JPWO2016167267A1 - Hollow fiber type semipermeable membrane, hollow fiber membrane module, and forward osmosis water treatment method - Google Patents
Hollow fiber type semipermeable membrane, hollow fiber membrane module, and forward osmosis water treatment method Download PDFInfo
- Publication number
- JPWO2016167267A1 JPWO2016167267A1 JP2017512548A JP2017512548A JPWO2016167267A1 JP WO2016167267 A1 JPWO2016167267 A1 JP WO2016167267A1 JP 2017512548 A JP2017512548 A JP 2017512548A JP 2017512548 A JP2017512548 A JP 2017512548A JP WO2016167267 A1 JPWO2016167267 A1 JP WO2016167267A1
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- fiber type
- semipermeable membrane
- type semipermeable
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 173
- 239000012510 hollow fiber Substances 0.000 title claims abstract description 125
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 124
- 238000009292 forward osmosis Methods 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims description 36
- 239000011347 resin Substances 0.000 claims description 16
- 229920005989 resin Polymers 0.000 claims description 16
- 230000002093 peripheral effect Effects 0.000 claims description 11
- 239000012461 cellulose resin Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- 238000000926 separation method Methods 0.000 claims description 8
- 229920002301 cellulose acetate Polymers 0.000 claims description 6
- 229920002492 poly(sulfone) Polymers 0.000 claims description 6
- 230000008595 infiltration Effects 0.000 claims description 5
- 238000001764 infiltration Methods 0.000 claims description 5
- 229920006122 polyamide resin Polymers 0.000 claims description 4
- 230000007423 decrease Effects 0.000 abstract description 4
- 239000000243 solution Substances 0.000 description 65
- 229920000642 polymer Polymers 0.000 description 18
- 239000010410 layer Substances 0.000 description 17
- 238000004364 calculation method Methods 0.000 description 12
- 230000035699 permeability Effects 0.000 description 12
- 150000003839 salts Chemical class 0.000 description 12
- 229920000208 temperature-responsive polymer Polymers 0.000 description 12
- 230000003204 osmotic effect Effects 0.000 description 11
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 10
- 238000001223 reverse osmosis Methods 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000004695 Polyether sulfone Substances 0.000 description 5
- 239000004721 Polyphenylene oxide Substances 0.000 description 5
- 229920006393 polyether sulfone Polymers 0.000 description 5
- 229920001955 polyphenylene ether Polymers 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 239000012527 feed solution Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229920013636 polyphenyl ether polymer Polymers 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 239000011550 stock solution Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 238000005345 coagulation Methods 0.000 description 3
- 230000015271 coagulation Effects 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 229920001983 poloxamer Polymers 0.000 description 3
- 230000004043 responsiveness Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920002284 Cellulose triacetate Polymers 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000011557 critical solution Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 125000001165 hydrophobic group Chemical group 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000001728 nano-filtration Methods 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000006277 sulfonation reaction Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- YOYAIZYFCNQIRF-UHFFFAOYSA-N 2,6-dichlorobenzonitrile Chemical compound ClC1=CC=CC(Cl)=C1C#N YOYAIZYFCNQIRF-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical compound C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000002322 conducting polymer Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229940105990 diglycerin Drugs 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000412 polyarylene Polymers 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- -1 polyphenylene Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- LXEJRKJRKIFVNY-UHFFFAOYSA-N terephthaloyl chloride Chemical compound ClC(=O)C1=CC=C(C(Cl)=O)C=C1 LXEJRKJRKIFVNY-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/02—Hollow fibre modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/08—Polysaccharides
- B01D71/10—Cellulose; Modified cellulose
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/08—Polysaccharides
- B01D71/12—Cellulose derivatives
- B01D71/14—Esters of organic acids
- B01D71/16—Cellulose acetate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/56—Polyamides, e.g. polyester-amides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/66—Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
- B01D71/68—Polysulfones; Polyethersulfones
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F2/00—Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
- D01F2/24—Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives
- D01F2/28—Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives from organic cellulose esters or ethers, e.g. cellulose acetate
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Artificial Filaments (AREA)
Abstract
内径が250μm超700μm以下であることを特徴とする、中空糸型半透膜。中空糸型半透膜の中空部内に高粘度のドロー溶液を流す場合でも、正浸透水処理の効率が低下することを抑制できる。A hollow fiber type semipermeable membrane characterized by having an inner diameter of more than 250 μm and not more than 700 μm. Even when a high-viscosity draw solution is allowed to flow in the hollow portion of the hollow fiber type semipermeable membrane, it is possible to suppress a decrease in the efficiency of the forward osmosis water treatment.
Description
本発明は、中空糸型半透膜、該中空糸型半透膜を備える中空糸膜モジュール、および、該中空糸型半透膜を用いる正浸透水処理方法に関する。 The present invention relates to a hollow fiber type semipermeable membrane, a hollow fiber membrane module including the hollow fiber type semipermeable membrane, and a forward osmosis water treatment method using the hollow fiber type semipermeable membrane.
正浸透(FO:forward osmosis)とは、半透膜を介して、低濃度(低浸透圧)の処理対象水(フィード溶液)側の水が高濃度(高浸透圧)の溶液(ドロー溶液)に向かって移動する現象のことである。一方、水処理分野においては、逆浸透(RO:reverse osmosis)工程を用いる水処理方法が従来から知られている。逆浸透工程は、人為的に強い圧力を加えることにより、正浸透とは逆に、高濃度の処理対象水から低濃度の溶液側に水を移動させる工程である。 Forward osmosis (FO: forward osmosis) is a solution with high concentration (high osmotic pressure) in the low concentration (low osmotic pressure) treated water (feed solution) side through a semipermeable membrane (draw solution) It is a phenomenon that moves toward. On the other hand, in the field of water treatment, a water treatment method using a reverse osmosis (RO) process is conventionally known. The reverse osmosis step is a step of moving water from a high concentration treatment target water to a low concentration solution side by applying artificially strong pressure, contrary to normal osmosis.
しかし、逆浸透工程は強い圧力を必要とするため、エネルギー消費量が極めて多く、エネルギー効率が低い。そこで、近年、水処理のエネルギー効率を高めるために、人為的に圧力を加える必要のない正浸透現象を利用した正浸透水処理システムが提案されている。例えば、国際公開第2013/118859号(特許文献1)には、中空糸型半透膜を用いた正浸透水処理システムが開示されている。 However, since the reverse osmosis process requires a strong pressure, the energy consumption is extremely high and the energy efficiency is low. Therefore, in recent years, in order to increase the energy efficiency of water treatment, a forward osmosis water treatment system using a forward osmosis phenomenon that does not require artificial pressure has been proposed. For example, International Publication No. 2013/118859 (Patent Document 1) discloses a forward osmosis water treatment system using a hollow fiber type semipermeable membrane.
また、正浸透水処理システムに用いられるドロー溶液としては種々のものが知られているが、例えば、特表2014−512951号公報(特許文献2)には、ドロー溶液としてポリグリコール共重合体などの高粘度溶液を用いることが開示されている。 Various draw solutions used in the forward osmosis water treatment system are known. For example, JP-A-2014-512951 (Patent Document 2) discloses a polyglycol copolymer as a draw solution. It is disclosed to use a high viscosity solution.
特許文献1に記載されるような既存の正浸透用の中空糸型半透膜(内径50〜250μm)に、高粘度のドロー溶液を流す場合、圧力損失が大きいため、中空糸型半透膜の内外での十分な有効浸透圧差を維持するために必要な流量を確保できず、正浸透水処理の効率が低下してしまうという問題があった。 When a high-viscosity draw solution is allowed to flow through an existing forward osmosis hollow fiber semipermeable membrane (inner diameter: 50 to 250 μm) as described in Patent Literature 1, the hollow fiber type semipermeable membrane has a large pressure loss. There was a problem that the flow rate required to maintain a sufficient effective osmotic pressure difference between inside and outside could not be ensured, and the efficiency of forward osmosis water treatment was reduced.
本発明は、上記の課題に鑑み、中空糸型半透膜の中空部内に高粘度のドロー溶液を流す場合でも、正浸透水処理の効率が低下することを抑制できる中空糸型半透膜、中空糸膜モジュールおよび正浸透水処理方法を提供することを目的とする。 In view of the above problems, the present invention provides a hollow fiber type semipermeable membrane capable of suppressing a decrease in the efficiency of forward osmosis water treatment even when a high-viscosity draw solution is allowed to flow through the hollow portion of the hollow fiber type semipermeable membrane. An object of the present invention is to provide a hollow fiber membrane module and a forward osmosis water treatment method.
[1] 内径が250μm超700μm以下であることを特徴とする、中空糸型半透膜。
[2] セルロース系樹脂、ポリスルホン系樹脂およびポリアミド系樹脂の少なくともいずれかを含む材料から構成される、[1]に記載の中空糸型半透膜。
[3] 前記セルロース系樹脂は酢酸セルロース系樹脂である、[2]に記載の中空糸型半透膜。
[4] セルロース系樹脂からなる材料から構成される、[2]または[3]に記載の中空糸型半透膜。
[5] [1]〜[4]のいずれかに記載の中空糸型半透膜を備える中空糸膜モジュール。
[6] [1]に記載の中空糸型半透膜を用いる正浸透水処理方法であって、
前記中空糸型半透膜の外周面に水と水以外の成分とを含む処理対象水を接触させると共に、前記中空糸型半透膜の中空部内にドロー溶質を含むドロー溶液を流すことで、前記処理対象水中に含まれる水を前記中空糸型半透膜を通して前記外周面側から前記中空部内に移動させる浸透工程を含む、正浸透水処理方法。
[7] 前記ドロー溶液の粘度が0.15Pa・s以上である、[6]に記載の正浸透水処理方法。
[8] 前記浸透工程において、前記ドロー溶液を流す圧力が0.2MPa以下である、[6]または[7]に記載の正浸透水処理方法。
[9] 前記浸透工程の後に、前記ドロー溶液に含まれる前記ドロー溶質を水と分離させる分離工程をさらに含む、[6]〜[8]のいずれかに記載の正浸透水処理方法。[1] A hollow fiber type semipermeable membrane characterized by having an inner diameter of more than 250 μm and not more than 700 μm.
[2] The hollow fiber type semipermeable membrane according to [1], which is made of a material containing at least one of a cellulose resin, a polysulfone resin, and a polyamide resin.
[3] The hollow fiber type semipermeable membrane according to [2], wherein the cellulose resin is a cellulose acetate resin.
[4] The hollow fiber type semipermeable membrane according to [2] or [3], which is made of a material made of a cellulose resin.
[5] A hollow fiber membrane module comprising the hollow fiber type semipermeable membrane according to any one of [1] to [4].
[6] A forward osmosis water treatment method using the hollow fiber type semipermeable membrane according to [1],
By bringing water to be treated and water to be treated containing components other than water into contact with the outer peripheral surface of the hollow fiber type semipermeable membrane, and flowing a draw solution containing a draw solute in the hollow part of the hollow fiber type semipermeable membrane, A forward osmosis water treatment method comprising a permeation step of moving water contained in the water to be treated from the outer peripheral surface side into the hollow portion through the hollow fiber type semipermeable membrane.
[7] The forward osmosis water treatment method according to [6], wherein the draw solution has a viscosity of 0.15 Pa · s or more.
[8] The forward osmosis water treatment method according to [6] or [7], wherein in the infiltration step, a pressure at which the draw solution is flowed is 0.2 MPa or less.
[9] The forward osmosis water treatment method according to any one of [6] to [8], further including a separation step of separating the draw solute contained in the draw solution from water after the infiltration step.
本発明によれば、中空糸型半透膜の中空部内に高粘度のドロー溶液を流す場合でも、正浸透水処理の効率が低下することを抑制できる中空糸型半透膜、中空糸膜モジュールおよび正浸透水処理方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, even when flowing a highly viscous draw solution in the hollow part of a hollow fiber type semipermeable membrane, the hollow fiber type semipermeable membrane and hollow fiber membrane module which can suppress that the efficiency of forward osmosis water treatment falls. And a forward osmosis water treatment method can be provided.
(中空糸型半透膜)
本発明の中空糸型半透膜は、内径が250μm超700μm以下であることを特徴とする。内径は、好ましくは250μm超650μm以下であり、より好ましくは250μm超600μm以下、さらに好ましくは500μm以下である。(Hollow fiber type semipermeable membrane)
The hollow fiber type semipermeable membrane of the present invention has an inner diameter of more than 250 μm and 700 μm or less. The inner diameter is preferably more than 250 μm and not more than 650 μm, more preferably more than 250 μm and not more than 600 μm, still more preferably not more than 500 μm.
一般に、中空糸型半透膜の中空部内を流れるドロー溶液の流量が少なくなると、ドロー溶液が中空部内を流れる間にドロー溶液側へ透過する水の量が多くなる。これにより、中空部内を流れるドロー溶液の全体的な浸透圧が低下し、ドロー溶液と処理対象水(フィード溶液)との間の浸透圧差が小さくなるため、水の回収効率が低下してしまう。 In general, when the flow rate of the draw solution flowing through the hollow portion of the hollow fiber type semipermeable membrane decreases, the amount of water that permeates to the draw solution side while the draw solution flows through the hollow portion increases. As a result, the overall osmotic pressure of the draw solution flowing in the hollow portion is reduced, and the osmotic pressure difference between the draw solution and the water to be treated (feed solution) is reduced, so that the water recovery efficiency is lowered.
しかしながら、本発明によれば、中空糸型半透膜の内径を250μm超700μm以下の範囲にすることで、中空糸型半透膜による圧力損失が低下するため、中空部内を流れるドロー溶液の流量を多くすることができる。これにより、中空糸型半透膜の内外での十分な有効浸透圧差を維持するために必要な流量を確保でき、中空糸型半透膜の中空部内に高粘度のドロー溶液を流す場合でも、正浸透水処理の効率が低下することを抑制できる。 However, according to the present invention, since the pressure loss due to the hollow fiber type semipermeable membrane is reduced by setting the inner diameter of the hollow fiber type semipermeable membrane to be in the range of more than 250 μm to 700 μm or less, the flow rate of the draw solution flowing in the hollow portion Can be more. Thereby, it is possible to secure a flow rate necessary to maintain a sufficient effective osmotic pressure difference inside and outside the hollow fiber type semipermeable membrane, and even when flowing a high viscosity draw solution into the hollow part of the hollow fiber type semipermeable membrane, It can suppress that the efficiency of forward osmosis water treatment falls.
中空糸型半透膜を構成する材料としては、特に限定されないが、例えば、セルロース系樹脂、ポリスルホン系樹脂、ポリアミド系樹脂などが挙げられる。中空糸型半透膜は、セルロース系樹脂およびポリスルホン系樹脂の少なくともいずれかを含む材料から構成されることが好ましい。 Although it does not specifically limit as a material which comprises a hollow fiber type semipermeable membrane, For example, a cellulose resin, a polysulfone resin, a polyamide resin etc. are mentioned. The hollow fiber type semipermeable membrane is preferably composed of a material containing at least one of a cellulose resin and a polysulfone resin.
セルロース系樹脂は、好ましくは酢酸セルロース系樹脂である。酢酸セルロース系樹脂は、殺菌剤である塩素に対する耐性があり、微生物の増殖を抑制できる特徴を有している。酢酸セルロース系樹脂は、好ましくは酢酸セルロースであり、耐久性の点から、より好ましくは三酢酸セルロースである。 The cellulose resin is preferably a cellulose acetate resin. Cellulose acetate resin is resistant to chlorine, which is a bactericidal agent, and has a feature that it can suppress the growth of microorganisms. The cellulose acetate resin is preferably cellulose acetate, and more preferably cellulose triacetate from the viewpoint of durability.
ポリスルホン系樹脂は、好ましくはポリエーテルスルホン系樹脂である。ポリエーテルスルホン系樹脂は、好ましくはスルホン化ポリエーテルスルホンである。 The polysulfone resin is preferably a polyethersulfone resin. The polyethersulfone resin is preferably a sulfonated polyethersulfone.
具体的な中空糸型半透膜の一例としては、全体がセルロース系樹脂から構成されている単層構造の膜が挙げられる。ただし、ここでいう単層構造とは、層全体が均一な膜である必要はなく、例えば、特許文献1に開示されるように、外周表面近傍に緻密層を有し、この緻密層が実質的に中空糸型半透膜の孔径を規定する分離活性層となっていることが好ましい。 As an example of a specific hollow fiber type semipermeable membrane, a membrane having a single layer structure, which is entirely composed of a cellulosic resin, can be mentioned. However, the single-layer structure here does not need to be a uniform film as a whole, for example, as disclosed in Patent Document 1, a dense layer is provided in the vicinity of the outer peripheral surface, and this dense layer is substantially In particular, it is preferably a separation active layer that defines the pore diameter of the hollow fiber type semipermeable membrane.
具体的な中空糸型半透膜の別の例としては、支持層(例えば、ポリフェニレンオキサイドからなる層)の外周表面にポリフェニレン系樹脂(例えば、スルホン化ポリエーテルスルホン)からなる緻密層を有する2層構造の膜が挙げられる。また、他の例として、支持層(例えば、ポリスルホンまたはポリエーテルスルホンからなる層)の外周表面にポリアミド系樹脂からなる緻密層を有する2層構造の膜が挙げられる。 As another example of a specific hollow fiber type semipermeable membrane, 2 having a dense layer made of a polyphenylene resin (for example, sulfonated polyethersulfone) on the outer peripheral surface of a support layer (for example, a layer made of polyphenylene oxide) A film having a layer structure may be mentioned. Another example includes a two-layered film having a dense layer made of a polyamide resin on the outer peripheral surface of a support layer (for example, a layer made of polysulfone or polyethersulfone).
上記の緻密層(分離活性層)の厚みは、好ましくは0.1〜7μmである。緻密層の厚みは薄い方が、透水抵抗が小さくなるため好ましい。このため、緻密層の厚みは、6μm以下がより好ましく、5μm以下がさらに好ましい。ただし、緻密層が薄すぎると、潜在的な膜構造の欠陥が顕在化しやすくなり、例えば、1価イオンの漏出を抑えることが困難になったり、膜の耐久性が低下になったりするなどの問題が発生し易くなる。このため、緻密層の厚みは、0.5μm以上がより好ましく、1μm以上がさらに好ましい。 The thickness of the dense layer (separation active layer) is preferably 0.1 to 7 μm. It is preferable that the dense layer has a small thickness because water permeability resistance is small. For this reason, the thickness of the dense layer is more preferably 6 μm or less, and further preferably 5 μm or less. However, if the dense layer is too thin, potential defects in the membrane structure are likely to be manifested, and for example, it becomes difficult to suppress leakage of monovalent ions, or the durability of the membrane is reduced. Problems are likely to occur. For this reason, the thickness of the dense layer is more preferably 0.5 μm or more, and further preferably 1 μm or more.
なお、中空糸型半透膜の外径は、好ましくは300〜1000μmであり、より好ましくは400〜950μmである。また、中空糸型半透膜の膜全体の厚みは、好ましくは50〜200μmであり、より好ましくは60〜170μmである。なお、膜厚は(外径−内径)/2で算出できる。また、中空糸型半透膜の中空率〔(内径/外径)2×100(%)〕は、好ましくは30〜60%であり、より好ましくは35〜55%である。なお、中空率は、中空糸型半透膜の横断面における中空部の面積の割合である。The outer diameter of the hollow fiber type semipermeable membrane is preferably 300 to 1000 μm, more preferably 400 to 950 μm. Moreover, the thickness of the whole membrane of a hollow fiber type semipermeable membrane becomes like this. Preferably it is 50-200 micrometers, More preferably, it is 60-170 micrometers. The film thickness can be calculated by (outer diameter−inner diameter) / 2. Further, the hollow ratio [(inner diameter / outer diameter) 2 × 100 (%)] of the hollow fiber type semipermeable membrane is preferably 30 to 60%, more preferably 35 to 55%. In addition, a hollow rate is a ratio of the area of the hollow part in the cross section of a hollow fiber type semipermeable membrane.
中空糸型半透膜の長さは、特に限定されないが、好ましくは15〜400cm、より好ましくは20〜350cmである。 Although the length of a hollow fiber type semipermeable membrane is not specifically limited, Preferably it is 15-400 cm, More preferably, it is 20-350 cm.
中空糸型半透膜は、孔径が100nm以下であることが好ましい。このような中空糸型半透膜としては、例えば、逆浸透膜(RO膜:Reverse Osmosis Membrane)、正浸透膜(FO膜:Forward Osmosis Membrane)、ナノろ過膜(NF膜:Nanofiltration Membrane)、限外ろ過膜(UF膜:Ultrafiltration Membrane)と呼ばれているものが挙げられる。 The hollow fiber type semipermeable membrane preferably has a pore diameter of 100 nm or less. As such a hollow fiber type semipermeable membrane, for example, a reverse osmosis membrane (RO membrane: Reverse Osmosis Membrane), a forward osmosis membrane (FO membrane: Forward Osmosis Membrane), a nanofiltration membrane (NF membrane: Nanofiltration Membrane), a limit What is called an outer filtration membrane (UF membrane: Ultrafiltration Membrane) is mentioned.
通常、RO膜およびFO膜の孔径は約2nm以下であり、UF膜の孔径は約2〜100nmである。NF膜は、RO膜のうちイオンや塩類の阻止率が比較的低いものであり、通常、NF膜の孔径は約1〜2nmである。 Usually, the pore size of the RO membrane and the FO membrane is about 2 nm or less, and the pore size of the UF membrane is about 2 to 100 nm. The NF membrane has a relatively low rejection rate of ions and salts among the RO membrane, and the pore size of the NF membrane is usually about 1 to 2 nm.
(中空糸膜モジュール)
また、本発明は、上記の中空糸型半透膜を備える中空糸膜モジュールにも関する。中空糸型半透膜を中空糸型半透膜モジュールに組み込む方法としては、従来公知の方法があり、例えば、特許4412486号公報、特許4277147号公報、特許3591618号公報、特許3008886号公報などに記載されている。具体的には、例えば、中空糸型半透膜を45〜90本集めて1つの中空糸型半透膜集合体とし、さらにこの中空糸型半透膜集合体を複数横に並べて偏平な中空糸型半透膜束として、多数の孔を有する芯管にトラバースさせながら巻き付ける。このときの巻き付け角度は5〜60度とし、巻き上げ体の特定位置の周面上に交差部が形成するように巻き上げる。次に、この巻き上げ体の両端部を接着した後、片側のみ/または両側を切削して中空糸開口部を形成させ中空糸型分離膜素子を作成する。得られた中空糸型分離膜素子1を圧力容器2に挿入して中空糸型半透膜モジュール3を組立てる(図5)。(Hollow fiber membrane module)
Moreover, this invention relates also to the hollow fiber membrane module provided with said hollow fiber type semipermeable membrane. As a method for incorporating the hollow fiber type semipermeable membrane into the hollow fiber type semipermeable membrane module, there are conventionally known methods. For example, in Japanese Patent No. 441486, Japanese Patent No. 4277147, Japanese Patent No. 3591618, Japanese Patent No. 3008886, etc. Have been described. Specifically, for example, 45 to 90 hollow fiber type semipermeable membranes are collected to form one hollow fiber type semipermeable membrane assembly, and a plurality of the hollow fiber type semipermeable membrane assemblies are arranged side by side to form a flat hollow shape. As a thread-type semipermeable membrane bundle, it is wound while traversing a core tube having a large number of holes. The winding angle at this time is 5 to 60 degrees, and the winding body is wound up so that the crossing portion is formed on the peripheral surface at a specific position. Next, after bonding both ends of the wound body, only one side or both sides are cut to form a hollow fiber opening to form a hollow fiber type separation membrane element. The obtained hollow fiber type separation membrane element 1 is inserted into the
(正浸透水処理方法)
また、本発明は、上記の中空糸型半透膜を用いる正浸透水処理方法にも関する。本発明の正浸透水処理方法は、処理対象水から上記の中空糸型半透膜を用いた正浸透により水を分離および回収する方法である。(Normal osmosis water treatment method)
The present invention also relates to a forward osmosis water treatment method using the hollow fiber type semipermeable membrane. The forward osmosis water treatment method of the present invention is a method of separating and collecting water from the water to be treated by forward osmosis using the hollow fiber type semipermeable membrane.
なお、処理対象水とは、水と水以外の成分を含む液体である。処理対象水としては、例えば、海水、河川水、湖沼水、工業廃水などが挙げられる。なお、処理対象水が海水等の塩分濃度が高い溶液である場合、処理対象水の蒸発残留物濃度(TDS)は、好ましくは0.7〜14質量%であり、より好ましくは1.5〜10質量%であり、さらに好ましくは3〜8質量%である。 The water to be treated is a liquid containing water and components other than water. Examples of water to be treated include seawater, river water, lake water, and industrial wastewater. In addition, when processing target water is a solution with high salt concentration, such as seawater, the evaporation residue density | concentration (TDS) of processing target water becomes like this. Preferably it is 0.7-14 mass%, More preferably, 1.5- It is 10 mass%, More preferably, it is 3-8 mass%.
本発明の正浸透水処理方法は、中空糸型半透膜の外周面に処理対象水(水と水以外の成分とを含む液)を接触させると共に、中空糸型半透膜の中空部内にドロー溶質を含むドロー溶液(DS)を流すことで、処理対象水中に含まれる水を中空糸型半透膜を通して外周面側から中空部内に移動(浸透、透過)させる浸透(正浸透)工程を含む。 In the forward osmosis water treatment method of the present invention, the water to be treated (liquid containing water and a component other than water) is brought into contact with the outer peripheral surface of the hollow fiber type semipermeable membrane, and the hollow fiber type semipermeable membrane is placed in the hollow portion. By flowing a draw solution (DS) containing a draw solute, a permeation (forward osmosis) step of moving (permeating, permeating) the water contained in the water to be treated from the outer peripheral surface side into the hollow portion through the hollow fiber type semipermeable membrane. Including.
なお、上記の中空糸型半透膜モジュールは、本発明の正浸透水処理方法に好適に用いることができる。ここで、例えば、上述のような中空糸膜モジュール内の中空糸型半透膜の外部に処理対象水を流すことで、中空糸型半透膜の外周面に処理対象水を接触させることができる。 In addition, said hollow fiber type semipermeable membrane module can be used suitably for the forward osmosis water processing method of this invention. Here, for example, the treatment target water can be brought into contact with the outer peripheral surface of the hollow fiber type semipermeable membrane by flowing the treatment target water outside the hollow fiber type semipermeable membrane in the hollow fiber membrane module as described above. it can.
ドロー溶液の粘度は、好ましくは0.15Pa・s以上であり、より好ましくは0.20Pa・s以上である。ドロー溶液として、このような高粘度の溶液を用いる場合において、特に正浸透処理の効率が低下しやすいため、本発明の中空糸型半透膜が有用である。 The viscosity of the draw solution is preferably 0.15 Pa · s or more, more preferably 0.20 Pa · s or more. When such a highly viscous solution is used as the draw solution, the hollow fiber type semipermeable membrane of the present invention is useful because the efficiency of the forward osmosis treatment is particularly likely to decrease.
ドロー溶液の浸透圧は、溶質の分子量等にもよるが、好ましくは0.5〜10MPaであり、より好ましくは1〜7MPaであり、さらに好ましくは2〜6MPaである。 The osmotic pressure of the draw solution is preferably 0.5 to 10 MPa, more preferably 1 to 7 MPa, and further preferably 2 to 6 MPa, although it depends on the molecular weight of the solute.
ドロー溶質としては、例えば、糖類、タンパク質、合成高分子などが挙げられるが、回収および再生のしやすさといった点から、刺激応答性高分子が好ましい。刺激応答性高分子としては、温度応答性高分子、pH応答性高分子、光応答性高分子、磁気応答性高分子などが挙げられる。 Examples of the draw solute include saccharides, proteins, and synthetic polymers. Stimulation-responsive polymers are preferable from the viewpoint of easy recovery and regeneration. Examples of the stimulus responsive polymer include a temperature responsive polymer, a pH responsive polymer, a photoresponsive polymer, and a magnetic responsive polymer.
温度応答性高分子とは、所定の温度を臨界点として親水性が変化する特性(温度応答性)を有する高分子である。温度応答性とは、言い換えれば、温度に応じて親水性になったり疎水性になったりする特性である。ここで、親水性の変化は可逆的であることが好ましい。この場合、温度応答性高分子は、温度を調整することで、水に溶解させたり、水と相分離させたりすることができる。 The temperature-responsive polymer is a polymer having a characteristic (temperature responsiveness) in which hydrophilicity changes with a predetermined temperature as a critical point. In other words, the temperature responsiveness is a characteristic that becomes hydrophilic or hydrophobic depending on the temperature. Here, the change in hydrophilicity is preferably reversible. In this case, the temperature-responsive polymer can be dissolved in water or phase-separated from water by adjusting the temperature.
温度応答性高分子は、モノマーに由来する複数の構造単位からなるポリマーであり、側鎖に親水性基を有していることが好ましい。 The temperature-responsive polymer is a polymer composed of a plurality of structural units derived from a monomer, and preferably has a hydrophilic group in the side chain.
温度応答性高分子には、下限臨界共溶温度(LCST)タイプと上限臨界共溶温度(UCST)タイプがある。LCSTタイプでは、低温の水に溶解している高分子が、高分子に固有の温度(LCST)以上の温度になると、水と相分離する。逆に、UCSTタイプでは、高温の水に溶解している高分子が、高分子に固有の温度(UCST)以下になると、水と相分離する(杉原ら、「環境応答性高分子の組織体への展開」、SEN’I GAKKAISHI(繊維と工業)、Vol.62,No.8,2006参照)。半透過膜は、高温で劣化し易い素材を用いる場合においては、低温の水に溶解している温度応答性高分子が半透膜に接触している方が望ましいため、本発明に用いる温度応答性高分子はLCSTタイプであることが好ましい。また、高温で劣化しにくい素材で構成された半透過膜を用いる場合は、LCSTタイプの他,UCSTタイプも用いることができる。 The temperature-responsive polymer includes a lower critical solution temperature (LCST) type and an upper critical solution temperature (UCST) type. In the LCST type, when a polymer dissolved in low-temperature water reaches a temperature higher than the temperature inherent to the polymer (LCST), it is phase-separated from water. On the other hand, in the UCST type, when the polymer dissolved in high-temperature water falls below the temperature inherent to the polymer (UCST), it is phase-separated from water (Sugihara et al., “Environment-responsive polymer tissue "Development to", SEN'I GAKKAISHI (Fiber and Industry), Vol. 62, No. 8, 2006). In the case of using a material that easily deteriorates at a high temperature, it is desirable that the semi-permeable membrane is in contact with the semi-permeable membrane by a temperature-responsive polymer dissolved in low-temperature water. The conducting polymer is preferably LCST type. In addition, in the case of using a semi-permeable membrane made of a material that does not easily deteriorate at a high temperature, a UCST type can be used in addition to the LCST type.
親水性基としては、例えば、水酸基、カルボキシル基、アセチル基、アルデヒド基、エーテル結合、エステル結合が挙げられる。親水性基は、これらから選択される少なくとも1種類であることが好ましい。 Examples of the hydrophilic group include a hydroxyl group, a carboxyl group, an acetyl group, an aldehyde group, an ether bond, and an ester bond. The hydrophilic group is preferably at least one selected from these.
温度応答性高分子は、少なくとも一部または全部の構造単位において少なくとも1つの親水性基を有することが好ましい。また、温度応答性高分子は、親水性基を有しつつ、一部の構造単位において疎水性基を有していてもよい。なお、温度応答性高分子が、温度応答性を有するためには、分子中に含まれる親水性基と疎水性基のバランスが重要であると考えられている。 The temperature-responsive polymer preferably has at least one hydrophilic group in at least some or all of the structural units. Moreover, the temperature-responsive polymer may have a hydrophobic group in some structural units while having a hydrophilic group. In addition, it is considered that the balance between the hydrophilic group and the hydrophobic group contained in the molecule is important for the temperature responsive polymer to have temperature responsiveness.
具体的な温度応答性高分子としては、例えば、ポリビニルエーテル系ポリマー、ポリ酢酸ビニル系ポリマー、(メタ)アクリル酸系ポリマーなどが挙げられる。 Specific examples of the temperature-responsive polymer include a polyvinyl ether polymer, a polyvinyl acetate polymer, and a (meth) acrylic acid polymer.
本発明の正浸透水処理方法のように、中空糸型半透膜を正浸透膜として用いる場合、中空糸型半透膜の耐圧性や、高圧ポンプを必要としないといった観点から、中空糸型半透膜の中空部内に流す流体の圧力は0.2MPa以下にすることが望ましい。したがって、浸透工程において、ドロー溶液を流す圧力は、好ましくは0.2MPa以下であり、より好ましくは0.15MPa以下である。一方、中空糸型半透膜の内外での十分な有効浸透圧差を維持するために必要な流量を確保する観点からは、ドロー溶液を流す圧力は、好ましくは0.01MPa以上であり、より好ましくは0.05MPa以上である。 When the hollow fiber type semipermeable membrane is used as the forward osmosis membrane as in the forward osmosis water treatment method of the present invention, the hollow fiber type from the viewpoint that the pressure resistance of the hollow fiber type semipermeable membrane or the high pressure pump is not required. The pressure of the fluid flowing in the hollow part of the semipermeable membrane is desirably 0.2 MPa or less. Therefore, in the infiltration step, the pressure for flowing the draw solution is preferably 0.2 MPa or less, more preferably 0.15 MPa or less. On the other hand, from the viewpoint of securing a flow rate necessary to maintain a sufficient effective osmotic pressure difference inside and outside the hollow fiber type semipermeable membrane, the pressure for flowing the draw solution is preferably 0.01 MPa or more, more preferably Is 0.05 MPa or more.
本発明の正浸透水処理方法は、浸透工程の後に、ドロー溶液に含まれるドロー溶質を水と分離させる分離工程をさらに含むことが好ましい。 The forward osmosis water treatment method of the present invention preferably further includes a separation step of separating the draw solute contained in the draw solution from the water after the osmosis step.
例えば、ドロー溶質が温度応答性高分子である場合、ドロー溶液を中空糸膜モジュールとは別のチャンバー内に流入させ、該チャンバー内のドロー溶液の温度を変化させることで、ドロー溶液に含まれるドロー溶質を水と分離させることができる。この場合、ドロー溶液の温度を変化させるだけで、ドロー溶質(温度応答性高分子)を容易に水から分離させ、回収することができる。また、回収後のドロー溶質は、容易に再利用(ドロー溶液等に再溶解)することができる。 For example, when the draw solute is a temperature-responsive polymer, the draw solution is contained in the draw solution by flowing into the chamber separate from the hollow fiber membrane module and changing the temperature of the draw solution in the chamber. The draw solute can be separated from the water. In this case, the draw solute (temperature-responsive polymer) can be easily separated from the water and recovered simply by changing the temperature of the draw solution. Moreover, the draw solute after collection can be easily reused (re-dissolved in a draw solution or the like).
本発明の正浸透水処理方法は、水と分離したドロー溶質を回収する回収工程をさらに含むことが好ましい。ドロー溶質の回収は、例えば、膜分離装置、遠心分離装置、沈降分離装置などを用いて実施することができる。このドロー溶質の回収工程後に残存する水を回収することで、水処理方法の目的物である水を得ることができる。純粋な水が得られるようにドロー溶質の回収工程は多段階に分けて繰り返されてもよく、ドロー溶質の回収工程の後に、さらに得られる水の品質を高めるための処理を行ってもよい。 The forward osmosis water treatment method of the present invention preferably further includes a recovery step of recovering the draw solute separated from the water. The draw solute can be collected using, for example, a membrane separator, a centrifugal separator, a sedimentation separator, or the like. By recovering the water remaining after the draw solute recovery step, water that is the target of the water treatment method can be obtained. The drawing process for drawing solutes may be repeated in multiple stages so that pure water is obtained. After the drawing process for drawing solutes, a process for further improving the quality of the obtained water may be performed.
なお、本発明の正浸透水処理方法は、回収工程で回収されたドロー溶質をドロー溶液中に再溶解させる再利用工程をさらに含んでいてもよい。 The forward osmosis water treatment method of the present invention may further include a reuse step of re-dissolving the draw solute recovered in the recovery step in the draw solution.
以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
(中空糸型半透膜の製造例1: −FO膜−)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)41質量%、N−メチル−2−ピロリドン(NMP、三菱化学社)49.9質量%、エチレングリコール(EG、三菱化学社)8.8質量%、安息香酸(ナカライテスク社)0.3質量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.3秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を75℃の水に浸漬し、40分間アニール処理を行った。その後、35,000mg/L食塩水に約25℃で5分間の浸漬処理を実施した。(Production Example 1 of Hollow Fiber Type Semipermeable Membrane: -FO Membrane-)
Cellulose triacetate (CTA, Daicel Chemical Industries, LT35) 41% by mass, N-methyl-2-pyrrolidone (NMP, Mitsubishi Chemical) 49.9% by mass, ethylene glycol (EG, Mitsubishi Chemical) 8.8% by mass % And benzoic acid (Nacalai Tesque) 0.3% by mass were uniformly dissolved at 180 ° C. to obtain a film-forming stock solution. The obtained film-forming stock solution was degassed under reduced pressure, and then discharged from an arc-type (three-division) nozzle into a space cut off from the outside air at 163 ° C. After passing through a space time of 0.3 seconds, NMP / EG / It was immersed in a 12 ° C. coagulation bath consisting of water = 4.25 / 0.75 / 95. Subsequently, the hollow fiber type semipermeable membrane was washed and shaken off in a wet state. The obtained hollow fiber type semipermeable membrane was immersed in water at 75 ° C. and annealed for 40 minutes. Then, the immersion process for 5 minutes was implemented at 35,000 mg / L saline at about 25 degreeC.
(中空糸型半透膜の製造例2 −RO膜−)
テレフタル酸ジクロリド及び70mol%の4,4’−ジアミノジフェニルスルホン、30mol%のピペラジンより低温溶液重合法で得た共重合ポリアミドを精製した後、このもの36重量部をCaCl2 4重量部(ポリマーに対して)及びジグリセリン3.6重量部(ポリマーに対して)を含むジメチルアセトアミド溶液に80℃で溶解し、製膜溶液とした。この溶液を脱泡した後、3分割ノズルより吐出し、空中走行部を経て4〜6℃に冷却した凝固液中に浸漬し中空糸型半透膜を得た。次いで得られた中空糸型半透膜を水洗した後、75〜85℃で30分間熱処理した。(Production Example 2 of Hollow Fiber Type Semipermeable Membrane -RO Membrane-)
After purifying the copolyamide obtained by low temperature solution polymerization method from terephthalic acid dichloride, 70
(中空糸型半透膜の製造例3 −NF膜−)
(多孔性支持膜の作製)
多孔性支持膜のポリマーとして、三菱エンジニアリングプラスチックス株式会社製のポリフェニレンエーテルPX100L(以下、PPEと略す。)を準備した。PPEが30質量%となるように、N−メチル−2−ピロリドン(以下、NMPと略す。)を加えて混練しながら、140℃で溶解させて、均一な製膜原液を得た。続いて、製膜原液を75℃の温度に保ちながら、二重円筒管ノズルより、中空状に押出しながら、内液として70質量%NMP水溶液を同時に押出して成形させ、常温の空気中を空走させて、乾燥処理を行ったあと、35質量%NMP水溶液を満たした40℃の凝固浴に浸漬させ、PPE多孔性支持膜を作製した後、水洗処理を行った。前記水洗処理を終えた多孔性支持膜を50質量%のグリセリン水溶液に浸漬した後、40℃で乾燥してワインダーに巻き取った。(Production Example 3 of Hollow Fiber Semipermeable Membrane -NF Membrane-)
(Preparation of porous support membrane)
As a polymer for the porous support membrane, polyphenylene ether PX100L (hereinafter abbreviated as PPE) manufactured by Mitsubishi Engineering Plastics Co., Ltd. was prepared. N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) was added and dissolved at 140 ° C. so that the PPE would be 30% by mass to obtain a uniform film forming stock solution. Subsequently, while keeping the film forming stock solution at a temperature of 75 ° C., a 70% by mass NMP aqueous solution is extruded and molded as an inner liquid simultaneously from a double cylindrical tube nozzle while being extruded in a hollow shape. After performing the drying treatment, the substrate was immersed in a coagulation bath at 40 ° C. filled with a 35 mass% NMP aqueous solution to produce a PPE porous support membrane, and then washed with water. The porous support membrane that had been subjected to the water washing treatment was immersed in a 50% by mass glycerin aqueous solution, dried at 40 ° C., and wound around a winder.
(複合膜の作製)
3,3′−ジスルホ−4,4′−ジクロロジフェニルスルホン2ナトリウム塩15.00g、2,6−ジクロロベンゾニトリル、29.76g、4,4′−ビフェノール37.91g、炭酸カリウム30.95gを冷却還流管を取り付けた1000mL四つ口フラスコに計量し、0.5L/minで窒素を流した。NMP263mLを入れて、オイルバスに入れ、150℃にして30分攪拌した後、210℃に昇温して12時間反応させた。放冷の後、重合反応溶液を水中にストランド状に沈殿させた。得られたポリマーは、常温の水で6回洗浄し、110℃で真空乾燥して、スルホン化ポリアリーレンエーテル(以下、SPAEと略す)を得た。このSPAEのスルホン化度を測定した結果、スルホン化度は15.0%であった。得られたSPAEにジメチルスルホキシド溶媒を加えて、常温で撹拌させながら溶解させ、3質量%濃度のコーティング溶液を得た。上記コーティング溶液に前記PPE多孔性支持膜を通糸させた後、115℃で乾燥し、ワインダーに巻き取った。(Production of composite film)
3,3'-disulfo-4,4'-dichlorodiphenylsulfone disodium salt 15.00 g, 2,6-dichlorobenzonitrile 29.76 g, 4,4'-biphenol 37.91 g, potassium carbonate 30.95 g Weighed into a 1000 mL four-necked flask equipped with a cooling reflux tube and flushed with nitrogen at 0.5 L / min. 263 mL of NMP was added, put into an oil bath, stirred at 150 ° C. for 30 minutes, then heated to 210 ° C. and reacted for 12 hours. After standing to cool, the polymerization reaction solution was precipitated in water into strands. The obtained polymer was washed 6 times with normal temperature water and vacuum dried at 110 ° C. to obtain a sulfonated polyarylene ether (hereinafter abbreviated as SPAE). As a result of measuring the degree of sulfonation of this SPAE, the degree of sulfonation was 15.0%. Dimethyl sulfoxide solvent was added to the obtained SPAE and dissolved while stirring at room temperature to obtain a coating solution having a concentration of 3% by mass. After passing the PPE porous support membrane through the coating solution, it was dried at 115 ° C. and wound around a winder.
(実施例1〜4および比較例1,2)
実施例1〜4および比較例1,2として、製造例1に記載の中空糸型半透膜が充填された内径等が異なる6種類の中空糸膜モジュール(仮想モジュール)を想定した。中空糸型半透膜としては、緻密層厚みがおよそ2μm、圧力差透水量が150(L/m2/日)、圧力差塩除去率が99.6%のFO膜に分類されるものを使用した。(Examples 1 to 4 and Comparative Examples 1 and 2)
As Examples 1 to 4 and Comparative Examples 1 and 2, six types of hollow fiber membrane modules (virtual modules) with different inner diameters filled with the hollow fiber type semipermeable membrane described in Production Example 1 were assumed. The hollow fiber type semipermeable membrane is classified as a FO membrane having a dense layer thickness of about 2 μm, a pressure differential water permeability of 150 (L / m 2 / day), and a pressure differential salt removal rate of 99.6%. used.
なお、圧力差透水量および圧力差塩除去率は、例えば、下記のようにして測定される中空糸型半透膜のパラメータである。 The pressure differential water permeability and the pressure differential salt removal rate are, for example, parameters of a hollow fiber type semipermeable membrane measured as follows.
(圧力差透水量)
中空糸型半透膜を束ねて、プラスチック製スリーブに挿入した後、熱硬化性樹脂をスリーブに注入し、硬化させ封止した。熱硬化性樹脂で硬化させた中空糸型半透膜の端部を切断することで中空糸型半透膜の開口面を得て、外径基準の膜面積がおよそ0.1m2の評価用モジュールを作製した。この評価用モジュールを供給水タンク、ポンプからなる膜性能試験装置に接続し、性能評価した。具体的には、塩化ナトリウム濃度1500mg/Lの供給水溶液を、25℃、圧力1.5MPaで中空糸型半透膜の外側から内側へ向かって濾過して1時間運転する。その後、中空糸型半透膜の開口面より膜透過水を採取して、電子天秤(島津製作所 LIBROR EB−3200D)で透過水重量を測定した。圧力差透水量(FR)は下記式:
FR[L/m2/日]=透過水重量[L]/外径基準膜面積[m2]/採取時間[分]×(60[分]×24[時間])
より算出される。(Pressure difference permeability)
After hollow fiber type semipermeable membranes were bundled and inserted into a plastic sleeve, a thermosetting resin was injected into the sleeve, cured and sealed. By cutting the end of a hollow fiber type semipermeable membrane cured with a thermosetting resin, an opening surface of the hollow fiber type semipermeable membrane is obtained, and the membrane area on the basis of the outer diameter is about 0.1 m 2 A module was produced. This evaluation module was connected to a membrane performance testing device consisting of a feed water tank and a pump, and the performance was evaluated. Specifically, a supply aqueous solution having a sodium chloride concentration of 1500 mg / L is filtered from the outside to the inside of the hollow fiber type semipermeable membrane at 25 ° C. and a pressure of 1.5 MPa, and is operated for 1 hour. Thereafter, the membrane permeated water was collected from the opening surface of the hollow fiber type semipermeable membrane, and the weight of the permeated water was measured with an electronic balance (Shimadzu Corporation LIBROR EB-3200D). The pressure differential permeability (FR) is expressed by the following formula:
FR [L / m 2 / day] = weight of permeate [L] / outer diameter reference membrane area [m 2 ] / collection time [min] × (60 [min] × 24 [hour])
It is calculated from.
(圧力差塩除去率)
前記透水量測定で採取した膜透過水と、同じく透水量の測定で使用した塩化ナトリウム濃度1500mg/L供給水溶液について電気伝導率計(東亜ディーケーケー社CM−25R)を用いて塩化ナトリウム濃度を測定する。圧力差塩除去率は下記式:
圧力差塩除去率[%]=(1−膜透過水塩濃度[mg/L]/供給水溶液塩濃度[mg/L])×100
より算出される。(Pressure difference salt removal rate)
The sodium chloride concentration is measured using a conductivity meter (Toa DKK Corporation CM-25R) with respect to the membrane permeated water collected in the water permeability measurement and the sodium chloride concentration 1500 mg / L aqueous solution used in the same water permeability measurement. . Pressure differential salt removal rate is the following formula:
Pressure difference salt removal rate [%] = (1-membrane permeated water salt concentration [mg / L] / feed aqueous solution salt concentration [mg / L]) × 100
It is calculated from.
中空糸型半透膜の内径、外径、中空率、膜面積および膜体積は、表1に示すとおりとした。なお、中空糸型半透膜の中空率および膜体積が略一定になるように各パラメータを設定した。 The inner diameter, outer diameter, hollow ratio, membrane area and membrane volume of the hollow fiber type semipermeable membrane were as shown in Table 1. Each parameter was set so that the hollow rate and membrane volume of the hollow fiber type semipermeable membrane were substantially constant.
また、仮想モジュールに充填される中空糸型半透膜の有効長は56cm、接着長は7cmとし、仮想モジュールの内径は75mmとした。また、仮想モジュールの充填率が50%となるように、仮想モジュールに充填される中空糸型半透膜の本数(充填本数)を表1に示すように設定した。 The effective length of the hollow fiber type semipermeable membrane filled in the virtual module was 56 cm, the adhesion length was 7 cm, and the inner diameter of the virtual module was 75 mm. Further, the number (filling number) of hollow fiber type semipermeable membranes filled in the virtual module was set as shown in Table 1 so that the filling rate of the virtual module was 50%.
なお、上記において、中空率は(内径/外径)2×100である。膜面積(外径基準)は、外径×π×(有効長)×充填本数である。膜体積は、π(外径/2)2×(有効長)×充填本数−π(内径/2)2×(有効長)×充填本数である。充填率は、〔π(外径/2)2×(充填本数)〕/〔π(モジュール内径/2)2〕である。In the above, the hollow ratio is (inner diameter / outer diameter) 2 × 100. The membrane area (outer diameter reference) is outer diameter × π × (effective length) × number of fillings. The membrane volume is π (outer diameter / 2) 2 × (effective length) × number of fillings−π (inner diameter / 2) 2 × (effective length) × number of fillings. The filling rate is [π (outer diameter / 2) 2 × (number of fillings)] / [π (module inner diameter / 2) 2 ].
(ドロー溶液の粘度測定)
0、20、40、60および80重量%のプルロニック(プルロニック25R2:ADEKA製)の水溶液を、恒温槽にて25℃に安定させた。その後、B型粘度計(製品名:TVB−10粘度計、東機産業製、使用ロータ:H1、測定回転数:100rpm)を用いて、各水溶液について粘度を測定した。なお、粘度計の作動開始から1分後の測定値を読み取った。(Draw solution viscosity measurement)
0, 20, 40, 60, and 80 wt% aqueous solution of Pluronic (Pluronic 25R2: manufactured by ADEKA) was stabilized at 25 ° C. in a thermostatic bath. Thereafter, the viscosity of each aqueous solution was measured using a B-type viscometer (product name: TVB-10 viscometer, manufactured by Toki Sangyo, used rotor: H1, measurement rotation speed: 100 rpm). The measured value after 1 minute from the start of operation of the viscometer was read.
(透水量等のシミュレーション計算)
上記実施例および比較例の仮想モジュールについて、透水量等の特性値を計算により求めた。なお、上記実施例および比較例の想定モジュールについて、温度25℃で、モジュールの中空糸型半透膜の外側にフィード溶液(処理対象水)としてRO水(水道水を前処理および逆浸透処理したもの)を圧力0Paで流し、中空糸型半透膜の中空部内にドロー溶液(DS)を圧力0.1MPaで流して、定常状態に達した場合を想定してシミュレーション計算を行った。(Simulation calculation of water permeability etc.)
About the virtual module of the said Example and comparative example, characteristic values, such as a water permeability, were calculated | required by calculation. In addition, about the assumption module of the said Example and comparative example, RO water (tap water was pre-processed and reverse osmosis-treated as feed solution (process target water) at the temperature of 25 degreeC outside the hollow fiber type semipermeable membrane of a module. The simulation calculation was performed on the assumption that a steady state was reached by flowing a draw solution (DS) at a pressure of 0.1 MPa into the hollow part of the hollow fiber type semipermeable membrane.
なお、ドロー溶液のドロー溶質(プルロニック25R2(ADEKA製)を想定)の濃度を61、77、83、85または100(溶質のみ)質量%とした計算結果をそれぞれ表3〜表7に示した。なお、各ドロー溶液の粘度は、上記と同じ順で、126、239、300、330、600cP(センチポアズ)〔0.126、0.239、0.300、0.330、0.600Pa・s〕であった。 Tables 3 to 7 show the calculation results when the concentration of the draw solute of the draw solution (assuming Pluronic 25R2 (made by ADEKA) is 61, 77, 83, 85 or 100 (solute only) mass%. The viscosity of each draw solution is 126, 239, 300, 330, 600 cP (centipoise) [0.126, 0.239, 0.300, 0.330, 0.600 Pa · s] in the same order as described above. Met.
その後、DSについて、中空糸型半透膜の中空部の入口での濃度(DS入口濃度)および出口での濃度(DS出口濃度)、仮想モジュール(の中空糸型半透膜の中空部の入口側)に流入するドロー溶液の総流量(DS入口流量)、並びに、仮想モジュール(の中空糸型半透膜の中空部の出口側)から流出するドロー溶液の総流量(DS出口流量)を下記の計算方法により求めた。なお、各表中、DS入口流量について比較例2の値を基準とした比を併せて示す。 Thereafter, for DS, the concentration at the inlet of the hollow portion of the hollow fiber type semipermeable membrane (DS inlet concentration) and the concentration at the outlet (DS outlet concentration), the virtual module (inlet of the hollow portion of the hollow fiber type semipermeable membrane) The total flow rate of the draw solution flowing into the side) (DS inlet flow rate) and the total flow rate of the draw solution flowing out of the virtual module (the outlet side of the hollow part of the hollow fiber type semipermeable membrane) (DS outlet flow rate) are as follows: The calculation method was used. In each table, the ratio of the DS inlet flow rate based on the value of Comparative Example 2 is also shown.
[計算方法]
上記のパラメータ(ドロー溶液の圧力:0.1MPa、フィード溶液の圧力:0Pa、温度:25℃、および、表1のパラメータ)を前提として、DS入口濃度をインプットすると、DS入口流量、DS出口流量、DS出口濃度、中空糸型半透膜を透過した水の総量(ΔV)が算出される計算プログラムを用いて、表3〜表7記載の計算を実施した。なお、これらの計算では、仮想モジュール(中空糸型半透膜)を流れ方向において均等な微小区間に分割して、各区間での物質収支を計算した。[Method of calculation]
Assuming the above parameters (pressure of draw solution: 0.1 MPa, pressure of feed solution: 0 Pa, temperature: 25 ° C., and parameters shown in Table 1), DS inlet flow rate, DS outlet flow rate are input. The calculation shown in Tables 3 to 7 was carried out using a calculation program for calculating the DS outlet concentration and the total amount of water permeated through the hollow fiber type semipermeable membrane (ΔV). In these calculations, the virtual module (hollow fiber type semipermeable membrane) was divided into equal minute sections in the flow direction, and the material balance in each section was calculated.
具体的には、DS入口濃度、DS入口流量を用いて、仮想モジュールの最初の区間(最も入口側の区間)で中空糸型半透膜を透過する水の量を、A’値(cm3/cm2/s/(kgf/cm2))(一定値と仮定)×膜面積(cm2)×60×[有効圧力(静水圧)−有効浸透圧](kgf/cm2)により算出し、最初の区間でのDSの出口側濃度および出口側流量を計算する。この最初の区間の出口側濃度および出口側流量を次の区間のDSの入口側濃度、入口側流量として、仮想モジュールの入口側から出口側へ順次、同様の計算を繰り返していくことで、最終的な仮想モジュール(中空糸型半透過膜)のDS出口濃度およびDS出口流量を算出する。なお、各区間において中空糸型半透過膜を透過した水の量の合計が、仮想モジュールで中空糸型半透膜を透過した水の総量(ΔV)であり、[DS出口流量−DS入口流量]で算出できる。Specifically, using the DS inlet concentration and the DS inlet flow rate, the amount of water permeating through the hollow fiber type semipermeable membrane in the first section of the virtual module (the section on the most inlet side) is expressed as A ′ value (cm 3 / Cm 2 / s / (kgf / cm 2 )) (assuming constant value) × membrane area (cm 2 ) × 60 × [effective pressure (hydrostatic pressure) −effective osmotic pressure] (kgf / cm 2 ) Calculate the outlet concentration and outlet flow rate of DS in the first interval. By repeating the same calculation sequentially from the inlet side to the outlet side of the virtual module as the outlet side concentration and outlet side flow rate of the first section as the DS inlet side concentration and inlet side flow rate of the next section, the final calculation is performed. The DS outlet concentration and DS outlet flow rate of a typical virtual module (hollow fiber type semipermeable membrane) are calculated. The total amount of water that permeated through the hollow fiber type semipermeable membrane in each section is the total amount of water (ΔV) that permeated through the hollow fiber type semipermeable membrane in the virtual module, and [DS outlet flow rate−DS inlet flow rate] ].
また、A’値(透水性能)は、表2に示す粘度および濃度のドロー溶液を用いた膜評価結果(表2)を用いて、下記式より算出した。ただし、表3〜表7記載の計算の際は、表2に示す3つのA’値のうち、表2に示す粘度が表3〜表7の粘度に近いA’値を代用した。ただし、粘度が0.300以上の場合は、2.6×10−7を代用した。Further, the A ′ value (water permeability performance) was calculated from the following formula using the film evaluation results (Table 2) using the draw solutions having the viscosities and concentrations shown in Table 2. However, in the calculations shown in Tables 3 to 7, among the three A ′ values shown in Table 2, the A ′ values in which the viscosities shown in Table 2 are close to those in Tables 3 to 7 were substituted. However, when the viscosity was 0.300 or more, 2.6 × 10 −7 was substituted.
A’値(cm3/cm2/s/(kgf/cm2))=膜を透過した水量:ΔV(cm3)/膜面積(cm2)/時間(s)/[有効圧力(静水圧)−有効浸透圧](kgf/cm2)
A ′ value (cm 3 / cm 2 / s / (kgf / cm 2 )) = amount of water permeating the membrane: ΔV (cm 3 ) / membrane area (cm 2 ) / time (s) / [effective pressure (hydrostatic pressure ) -Effective osmotic pressure] (kgf / cm < 2 >)
なお、各表中、透水量(ΔV)について比較例2の値を基準とした比を併せて示す。また、この比を縦軸とし、各実施例および比較例の内径を横軸としたグラフを図1〜図3に示す。なお、図1はドロー溶液の粘度ηが0.3Pa・sの場合(表5に対応)、図2はドロー溶液の粘度ηが0.126、0.239、0.330、0.600Pa・sの場合(表3,4,6,7に対応)、図3はドロー溶液の粘度ηが0.600Pa・sの場合(表7に対応)を示している。また、比較として、ドロー溶液を7質量%の塩水(粘度:約0.1Pa・s)とした計算結果を図4に示した。なお、図1および図3に、ドロー溶液の流量増加を参照するために、DS入口流量の比較例2基準の比(縦軸右側)のグラフを点線で示す。 In addition, in each table | surface, ratio based on the value of the comparative example 2 is shown collectively about the water permeation amount ((DELTA) V). Moreover, the graph which made this ratio the vertical axis | shaft and made the internal axis of each Example and the comparative example the horizontal axis | shaft is shown in FIGS. 1 shows a case where the viscosity η of the draw solution is 0.3 Pa · s (corresponding to Table 5), and FIG. 2 shows a case where the viscosity η of the draw solution is 0.126, 0.239, 0.330, 0.600 Pa · s. In the case of s (corresponding to Tables 3, 4, 6 and 7), FIG. 3 shows the case where the viscosity η of the draw solution is 0.600 Pa · s (corresponding to Table 7). For comparison, FIG. 4 shows the calculation results when the draw solution was 7 mass% salt water (viscosity: about 0.1 Pa · s). In FIGS. 1 and 3, in order to refer to the increase in the flow rate of the draw solution, a graph of the ratio of the DS inlet flow rate based on Comparative Example 2 (right side of the vertical axis) is indicated by a dotted line.
表3〜表7および図1〜図3に示される結果から、中空糸型半透膜の中空部内に高粘度のドロー溶液を流す場合でも、中空糸型半透膜の内径を250μm超700μm以下の範囲にすることで、正浸透水処理の効率(透水量)を向上させることが可能であると考えられる。 From the results shown in Tables 3 to 7 and FIGS. 1 to 3, even when a high-viscosity draw solution is allowed to flow through the hollow portion of the hollow fiber type semipermeable membrane, the inner diameter of the hollow fiber type semipermeable membrane is more than 250 μm and 700 μm or less. It is thought that it is possible to improve the efficiency (water permeability) of forward osmosis water treatment by making it into this range.
ただし、特に、ドロー溶液の粘度が0.150Pa・s未満である表3(図2のη=0.126Pa・s)の結果は、ドロー溶液の粘度が0.150Pa・s以上である他の結果と異なり、図3に示すドロー溶液が低粘度の塩水である場合の結果と同様の傾向を示している。すなわち、ドロー溶液の粘度が0.150Pa・s未満である場合は、中空糸型半透膜の内径を250μm超700μm以下の範囲にすることで、正浸透水処理の効率(透水量)を向上させる効果が得られ難いと推測される。したがって、本発明の中空糸型半透膜は、0.150Pa・s以上の高粘度の溶液をドロー溶液として用いる場合において、特に有用であると考えられる。 However, in particular, the results of Table 3 (η = 0.126 Pa · s in FIG. 2) in which the viscosity of the draw solution is less than 0.150 Pa · s indicate that the viscosity of the draw solution is 0.150 Pa · s or more. Unlike the results, it shows the same tendency as the results when the draw solution shown in FIG. 3 is low-viscosity salt water. That is, when the viscosity of the draw solution is less than 0.150 Pa · s, the efficiency of the normal osmotic water treatment (water permeability) is improved by setting the inner diameter of the hollow fiber type semipermeable membrane to be in the range of more than 250 μm to 700 μm or less. It is presumed that it is difficult to obtain the effect. Therefore, it is considered that the hollow fiber type semipermeable membrane of the present invention is particularly useful when a solution having a high viscosity of 0.150 Pa · s or more is used as the draw solution.
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1 中空糸型分離膜素子、2 圧力容器、3 中空糸型半透膜モジュール。 1 hollow fiber type separation membrane element, 2 pressure vessel, 3 hollow fiber type semipermeable membrane module.
Claims (9)
前記中空糸型半透膜の外周面に水と水以外の成分とを含む処理対象水を接触させると共に、前記中空糸型半透膜の中空部内にドロー溶質を含むドロー溶液を流すことで、前記処理対象水中に含まれる水を前記中空糸型半透膜を通して前記外周面側から前記中空部内に移動させる浸透工程を含む、正浸透水処理方法。A forward osmosis water treatment method using the hollow fiber type semipermeable membrane according to claim 1,
By bringing water to be treated and water to be treated containing components other than water into contact with the outer peripheral surface of the hollow fiber type semipermeable membrane, and flowing a draw solution containing a draw solute in the hollow part of the hollow fiber type semipermeable membrane, A forward osmosis water treatment method comprising a permeation step of moving water contained in the water to be treated from the outer peripheral surface side into the hollow portion through the hollow fiber type semipermeable membrane.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015083201 | 2015-04-15 | ||
JP2015083201 | 2015-04-15 | ||
PCT/JP2016/061873 WO2016167267A1 (en) | 2015-04-15 | 2016-04-13 | Hollow-fiber-type semipermeable membrane, hollow fiber membrane module, and forward osmosis water treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2016167267A1 true JPWO2016167267A1 (en) | 2018-02-08 |
JP6743810B2 JP6743810B2 (en) | 2020-08-19 |
Family
ID=57126574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017512548A Active JP6743810B2 (en) | 2015-04-15 | 2016-04-13 | Hollow fiber type semipermeable membrane, hollow fiber membrane module and forward osmosis water treatment method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6743810B2 (en) |
WO (1) | WO2016167267A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3570965A4 (en) * | 2017-01-20 | 2021-02-17 | Trevi Systems Inc. | Osmotic pressure assisted reverse osmosis membrane and module |
JP7155862B2 (en) * | 2018-10-19 | 2022-10-19 | 東洋紡株式会社 | Hollow fiber membrane element, hollow fiber membrane module and forward osmosis water treatment method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5418920A (en) * | 1978-04-03 | 1979-02-13 | Mitsubishi Rayon Co Ltd | Production of hollow fibers |
JPH01307409A (en) * | 1988-06-03 | 1989-12-12 | Daicel Chem Ind Ltd | Device for automatically detecting leak in hollow yarn ultrafiltration membrane module and giving alarm |
JP2001286743A (en) * | 2000-04-10 | 2001-10-16 | Nok Corp | METHOD FOR MANUFACTURING POLY-m-PHENYLENE ISOPHTHALAMIDE SEPARATION MEMBRANE |
WO2013118859A1 (en) * | 2012-02-09 | 2013-08-15 | 東洋紡株式会社 | Hollow fiber semipermeable membrane, method for manufacturing same, module, and water treatment method |
JP2013212456A (en) * | 2012-04-02 | 2013-10-17 | Jfe Engineering Corp | Hollow fiber membrane module |
JP2015054293A (en) * | 2013-09-12 | 2015-03-23 | Jfeエンジニアリング株式会社 | Water treatment method using semi-permeable membrane |
-
2016
- 2016-04-13 WO PCT/JP2016/061873 patent/WO2016167267A1/en active Application Filing
- 2016-04-13 JP JP2017512548A patent/JP6743810B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5418920A (en) * | 1978-04-03 | 1979-02-13 | Mitsubishi Rayon Co Ltd | Production of hollow fibers |
JPH01307409A (en) * | 1988-06-03 | 1989-12-12 | Daicel Chem Ind Ltd | Device for automatically detecting leak in hollow yarn ultrafiltration membrane module and giving alarm |
JP2001286743A (en) * | 2000-04-10 | 2001-10-16 | Nok Corp | METHOD FOR MANUFACTURING POLY-m-PHENYLENE ISOPHTHALAMIDE SEPARATION MEMBRANE |
WO2013118859A1 (en) * | 2012-02-09 | 2013-08-15 | 東洋紡株式会社 | Hollow fiber semipermeable membrane, method for manufacturing same, module, and water treatment method |
JP2013212456A (en) * | 2012-04-02 | 2013-10-17 | Jfe Engineering Corp | Hollow fiber membrane module |
JP2015054293A (en) * | 2013-09-12 | 2015-03-23 | Jfeエンジニアリング株式会社 | Water treatment method using semi-permeable membrane |
Also Published As
Publication number | Publication date |
---|---|
JP6743810B2 (en) | 2020-08-19 |
WO2016167267A1 (en) | 2016-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6851306B2 (en) | Copolymer for making membranes | |
JP6521077B2 (en) | Water treatment method and water treatment system | |
JP2020127756A (en) | Membrane for blood purification | |
JP2017515664A (en) | Porous asymmetric polyphenylene ether membrane and related separation modules and methods | |
JP2018528856A (en) | Method for manufacturing a membrane | |
CN112867554B (en) | Hollow fiber membrane element, hollow fiber membrane module, and forward osmosis water treatment method | |
CN111549448B (en) | Performance enhancing additives for fiber formation and polysulfone fibers | |
KR20170002531A (en) | Asymmetric polyphenylene ether co-polymer membrane separation module thereof and methods of making | |
JP2017205740A (en) | Composite membrane | |
JP2017025834A (en) | Forward osmotic power generation method, and forward osmotic power generation system used therefor | |
JP6365542B2 (en) | Hollow fiber membrane element and membrane module for forward osmosis | |
JP6743810B2 (en) | Hollow fiber type semipermeable membrane, hollow fiber membrane module and forward osmosis water treatment method | |
JP6583416B2 (en) | Hollow fiber membrane element, hollow fiber membrane module, and forward osmosis water treatment method | |
WO2016182015A1 (en) | Porous hollow fiber membrane and manufacturing method therefor | |
JP6477872B2 (en) | Immersion type hollow fiber membrane module and forward osmosis water treatment method using the same | |
JP7261328B2 (en) | Tubular Separation Membrane and Tubular Separation Membrane Module | |
JP2015221400A (en) | Manufacturing method of hollow fiber membrane for ultrafiltration membrane | |
JP7586305B2 (en) | Method for producing gelatin or concentrated gelatin solution | |
US20220362717A1 (en) | Polymeric membrane and methods for the production of same | |
SG188687A1 (en) | Thin film composite osmosis membranes | |
JP5423326B2 (en) | Method for producing hollow fiber membrane | |
JP2009136763A (en) | Method for manufacturing hollow-fiber-type separation membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200114 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200313 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200408 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200630 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200713 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6743810 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |