透過させる波長の光と蛍光体ホイールで反射させる波長の光とが混在する照明光学系となるため、光学系のレイアウトのために空間を広く確保する必要がある。さらに、蛍光体ホイールの透過後の光学系が別途必要となるため、部品点数が増加してしまい生産性も良くない。   However, in Patent Document 1, since the illumination optical system is a mixture of light having a wavelength that is transmitted through the phosphor wheel and light having a wavelength that is reflected by the phosphor wheel, it is necessary to ensure a wide space for the layout of the optical system. There is. Furthermore, since an optical system after passing through the phosphor wheel is required separately, the number of parts increases and the productivity is not good.

一方で、特許文献2のように、蛍光体ホイールで青の励起光を含む全ての波長の光を反射する光学系を採用した場合は、装置の小型化と生産性の向上との双方でメリットがある。反射型の蛍光体ホイールを光源として用いる照明光学系においては、光源から蛍光体へ入射するまでの励起光の光路と、蛍光体ホイールから表示パネルまでの照明光の光路とを偏光ビームスプリッターを用いて分離する構成がとられ、この場合、偏光ビームスプリッターは、光軸に対して45°となるように傾けて配置される。しかしながら、偏光ビームスプリッターを光軸に対して45°傾けて使用した場合、S偏光とP偏光との遮断波長の差を大きくすることができない。そのため、偏光ビームスプリッターの製造時の膜厚のバラツキによる遮断波長のずれや、光源に波長のバラツキや波長変化があった場合、励起光と照明光との分離が不十分となりやすいという問題がある。   On the other hand, when an optical system that reflects light of all wavelengths including blue excitation light is adopted by the phosphor wheel as in Patent Document 2, it is advantageous in both downsizing the apparatus and improving productivity. There is. In an illumination optical system that uses a reflective phosphor wheel as a light source, a polarization beam splitter is used for the excitation light path from the light source to the phosphor and the illumination light path from the phosphor wheel to the display panel. In this case, the polarization beam splitter is disposed so as to be inclined at 45 ° with respect to the optical axis. However, when the polarization beam splitter is used at an angle of 45 ° with respect to the optical axis, the difference in cutoff wavelength between the S-polarized light and the P-polarized light cannot be increased. For this reason, there is a problem that separation of excitation light and illumination light tends to be insufficient when there is a shift in cutoff wavelength due to film thickness variations during the manufacture of a polarizing beam splitter, or when there are wavelength variations or wavelength changes in the light source. .

また、特許文献3のように、青色ではなく紫外の励起光を用いる場合、偏光ビームスプリッターに代えてダイクロイックミラーを用いて、光源から蛍光体へ入射するまでの励起光の光路と、蛍光体ホイールから表示パネルへ入射するまでの照明光の光路とを分離する構成がとられる。この場合、偏光分離が不十分となる問題は生じないが、紫外の励起光を小型の半導体レーザーによって効率よく発生させることは容易でない。また、青色、緑色、赤色の3色の蛍光体が必要となるためコスト増になる。   In addition, as in Patent Document 3, when using excitation light that is not blue but ultraviolet, a dichroic mirror is used instead of the polarization beam splitter, and the optical path of the excitation light from the light source to the phosphor and the phosphor wheel The light path from the illumination light to the display panel is separated from the light path. In this case, there is no problem of insufficient polarization separation, but it is not easy to efficiently generate ultraviolet excitation light with a small semiconductor laser. Further, since phosphors of three colors of blue, green and red are necessary, the cost is increased.

特開2011−13320号公報JP 2011-13320 A 特開2012−108486号公報JP 2012-108486 A 特開2012−13897号公報JP 2012-13897 A

本発明は、上記背景技術に鑑みてなされたものであり、光学系の構成を簡素化できると共に、元の励起光とこれから得た照明光とをより効率的に分離でき、光の利用効率を高めた光源装置、及びかかる光源装置を組み込んだ投影装置を提供することを目的とする。   The present invention has been made in view of the above-described background art, and can simplify the configuration of the optical system, can more efficiently separate the original excitation light and the illumination light obtained therefrom, and can improve the light utilization efficiency. It is an object of the present invention to provide an enhanced light source device and a projection device incorporating such a light source device.

上記目的を達成するため、本発明に係る光源装置は、励起光を射出する励起光源と、励起光の照射を受けて蛍光光を含む照明光を射出する被照射体と、被照射体から射出された照明光を導く照明光学系と、励起光源と被照射体との光路間に配置され、照明光を透過及び反射の別によって励起光の光路から分離する偏光分離面を有する偏光分離素子とを備え、偏光分離素子は、偏光分離面の法線と照明光学系の光軸とのなす角が50°以上80°以下となるよう配置されている。   In order to achieve the above object, a light source device according to the present invention includes an excitation light source that emits excitation light, an irradiated object that emits illumination light including fluorescent light upon irradiation with the excitation light, and an emitted light from the irradiated object. An illumination optical system that guides the emitted illumination light, and a polarization separation element that is disposed between the optical path of the excitation light source and the irradiated object, and has a polarization separation surface that separates the illumination light from the optical path of the excitation light by transmission and reflection The polarization separation element is arranged such that the angle formed between the normal line of the polarization separation surface and the optical axis of the illumination optical system is 50 ° or more and 80 ° or less.

上記光源装置では、偏光分離素子は、偏光分離面の法線と照明光学系の光軸とのなす角が50°以上80°以下の角度で配置されているので、S偏光とP偏光との遮断波長の差を大きく確保することができ、偏光分離素子の製造バラツキによる遮断波長のずれや、光源に波長のバラツキや波長変化があった場合でも、励起光と照明光との分離を十分効率的なものとできる。これにより、光の効率的な利用が可能となり、明るい照明光を射出させることができる。   In the above light source device, the polarization separation element is arranged at an angle of 50 ° or more and 80 ° or less between the normal line of the polarization separation surface and the optical axis of the illumination optical system. A large difference in the cutoff wavelength can be secured, and the separation of the excitation light and illumination light is sufficiently efficient even when there is a shift in the cutoff wavelength due to manufacturing variations of the polarization separation element, or when there is a wavelength variation or wavelength change in the light source. It can be done. As a result, the light can be used efficiently, and bright illumination light can be emitted.

本発明に係る投影装置は、上述の光源装置と、光源装置によって照明される画像表示素子と、画像表示素子により形成される像を投影する投影光学系と、を備える。   A projection device according to the present invention includes the above-described light source device, an image display element illuminated by the light source device, and a projection optical system that projects an image formed by the image display element.

上記投影装置では、小型ながら高い光利用効率の光源装置を組み込んでいるので、小型で高輝度の投影が可能な投影装置を提供することができる。   Since the projection device incorporates a light source device having high light utilization efficiency in spite of its small size, it is possible to provide a projection device that is compact and capable of projecting with high brightness.

第1実施形態に係る光源装置を含む投影装置を説明する図である。It is a figure explaining the projection apparatus containing the light source device which concerns on 1st Embodiment. 図2Aは、光源装置の要部を説明する拡大図であり、図2Bは、図2Aに示す光源装置に組み込まれた光照射板を説明する図である。2A is an enlarged view for explaining a main part of the light source device, and FIG. 2B is a diagram for explaining a light irradiation plate incorporated in the light source device shown in FIG. 2A. 図3Aは、図2Aの光源装置に組み込まれた偏光分離素子の透過特性を示すグラフであり、図3Bは、比較例の光源装置に組み込まれた偏光分離素子の透過特性を示すグラフである。3A is a graph showing the transmission characteristics of the polarization separation element incorporated in the light source device of FIG. 2A, and FIG. 3B is a graph showing the transmission characteristics of the polarization separation element incorporated in the light source apparatus of the comparative example. 図4Aは、偏光分離素子の青色波長域における透過特性を拡大して示すグラフであり、図4Bは、偏光分離素子を傾斜させる角度とP偏光に関する80%透過波長との関係を説明するグラフであり、図4Cは、偏光分離素子を傾斜させる角度とS偏光に関する80%透過波長との関係を説明するグラフである。4A is an enlarged graph showing the transmission characteristics in the blue wavelength region of the polarization separation element, and FIG. 4B is a graph explaining the relationship between the angle at which the polarization separation element is tilted and the 80% transmission wavelength with respect to the P-polarized light. FIG. 4C is a graph illustrating the relationship between the angle at which the polarization separation element is tilted and the 80% transmission wavelength with respect to S-polarized light. 第2実施形態に係る光源装置の要部を説明する図である。It is a figure explaining the principal part of the light source device which concerns on 2nd Embodiment. 図6Aは、図5の光源装置に組み込まれた偏光分離素子の透過特性を示すグラフであり、図6Bは、比較例の光源装置に組み込まれた偏光分離素子の透過特性を示すグラフである。FIG. 6A is a graph showing the transmission characteristics of the polarization separation element incorporated in the light source device of FIG. 5, and FIG. 6B is a graph showing the transmission characteristics of the polarization separation element incorporated in the light source apparatus of the comparative example.

〔第1実施形態〕
以下、図面を参照しつつ、本発明に係る第1実施形態の光源装置を組み込んだ投影装置について説明する。
[First Embodiment]
A projection apparatus incorporating the light source device according to the first embodiment of the present invention will be described below with reference to the drawings.

図1に示すように、第1実施形態に係る投影装置2は、多様な映像信号に対応する画像の投影を可能にするものであり、光源装置21、偏光ビームスプリッター22、反射型液晶素子23、投影光学系26、及び回路部29を備える。   As shown in FIG. 1, the projection device 2 according to the first embodiment enables projection of images corresponding to various video signals, and includes a light source device 21, a polarization beam splitter 22, and a reflective liquid crystal element 23. A projection optical system 26 and a circuit unit 29.

投影装置2のうち光源装置21は、励起光ELとして機能するレーザー光L1を略平行な状態で射出するビーム形成部31と、励起光ELの光路から蛍光光FL等を含む照明光L2の光路を分離する偏光分離素子32と、レーザー光L1の偏光状態を変化させる位相差板33と、レーザー光L1を励起光ELとして被照射体41上に集光するとともに被照射体41からの蛍光光FL等を略平行な光線として取り出すコンデンサーレンズ34と、レーザー光L1から蛍光光FLを生成するとともにレーザー光L1を反射する被照射体41を有する光照射板35と、偏光分離素子32を通過した照明光L2の強度を均一化する均一化光学系36と、照明光L2の反射型液晶素子23への入射角度を調整するフィールドレンズ38とを備える。以上において、均一化光学系36、フィールドレンズ38等は、照明光学系を構成する。   The light source device 21 of the projection device 2 includes a beam forming unit 31 that emits laser light L1 functioning as excitation light EL in a substantially parallel state, and an optical path of illumination light L2 including fluorescent light FL from the optical path of the excitation light EL. , A phase difference plate 33 that changes the polarization state of the laser light L1, and the laser light L1 as the excitation light EL is condensed on the irradiated body 41 and the fluorescent light from the irradiated body 41 Passed through a condenser lens 34 for extracting FL or the like as a substantially parallel light beam, a light irradiation plate 35 having an irradiated body 41 that generates fluorescent light FL from the laser light L 1 and reflects the laser light L 1, and the polarization separation element 32. A uniformizing optical system 36 that equalizes the intensity of the illumination light L2 and a field lens 38 that adjusts the incident angle of the illumination light L2 to the reflective liquid crystal element 23 are provided. In the above, the homogenizing optical system 36, the field lens 38, etc. constitute an illumination optical system.

なお、後に詳述するが、光照射板35は、レーザー光L1の照明下で照明光L2を射出するが、具体的には、その回転にともなって緑色光、赤色光、及び青色光を周期的に切り換えつつ射出する。   As will be described in detail later, the light irradiation plate 35 emits the illumination light L2 under the illumination of the laser light L1, and specifically, green light, red light, and blue light are cycled with the rotation. Inject while switching.

偏光ビームスプリッター(PBS)22は、偏光方向に応じて光路を分岐する光学素子である。偏光ビームスプリッター22は、一対の直角プリズムを貼り合わせたものであり、貼合わせ面において、一方の直角プリズムの斜面には、光源装置21から入射した所定方向の直線偏光である照明光L2を選択的に透過させる偏光分離膜からなる偏光分離面22aが形成されている。この偏光ビームスプリッター22により、光源装置21から射出された照明光L2を透過させ、後述する反射型液晶素子23に入射させることができる。また、偏光ビームスプリッター22により、この反射型液晶素子23で反射された映像光L3を反射し、投影光学系26に入射させることができる。ここで、偏光分離面22aは、これを基準とするP偏光を透過させS偏光を反射するものとなっている。   The polarization beam splitter (PBS) 22 is an optical element that branches an optical path according to the polarization direction. The polarization beam splitter 22 is formed by bonding a pair of right-angle prisms. On the bonding surface, the illumination light L2 that is linearly polarized light in a predetermined direction incident from the light source device 21 is selected on the inclined surface of one right-angle prism. A polarization separation surface 22a made of a polarization separation film that transmits light is formed. The polarization beam splitter 22 allows the illumination light L2 emitted from the light source device 21 to pass therethrough and enter a reflective liquid crystal element 23 described later. In addition, the image light L 3 reflected by the reflective liquid crystal element 23 can be reflected by the polarization beam splitter 22 and can be incident on the projection optical system 26. Here, the polarization splitting surface 22a transmits P-polarized light based on this and reflects S-polarized light.

反射型液晶素子23は、映像光L3を形成する表示パネルすなわち画像表示素子であり、特に空間的に反射率を変化させることによって照明光L2から映像光L3を形成する点でライトバルブ又は空間光変調素子と言える。反射型液晶素子(画像表示素子)23は、板状の電子部品である画像表示パネルからなる。この反射型液晶素子23は、LCOS(liquid crystal on silicon)とも称されるマイクロディスプレイであり、シリコンチップの表面に直接回路が形成され対向基板との間に液晶層を挟み込んだものである。反射型液晶素子23は、液晶層に対し駆動信号に応じた電圧が画素毎に印加されると、液晶分子の配列を変化させることで照明光L2を変調し、反射によって所望の画像を表示するものである。図示のように、偏光分離面22aを基準とするP偏光を照明光L2として反射型液晶素子23に入射させる構成をとる場合、偏光分離面22aを基準とするS偏光が映像光L3として反射される。   The reflective liquid crystal element 23 is a display panel that forms the image light L3, that is, an image display element, and particularly a light valve or a spatial light in that the image light L3 is formed from the illumination light L2 by spatially changing the reflectance. It can be said that it is a modulation element. The reflective liquid crystal element (image display element) 23 includes an image display panel that is a plate-like electronic component. The reflective liquid crystal element 23 is a micro display also referred to as LCOS (liquid crystal on silicon), in which a circuit is directly formed on the surface of a silicon chip and a liquid crystal layer is sandwiched between a counter substrate. When a voltage corresponding to a drive signal is applied to the liquid crystal layer for each pixel, the reflective liquid crystal element 23 modulates the illumination light L2 by changing the arrangement of liquid crystal molecules, and displays a desired image by reflection. Is. As shown in the figure, when a configuration is adopted in which P-polarized light with reference to the polarization separation surface 22a is incident on the reflective liquid crystal element 23 as illumination light L2, S-polarized light with reference to the polarization separation surface 22a is reflected as image light L3. The

投影光学系26は、詳細な説明を省略するが、画像表示素子である反射型液晶素子23から得られる像を拡大してスクリーンその他の被投影体(不図示)に投影する。投影光学系26は、複数のレンズ群及び/又は反射面からなり、一部のレンズ群を光軸SX方向に移動させることにより、フォーカシングや変倍を行わせることができる。   Although a detailed description is omitted, the projection optical system 26 enlarges and projects an image obtained from the reflective liquid crystal element 23 as an image display element onto a screen or other projection target (not shown). The projection optical system 26 includes a plurality of lens groups and / or reflecting surfaces, and focusing and zooming can be performed by moving some lens groups in the direction of the optical axis SX.

回路部29のうち、映像駆動回路25は、コンピューター等の端末機器を含む種々のコンテンツ・ソース(不図示)から入力された映像信号に基づいて反射型液晶素子23に表示動作を行わせる。光源駆動回路27は、光源装置21のビーム形成部31に設けたレーザーアレイ51に点灯動作を行わせて、蛍光体ホイールである光照射板35に対してレーザー光L1を照射させる。   Of the circuit unit 29, the video drive circuit 25 causes the reflective liquid crystal element 23 to perform a display operation based on video signals input from various content sources (not shown) including terminal devices such as computers. The light source driving circuit 27 causes the laser array 51 provided in the beam forming unit 31 of the light source device 21 to perform a lighting operation, and irradiates the light irradiation plate 35 that is a phosphor wheel with the laser light L1.

制御回路28は、映像駆動回路25、光源駆動回路27等の動作を統括的に制御する。制御回路28は、光源駆動回路27を介して光源装置21を動作させてこれから照明光L2を射出させるとともに、映像駆動回路25を介して反射型液晶素子23に映像信号に対応する駆動信号を出力させ画像の表示動作を行わせる。この際、映像駆動回路25は、駆動部39を介して光照射板35の回転位置を監視しており、光照射板35の回転軸RXを中心とする回転に伴って光照射板35から順次射出される青色光、緑色光、及び赤色光に同期させて反射型液晶素子23に各色の表示動作を行わせる。   The control circuit 28 comprehensively controls the operations of the video drive circuit 25, the light source drive circuit 27, and the like. The control circuit 28 operates the light source device 21 via the light source driving circuit 27 and emits the illumination light L2 therefrom, and outputs a driving signal corresponding to the video signal to the reflective liquid crystal element 23 via the video driving circuit 25. The image is displayed. At this time, the video drive circuit 25 monitors the rotational position of the light irradiation plate 35 via the drive unit 39, and sequentially from the light irradiation plate 35 as the light irradiation plate 35 rotates around the rotation axis RX. The reflective liquid crystal element 23 is made to display each color in synchronization with the emitted blue light, green light, and red light.

以下、図2Aを参照して、光源装置21の構成要素、機能、動作等について詳細に説明する。   Hereinafter, the components, functions, operations, and the like of the light source device 21 will be described in detail with reference to FIG. 2A.

まず、ビーム形成部31は、レーザーアレイ51と、コリメーターアレイであるフライアイ光学系52と、ビーム縮小レンズ53とを含む。ここで、レーザーアレイ51は、被照射体41に組み込まれた蛍光体に対する励起光源であるとともに、青色用の照明光源ともなっている。レーザーアレイ(励起光源)51は、青色のレーザー光L1を射出する発光源としてのレーザーダイオード51a(以下、LDとも呼ぶ)を2次元的に配列することによって構成されたものであり、偏光方向の揃った光を射出する。レーザーアレイ51がアレイ状に配列された複数のレーザーダイオード51aを有することにより、光源を小型化しつつ大光量の励起光ELを得ることができる。なお、レーザー光L1は、偏光分離素子32を基準とするS偏光の青色光である。フライアイ光学系52は、レーザーアレイ51を構成する多数のLD(発光源)51aに対応して多数のレンズ素子を含む。フライアイ光学系52は、レーザーアレイ51を構成する各LD(発光源)51aから射出されたレーザー光L1(青色光)を略平行光線とする。ビーム縮小レンズ53は、正及び負レンズを組み合わせたアフォーカル系であり、レーザー光L1を略平行光線のままにしてその光線径を減少させ、所望の断面積を有するレーザー光L1とする。   First, the beam forming unit 31 includes a laser array 51, a fly-eye optical system 52 that is a collimator array, and a beam reduction lens 53. Here, the laser array 51 is an excitation light source for the phosphor incorporated in the irradiated object 41 and also an illumination light source for blue. The laser array (excitation light source) 51 is configured by two-dimensionally arranging laser diodes 51a (hereinafter also referred to as LDs) as light emitting sources that emit blue laser light L1, and have a polarization direction. A uniform light is emitted. Since the laser array 51 includes a plurality of laser diodes 51a arranged in an array, a large amount of excitation light EL can be obtained while reducing the size of the light source. The laser light L1 is S-polarized blue light with the polarization separation element 32 as a reference. The fly-eye optical system 52 includes a large number of lens elements corresponding to a large number of LDs (light emitting sources) 51 a constituting the laser array 51. The fly's eye optical system 52 converts the laser light L1 (blue light) emitted from each LD (light emitting source) 51a constituting the laser array 51 into a substantially parallel light beam. The beam contraction lens 53 is an afocal system in which a positive lens and a negative lens are combined, and the laser beam L1 is reduced to a substantially parallel beam while reducing the beam diameter to obtain a laser beam L1 having a desired cross-sectional area.

図2Aに示す偏光分離素子32は、平板状の光学素子であり、レーザーアレイ(励起光源)51と被照射体41との光路間である、ビーム形成部31と光照射板35との間又は光照射板35と均一化光学系36との間に配置されて、照明光L2を励起光ELの光路から分離する。より詳細には、偏光分離素子32は、青色光についてはP偏光を透過させるとともにS偏光を選択的に反射する通常の偏光分離ミラーとしての機能と、緑色光及び赤色光を選択的に透過させるダイクロイックミラーとしての機能とを有する。偏光分離素子32は、平行平板の片面に誘電体多層膜からなる偏光分離面32aを形成したものであり、S偏光である青色の励起光ELを反射し、被照射体41側から青色光のままで逆行し偏光方向を変えられてP偏光となった青色光を透過させて均一化光学系36に導く。また、偏光分離素子32は、励起光ELの照射によって被照射体41で発生し励起光ELに対して逆進する緑色及び赤色の蛍光光FLを偏光方向に関わらず透過させて均一化光学系36に導く。このように、偏光分離素子32は、レーザーアレイ51側から入射した青色光を励起光ELとして反射するとともに、被照射体41側から入射した蛍光光FL及び青色光を照明光L2として透過させる。これにより、被照射体41等の配置を簡潔なものとできる。また、偏光分離素子32が、励起光ELによる励起によって被照射体41から射出された蛍光光FLと、励起光ELを被照射体41で反射させることによって得た光とを、照明光L2として、レーザーアレイ51から被照射体41に向けての励起光ELの光路から分離することにより、蛍光光FLを無駄なく効率良く取り出すことができる。また、このように構成することで、被照射体41を励起光EL及び蛍光光FLを照明光L2として利用する反射型のものとすることができ、省スペースで簡潔な照明光学系とできる。   The polarization separation element 32 shown in FIG. 2A is a flat plate-like optical element between the beam forming unit 31 and the light irradiation plate 35, which is between the optical paths between the laser array (excitation light source) 51 and the irradiated object 41, or It arrange | positions between the light irradiation board 35 and the equalization optical system 36, and isolate | separates the illumination light L2 from the optical path of excitation light EL. More specifically, the polarization separation element 32 functions as a normal polarization separation mirror that transmits P-polarized light and selectively reflects S-polarized light with respect to blue light, and selectively transmits green light and red light. It has a function as a dichroic mirror. The polarization separation element 32 is formed by forming a polarization separation surface 32a made of a dielectric multilayer film on one side of a parallel plate, reflects blue excitation light EL that is S-polarized light, and emits blue light from the irradiated object 41 side. The blue light which has been reversed and changed the polarization direction to become P-polarized light is transmitted and guided to the uniformizing optical system 36. Further, the polarization separation element 32 transmits the green and red fluorescent lights FL generated in the irradiated body 41 by the irradiation of the excitation light EL and traveling backward with respect to the excitation light EL, regardless of the polarization direction, and uniformizing the optical system. Lead to 36. As described above, the polarization separation element 32 reflects the blue light incident from the laser array 51 side as the excitation light EL and transmits the fluorescent light FL and blue light incident from the irradiated body 41 side as the illumination light L2. Thereby, arrangement | positioning of the to-be-irradiated body 41 grade | etc., Can be made simple. Further, the polarized light FL emitted from the irradiated body 41 by the polarization separation element 32 by excitation with the excitation light EL and the light obtained by reflecting the excitation light EL by the irradiated body 41 are used as illumination light L2. By separating from the optical path of the excitation light EL from the laser array 51 toward the irradiation object 41, the fluorescent light FL can be efficiently extracted without waste. Further, with this configuration, the object to be irradiated 41 can be a reflective type that uses the excitation light EL and the fluorescent light FL as the illumination light L2, and a simple and compact illumination optical system can be obtained.

ここで、偏光分離素子32に設けた偏光分離面32aは、その法線を基準として照明光L2の光軸SXに対して50°以上であって80°以下の角度θで配置されている。見方を変えれば、偏光分離素子32の偏光分離面32aの光軸SXに対する傾き角φは、10°以上であって40°以下となっている。偏光分離面32aの角度θを50°以上80°以下とすることにより、詳細は後述するが、青色におけるS偏光の反射波長とP偏光の透過波長との差を大きくすることができ、偏光分離素子32の製造バラツキによる遮断波長のずれや、光源波長のバラツキや変化があった場合でも、励起光ELと照明光L2との分離を良くすることができ、光の利用効率を高めることができる。一方、偏光分離面32aの角度θは、50°以上70°以下とすれば、より好ましく、偏光分離面32aのサイズが照明光L2の光束断面に比較して大きくなりすぎることを防止でき、光源装置21の小型化が容易になる。なお、偏光分離素子32は、プリズムで構成されたものであってもよい。   Here, the polarization separation surface 32a provided in the polarization separation element 32 is disposed at an angle θ of 50 ° or more and 80 ° or less with respect to the optical axis SX of the illumination light L2 with reference to the normal line. In other words, the inclination angle φ of the polarization separation surface 32a of the polarization separation element 32 with respect to the optical axis SX is 10 ° or more and 40 ° or less. Although the details will be described later by setting the angle θ of the polarization separation surface 32a to 50 ° or more and 80 ° or less, the difference between the reflection wavelength of S-polarized light and the transmission wavelength of P-polarized light in blue can be increased. Even when there is a shift in the cutoff wavelength due to manufacturing variations of the element 32, or variations or changes in the light source wavelength, the separation of the excitation light EL and the illumination light L2 can be improved, and the light utilization efficiency can be increased. . On the other hand, the angle θ of the polarization separation surface 32a is more preferably set to 50 ° or more and 70 ° or less, and the size of the polarization separation surface 32a can be prevented from becoming too large compared to the light beam cross section of the illumination light L2. The apparatus 21 can be easily downsized. The polarization separation element 32 may be configured by a prism.

位相差板33は、複屈折性の材料からなる1/4波長板である。位相差板33は、偏光分離素子32で反射されたS偏光の励起光ELを透過させてS偏光から円偏光とする。また、位相差板33は、励起に利用されず被照射体41側から戻ってきた青色光(すなわち励起光ELとして用いられなかったレーザー光L1)を透過させて円偏光からP偏光とする。これにより、位相差板33を経て被照射体41側から戻ってきた青色光すなわち励起に利用されなかったレーザー光L1は、偏光分離素子32を殆ど通過し、均一化光学系36に効率的に導かれる。つまり、偏光分離素子32と位相差板33とを組み合わせることにより、青色光を励起光ELとして利用しつつ照明光L2としても効率的に利用することができる。   The phase difference plate 33 is a quarter wavelength plate made of a birefringent material. The phase difference plate 33 transmits the S-polarized excitation light EL reflected by the polarization separation element 32 to change from S-polarized light to circularly-polarized light. In addition, the phase difference plate 33 transmits blue light (that is, laser light L1 that has not been used as excitation light EL) returned from the irradiated object 41 side without being used for excitation, and changes from circularly polarized light to P-polarized light. As a result, the blue light that has returned from the irradiated object 41 side through the phase difference plate 33, that is, the laser light L <b> 1 that has not been used for excitation, passes almost through the polarization separation element 32, and efficiently enters the uniformizing optical system 36. Led. That is, by combining the polarization separation element 32 and the phase difference plate 33, the blue light can be efficiently used as the illumination light L2 while being used as the excitation light EL.

コンデンサーレンズ34は、偏光分離素子32で反射されたレーザー光L1を励起光ELとして光照射板35の被照射体41に集光する。また、コンデンサーレンズ34は、被照射体41の蛍光体で発生した緑色及び赤色の蛍光光FLを集めて偏光分離素子32に導く。コンデンサーレンズ34は、光照射板35の被照射体41において蛍光体とは別に設けられた散乱性の反射面で反射されたレーザー光L1すなわち青色光を集めて偏光分離素子32に導く役割も有する。   The condenser lens 34 condenses the laser light L1 reflected by the polarization separation element 32 on the irradiated body 41 of the light irradiation plate 35 as excitation light EL. The condenser lens 34 collects the green and red fluorescent lights FL generated by the phosphor of the irradiated body 41 and guides them to the polarization separation element 32. The condenser lens 34 also has a role of collecting the laser light L1 reflected by the scattering reflecting surface provided separately from the phosphor in the irradiated body 41 of the light irradiation plate 35, that is, blue light and guiding it to the polarization separation element 32. .

図2Bに示すように、光照射板35は、蛍光体ホイールであり、環帯状の被照射体41と、これを支持する基板42とを有する。被照射体41には、3つの領域AR1〜AR3が設けられている。被照射体41において、緑色領域AR1は、励起光ELの照射によって形成された緑色波長域の蛍光光FLを、励起光ELに対して逆行するように射出する。赤色領域AR2は、励起光ELの照射によって形成された赤色波長域の蛍光光FLを、励起光ELに対して逆行するように射出する。青色領域AR3は、レーザー光L1を若干拡散させつつ反射する。   As shown in FIG. 2B, the light irradiation plate 35 is a phosphor wheel, and includes a ring-shaped irradiation target 41 and a substrate 42 that supports the ring irradiation target. The irradiated object 41 is provided with three regions AR1 to AR3. In the irradiated object 41, the green region AR1 emits the fluorescent light FL in the green wavelength region formed by the irradiation of the excitation light EL so as to run backward with respect to the excitation light EL. The red region AR2 emits the fluorescent light FL in the red wavelength region formed by the irradiation of the excitation light EL so as to run backward with respect to the excitation light EL. The blue region AR3 reflects the laser light L1 while slightly diffusing it.

図2Aに戻って、ビーム形成部31から射出され偏光分離素子32で反射されたレーザー光L1は、励起光ELとして光照射板35の被照射体41のうち緑色領域AR1や赤色領域AR2に入射した場合、緑色や赤色の蛍光光FLすなわち照明光L2を発生する。また、ビーム形成部31から射出され偏光分離素子32で反射されたレーザー光L1は、光照射板35の被照射体41のうち青色領域AR3に入射した場合、そのまま青色の照明光L2として反射される。つまり、照明光L2には、レーザー光L1から得た緑色及び赤色の蛍光光FLのほかに、レーザー光L1自体である青色光が含まれる。   Referring back to FIG. 2A, the laser light L1 emitted from the beam forming unit 31 and reflected by the polarization separation element 32 is incident on the green region AR1 or the red region AR2 in the irradiated body 41 of the light irradiation plate 35 as the excitation light EL. In this case, green or red fluorescent light FL, that is, illumination light L2 is generated. Further, when the laser beam L1 emitted from the beam forming unit 31 and reflected by the polarization separation element 32 is incident on the blue region AR3 of the irradiated body 41 of the light irradiation plate 35, it is reflected as it is as the blue illumination light L2. The That is, the illumination light L2 includes blue light that is the laser light L1 itself, in addition to the green and red fluorescent light FL obtained from the laser light L1.

なお、詳細な説明を省略するが、図1に示す均一化光学系36は、偏光分離素子32を通過した照明光L2を集光する集光レンズ36aと、集光レンズ36aからの照明光L2を一端で受けて均一な強度分布の光線束として他端から射出させる導光ロッド36bとを有する。フィールドレンズ38は、図示の例では複数のレンズで構成され、導光ロッド36bの他端から射出される照明光L2が適度の収束角又は発散角で反射型液晶素子23に入射するように調整する。   Although not described in detail, the homogenizing optical system 36 shown in FIG. 1 includes a condenser lens 36a that condenses the illumination light L2 that has passed through the polarization separation element 32, and an illumination light L2 from the condenser lens 36a. And a light guide rod 36b for emitting light from one end as a light bundle having a uniform intensity distribution. The field lens 38 includes a plurality of lenses in the illustrated example, and is adjusted so that the illumination light L2 emitted from the other end of the light guide rod 36b is incident on the reflective liquid crystal element 23 at an appropriate convergence angle or divergence angle. To do.

以下、光源装置21に組み込まれている偏光分離素子32の光軸SXに対する角度の調整とその意義について説明する。   Hereinafter, adjustment of the angle of the polarization separation element 32 incorporated in the light source device 21 with respect to the optical axis SX and its significance will be described.

偏光分離素子32の偏光分離面32aにおいて、その法線と光軸SXとの角度θは、通常の用い方では、45°に設定される。しかしながら、本願発明者は、角度θを45°とした場合、青色のS偏光を反射しつつ青色のP偏光を透過させる効率が下がる傾向が生じることを確認した。そのため、本実施形態では、偏光分離素子32の光軸SXに対する角度θを50°〜80°とした。   In the polarization separation surface 32a of the polarization separation element 32, the angle θ between the normal line and the optical axis SX is set to 45 ° in a normal usage. However, the inventors of the present application have confirmed that when the angle θ is 45 °, the efficiency of transmitting blue P-polarized light while reflecting blue S-polarized light tends to decrease. Therefore, in the present embodiment, the angle θ with respect to the optical axis SX of the polarization separation element 32 is set to 50 ° to 80 °.

なお、ビーム形成部31から偏光分離素子32に入射させるレーザー光L1の光軸は、偏光分離素子32に対してその傾斜の角度θ(=50°〜80°)と略一致する角度となるように設定されている。つまり、ビーム形成部31と光照射板35とは、偏光分離素子32を挟んで対称的に配置されている。   It should be noted that the optical axis of the laser light L1 incident on the polarization separation element 32 from the beam forming unit 31 is an angle that substantially coincides with the inclination angle θ (= 50 ° to 80 °) with respect to the polarization separation element 32. Is set to That is, the beam forming unit 31 and the light irradiation plate 35 are disposed symmetrically with the polarization separation element 32 interposed therebetween.

図3Aは、図1等に示す偏光分離素子32として組み込まれる具体例の光透過特性を示すグラフである。ここで、偏光分離素子32の偏光分離面32aの法線と光軸SXとの角度θを60°に設定している。グラフにおいて、横軸は入射光の波長を示し、縦軸は透過率を示す。また、実線は、S偏光の透過率を示し、点線は、P偏光の透過率を示す。なお、図3Bは、同じ偏光分離素子32であって、角度θを45°に設定した場合の光透過特性を示すグラフである。一点鎖線は、S偏光の透過率を示し、二点鎖線は、P偏光の透過率を示す。   FIG. 3A is a graph showing the light transmission characteristics of a specific example incorporated as the polarization separation element 32 shown in FIG. Here, the angle θ between the normal line of the polarization separation surface 32a of the polarization separation element 32 and the optical axis SX is set to 60 °. In the graph, the horizontal axis indicates the wavelength of incident light, and the vertical axis indicates the transmittance. The solid line indicates the transmittance of S-polarized light, and the dotted line indicates the transmittance of P-polarized light. FIG. 3B is a graph showing the light transmission characteristics of the same polarization separation element 32 when the angle θ is set to 45 °. A one-dot chain line indicates the transmittance of S-polarized light, and a two-dot chain line indicates the transmittance of P-polarized light.

具体例の図3Aにおいて、実線で示すS偏光の遮断波長と点線で示すP偏光の遮断波長との差である分離波長幅Δλは、37nmとなり、一方、比較例の図3Bにおいて、分離波長幅Δλは、23nmと狭くなる。このことから、θ=60°に配置した場合、一般的なθ=45°に配置するよりもS偏光とP偏光との分離を確実なものとできることが分かる。   In FIG. 3A of the specific example, the separation wavelength width Δλ, which is the difference between the cutoff wavelength of the S-polarized light indicated by the solid line and the cutoff wavelength of the P-polarized light indicated by the dotted line, is 37 nm, whereas in FIG. Δλ is as narrow as 23 nm. From this, it can be seen that, when arranged at θ = 60 °, separation of S-polarized light and P-polarized light can be made more reliable than when arranged at a general θ = 45 °.

比較例のように分離波長幅Δλが狭い場合、例えばレーザーアレイ51の発光波長に幅がありバラツキがあると、S偏光の反射率又はP偏光の透過率のいずれかが劣化する。さらに、偏光分離面32aの製造誤差で遮断波長がずれても、S偏光の反射率又はP偏光の透過率のいずれかが劣化する。ここで、レーザーアレイ51の発光波長幅を狭め或いはバラツキを低減することは容易でない。また、偏光分離面32aの遮断波長を正確に制御することも容易でなく、仮に正確に制御しようとすると過度のコスト増加を招く。   When the separation wavelength width Δλ is narrow as in the comparative example, for example, if the emission wavelength of the laser array 51 is wide and varies, either the reflectance of S-polarized light or the transmittance of P-polarized light deteriorates. Furthermore, even if the cutoff wavelength is shifted due to a manufacturing error of the polarization separation surface 32a, either the reflectance of S-polarized light or the transmittance of P-polarized light deteriorates. Here, it is not easy to narrow the emission wavelength width of the laser array 51 or reduce the variation. In addition, it is not easy to accurately control the cutoff wavelength of the polarization separation surface 32a, and if an attempt is made to accurately control it, an excessive increase in cost is caused.

すなわち、角度θを50°〜80°とすることにより、光源の発光波長のずれやバラツキ及び、偏光分離面の製造誤差があっても、高い効率を維持したまま、確実にS偏光とP偏光との分離が可能になるということである。   That is, by setting the angle θ to 50 ° to 80 °, even if there is a deviation or variation in the light emission wavelength of the light source and a manufacturing error of the polarization separation surface, the S-polarized light and the P-polarized light are reliably maintained while maintaining high efficiency. It is possible to separate them.

図4Aは、図3A及び3Bの遮断波長及びその周辺を拡大し重ねて表示したものである。偏光分離素子32の偏光分離面32aの法線と光軸SXとの角度θが45°から60°へと大きくなると、偏光分離の効率80%を満足する帯域DBが広がる。例えば中心波長を450nmとして±10nmの範囲で偏光を分離する用途では、角度θが45°の場合、帯域DBが狭く、十分な偏光分離が確保できないおそれがあることが分かる。一方、角度θが60°の場合、帯域DBが広くなり、十分な偏光分離が確保でき、光の効率的な利用が可能になる。   FIG. 4A is an enlarged view of the cutoff wavelength and its periphery of FIGS. 3A and 3B. When the angle θ between the normal line of the polarization separation surface 32a of the polarization separation element 32 and the optical axis SX is increased from 45 ° to 60 °, the band DB satisfying 80% of the polarization separation efficiency is expanded. For example, it can be seen that in applications where polarized light is separated within a range of ± 10 nm with a center wavelength of 450 nm, when the angle θ is 45 °, the band DB is narrow and sufficient polarization separation may not be ensured. On the other hand, when the angle θ is 60 °, the band DB becomes wide, sufficient polarization separation can be secured, and light can be used efficiently.

図4Bは、偏光分離効率が80%となるP偏光の波長と、偏光分離素子32の偏光分離面32aの法線及び光軸SX間の角度θとの関係をグラフ化したものである。また、図4Cは、偏光分離効率が80%となるS偏光の波長と角度θとの関係をグラフ化したものである。図4Bによれば、角度θの増加に伴ってP偏光分離効率80%に対応する波長が徐々に短波長側にシフトし、図4Cによれば、角度θの増加に伴ってS偏光分離効率80%に対応する波長が徐々に長波長側にシフトしている。以上のことから、角度θを45°よりも大きくし、60°程度であれば、P偏光分離効率80%とS偏光分離効率80%との波長差を1.5倍程度以上に大きくでき、偏光分離素子32での青色光すなわち光源光の損失を低減することができる。   FIG. 4B is a graph showing the relationship between the wavelength of P-polarized light having a polarization separation efficiency of 80%, the normal line of the polarization separation surface 32a of the polarization separation element 32, and the angle θ between the optical axes SX. FIG. 4C is a graph showing the relationship between the wavelength of the S-polarized light with the polarization separation efficiency of 80% and the angle θ. According to FIG. 4B, the wavelength corresponding to the P-polarized light separation efficiency of 80% gradually shifts to the short wavelength side as the angle θ increases, and according to FIG. 4C, the S-polarized light separation efficiency increases as the angle θ increases. The wavelength corresponding to 80% is gradually shifted to the long wavelength side. From the above, if the angle θ is larger than 45 ° and about 60 °, the wavelength difference between the P-polarized light separation efficiency of 80% and the S-polarized light separation efficiency of 80% can be increased to about 1.5 times or more, Loss of blue light, that is, light source light in the polarization separation element 32 can be reduced.

以上で説明したように、第1実施形態に係る光源装置21では、偏光分離素子32の偏光分離面32aの法線が照明光学系の光軸SXに対して50°以上の角度で配置されているので、S偏光とP偏光との遮断波長の差である分離波長幅Δλを大きく確保することができ、励起光ELと照明光L2との分離を十分効率的なものとできる。これにより、光の効率的な利用が可能となるので、省スペースで簡潔な光学系を有する明るい光源を提供することができる。   As described above, in the light source device 21 according to the first embodiment, the normal line of the polarization separation surface 32a of the polarization separation element 32 is arranged at an angle of 50 ° or more with respect to the optical axis SX of the illumination optical system. Therefore, a large separation wavelength width Δλ, which is the difference between the cutoff wavelengths of the S-polarized light and the P-polarized light, can be secured, and the separation between the excitation light EL and the illumination light L2 can be made sufficiently efficient. As a result, the light can be used efficiently, so that a bright light source having a simple and space-saving optical system can be provided.

〔第2実施形態〕
以下、第2実施形態に係る光源装置について説明する。なお、第2実施形態の光源装置は第1実施形態の光源装置を変形したものであり、特に説明しない事項は第1実施形態と同様である。
[Second Embodiment]
The light source device according to the second embodiment will be described below. The light source device according to the second embodiment is a modification of the light source device according to the first embodiment, and matters not specifically described are the same as those in the first embodiment.

図5に示すように、第2実施形態の光源装置21は、偏光分離素子32の反射及び透過の特性を反転させ、光照射板35の配置を変更したものとなっている。具体的には、偏光分離素子32は、青色光であるレーザー光L1についてはP偏光を選択的に透過させるとともにS偏光を反射する偏光分離ミラーとしての機能と、青色より長波長の蛍光光FLである緑色光及び赤色光を選択的に反射するダイクロイックミラーとしての機能とを有する。すなわち、偏光分離素子32は、P偏光である励起光ELを透過させ、被照射体41側から青色光のままで逆行し偏光方向を変えられてS偏光となったレーザー光L1や、励起光ELを照射されて被照射体41で発生した緑色及び赤色の蛍光光FLを反射して均一化光学系36に導く。   As shown in FIG. 5, the light source device 21 according to the second embodiment has the reflection and transmission characteristics of the polarization separation element 32 reversed and the arrangement of the light irradiation plate 35 is changed. Specifically, the polarization separation element 32 functions as a polarization separation mirror that selectively transmits P-polarized light and reflects S-polarized light with respect to the laser light L1 that is blue light, and fluorescent light FL having a wavelength longer than that of blue. And a function as a dichroic mirror that selectively reflects green light and red light. That is, the polarization separation element 32 transmits the excitation light EL that is P-polarized light, and reverses the blue light from the irradiated object 41 side, changes the polarization direction, and changes to the S-polarized light, or the excitation light. The green and red fluorescent lights FL generated by the irradiated object 41 after being irradiated with EL are reflected and guided to the uniformizing optical system 36.

図6Aは、図5に示す偏光分離素子32として組み込まれる具体例の光透過特性を示すグラフである。ここで、偏光分離素子32の偏光分離面32aの法線と光軸SXとの角度θは60°に設定している。グラフにおいて、実線は、S偏光の透過率を示し、点線は、P偏光の透過率を示す。なお、図6Bは、同じ偏光分離素子32であって、角度θを45°に設定した場合の光透過特性を示すグラフである。一点鎖線は、S偏光の透過率を示し、二点鎖線は、P偏光の透過率を示す。   6A is a graph showing the light transmission characteristics of a specific example incorporated as the polarization separation element 32 shown in FIG. Here, the angle θ between the normal line of the polarization separation surface 32a of the polarization separation element 32 and the optical axis SX is set to 60 °. In the graph, the solid line indicates the transmittance of S-polarized light, and the dotted line indicates the transmittance of P-polarized light. FIG. 6B is a graph showing the light transmission characteristics of the same polarization separation element 32 when the angle θ is set to 45 °. A one-dot chain line indicates the transmittance of S-polarized light, and a two-dot chain line indicates the transmittance of P-polarized light.

図6Aに示す具体例における分離波長幅Δλは、図6Bに示す比較例における分離波長幅Δλよりも十分広くなっている。これにより、例えば波長450nmの青色のP偏光であるレーザー光L1を偏光分離素子32において高い効率で殆ど透過させて光照射板35に導きつつ、光照射板35で反射されて戻ってきた青色のS偏光であるレーザー光L1を偏光分離素子32において高い効率で殆ど反射させて均一化光学系36に導くことができる。   The separation wavelength width Δλ in the specific example shown in FIG. 6A is sufficiently wider than the separation wavelength width Δλ in the comparative example shown in FIG. 6B. Thus, for example, the blue P-polarized laser beam L1 having a wavelength of 450 nm is transmitted through the polarization separation element 32 with high efficiency and guided to the light irradiation plate 35, while being reflected by the light irradiation plate 35 and returned. The laser beam L1 that is S-polarized light can be almost reflected at the polarization separation element 32 with high efficiency and guided to the uniformizing optical system 36.

以上、実施形態に係る光源装置等について説明したが、本発明に係る光源装置等は、上記のものには限られない。例えば、光源装置21、投影光学系26等の具体的な構成は、図示のものに限らず用途等に応じて適宜変更することができる。   The light source device according to the embodiment has been described above, but the light source device according to the present invention is not limited to the above. For example, the specific configurations of the light source device 21, the projection optical system 26, and the like are not limited to those shown in the drawings, and can be changed as appropriate according to the application.

また、画像表示素子として、反射型液晶素子23に代えてデジタルマイクロミラーデバイス(DMD)を用いることができる。この場合、偏光ビームスプリッター22に代えてDMDに照明光を入射させ、DMDからの反射光を投影光学系26に導くプリズムを配置すればよい。さらに、画像表示素子として、反射型液晶素子23に代えて透過型の液晶素子又は液晶パネルを用いてもよい。   Further, a digital micromirror device (DMD) can be used as an image display element instead of the reflective liquid crystal element 23. In this case, instead of the polarization beam splitter 22, a prism that guides illumination light to the DMD and guides the reflected light from the DMD to the projection optical system 26 may be disposed. Further, as the image display element, a transmissive liquid crystal element or a liquid crystal panel may be used instead of the reflective liquid crystal element 23.

ビーム形成部31において、レーザーアレイ51に代えてLEDアレイを用いることもできるが、この際、LEDアレイからの光の偏光方向を偏光分離素子32への入射前に揃えることが望ましい。   In the beam forming unit 31, an LED array can be used instead of the laser array 51. At this time, it is desirable to align the polarization direction of light from the LED array before entering the polarization separation element 32.

上記実施形態では、光照射板35の被照射体41で緑色及び赤色の蛍光光FLを発生させているが、被照射体41で緑色の蛍光光FLのみを発生させることができる。この場合において、3原色の表示を可能にするには、図1の光学系において、例えばダイクロイックミラー等を適所に組み込んで赤色光を照明光L2の光路に導くことができ、或いは偏光分離素子32を挟んでビーム形成部31の反対側に赤色の光源を配置するとともに偏光分離素子32の光学特性を変更し、赤色光を偏光分離素子32で反射させて照明光L2の光路に導くことができる。   In the embodiment described above, the green and red fluorescent lights FL are generated by the irradiated body 41 of the light irradiation plate 35, but only the green fluorescent light FL can be generated by the irradiated body 41. In this case, in order to enable display of the three primary colors, in the optical system of FIG. 1, for example, a dichroic mirror or the like can be incorporated at an appropriate position to guide the red light to the optical path of the illumination light L2, or the polarization separation element 32 A red light source is disposed on the opposite side of the beam forming unit 31 with the optical characteristics of the polarization separation element 32 being changed, and the red light is reflected by the polarization separation element 32 and guided to the optical path of the illumination light L2. .

例えば図1の光学系において、ダイクロイックミラーとしての機能を有する偏光分離素子32に代えて一般的な偏光ビームスプリッターを用いることができる。この場合、緑色及び赤色の蛍光光FLの特定偏光成分(具体的にはS成分)が偏光分離素子32によって予めカットされる。   For example, in the optical system of FIG. 1, a general polarization beam splitter can be used instead of the polarization separation element 32 having a function as a dichroic mirror. In this case, the specific polarization component (specifically, the S component) of the green and red fluorescent light FL is cut in advance by the polarization separation element 32.

均一化光学系36は、導光ロッド36b等を用いるものに限らず、フライアイレンズ等を用いるものとできる。また、均一化光学系36に設けた導光ロッド36bの前段、例えば集光レンズ36aと導光ロッド36bとの間に、緑色及び赤色の蛍光の偏光方向を揃える偏光変換素子を配置することもできる。   The homogenizing optical system 36 is not limited to the one using the light guide rod 36b or the like, and may be a fly eye lens or the like. In addition, a polarization conversion element that aligns the polarization directions of green and red fluorescence may be disposed before the light guide rod 36b provided in the homogenizing optical system 36, for example, between the condenser lens 36a and the light guide rod 36b. it can.

反射型液晶素子23は、偏光ビームスプリッター22の反射特性の切り換えや光源装置21に対する配置関係の変更によって、偏光ビームスプリッター22を挟んで投影光学系26の反対側に配置することができる。この場合、偏光ビームスプリッター22により、光源装置21から射出された照明光L2を反射させ、反射型液晶素子23に入射させることができるとともに、反射型液晶素子23で反射された映像光L3を透過させ、投影光学系26に入射させることができる。   The reflective liquid crystal element 23 can be disposed on the opposite side of the projection optical system 26 with the polarization beam splitter 22 interposed therebetween by switching the reflection characteristics of the polarization beam splitter 22 or changing the arrangement relationship with the light source device 21. In this case, the polarization beam splitter 22 can reflect the illumination light L2 emitted from the light source device 21 so as to be incident on the reflective liquid crystal element 23 and transmit the image light L3 reflected by the reflective liquid crystal element 23. And can be incident on the projection optical system 26.

Claims (7)

励起光を射出する励起光源と、
励起光の照射を受けて蛍光光を含む照明光を射出する被照射体と、
前記被照射体から射出された照明光を導く照明光学系と、
前記励起光源と前記被照射体との光路間に配置され、照明光を透過及び反射の別によって励起光の光路から分離する偏光分離面を有する偏光分離素子と、
を備え、
前記偏光分離素子は、前記偏光分離面の法線と前記照明光学系の光軸とのなす角が50°以上80°以下となるよう配置されている光源装置。
An excitation light source that emits excitation light;
An irradiated body that emits illumination light including fluorescent light upon irradiation with excitation light;
An illumination optical system for guiding illumination light emitted from the irradiated body;
A polarization separation element that is disposed between the excitation light source and the irradiation target and has a polarization separation surface that separates illumination light from the excitation light path by transmission and reflection; and
With
The polarization separation element is a light source device arranged such that an angle formed between a normal line of the polarization separation surface and an optical axis of the illumination optical system is 50 ° or more and 80 ° or less.
前記偏光分離素子は、前記偏光分離面の法線と前記照明光学系の光軸とのなす角が70°以下で配置されている、請求項1に記載の光源装置。   2. The light source device according to claim 1, wherein the polarization separation element is arranged such that an angle formed between a normal line of the polarization separation surface and an optical axis of the illumination optical system is 70 ° or less. 前記偏光分離素子は、励起光による励起によって前記被照射体から射出された蛍光光と、励起光を前記被照射体で反射させることによって得た光とを、照明光として、前記励起光源から前記被照射体に向けての励起光の光路から分離する、請求項1及び2のいずれか一項に記載の光源装置。   The polarization separation element is configured to emit fluorescence light emitted from the irradiated object by excitation with excitation light and light obtained by reflecting excitation light on the irradiated object from the excitation light source as illumination light. The light source device according to any one of claims 1 and 2, wherein the light source device is separated from an optical path of excitation light toward the irradiated body. 前記励起光源は、励起光として青色光を射出し、
前記被照射体は青色光を反射する領域と、青色光による励起によって前記青色光と異なる可視域の蛍光光を発する領域とを有し、
前記偏光分離素子は、位相差板と組み合わせて用いられ、前記励起光源からの特定方向の偏光である青色光を前記被照射体に導くとともに、前記被照射体で反射され前記位相差板で偏光の方向を変えられた青色光と前記蛍光光とを、それぞれ照明光の光路に導く、請求項1〜3のいずれか一項に記載の光源装置。
The excitation light source emits blue light as excitation light,
The irradiated object has a region that reflects blue light, and a region that emits fluorescent light in a visible range different from the blue light by excitation with blue light,
The polarization separation element is used in combination with a retardation plate, guides blue light, which is polarized light in a specific direction, from the excitation light source to the irradiated body, and is reflected by the irradiated body and polarized by the retardation plate. The light source device according to claim 1, wherein the blue light and the fluorescent light whose directions are changed are guided to an optical path of illumination light, respectively.
前記偏光分離素子は、前記励起光源側から入射した青色光を励起光として反射するとともに、前記被照射体側から入射した蛍光光及び青色光を照明光として透過させる平板状の部材である、請求項4に記載の光源装置。   The polarization separation element is a flat member that reflects blue light incident from the excitation light source side as excitation light and transmits fluorescent light and blue light incident from the irradiated body side as illumination light. 5. The light source device according to 4. 前記励起光源は、アレイ状に配列された複数の発光源を有する、請求項1〜5のいずれか一項に記載の光源装置。   The light source device according to claim 1, wherein the excitation light source has a plurality of light emission sources arranged in an array. 請求項1〜6のいずれか一項に記載の光源装置と、
前記光源装置によって照明される画像表示素子と、
前記画像表示素子により形成される像を投影する投影光学系と、
を備える投影装置。
The light source device according to any one of claims 1 to 6,
An image display element illuminated by the light source device;
A projection optical system for projecting an image formed by the image display element;
A projection apparatus comprising:
JP2017530854A 2015-07-28 2016-07-25 Light source device and projection device Pending JPWO2017018372A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015149048 2015-07-28
JP2015149048 2015-07-28
PCT/JP2016/071698 WO2017018372A1 (en) 2015-07-28 2016-07-25 Light source device and projection device

Publications (1)

Publication Number Publication Date
JPWO2017018372A1 true JPWO2017018372A1 (en) 2018-06-21

Family

ID=57884398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017530854A Pending JPWO2017018372A1 (en) 2015-07-28 2016-07-25 Light source device and projection device

Country Status (2)

Country Link
JP (1) JPWO2017018372A1 (en)
WO (1) WO2017018372A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11275297B2 (en) 2018-10-01 2022-03-15 Casio Computer Co., Ltd Light source unit including a plurality of light sources which emit light in a same wavelength range and projector including the light source unit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3654798B2 (en) * 1999-08-25 2005-06-02 シャープ株式会社 Image display device and lighting device
JP2003014932A (en) * 2001-06-29 2003-01-15 Canon Inc Polarized beam splitter and method for fabricating polarized beam splitter
US7926949B1 (en) * 2006-07-22 2011-04-19 Simon Boothroyd Dual-mode three-dimensional projection display
JP5209932B2 (en) * 2006-12-28 2013-06-12 株式会社リコー Polarization beam splitter and polarization conversion element
JP2012108486A (en) * 2010-10-21 2012-06-07 Panasonic Corp Light source device and image display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11275297B2 (en) 2018-10-01 2022-03-15 Casio Computer Co., Ltd Light source unit including a plurality of light sources which emit light in a same wavelength range and projector including the light source unit
US11733599B2 (en) 2018-10-01 2023-08-22 Casio Computer Co., Ltd. Light source unit including a plurality of light sources and projector including the light source unit

Also Published As

Publication number Publication date
WO2017018372A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
US9407886B2 (en) Illumination optical system and projector including fluorophore
JP6056001B2 (en) Light source device and projection display device
CN107608166B (en) Light source device and projection display device
WO2015151171A1 (en) Light source device and projector
JP2012032553A (en) Light source device and projection type video display device
US9389427B2 (en) Optical system and projection display apparatus using the same
US9410678B2 (en) Illumination apparatus light source apparatus using illumination apparatus and image display apparatus
WO2016148210A1 (en) Light source device and projection device
JP2013113984A (en) Projection apparatus
US10599025B2 (en) Light source device and projector
WO2016042952A1 (en) Illumination device and projection display device
US9684180B2 (en) Color separating/combining system and image display apparatus using the same
CN108388021B (en) Polarization conversion element and projector
US11523093B2 (en) Light source apparatus and projector
WO2017018372A1 (en) Light source device and projection device
JP2015145977A (en) Light source device and projection type display device using the same
JP2015108830A (en) Illumination optical system including phosphor, projector, and irradiation method
US10271025B2 (en) Color separating and combining system and projecting display apparatus including the same
JP2010113186A (en) Projection type display device
US20240248384A1 (en) Light source device and projection display apparatus
JP2016194699A (en) Illumination optical system equipped with phosphor and projector
US20240248385A1 (en) Light source device and projection display apparatus
JP2016164665A (en) Projection device
JP2024051462A (en) Light source device and projector