JPWO2015151566A1 - All solid lithium battery - Google Patents
All solid lithium battery Download PDFInfo
- Publication number
- JPWO2015151566A1 JPWO2015151566A1 JP2016511416A JP2016511416A JPWO2015151566A1 JP WO2015151566 A1 JPWO2015151566 A1 JP WO2015151566A1 JP 2016511416 A JP2016511416 A JP 2016511416A JP 2016511416 A JP2016511416 A JP 2016511416A JP WO2015151566 A1 JPWO2015151566 A1 JP WO2015151566A1
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- solid
- electrode plate
- lithium
- lithium battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 73
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 59
- 239000007787 solid Substances 0.000 title claims description 23
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 57
- 239000002245 particle Substances 0.000 claims abstract description 48
- 239000000203 mixture Substances 0.000 claims abstract description 36
- 229910010293 ceramic material Inorganic materials 0.000 claims abstract description 16
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 15
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 claims abstract description 14
- 229910001386 lithium phosphate Inorganic materials 0.000 claims abstract description 8
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 claims abstract description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 11
- 229910008035 Li-La-Zr-O Inorganic materials 0.000 claims description 10
- 229910006268 Li—La—Zr—O Inorganic materials 0.000 claims description 10
- 230000006866 deterioration Effects 0.000 abstract description 7
- 239000010410 layer Substances 0.000 description 67
- 239000000843 powder Substances 0.000 description 66
- 238000000034 method Methods 0.000 description 62
- 238000010304 firing Methods 0.000 description 51
- 239000002994 raw material Substances 0.000 description 51
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 44
- 239000010408 film Substances 0.000 description 43
- 239000013078 crystal Substances 0.000 description 36
- 238000010438 heat treatment Methods 0.000 description 24
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 23
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 21
- 229910001416 lithium ion Inorganic materials 0.000 description 21
- 229910052759 nickel Inorganic materials 0.000 description 20
- 239000002131 composite material Substances 0.000 description 18
- 239000011572 manganese Substances 0.000 description 17
- 239000000443 aerosol Substances 0.000 description 16
- 229910052782 aluminium Inorganic materials 0.000 description 16
- 239000000919 ceramic Substances 0.000 description 15
- 230000008569 process Effects 0.000 description 15
- 239000007774 positive electrode material Substances 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000012298 atmosphere Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- 229910052726 zirconium Inorganic materials 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- 229910052746 lanthanum Inorganic materials 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 238000000151 deposition Methods 0.000 description 9
- 230000008021 deposition Effects 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- 239000002002 slurry Substances 0.000 description 9
- 238000004544 sputter deposition Methods 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 238000007600 charging Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 238000007599 discharging Methods 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 230000003746 surface roughness Effects 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 229910017052 cobalt Inorganic materials 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 150000002642 lithium compounds Chemical class 0.000 description 6
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 6
- 239000010955 niobium Substances 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- 229910015118 LiMO Inorganic materials 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 238000007630 basic procedure Methods 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000011164 primary particle Substances 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 description 4
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000007773 negative electrode material Substances 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 239000013074 reference sample Substances 0.000 description 4
- 229910002706 AlOOH Inorganic materials 0.000 description 3
- 229920002799 BoPET Polymers 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000007606 doctor blade method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 239000002223 garnet Substances 0.000 description 3
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 3
- 229910052808 lithium carbonate Inorganic materials 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 238000002847 impedance measurement Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000011244 liquid electrolyte Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000033116 oxidation-reduction process Effects 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 235000002639 sodium chloride Nutrition 0.000 description 2
- 238000003746 solid phase reaction Methods 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910010500 Li2.9PO3.3N0.46 Inorganic materials 0.000 description 1
- 229910013553 LiNO Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 1
- 229910019021 Mg 2 Sn Inorganic materials 0.000 description 1
- 229910021314 NaFeO 2 Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- IBXOPEGTOZQGQO-UHFFFAOYSA-N [Li].[Nb] Chemical compound [Li].[Nb] IBXOPEGTOZQGQO-UHFFFAOYSA-N 0.000 description 1
- AWJDQCINSGRBDJ-UHFFFAOYSA-N [Li].[Ta] Chemical compound [Li].[Ta] AWJDQCINSGRBDJ-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 238000001540 jet deposition Methods 0.000 description 1
- YXEUGTSPQFTXTR-UHFFFAOYSA-K lanthanum(3+);trihydroxide Chemical compound [OH-].[OH-].[OH-].[La+3] YXEUGTSPQFTXTR-UHFFFAOYSA-K 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- YQNQTEBHHUSESQ-UHFFFAOYSA-N lithium aluminate Chemical compound [Li+].[O-][Al]=O YQNQTEBHHUSESQ-UHFFFAOYSA-N 0.000 description 1
- SWAIALBIBWIKKQ-UHFFFAOYSA-N lithium titanium Chemical compound [Li].[Ti] SWAIALBIBWIKKQ-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011817 metal compound particle Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 238000000593 microemulsion method Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 150000003658 tungsten compounds Chemical class 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
容量及びエネルギー密度の向上に適した構成でありながら、充放電の繰り返しに伴う電池特性の劣化(特に抵抗値の上昇)を有意に低減できる全固体リチウム電池が提供される。この全固体リチウム電池は、Lip(Nix,Coy,Mnz)O2(式中、0.9≦p≦1.3、0<x<0.8、0<y<1、0≦z≦0.7、x+y+z=1)又はLip(Nix,Coy,Alz)O2(式中、0.9≦p≦1.3、0.6<x<0.9、0.1<y≦0.3、0≦z≦0.2、x+y+z=1)で表される基本組成の層状岩塩構造を有する複数のリチウム遷移金属酸化物粒子からなる配向多結晶体からなる正極板と、Li−La−Zr−O系セラミックス材料及び/又はリン酸リチウムオキシナイトライド(LiPON)系セラミックス材料で構成される固体電解質層と、負極層とを備える。配向多結晶体は10μm以上の厚さ及び15〜85%の配向度を有する。Provided is an all-solid-state lithium battery that can significantly reduce deterioration of battery characteristics (particularly an increase in resistance value) due to repeated charge and discharge while having a configuration suitable for improving capacity and energy density. This all-solid-state lithium battery has Lip (Nix, Coy, Mnz) O2 (where 0.9 ≦ p ≦ 1.3, 0 <x <0.8, 0 <y <1, 0 ≦ z ≦ 0. 7, x + y + z = 1) or Lip (Nix, Coy, Alz) O 2 (where 0.9 ≦ p ≦ 1.3, 0.6 <x <0.9, 0.1 <y ≦ 0.3, A positive electrode plate made of an oriented polycrystal composed of a plurality of lithium transition metal oxide particles having a layered rock salt structure having a basic composition represented by 0 ≦ z ≦ 0.2, x + y + z = 1), and Li—La—Zr— A solid electrolyte layer composed of an O-based ceramic material and / or a lithium phosphate oxynitride (LiPON) -based ceramic material, and a negative electrode layer are provided. The oriented polycrystal has a thickness of 10 μm or more and an orientation degree of 15 to 85%.
Description
本発明は、全固体リチウム電池に関するものである。 The present invention relates to an all solid lithium battery.
近年、パーソナルコンピュータ、携帯電話等のポータブル機器の開発に伴い、その電源としての電池の需要が大幅に拡大している。このような用途に用いられる電池においては、イオンを移動させる媒体として、希釈溶媒に可燃性の有機溶媒を用いた有機溶媒等の液体の電解質(電解液)が従来使用されている。このような電解液を用いた電池においては、電解液の漏液や、発火、爆発等の問題を生ずる可能性がある。 In recent years, with the development of portable devices such as personal computers and mobile phones, the demand for batteries as power sources has been greatly expanded. In a battery used for such an application, a liquid electrolyte (electrolytic solution) such as an organic solvent using a flammable organic solvent as a diluent solvent has been conventionally used as a medium for moving ions. A battery using such an electrolytic solution may cause problems such as leakage of the electrolytic solution, ignition, and explosion.
このような問題を解消すべく、本質的な安全性確保のために、液体の電解質に代えて固体電解質を使用するとともに、その他の要素の全てを固体で構成した全固体電池の開発が進められている。このような全固体電池は、電解質が固体であることから、発火の心配が少なく、漏液せず、また、腐食による電池性能の劣化等の問題も生じ難い。 In order to solve these problems, in order to ensure intrinsic safety, development of an all-solid-state battery in which a solid electrolyte is used instead of a liquid electrolyte and all other elements are made of solid is being promoted. ing. Such an all-solid battery has a solid electrolyte, so there is little fear of ignition, no leakage, and problems such as deterioration of battery performance due to corrosion hardly occur.
例えば、特許文献1(特開2013−105708号公報)には、コバルト酸リチウム(LiCoO2)からなる正極層と、金属リチウムからなる負極層と、リン酸リチウムオキシナイトライドガラス電解質(LIPON)で形成されうる固体電解質層とを備えた薄膜リチウム二次電池が開示されており、正極層がスパッタリングにより形成され、その厚さは1〜15μmの範囲であることが記載されている。また、正極をより厚くして容量の向上を試みた全固体電池も提案されている。例えば、特許文献2(特表2009−516359号公報)には、厚さが約4μmより大きく約200μm未満の正極と、厚さ約10μm未満の固体電解質と、厚さ約30μm未満の負極とを有する全固体電池が開示されている。これらの文献には正極活物質を配向させたとの記載は見受けられない。For example, Patent Document 1 (Japanese Patent Laid-Open No. 2013-105708) includes a positive electrode layer made of lithium cobaltate (LiCoO 2 ), a negative electrode layer made of metallic lithium, and a lithium phosphate oxynitride glass electrolyte (LIPON). A thin film lithium secondary battery including a solid electrolyte layer that can be formed is disclosed, and it is described that a positive electrode layer is formed by sputtering and has a thickness in the range of 1 to 15 μm. In addition, an all-solid battery has been proposed in which the positive electrode is made thicker to try to improve the capacity. For example, Patent Document 2 (Japanese Patent Publication No. 2009-516359) discloses a positive electrode having a thickness greater than about 4 μm and less than about 200 μm, a solid electrolyte having a thickness of less than about 10 μm, and a negative electrode having a thickness of less than about 30 μm. An all-solid battery is disclosed. In these documents, there is no description that the positive electrode active material is oriented.
一方、リチウム複合酸化物の配向焼結体板が提案されている。例えば、特許文献3(特開2012−009193号公報)及び特許文献4(特開2012−009194号公報)には、層状岩塩構造を有し、X線回折における、(104)面による回折強度に対する(003)面による回折強度の比率[003]/[104]が2以下である、リチウム複合酸化物焼結体板が開示されている。また、特許文献5(特許第4745463号公報)には、一般式:Lip(Nix,Coy,Alz)O2(式中、0.9≦p≦1.3、0.6<x≦0.9、0.1<y≦0.3、0≦z≦0.2、x+y+z=1)で表され、層状岩塩構造を有する板状粒子が開示されており、(003)面が粒子の板面と交差するように配向されることが記載されている。On the other hand, an oriented sintered body plate of a lithium composite oxide has been proposed. For example, Patent Document 3 (Japanese Patent Laid-Open No. 2012-009193) and Patent Document 4 (Japanese Patent Laid-Open No. 2012-009194) have a layered rock salt structure, and have X-ray diffraction with respect to the diffraction intensity by the (104) plane. A lithium composite oxide sintered plate having a diffraction intensity ratio [003] / [104] of (003) plane of 2 or less is disclosed. Patent Document 5 (Japanese Patent No. 4745463) discloses a general formula: Li p (Ni x , Co y , Al z ) O 2 (where 0.9 ≦ p ≦ 1.3, 0.6 < x ≦ 0.9, 0.1 <y ≦ 0.3, 0 ≦ z ≦ 0.2, x + y + z = 1) and a plate-like particle having a layered rock salt structure is disclosed, and (003) plane Is oriented so as to intersect the plate surface of the particles.
また、リチウムイオン伝導性を有する固体電解質として、Li7La3Zr2O12に代表されるLi−La−Zr−O系複合酸化物(以下、LLZという)の組成を有するガーネット型のセラミックス材料が注目されている。例えば、特許文献6(特開2011−051800号公報)には、LLZの基本元素であるLi,La及びZrに加えてAlを加えることで、緻密性やリチウムイオン伝導率を向上できることが開示されている。特許文献7(特開2011−073962号公報)には、LLZの基本元素であるLi、La及びZrに加えてNb及び/又はTaを加えることで、リチウムイオン伝導率を更に向上できることが開示されている。特許文献8(特開2011−073963号公報)には、Li、La、Zr及びAlを含み、Laに対するLiのモル比を2.0〜2.5とすることで、緻密性を更に向上できることが開示されている。Further, as a solid electrolyte having lithium ion conductivity, a garnet-type ceramic material having a composition of a Li—La—Zr—O-based composite oxide (hereinafter referred to as LLZ) typified by Li 7 La 3 Zr 2 O 12 Is attracting attention. For example, Patent Document 6 (Japanese Patent Laid-Open No. 2011-051800) discloses that the addition of Al in addition to Li, La and Zr, which are basic elements of LLZ, can improve the denseness and lithium ion conductivity. ing. Patent Document 7 (Japanese Patent Laid-Open No. 2011-073962) discloses that lithium ion conductivity can be further improved by adding Nb and / or Ta in addition to Li, La, and Zr, which are basic elements of LLZ. ing. Patent Document 8 (Japanese Patent Application Laid-Open No. 2011-073963) includes Li, La, Zr, and Al, and the density can be further improved by setting the molar ratio of Li to La to 2.0 to 2.5. Is disclosed.
本発明者らは、今般、全固体リチウム電池において、特定組成の配向性を有する正極板と特定組成の固体電解質層とを組み合わせ、なおかつ正極板の厚さ及び配向度を所定範囲内に制御することで、容量及びエネルギー密度の向上に適した構成でありながら、充放電の繰り返しに伴う電池特性の劣化(特に抵抗値の上昇)を有意に低減できるとの知見を得た。 In the all-solid lithium battery, the present inventors now combine a positive electrode plate having a specific composition with a solid electrolyte layer having a specific composition, and control the thickness and degree of orientation of the positive electrode plate within a predetermined range. As a result, the present inventors have found that although the configuration is suitable for improving the capacity and energy density, deterioration of battery characteristics (particularly, increase in resistance value) due to repeated charge / discharge can be significantly reduced.
したがって、本発明の目的は、容量及びエネルギー密度の向上に適した構成でありながら、充放電の繰り返しに伴う電池特性の劣化(特に抵抗値の上昇)を有意に低減できる全固体リチウム電池を提供することにある。 Accordingly, an object of the present invention is to provide an all-solid-state lithium battery that can significantly reduce deterioration of battery characteristics (particularly increase in resistance value) due to repeated charge and discharge, while having a configuration suitable for improving capacity and energy density. There is to do.
本発明の一態様によれば、10μm以上の厚さ及び15〜85%の配向度を有する配向多結晶体からなる正極板であって、該配向多結晶体が、Lip(Nix,Coy,Mnz)O2(式中、0.9≦p≦1.3、0≦x<0.8、0≦y<1、0≦z≦0.7、x+y+z=1)又はLip(Nix,Coy,Alz)O2(式中、0.9≦p≦1.3、0.6<x<0.9、0.1<y≦0.3、0≦z≦0.2、x+y+z=1)で表される基本組成の層状岩塩構造を有する複数のリチウム遷移金属酸化物粒子からなる、正極板と、
前記正極板上に設けられ、Li−La−Zr−O系セラミックス材料及び/又はリン酸リチウムオキシナイトライド(LiPON)系セラミックス材料で構成される固体電解質層と、
前記固体電解質層上に設けられる負極層と、
を備えた、全固体リチウム電池が提供される。According to one embodiment of the present invention, a positive electrode plate made of an oriented polycrystal having a thickness of 10 μm or more and an orientation degree of 15 to 85%, wherein the oriented polycrystal is Li p (Ni x , Co y 1 , Mn z ) O 2 (where 0.9 ≦ p ≦ 1.3, 0 ≦ x <0.8, 0 ≦ y <1, 0 ≦ z ≦ 0.7, x + y + z = 1) or Li p (Ni x , Co y , Al z ) O 2 (wherein 0.9 ≦ p ≦ 1.3, 0.6 <x <0.9, 0.1 <y ≦ 0.3, 0 ≦ z ≦ A positive electrode plate comprising a plurality of lithium transition metal oxide particles having a layered rock salt structure having a basic composition represented by 0.2, x + y + z = 1);
A solid electrolyte layer provided on the positive electrode plate and composed of a Li-La-Zr-O-based ceramic material and / or a lithium phosphate oxynitride (LiPON) -based ceramic material;
A negative electrode layer provided on the solid electrolyte layer;
An all-solid lithium battery is provided.
全固体リチウム電池
図1に本発明による全固体リチウム電池の一例を模式的に示す。図1に示される全固体リチウム電池10は、正極板12と、正極板12上に設けられる固体電解質層14と、固体電解質層14上に設けられる負極層16とを備えてなる。正極板12は、10μm以上の厚さ及び15〜85%の配向度を有する配向多結晶体からなる。そして、この配向多結晶体は、Lip(Nix,Coy,Mnz)O2(式中、0.9≦p≦1.3、0≦x<0.8、0≦y<1、0≦z≦0.7、x+y+z=1)又はLip(Nix,Coy,Alz)O2(式中、0.9≦p≦1.3、0.6<x<0.9、0.1<y≦0.3、0≦z≦0.2、x+y+z=1)で表される基本組成の層状岩塩構造を有する複数のリチウム遷移金属酸化物粒子からなる。固体電解質層14は、Li−La−Zr−O系セラミックス材料及び/又はリン酸リチウムオキシナイトライド(LiPON)系セラミックス材料で構成される。このような構成の全固体リチウム電池によれば、容量及びエネルギー密度の向上に適した構成でありながら、充放電の繰り返しに伴う電池特性の劣化(特に抵抗値の上昇)を有意に低減することができる。An example of the all-solid lithium battery according to the invention is shown schematically in all-solid-state lithium batteries Figure 1. An all
正極板12及び固体電解質層14の各組成は、例えば特許文献3〜8で述べられるように、電池特性の向上をもたらすことが知られたものではあるが、本発明にあっては、正極板12を配向多結晶体で構成し、なおかつその厚さを10μm以上と厚くする。この点、特許文献1及び2のように配向を狙うことなく厚さ10μm以上にした正極層は知られているが、正極層を単に厚く形成しただけでは、期待したほど容量及びエネルギー密度の増加が得られない。これは、正極活物質が配向されていない従来型の正極層の場合、厚い正極層の厚さ全体にわたった高効率なリチウムイオンの脱挿入がしづらいためであると考えられる。例えば、厚い正極層の固体電解質から離れた側に存在するリチウムを十分に取り出せないことが起こりうる。この点、本発明に用いる正極板12は一定の方向に配向された複数のリチウム遷移金属酸化物粒子からなる配向多結晶体であるため、正極活物質を厚く設けても、正極層の厚さ全体にわたった高効率なリチウムイオンの脱挿入がしやすく、厚い正極活物質によってもたらされる容量向上効果を最大限に引き出すことができる。例えば、厚い正極層の固体電解質から離れた側に存在するリチウムも十分に取り出すことができる。かかる容量の向上によって、全固体電池のエネルギー密度をも大いに向上することができる。すなわち、本発明の全固体リチウム電池によれば、容量及びエネルギー密度の高い電池性能が得られる。したがって、比較的薄型ないし小型でありながらも、高い容量と高いエネルギー密度を有する安全性が高い全固体電池を実現することができる。特に、正極板12はセラミックス焼結体で構成できるため、スパッタリング等の気相法により形成される膜と比べて厚く形成しやすいとともに、原料粉末の秤量を厳密に行うことで組成を正確に制御しやすいとの利点もある。
Each composition of the
しかしながら、上記のように望ましい正極板12及び固体電解質層14の組合せでありながら、充放電を繰り返すにつれて電池特性が劣化(特に抵抗値の上昇)しうるとの問題が今般判明した。特に、上述した理論に照らせば正極板12の配向度は高ければ高いほど電池特性を向上できるものと期待されたが、実際には、充放電の繰り返しに伴い電池の抵抗値が上昇してしまい、電池特性の劣化が起こりうる。これは、上記特定組成の厚い配向正極板を、Li−La−Zr−O系及び/又はLiPON系セラミックス材料からなる固体電解質に接合した場合に特に見られる現象である(例えば硫黄系の固体電解質材料からなる固体電解質に接合した場合には上記現象は見られない)。この点、本発明によれば、正極板12を構成する配向多結晶体の配向度を15〜85%に制御することで上述した電池の抵抗値の上昇を有意に低減することができる。この有利な効果をもたらすメカニズムは必ずしも定かではないが、充放電に伴うリチウムイオンの脱挿入による正極板12の膨張収縮が上記配向度範囲内において低く抑えられることで、(厚いが故に本来大きくなりがちな)正極板12内の応力が小さく抑えられ、その結果、正極板12と固体電解質層14との間で歪の少ない良好な界面状態(例えば剥離が無い等)を維持できるためではないかと推察される。すなわち、正極板12と固体電解質層14との間の界面における抵抗上昇が低減されるのではないかと考えられる。加えて、本発明者らの知見によれば、この低い膨張収縮率は正極板12の組成とも相関関係があり、それ故15〜85%との配向度範囲は上述した正極板の組成に特有の数値範囲であるものと解される(例えば正極板をLiCoO2で構成した場合には上記低い膨張収縮率は実現されない)。もっとも、本発明による上記効果をもたらす他の要因も可能性としてはありうることから、発明は上記理論に限定されて解釈されるべきではない。However, it has now been found that the battery characteristics can be deteriorated (especially the resistance value is increased) as charging and discharging are repeated, although the combination of the
正極板12は、層状岩塩構造を有する複数のリチウム遷移金属酸化物粒子からなる配向多結晶体からなる。層状岩塩構造は、リチウムイオンの吸蔵により酸化還元電位が低下し、リチウムイオンの脱離により酸化還元電位が上昇する性質があり、好ましく、中でもNiを多く含む組成は特に好ましい。ここで、層状岩塩構造とは、リチウム以外の遷移金属系層とリチウム層とが酸素原子の層を挟んで交互に積層された結晶構造、すなわち、リチウム以外の遷移金属等のイオン層とリチウムイオン層とが酸化物イオンを挟んで交互に積層された結晶構造(典型的にはα−NaFeO2型構造:立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列した構造)をいう。本発明に用いる層状岩塩構造を有するリチウム遷移金属酸化物粒子は、Lip(Nix,Coy,Mnz)O2(式中、0.9≦p≦1.3、0<x<0.8、0<y<1、0≦z≦0.7、x+y+z=1(好ましくは0.95≦p≦1.1、0.1≦x<0.7、0.1≦y<0.9、0≦z≦0.6、x+y+z=1)又はLip(Nix,Coy,Alz)O2(式中、0.9≦p≦1.3、0.6<x<0.9、0.1<y≦0.3、0≦z≦0.2、x+y+z=1(好ましくは0.95≦p≦1.1、0.7<x<0.9、0.1<y≦0.25、0≦z≦0.1、x+y+z=1))で表される基本組成を有する。これらの組成は、層状岩塩構造を有するリチウム遷移金属酸化物のうちニッケル及びコバルトを含む組成である。ニッケル及びコバルトを含むことで充放電時の正極板12の膨張収縮率が有意に低減されうる。そのような組成を典型例としては、ニッケル・コバルト酸リチウム、コバルト・ニッケル・マンガン酸リチウム、ニッケル・コバルト・アルミニウム酸リチウム等が挙げられる。リチウム遷移金属酸化物粒子ないしその配向多結晶体には、Mg,Al,Si,Ca,Ti,V,Cr,Fe,Cu,Zn,Ga,Ge,Sr,Y,Zr,Nb,Mo,Ag,Sn,Sb,Te,Ba,Bi等の元素が1種以上更にドーピング又はそれに準ずる形態(例えば結晶粒子の表層への部分的な固溶、又は偏析)で微量添加されていてもよい。The
前述のとおり、正極板12は、複数のリチウム遷移金属酸化物粒子からなる配向多結晶体からなる。この配向多結晶体は、一定の方向に配向された複数のリチウム遷移金属酸化物粒子からなるのが好ましい。この一定の方向は、リチウムイオンの伝導方向であるのが好ましく、典型的には、正極板12を構成する各粒子の特定の結晶面が正極板12から負極層16に向かう方向に配向されてなる。リチウム遷移金属酸化物粒子は、厚さが2〜100μm程度の板状に形成された粒子が好ましい。特に、上述の特定の結晶面が(003)面であり、該(003)面が正極板12から負極層16に向かう方向に配向されていることが好ましい。これにより、リチウムイオンの正極板12に対する脱挿入の際の抵抗にならず、高入力時(充電時)に、多くのリチウムイオンを放出することができ、高出力時(放電時)に、多くのリチウムイオンを受け入れることができる。(003)面以外の例えば(101)面や(104)面は、正極板12の板面に沿うように配向させてもよい。上述の粒子や配向多結晶体の詳細については、特許文献3〜5を参照することができ、これらの文献の開示内容は参照により本明細書に組み込まれる。
As described above, the
すなわち、正極板12は配向多結晶体からなり、この配向多結晶体は15〜85%、好ましくは20〜80%、より好ましくは30〜75%、さらに好ましくは40〜75%、特に好ましくは45〜75%、最も好ましくは40〜70%の配向度を有する。もっとも、これらの様々な配向度範囲の上限値及び下限値は任意に組み合わせてよい。換言すれば、配向度は、下限値に関して、15%以上、好ましくは20%以上、より好ましくは30%以上、さらに好ましくは40%以上、特に好ましくは45%以上であり、かつ、上限値に関して、85%以下、好ましくは80%以下であり、より好ましくは75%以下であり、最も好ましくは70%以下である。なお、この配向度は、正極板12の板面を試料面とし、XRD装置(例えば、株式会社リガク製、TTR−III)を用いて、X線回折を2θで10°から70°の範囲を2°/min、ステップ幅0.02°の条件で行い、得られたXRDプロファイルをロットゲーリング法に従い下記式に基づいて配向度を算出すればよい。
なお、この無配向の参照試料は、無配向であること以外は正極板試料と同様の構成の試料であり、例えば正極板試料を乳鉢で粉砕して無配向状態にすることで得ることができる。また、上記式において、(HKL)に関して、(00l)の回折線が除かれているのは、この回折線に相当する面(例えば(003)面)はその面内方向(当該面と平行方向)にしかリチウムイオンが移動できないため、当該面が正極板12の板面に沿って配向されているとリチウムイオンの移動が妨げられるからである。したがって、複数のリチウム遷移金属酸化物粒子は、層状岩塩構造の(003)面が正極板12の板面と交差するような方向に配向されてなるのが好ましい。すなわち、この正極板12の板面と交差するような方向がリチウムイオンの伝導方向であり、この構成によれば、正極板12を構成する各粒子の(003)面が正極板12から負極層16に向かう方向に配向されることになる。
The non-oriented reference sample is a sample having the same configuration as the positive electrode plate sample except that it is non-oriented. For example, the non-oriented reference sample can be obtained by pulverizing the positive electrode plate sample with a mortar to make it non-oriented. . In the above formula, with respect to (HKL), the (001) diffraction line is removed because the plane corresponding to this diffraction line (for example, the (003) plane) is the in-plane direction (the direction parallel to the plane). This is because the movement of lithium ions is hindered when the surface is oriented along the plate surface of the
前述したとおり、正極板12を構成する配向多結晶体は、無配向の多結晶体よりも、厚くするのに適している。配向多結晶体の厚さは、単位面積当りの活物質容量を高くする観点から、10μm以上が好ましく、より好ましくは13μm以上であり、さらに好ましくは16μm以上、特に好ましくは20μm以上、最も好ましくは25μm以上である。厚さの上限値は特に限定されないが、充放電の繰り返しに伴う電池特性の劣化(特に抵抗値の上昇)を低減する観点から、好ましくは100μm未満、より好ましくは90μm以下、さらに好ましくは80μm以下、特に好ましくは70μm以下、最も好ましくは60μmである。
As described above, the oriented polycrystalline body constituting the
正極板12はシート状に形成されるのが好ましい。このシート状に形成された正極活物質(以下、正極活物質シートという)の好ましい製造方法については後述する。なお、1枚の正極活物質シートで正極板12を構成してもよいし、正極活物質シートを分割して得られた複数個の小片を層状に配列させて正極板12を構成してもよい。
The
正極板12の固体電解質層14側の表面は、0.05μmより大きく3.0μm未満の算術平均粗さRaを有するのが好ましく、より好ましくは0.10〜2.5μm、さらに好ましくは0.13〜2.0μm、特に好ましくは0.16〜1.5μm、最も好ましくは0.20〜1.0μmの算術平均粗さRaを有する。算術平均粗さRaはJIS B 0601−2001に準拠して決定される値であり、市販の表面粗さ測定機で測定することができる。このように正極板12の固体電解質層14側の表面粗さを上記範囲内に制御することで、適度な表面粗さにより正極板12と固体電解質層14との接触点(これはリチウムイオン伝導経路になる)を十分に確保しながら、適度に高い平滑性により正極板12と固体電解質層14との間で、充放電の繰り返しによっても抵抗値が上昇しにくい密着性に優れた望ましい界面を形成することができる。上記範囲内の算術平均粗さRaは、正極板12の製造条件を適宜調整すること(例えば原料粒径の微細化、焼成スケジュール、成形体の高密度化等)によって実現してもよいし、正極板の表面をラッピングフィルム、リューター等で研磨することにより実現してもよい。
The surface of the
正極板12を構成する配向多結晶体は75〜99.97%の相対密度を有するのが好ましく、より好ましくは80〜99.95%、さらに好ましくは90〜99.90%、特に好ましくは95〜99.88%、最も好ましくは97〜99.85%の相対密度を有する。容量及びエネルギー密度の観点から相対密度は基本的には高い方が望ましいが、上記範囲内であると充放電の繰り返しによっても抵抗値が上昇しにくい。これは上記相対密度であるとリチウムの脱挿入に伴い正極板12が適度に膨張収縮でき、それにより応力を緩和できるためではないかと考えられる。
The oriented polycrystalline body constituting the
固体電解質層14はLi−La−Zr−O系セラミックス材料及び/又はリン酸リチウムオキシナイトライド(LiPON)系セラミックス材料で構成される。Li−La−Zr−O系材料は、Li、La、Zr及びOを含んで構成されるガーネット型又はガーネット型類似の結晶構造を有する酸化物焼結体であり、具体的には、Li7La3Zr2O12などのガーネット系セラミックス材料である。このような材料としては、特許文献6〜8に記載されるものも用いることができ、これらの文献の開示内容は参照により本明細書に組み込まれる。ガーネット系セラミックス材料は、負極リチウムと直接接触しても反応が起きないリチウムイオン伝導材料であるが、とりわけ、Li、La、Zr及びOを含んで構成されるガーネット型又はガーネット型類似の結晶構造を有する酸化物焼結体が、焼結性に優れて緻密化しやすく、かつ、イオン伝導率も高い。この種の組成のガーネット型又はガーネット型類似の結晶構造はLLZ結晶構造と呼ばれ、CSD(Cambridge Structural Database)のX線回折ファイルNo.422259(Li7La3Zr2O12)に類似のXRDパターンを有する。なお、No.422259と比較すると構成元素が異なり、またセラミックス中のLi濃度などが異なる可能性があるため、回折角度や回折強度比が異なる場合もある。Laに対するLiのモル数の比Li/Laは2.0以上2.5以下であることが好ましく、Laに対するZrのモル比Zr/Laは0.5以上0.67以下であるのが好ましい。このガーネット型又はガーネット型類似の結晶構造はNb及び/又はTaをさらに含んで構成されるものであってもよい。すなわち、LLZのZrの一部がNb及びTaのいずれか一方又は双方で置換されることにより、置換前に比べて伝導率を向上させることができる。ZrのNb及び/又はTaによる置換量(モル比)は、(Nb+Ta)/Laのモル比が0.03以上0.20以下となる量にすることが好ましい。また、このガーネット系酸化物焼結体はAlをさらに含んでいるのが好ましく、これらの元素は結晶格子に存在してもよいし、結晶格子以外に存在していてもよい。Alの添加量は焼結体の0.01〜1質量%とするのが好ましく、Laに対するAlのモル比Al/Laは、0.008〜0.12であるのが好ましい。このようなLLZ系セラミックスの製造は、特許文献6〜8に記載されるような公知の手法に従って又はそれを適宜修正することにより行うことができ、これらの文献の開示内容は本明細書に参照により組み込まれる。また、リン酸リチウムオキシナイトライド(LiPON)系セラミックス材料も好ましい。LiPONは、Li2.9PO3.3N0.46の組成によって代表されるような化合物群であり、例えばLiaPObNc(式中、aは2〜4、bは3〜5、cは0.1〜0.9である)で表される化合物群である。The
固体電解質層14の寸法は特に限定されないが、厚さは充放電レート特性と機械的強度の観点から、0.0005mm〜0.5mmが好ましく、より好ましくは0.001mm〜0.1mm、さらに好ましくは0.005〜0.05mmである。
The dimension of the
固体電解質層14の形成方法としては、各種パーティクルジェットコーティング法、固相法、溶液法、気相法、直接接合(ダイレクトボンディング)法を用いることができる。パーティクルジェットコーティング法の例としては、エアロゾルデポジション(AD)法、ガスデポジション(GD)法、パウダージェットデポジション(PJD)法、コールドスプレー(CS)法、溶射法等がある。中でも、エアロゾルデポジション(AD)法は、常温成膜が可能であることから、プロセス中の組成ズレや、正極板との反応による高抵抗層の形成がなく特に好ましい。固相法の例としては、テープ積層法、印刷法等がある。中でも、テープ積層法は固体電解質層14を薄く形成することが可能であり、また、厚さの制御が容易であることから好ましい。溶液法の例としては、ソルボサーマル法、水熱合成法、ゾルゲル法、沈殿法、マイクロエマルション法、溶媒蒸発法等がある。これらの方法の中でも、水熱合成法は、低温で結晶性の高い結晶粒を得やすい点で特に好ましい。また、これらの方法を用いて合成した微結晶を、正極上に堆積させてもよいし、正極上に直接析出させてもよい。気相法の例としては、レーザー堆積(PLD)法、スパッタ法、蒸発凝縮(PVD)法、気相反応法(CVD)法、真空蒸着法、分子線エピタキシ(MBE)法等がある。この中でも、レーザー堆積(PLD)法は組成ズレが少なく、比較的結晶性の高い膜を得られやすく特に好ましい。直接接合(ダイレクトボンディング)法は、予め形成した固体電解質層14と正極板12の各々の表面を化学的に活性な状態にして、低温で接合する方法である。界面の活性化については、プラズマ等を用いてもよいし、水酸基等の官能基の化学修飾を用いてもよい。
As a method for forming the
正極板12と固体電解質層14の間の界面には界面抵抗を下げるための処理が施されていてもよい。例えば、そのような処理は、ニオブ酸化物、チタン酸化物、タングステン酸化物、タンタル酸化物、リチウム・ニッケル複合酸化物、リチウム・チタン複合酸化物、リチウム・ニオブ化合物、リチウム・タンタル化合物、リチウム・タングステン化合物、リチウム・チタン化合物、及びこれらの任意の組み合わせ若しくは複合酸化物で正極板12の表面及び/又は固体電解質層14の表面を被覆することにより行うことができる。このような処理によって正極板12と固体電解質層14の間の界面には被膜が存在しうることになるが、その被膜の厚さは例えば20nm以下といったような極めて薄いものである。
The interface between the
負極層16は負極活物質を含んでなり、この負極活物質は全固体リチウム電池に使用可能な公知各種の負極活物質であってよい。負極活物質の好ましい例としては、リチウム金属、リチウム合金、炭素質材料、チタン酸リチウム(LTO)等が挙げられる。好ましくは、負極層16は、負極集電体17(銅箔等)の上に、リチウム金属あるいはリチウムと合金化する金属の薄膜を真空蒸着法、スパッタリング法、CVD法等で形成して、リチウム金属あるいはリチウムと合金化する金属の層を形成することにより作製することができる。
The
負極層16と固体電解質層14の間に中間層を介在させるのが好ましい。中間層の構成材料としては、リチウムと合金化する金属、酸化物系材料等を用いることができる。この場合、充放電サイクル特性を向上させることができる。リチウムと合金化する金属の例としては、Al(アルミニウム)、Si(シリコン)、Zn(亜鉛)、Ga(ガリウム)、Ge(ゲルマニウム)、Ag(銀)、Au(金)、Cd(カドミウム)、In(インジウム)、Sn(スズ)、Sb(アンチモン)、Pb(鉛)、Bi(ビスマス)、及びそれらの任意の組み合わせが挙げられる。リチウムと合金化する金属は、Mg2SiやMg2Sn等の2種類以上の元素により構成された合金であってもよい。酸化物系材料の例としては、Li4Ti5O12、TiO2、SiO等が挙げられる。中間層の形成は、エアロゾルデポジション(AD)法、パルスレーザー堆積(PLD)法、スパッタリング法等の公知の方法により行えばよい。It is preferable to interpose an intermediate layer between the
正極板12及び/又は負極層16には正極集電体13及び/又は負極集電体17が設けられるのが好ましい。典型的には、図1に示されるように、正極集電体13は正極板12の固体電解質層14と反対側の面に設けられる一方、負極集電体17は負極層16の固体電解質層14と反対側の面に設けられる。正極集電体13及び負極集電体17を構成する材料の例としては、白金(Pt)、白金(Pt)/パラジウム(Pd)、金(Au)、銀(Ag)、アルミニウム(Al)、銅(Cu)、ITO(インジウム−錫酸化膜)、Ni(ニッケル)等が挙げられる。
The
容器18は、単位電池又はそれを複数個直列若しくは並列に積層させたスタックを収容可能な容器であれば特に限定されない。特に、全固体リチウム電池10は電解液の漏れの懸念が無いため、容器18は比較的簡素な容器形態を採用可能である。例えば、電子回路に実装するためのチップ形態、薄く幅広の空間用途のためのラミネートセル形態(例えばアルミニウム(Al)/ポリプロピレン(PP)の複層品)、樹脂モールド形態、金属板で電池構成部材を挟む形態等が採用可能である。
The
正極活物質シートの製造方法
正極活物質シートの好ましい製造方法について以下に説明する。 Method for Producing Positive Electrode Active Material Sheet A preferred method for producing the positive electrode active material sheet is described below.
(1)原料粒子の準備
原料粒子としては、合成後の組成が層状岩塩構造を有する正極活物質LiMO2となるように、Li、Co、Ni、Mn、Alなどの化合物の粒子を適宜混合したものが用いられる。あるいは、原料粒子として、LiMO2の組成からなるもの(合成済みのもの)を用いることができる。(1) Preparation of raw material particles As raw material particles, particles of a compound such as Li, Co, Ni, Mn, and Al were appropriately mixed so that the composition after synthesis was a positive electrode active material LiMO 2 having a layered rock salt structure. Things are used. Alternatively, raw material particles having a composition of LiMO 2 (synthesized particles) can be used.
あるいは、必要に応じて、リチウム化合物を含まない原料粒子を用いてもよい。この場合、成形体の焼成工程の後、焼成された成形体とリチウム化合物とをさらに反応させることでLiMO2が得られる。リチウムを含まない原料粒子としては、Co、Ni、Mn、Al等の各化合物の混合粒子((Co,Ni,Mn)Ox、(Co,Ni,Al)Ox、(Co,Ni,Mn)OHx、(Co,Ni,Al)OHx等の組成を有する混合粒子)等を用いることができる。好ましくは、少なくとも1種の金属化合物が、Co、Ni、Mn及びAlからなる群から選択される少なくとも1種の金属の、酸化物、水酸化物及び/又は炭酸塩である。また、これらの粒子は二種以上の金属化合物粒子の混合粉の形態でもよいし、共沈法により合成した複合化合物からなる粒子であってもよい。Or you may use the raw material particle | grains which do not contain a lithium compound as needed. In this case, LiMO 2 is obtained by further reacting the fired molded body with the lithium compound after the firing process of the molded body. As raw material particles not containing lithium, mixed particles ((Co, Ni, Mn) O x , (Co, Ni, Al) O x , (Co, Ni, Mn) of compounds such as Co, Ni, Mn, and Al are used. ) OH x , (Co, Ni, Al) OH x, etc.). Preferably, the at least one metal compound is an oxide, hydroxide and / or carbonate of at least one metal selected from the group consisting of Co, Ni, Mn and Al. These particles may be in the form of a mixed powder of two or more kinds of metal compound particles, or may be particles made of a composite compound synthesized by a coprecipitation method.
粒成長を促進する、もしくは焼成中に揮発する分を補償する目的で、リチウム化合物を0.5〜30mol%過剰に入れてもよい。また、粒成長を促進する目的で、酸化ビスマスなどの低融点酸化物、ホウケイ酸ガラスなどの低融点ガラスを0.001〜30wt%添加してもよい。 A lithium compound may be added in an excess of 0.5 to 30 mol% for the purpose of promoting grain growth or compensating for volatilization during firing. For the purpose of promoting grain growth, 0.001 to 30 wt% of a low melting point oxide such as bismuth oxide or a low melting point glass such as borosilicate glass may be added.
(2)原料粒子の成形工程
原料粒子を、シート状の自立した成形体に成形する。すなわち、「自立した成形体」は、典型的には、それ単体でシート状の成形体の形状を保つことができるものである。なお、それ単体ではシート状の成形体の形状を保つことができないものであっても、何らかの基板上に貼り付けたり成膜したりして焼成前又は焼成後に、この基板から剥離したものも、「自立した成形体」に含まれる。(2) Forming step of raw material particles The raw material particles are formed into a sheet-like self-supporting compact. That is, the “self-supporting molded body” typically can maintain the shape of a sheet-shaped molded body by itself. In addition, even if it alone can not keep the shape of the sheet-like molded body, it may be attached to any substrate or formed into a film and peeled off from this substrate before or after firing, Included in “self-supported compact”.
成形体の成形方法としては、例えば、原料粒子を含むスラリーを用いたドクターブレード法が用いられ得る。また、成形体の成形には、熱したドラム上へ原料を含むスラリーを塗布し、乾燥させたものをスクレイパーで掻きとる、ドラムドライヤーが用いられ得る。また、成形体の成形には、熱した円板面へスラリーを塗布し、これを乾燥させてスクレイパーで掻きとる、ディスクドライヤーを用いることもできる。また、スプレードライヤーの条件を適宜設定することで得られる中空の造粒体も、曲率をもったシート状成形体とみることができるので、成形体として好適に用いることができる。さらに、原料粒子を含む坏土を用いた押出成形法も成形体の成形方法として利用可能である。 As a molding method of the molded body, for example, a doctor blade method using a slurry containing raw material particles can be used. In addition, a drum dryer may be used for forming a formed body, in which a slurry containing a raw material is applied onto a heated drum and the dried material is scraped off with a scraper. In addition, a disk drier can be used for forming the formed body, in which a slurry is applied to a heated disk surface, dried and scraped with a scraper. Moreover, since the hollow granulated body obtained by setting the conditions of a spray dryer suitably can also be regarded as the sheet-like molded object with a curvature, it can be used suitably as a molded object. Furthermore, an extrusion molding method using a clay containing raw material particles can also be used as a molding method of the molded body.
ドクターブレード法を用いる場合、可撓性を有する板(例えばPETフィルムなどの有機ポリマー板など)にスラリーを塗布し、塗布したスラリーを乾燥固化して成形体とし、この成形体と板とを剥離することにより、板状多結晶粒子の焼成前の成形体を作製してもよい。成形前にスラリーや坏土を調製するときには、無機粒子を適当な分散媒に分散させ、バインダーや可塑剤などを適宜加えてもよい。また、スラリーは、粘度が500〜4000cPとなるように調製するのが好ましく、減圧化で脱泡するのが好ましい。 When using the doctor blade method, the slurry is applied to a flexible plate (for example, an organic polymer plate such as a PET film), and the applied slurry is dried and solidified to form a molded product, and the molded product and the plate are peeled off. By doing so, you may produce the molded object before baking of a plate-like polycrystalline particle. When preparing a slurry or clay before molding, inorganic particles may be dispersed in a suitable dispersion medium, and a binder, a plasticizer, or the like may be added as appropriate. Moreover, it is preferable to prepare the slurry so that the viscosity is 500 to 4000 cP, and it is preferable that the slurry is degassed under reduced pressure.
(3)成形体の焼成工程
この焼成工程においては、成形工程で得られた成形体は、例えば、成形されたそのままの状態(シート状態)で、セッターに載せて焼成される。あるいは、焼成工程は、シート状の成形体を適宜切断、破砕したものを、鞘に入れて焼成するものであってもよい。(3) Baking process of molded body In this baking process, the molded body obtained in the molding process is placed on a setter and fired, for example, in a molded state (a sheet state). Alternatively, the firing step may be one in which a sheet-like formed body is appropriately cut and crushed and placed in a sheath and fired.
原料粒子が合成前の混合粒子である場合は、この焼成工程において、合成、さらには、焼結及び粒成長が生じる。本発明では、成形体がシート状であるため、厚さ方向の粒成長が限られる。このため、成形体の厚さ方向に結晶粒が1個となるまで粒成長した後は、成形体の面内方向にのみ粒成長が進む。このとき、エネルギー的に安定な特定の結晶面がシート表面(板面)に広がる。したがって、特定の結晶面がシート表面(板面)と平行になるように配向した膜状のシート(自立膜)が得られる。 When the raw material particles are mixed particles before synthesis, synthesis, further sintering and grain growth occur in this firing step. In this invention, since a molded object is a sheet form, the grain growth of the thickness direction is restricted. For this reason, after the grains have grown until the number of crystal grains becomes one in the thickness direction of the compact, grain growth proceeds only in the in-plane direction of the compact. At this time, a specific crystal plane which is stable in terms of energy spreads on the sheet surface (plate surface). Therefore, a film-like sheet (self-supporting film) oriented such that a specific crystal plane is parallel to the sheet surface (plate surface) is obtained.
原料粒子をLiMO2とした場合、リチウムイオンの出入りが良好に行われる結晶面である(101)面や(104)面を、シート表面(板面)に露出するように配向させることができる。一方、原料粒子を、リチウムを含まないもの(例えばスピネル構造のM3O4)とした場合、リチウム化合物と反応させてLiMO2としたときに(104)面となる、(h00)面を、シート表面(板面)に露出するように配向させることができる。When the raw material particles are LiMO 2 , the (101) plane and (104) plane, which are crystal planes in which lithium ions can enter and exit satisfactorily, can be oriented so as to be exposed on the sheet surface (plate surface). On the other hand, when the raw material particles do not contain lithium (for example, M 3 O 4 having a spinel structure), the (h00) plane, which becomes the (104) plane when reacted with a lithium compound to form LiMO 2 , It can be oriented so as to be exposed on the sheet surface (plate surface).
焼成温度は、700℃〜1350℃が好ましい。700℃より低温では、粒成長が不十分で、配向度が低くなる。一方、1350℃より高温では、分解・揮発が進んでしまう。焼成時間は、1〜50時間の間とするのが好ましい。1時間より短いと、配向度が低くなる。一方、50時間より長いと、消費エネルギーが大きくなりすぎる。焼成雰囲気は、焼成中に分解が進まないように適宜設定される。リチウムの揮発が進むような場合は、炭酸リチウムなどを同じ鞘内に配置してリチウム雰囲気とすることが好ましい。焼成中に酸素の放出や、さらには還元が進むような場合、酸素分圧の高い雰囲気で焼成することが好ましい。 The firing temperature is preferably 700 ° C to 1350 ° C. When the temperature is lower than 700 ° C., the grain growth is insufficient and the degree of orientation becomes low. On the other hand, decomposition and volatilization proceeds at a temperature higher than 1350 ° C. The firing time is preferably between 1 and 50 hours. If it is shorter than 1 hour, the degree of orientation becomes low. On the other hand, if it is longer than 50 hours, energy consumption becomes too large. The firing atmosphere is appropriately set so that decomposition does not proceed during firing. When the volatilization of lithium proceeds, it is preferable to arrange lithium carbonate or the like in the same sheath to create a lithium atmosphere. When oxygen release or further reduction proceeds during firing, firing is preferably performed in an atmosphere having a high oxygen partial pressure.
リチウム化合物を含まない原料粒子から、焼成により配向したシート得た場合、これとリチウム化合物(硝酸リチウムや炭酸リチウムなど)を反応させることで、リチウムイオンの出入りが良好に行われる結晶面が板面に露出するように配向した、正極活物質膜が得られる。例えば、配向シート硝酸リチウムを、LiとMとのモル比Li/Mが1以上となるようにふりかけて、熱処理することで、リチウム導入が行われる。ここで、熱処理温度は、600℃〜800℃が好ましい。600℃より低温では、反応が十分に進まない。900℃より高温では、配向性が低下する。 When a sheet oriented by firing is obtained from raw material particles that do not contain a lithium compound, the crystal plane on which lithium ions can enter and exit satisfactorily by reacting this with a lithium compound (lithium nitrate, lithium carbonate, etc.) Thus, a positive electrode active material film oriented so as to be exposed to the surface is obtained. For example, lithium is introduced by sprinkling the orientation sheet lithium nitrate so that the molar ratio Li / M of Li and M is 1 or more and heat-treating. Here, the heat treatment temperature is preferably 600 ° C to 800 ° C. At a temperature lower than 600 ° C., the reaction does not proceed sufficiently. When the temperature is higher than 900 ° C., the orientation deteriorates.
(好適組成の正極活物質シートの製造例)
Lip(Nix,Coy,Alz)O2又はLip(Nix,Coy,Mnz)O2粒子を用いた正極活物質シートは、例えば、以下のようにして製造してもよい。先ず、NiO粉末とCo3O4粉末とAlOOH又はMn3O4粉末とを含有するグリーンシートを形成し、このグリーンシートを1000℃〜1400℃の範囲内の温度で、大気雰囲気で所定時間焼成することで、(h00)配向した多数の板状の(Ni,Co,Al)O又は(Ni,Co,Mn)O粒子からなる、独立した膜状のシート(自立膜)が形成される。ここで、助剤としてMnO2、ZnO等を添加することにより、粒成長が促進され、結果として板状結晶粒子の(h00)配向性を高めることができる。ここで、「独立した」シートとは、焼成後に他の支持体から独立して単体で取り扱い可能なシートのことをいう。すなわち、「独立した」シートには、焼成により他の支持体(基板等)に固着されて当該支持体と一体化された(分離不能あるいは分離困難となった)ものは含まれない。このように自立膜状に形成されたグリーンシートにおいては、板面方向、すなわち、面内方向(厚さ方向と直交する方向)に比べて、厚さ方向に存在する材料の量がきわめて少ない。このため、厚さ方向に複数個の粒子がある初期段階には、ランダムな方向に粒成長する。一方、粒成長が進み厚さ方向の材料が消費されると、粒成長方向は面内の二次元方向に制限される。これにより、面方向への粒成長が確実に促進される。特に、グリーンシートの厚さが100μm程度もしくはそれ以上と比較的厚めであっても粒成長を可能な限り大きく促進したりすることで、面方向への粒成長がより確実に促進される。すなわち、表面エネルギーの低い面が板面方向、すなわち、面内方向(厚さ方向と直交する方向)と平行な粒子の面方向への粒成長が優先的に促進される。従って、上述のように膜状に形成されたグリーンシートを焼成することで、特定の結晶面が粒子の板面と平行となるように配向した薄板状の多数の粒子が、粒界部にて面方向に結合した自立膜が得られる。すなわち、実質的に厚さ方向についての結晶粒子の個数が1個となるような自立膜が形成される。ここで、「実質的に厚さ方向についての結晶粒子の個数が1個」の意義は、面方向に隣り合う結晶粒子の一部分(例えば端部)が厚さ方向に互いに重なり合うことを排除しない。この自立膜は、上述のような薄板状の多数の粒子が隙間なく結合した、緻密なセラミックスシートとなり得る。上述の工程によって得られた、(h00)配向した(Ni,Co,Al)O又は(Ni,Co,Mn)Oセラミックスシートと、硝酸リチウム(LiNO3)とを混合して、所定時間加熱することで、(Ni,Co,Al)O又は(Ni,Co,Mn)O粒子にリチウムが導入される。これにより、(003)面が正極板12から負極層16の方向に配向し、(104)面が板面に沿って配向した膜状の正極板12用のLip(Nix,Coy,Mnz)O2シート又はLip(Nix,Coy,Alz)O2シートが得られる。(Production example of positive electrode active material sheet of preferred composition)
Li p (Ni x, Co y , Al z) O 2 or Li p (Ni x, Co y , Mn z) positive electrode active material sheet using O 2 particles, for example, be prepared in the following manner Good. First, a green sheet containing NiO powder, Co 3 O 4 powder and AlOOH or Mn 3 O 4 powder is formed, and the green sheet is fired at a temperature within a range of 1000 ° C. to 1400 ° C. in an air atmosphere for a predetermined time. By doing so, an independent film-like sheet (self-supporting film) composed of a large number of (h00) -oriented (Ni, Co, Al) O or (Ni, Co, Mn) O particles is formed. Here, by adding MnO 2 , ZnO or the like as an auxiliary agent, grain growth is promoted, and as a result, the (h00) orientation of the plate-like crystal grains can be enhanced. Here, the “independent” sheet refers to a sheet that can be handled by itself independently from another support after firing. That is, the “independent” sheet does not include a sheet that is fixed to another support (substrate or the like) by firing and integrated with the support (unseparable or difficult to separate). Thus, in the green sheet formed in a self-supporting film shape, the amount of the material existing in the thickness direction is very small compared to the plate surface direction, that is, the in-plane direction (direction orthogonal to the thickness direction). For this reason, in the initial stage where there are a plurality of grains in the thickness direction, grains grow in random directions. On the other hand, when the grain growth proceeds and the material in the thickness direction is consumed, the grain growth direction is limited to the in-plane two-dimensional direction. This reliably promotes grain growth in the surface direction. In particular, even if the thickness of the green sheet is relatively thick, such as about 100 μm or more, the grain growth in the plane direction is more surely promoted by promoting the grain growth as much as possible. That is, the grain growth in the plane direction of the grains parallel to the plate surface direction, that is, the in-plane direction (direction orthogonal to the thickness direction) is promoted preferentially. Therefore, by firing the green sheet formed in a film shape as described above, a large number of thin plate-like particles oriented so that a specific crystal plane is parallel to the plate surface of the particles are formed at the grain boundary portion. A free-standing film bonded in the plane direction can be obtained. That is, a self-supporting film is formed so that the number of crystal grains in the thickness direction is substantially one. Here, the meaning of “substantially one crystal grain in the thickness direction” does not exclude that a part (for example, end portions) of crystal grains adjacent in the plane direction overlap each other in the thickness direction. This self-supporting film can be a dense ceramic sheet in which a large number of thin plate-like particles as described above are bonded without gaps. The (h00) -oriented (Ni, Co, Al) O or (Ni, Co, Mn) O ceramic sheet obtained by the above process is mixed with lithium nitrate (LiNO 3 ) and heated for a predetermined time. Thus, lithium is introduced into the (Ni, Co, Al) O or (Ni, Co, Mn) O particles. As a result, the (003) plane is oriented in the direction from the
リチウムイオン伝導材料の製造方法
以下に固体電解質層14を構成するリチウムイオン伝導材料の代表例の一つである、Al添加LLZセラミックス焼結体の好ましい製造方法を説明する。 Method for Producing Lithium Ion Conductive Material A preferred method for producing an Al-added LLZ ceramic sintered body, which is one of the representative examples of the lithium ion conductive material constituting the
先ず、第1焼成工程にて、Li成分、La成分及びZr成分を含む原料を焼成して、LiとLaとZrと酸素を含むセラミックス合成用の一次焼成粉末を得る。その後、第2焼成工程において、第1焼成工程で得られた一次焼成粉末を焼成して、LiとLaとZrと酸素を含むガーネット型又はガーネット型類似の結晶構造を有するセラミックスを合成する。これにより、LLZ結晶構造を有し、且つ、アルミニウムを含有してハンドリング可能な焼結性(密度)及び伝導性を備えるセラミックス粉末又は焼結体を容易に得ることができる。 First, in the first firing step, a raw material containing a Li component, a La component and a Zr component is fired to obtain a primary fired powder for ceramic synthesis containing Li, La, Zr and oxygen. Thereafter, in the second firing step, the primary fired powder obtained in the first firing step is fired to synthesize a ceramic having a garnet-type or garnet-like crystal structure containing Li, La, Zr, and oxygen. Thereby, it is possible to easily obtain a ceramic powder or sintered body having a LLZ crystal structure and having sinterability (density) and conductivity that contains aluminum and can be handled.
(Li成分、La成分及びZr成分)
これらの各種成分は、特に限定されないで、それぞれの金属成分を含む、金属酸化物、金属水酸化物、金属炭酸塩等、各種金属塩を適宜選択して用いることができる。例えば、Li成分としてはLi2CO3又はLiOHを用い、La成分としてはLa(OH)3又はLa2O3を用い、Zr成分としてはZrO2を用いることができる。なお、酸素は、通常、これら構成金属元素を含む化合物の一部を構成する元素として含まれている。セラミックス材料を得るための原料は、各Li成分、La成分及びZr成分等から固相反応等によりLLZ結晶構造が得られる程度にLi成分、La成分及びZr成分を含むことができる。Li成分、La成分及びZr成分は、LLZの化学量論組成に従えば、7:3:2あるいは組成比に近似した組成で用いることができる。Li成分の消失を考慮する場合には、Li成分は、LLZにおけるLiの化学量論に基づくモル比相当量よりも約10%増量した量を含み、La成分及びZr成分は、それぞれLLZモル比に相当する量となるように含有することができる。例えば、Li:La:Zrのモル比が7.7:3:2となるように、含有することができる。具体的な化合物を用いた場合のモル比としては、Li2CO3:La(OH)3:ZrO2のとき、約3.85:約3:約2のモル比となり、Li2CO3:La2O3:ZrO2のとき、約3.85:約1.5:約2のモル比となり、LiOH:La(OH)3:ZrO2のとき、約7.7:約3:約2となり、LiOH:La2O3:ZrO2のとき、約7.7:約1.5:約2となる。なお、原料粉末の調製にあたっては、公知のセラミックス粉末の合成における原料粉末調製方法を適宜採用することができる。例えば、ライカイ機等や適当なボールミル等に投入して均一に混合することができる。(Li component, La component and Zr component)
These various components are not particularly limited, and various metal salts such as metal oxides, metal hydroxides, and metal carbonates containing the respective metal components can be appropriately selected and used. For example, Li 2 CO 3 or LiOH can be used as the Li component, La (OH) 3 or La 2 O 3 can be used as the La component, and ZrO 2 can be used as the Zr component. Note that oxygen is usually included as an element constituting a part of a compound containing these constituent metal elements. The raw material for obtaining the ceramic material can contain a Li component, a La component, and a Zr component to such an extent that an LLZ crystal structure can be obtained from each Li component, La component, Zr component, and the like by a solid phase reaction or the like. According to the stoichiometric composition of LLZ, the Li component, La component and Zr component can be used in a composition close to 7: 3: 2 or a composition ratio. When considering the disappearance of the Li component, the Li component includes an amount increased by about 10% from the molar ratio equivalent amount based on the stoichiometry of Li in LLZ, and the La component and the Zr component are each in an LLZ molar ratio. It can contain so that it may become the quantity equivalent to. For example, it can be contained so that the molar ratio of Li: La: Zr is 7.7: 3: 2. When a specific compound is used, the molar ratio is about 3.85: about 3: about 2 when Li 2 CO 3 : La (OH) 3 : ZrO 2 , and Li 2 CO 3 : When La 2 O 3 : ZrO 2 , the molar ratio is about 3.85: about 1.5: about 2, and when LiOH: La (OH) 3 : ZrO 2 is about 7.7: about 3: about 2. When LiOH: La 2 O 3 : ZrO 2 , it is about 7.7: about 1.5: about 2. In preparing the raw material powder, a known raw material powder preparation method in the synthesis of ceramic powder can be appropriately employed. For example, the mixture can be mixed uniformly by putting it into a reiki machine or a suitable ball mill.
(第1焼成工程)
第1焼成工程は、少なくともLi成分やLa成分等の熱分解を行い第2焼成工程でLLZ結晶構造を形成しやくするための一次焼成粉末を得る工程である。一次焼成粉末は、LLZ結晶構造をすでに有している場合もある。焼成温度は、好ましくは、850℃以上1150℃以下の温度である。第1焼成工程は、上記温度範囲内において、より低い加熱温度で加熱するステップとより高い加熱温度で加熱するステップとを備えていてもよい。こうした加熱ステップを備えることで、より均一な状態なセラミックス粉末を得ることができ、第2焼成工程によって良質な焼結体を得ることができる。このような複数ステップで第1焼成工程を実施するときには、各焼成ステップ終了後、ライカイ機、ボールミル及び振動ミル等を用いて混練・粉砕することが好ましい。また、粉砕手法は乾式で行うことが望ましい。こうすることで、第2焼成工程により一層均一なLLZ相を得ることができる。第1焼成工程を構成する熱処理ステップは、好ましくは850℃以上950℃以下の熱処理ステップと1075℃以上1150℃以下の熱処理ステップを実施することが好ましい。さらに好ましくは875℃以上925℃以下(約900℃であることがより好ましい)の熱処理ステップと、1100℃以上1150℃以下(約1125℃であることがより好ましい)の熱処理ステップとする。第1焼成工程は、全体で加熱温度として設定した最高温度での加熱時間の合計として10時間以上15時間以下程度とすることが好ましい。第1焼成工程を2つの熱処理ステップで構成する場合には、それぞれ最高温度での加熱時間を5〜6時間程度とすることが好ましい。一方で、出発原料の1つ又は複数の成分を変更することにより、第1焼成工程を短縮化することができる。例えば、LiOHを出発原料に含まれる成分の1つとして用いる場合、LLZ結晶構造を得るには、Li、La及びZrを含むLLZ構成成分を850℃以上950℃以下の熱処理ステップで最高温度での加熱時間を10時間以下にすることができる。これは、出発原料に用いたLiOHが低温で液相を形成するため、より低温で他の成分と反応しやすくなるからである。(First firing step)
The first firing step is a step of obtaining a primary fired powder for facilitating the thermal decomposition of at least the Li component and the La component to easily form the LLZ crystal structure in the second firing step. The primary fired powder may already have an LLZ crystal structure. The firing temperature is preferably 850 ° C. or higher and 1150 ° C. or lower. The first baking step may include a step of heating at a lower heating temperature and a step of heating at a higher heating temperature within the above temperature range. By providing such a heating step, a more uniform ceramic powder can be obtained, and a high-quality sintered body can be obtained by the second firing step. When the first firing step is performed in such a plurality of steps, it is preferable to knead and pulverize using a raikai machine, a ball mill, a vibration mill, or the like after the completion of each firing step. Moreover, it is desirable to carry out the pulverization method by a dry method. By doing so, a more uniform LLZ phase can be obtained by the second firing step. The heat treatment step constituting the first firing step is preferably performed by a heat treatment step of 850 ° C. or more and 950 ° C. or less and a heat treatment step of 1075 ° C. or more and 1150 ° C. or less. More preferably, a heat treatment step of 875 ° C. to 925 ° C. (more preferably about 900 ° C.) and a heat treatment step of 1100 ° C. to 1150 ° C. (more preferably about 1125 ° C.) are used. In the first baking step, the total heating time at the maximum temperature set as the heating temperature as a whole is preferably about 10 hours to 15 hours. In the case where the first baking step is composed of two heat treatment steps, it is preferable that the heating time at the maximum temperature is about 5 to 6 hours. On the other hand, the first firing step can be shortened by changing one or more components of the starting material. For example, when LiOH is used as one of the components contained in the starting material, in order to obtain an LLZ crystal structure, an LLZ component containing Li, La, and Zr is heated at a maximum temperature of 850 ° C. The heating time can be 10 hours or less. This is because LiOH used as a starting material forms a liquid phase at a low temperature, and thus easily reacts with other components at a lower temperature.
(第2焼成工程)
第2焼成工程は、第1焼成工程で得られた一次焼成粉末を950℃以上1250℃以下の温度で加熱する工程とすることができる。第2焼成工程によれば、第1焼成工程で得た一次焼成粉末を焼成し、最終的に複合酸化物であるLLZ結晶構造を有するセラミックスを得ることができる。LLZ結晶構造を得るには、例えば、Li、La及びZrを含むLLZ構成成分を1125℃以上1250℃以下の温度で熱処理するようにする。Li原料としてLi2CO3を用いるときには、1125℃以上1250℃以下で熱処理することが好ましい。1125℃未満であるとLLZの単相が得られにくくLi伝導率が小さく、1250℃を超えると、異相(La2Zr2O7等)の形成が見られるようになりLi伝導率が小さく、また結晶成長が著しくなるため、固体電解質としての強度を保つことが難しくなる傾向があるからである。より好ましくは、約1180℃から1230℃である。一方で、出発原料の1つ又は複数の成分を変更することにより、第2焼成工程を低温化することができる。例えば、Li原料としてLiOHを出発原料に用いる場合、LLZ結晶構造を得るには、Li、La及びZrを含むLLZ構成成分を950℃以上1125℃未満の温度でも熱処理することができる。これは、出発原料に用いたLiOHが低温で液相を形成するため、より低温で他の成分と反応しやすくなるからである。第2焼成工程における上記加熱温度での加熱時間は18時間以上50時間以下程度であることが好ましい。時間が18時間よりも短い場合、LLZ系セラミックスの形成が十分ではなく、50時間よりも長い場合、埋め粉を介してセッターと反応しやすくなるほか、結晶成長が著しくサンプルとして強度を保てなくなるからである。好ましくは30時間以上である。第2焼成工程は、一次焼成粉末を周知のプレス手法を用いて加圧成形して所望の三次元形状(例えば、全固体リチウム電池の固体電解質として使用可能な形状及びサイズ)を付与した成形体とした上で実施することが好ましい。成形体とすることで固相反応が促進されるほか、焼結体を得ることができる。なお、第2焼成工程後に、第2焼成工程で得られたセラミックス粉末を成形体として、第2焼成工程における加熱温度と同様の温度で焼結工程を別途実施してもよい。第2焼成工程で一次焼成粉末を含む成形体を焼成して焼結させる場合、成形体を同じ粉末内に埋没させるようにして実施することが好ましい。こうすることでLiの損失を抑制して第2焼成工程前後における組成の変化を抑制できる。なお、原料粉末の成形体は、通常、原料粉末を敷き詰めた上に載置した状態で原料粉末内に埋没される。こうすることで、セッターとの反応を抑制することができる。また、必要に応じて成形体を埋め粉の上下からセッターで押さえ込むことにより、焼結体の焼成時の反りを防止することができる。一方で、第2焼成工程においてLi原料としてLiOHを用いる等して低温化した場合、一次焼成粉末の成形体を同じ粉末内に埋没させなくても焼結させることができる。これは、第2焼成工程が低温化したことで、Liの損失が比較的抑制され、またセッターとの反応を抑制することができるからである。(Second firing step)
A 2nd baking process can be made into the process of heating the primary baking powder obtained at the 1st baking process at the temperature of 950 degreeC or more and 1250 degrees C or less. According to the second firing step, the primary firing powder obtained in the first firing step is fired, and finally a ceramic having an LLZ crystal structure that is a composite oxide can be obtained. In order to obtain the LLZ crystal structure, for example, an LLZ component including Li, La, and Zr is heat-treated at a temperature of 1125 ° C. or higher and 1250 ° C. or lower. When Li 2 CO 3 is used as the Li raw material, it is preferable to perform heat treatment at 1125 ° C. or higher and 1250 ° C. or lower. LLZ monophase is less than 1125 ° C. is not easily Li conductivity is small to give it exceeds 1250 ° C., heterophase (La 2 Zr 2 O 7, etc.) Li conductivity formed is to be seen in the small, Moreover, since crystal growth becomes remarkable, it tends to be difficult to maintain the strength as a solid electrolyte. More preferably, it is about 1180 to 1230 ° C. On the other hand, the temperature of the second firing step can be lowered by changing one or more components of the starting material. For example, when LiOH is used as a Li raw material as a Li raw material, in order to obtain an LLZ crystal structure, an LLZ constituent component including Li, La, and Zr can be heat-treated at a temperature of 950 ° C. or higher and lower than 1125 ° C. This is because LiOH used as a starting material forms a liquid phase at a low temperature, and thus easily reacts with other components at a lower temperature. The heating time at the heating temperature in the second firing step is preferably about 18 hours or more and 50 hours or less. When the time is shorter than 18 hours, the formation of the LLZ ceramics is not sufficient. When the time is longer than 50 hours, it becomes easy to react with the setter via the filling powder, and the crystal growth is not able to maintain the strength as a sample. Because. Preferably it is 30 hours or more. In the second firing step, the primary fired powder is pressure-molded using a well-known pressing technique to give a desired three-dimensional shape (for example, a shape and size that can be used as a solid electrolyte of an all-solid lithium battery). It is preferable to implement the above. By using a molded body, a solid phase reaction is promoted and a sintered body can be obtained. In addition, you may implement separately a sintering process at the temperature similar to the heating temperature in a 2nd baking process by using the ceramic powder obtained by the 2nd baking process as a molded object after a 2nd baking process. When the molded body containing the primary fired powder is fired and sintered in the second firing step, it is preferable to carry out the process so that the molded body is buried in the same powder. By doing so, the loss of Li can be suppressed and the change in composition before and after the second firing step can be suppressed. In addition, the molded body of the raw material powder is usually buried in the raw material powder in a state where the raw material powder is spread and placed. By carrying out like this, reaction with a setter can be suppressed. Moreover, the curvature at the time of baking of a sintered compact can be prevented by pressing a molded object with a setter from the upper and lower sides of a filling powder as needed. On the other hand, when the temperature is lowered by using LiOH as a Li raw material in the second firing step, the primary fired powder compact can be sintered without being embedded in the same powder. This is because the loss of Li is relatively suppressed and the reaction with the setter can be suppressed by lowering the temperature of the second baking step.
以上の焼成工程を経た粉末も用いることで、LLZ結晶構造を有する固体電解質層14を得ることができる。なお、第1焼成工程及び第2焼成工程のいずれかあるいは双方の工程をアルミニウム(Al)含有化合物の存在下に実施することにより、結晶構造を有し、且つ、アルミニウムを含有する固体電解質層を製造するようにしてもよい。
The
本発明を以下の例によってさらに具体的に説明する。なお、以下の例における正極板及び全固体電池に関する各種パラメータの評価方法は以下のとおりとした。 The present invention is more specifically described by the following examples. In addition, the evaluation method of the various parameters regarding the positive electrode plate and the all solid state battery in the following examples was as follows.
<厚さ>
正極板を、クロスセクションポリッシャ(CP)により断面研磨面が観察できるように研磨し、SEM(走査型子顕微鏡)(JSM−6390LA、日本電子社製)によって断面画像を取得した。得られた断面画像に基づいて正極板の厚さを決定した。<Thickness>
The positive electrode plate was polished with a cross section polisher (CP) so that the cross-section polished surface could be observed, and a cross-sectional image was obtained with a SEM (scanning type microscope) (JSM-6390LA, manufactured by JEOL Ltd.). The thickness of the positive electrode plate was determined based on the obtained cross-sectional image.
<相対密度>
正極板のサイズ及び厚さに基づいて体積を算出した。また、正極板の重量を測定し、この重量を上記体積で除することにより密度を算出した。この密度を、正極板を構成する物質の真密度(理論密度)で除することにより相対密度を得た。<Relative density>
The volume was calculated based on the size and thickness of the positive electrode plate. The weight of the positive electrode plate was measured, and the density was calculated by dividing this weight by the above volume. A relative density was obtained by dividing this density by the true density (theoretical density) of the substance constituting the positive electrode plate.
<配向度>
正極板の板面を試料面とし、XRD装置(株式会社リガク製、TTR−III)を用いて、X線回折を2θで10°から70°の範囲を2°/min、ステップ幅0.02°の条件で行った。得られたXRDプロファイルをロットゲーリング法に従い下記式に基づいて配向度を算出した。
Using the plate surface of the positive electrode plate as the sample surface and using an XRD apparatus (manufactured by Rigaku Corporation, TTR-III), X-ray diffraction is 2θ in the range of 10 ° to 70 ° at 2 ° / min, step width of 0.02 It was performed under the condition of °. The degree of orientation of the obtained XRD profile was calculated based on the following formula according to the Lotgering method.
<表面粗さRa>
正極板の固体電解質層と接合される側の表面に対して、レーザー顕微鏡(オリンパス社製、OLS4000)を用いて、130μm×130μmの範囲で表面粗さの測定を行い、正極板表面の算術平均粗さRaを求めた。<Surface roughness Ra>
Using a laser microscope (OLS4000, manufactured by Olympus Corporation), the surface roughness of the surface of the positive electrode plate joined to the solid electrolyte layer is measured in the range of 130 μm × 130 μm, and the arithmetic average of the positive electrode plate surface The roughness Ra was determined.
<抵抗値の上昇率>
作製した電池について、ソーラトロン社製の電気化学測定システム(ポテンショ/ガルバノスタッド−周波数応答アナライザ)を用い、周波数1MHz〜0.1Hz、電圧10mVにて交流インピーダンス測定を行い、得られた電池の抵抗値を充放電前の抵抗値とした。次いで、この電池を0.05Cレートの電流値で電池電圧が4.3Vとなるまで定電流充電した。その後、電池電圧を4.3Vに維持する電流条件で、その電流値が1/20に低下するまで定電圧充電した。10分間休止した後、0.05Cレートの電流値で電池電圧が2.5Vになるまで定電流放電し、その後10分間休止した。これらの充放電操作を1サイクルとし、25℃の条件下で合計3サイクル繰り返した後に、再度交流インピーダンス測定を行なった。充放電後の抵抗値を充放電前の抵抗値で除することで、抵抗値の上昇率とした。<Rise rate of resistance value>
The produced battery was subjected to AC impedance measurement at a frequency of 1 MHz to 0.1 Hz and a voltage of 10 mV using a Solartron electrochemical measurement system (potentiometer / galvano stud-frequency response analyzer), and the resistance value of the obtained battery was measured. Was the resistance value before charging and discharging. Next, this battery was charged with a constant current at a current value of 0.05 C rate until the battery voltage reached 4.3V. Thereafter, constant voltage charging was performed until the current value decreased to 1/20 under the current condition of maintaining the battery voltage at 4.3V. After resting for 10 minutes, the battery was discharged at a constant current at a current value of 0.05 C until the battery voltage reached 2.5 V, and then rested for 10 minutes. These charging / discharging operations were set as 1 cycle, and after repeating a total of 3 cycles on 25 degreeC conditions, alternating current impedance measurement was performed again. By dividing the resistance value after charging / discharging by the resistance value before charging / discharging, the increase rate of the resistance value was obtained.
例1〜21
(1)正極板の作製
表1に示されるモル比で(NixCoxMnz)(OH)2(式中、x+y+z=1)の組成を有するニッケル・コバルト・マンガン複合水酸化物粉末を用意した。この複合水酸化物粉末は板状一次粒子の配向集合体である。この粉末をボールミルで所定時間(例えば24時間)粉砕して原料粉末とした。この原料粉末とLiOH・H2O粉末をLi/(NixCoyMnz)のモル比が1.05となるように秤量して混合した後、600℃で3時間仮焼した。得られた粉末100重量部と、分散媒(トルエン及びイソプロパノールを1:1の重量比で含む混合溶媒)100重量部と、バインダー(ポリビニルブチラール、BM−2、積水化学工業株式会社製)10重量部と、可塑剤(DOP(ジ(2−エチルヘキシル)フタレート)、黒金化成株式会社製)4重量部と、分散剤(レオドールSP−O30、花王株式会社製)2重量部とを混合した。この混合物を、減圧下で撹拌することで脱泡するとともに、3000〜4000cPの粘度に調製した。なお、粘度は、ブルックフィールド社製LVT型粘度計で測定した。 Examples 1-21
(1) Production of Positive Electrode Plate A nickel / cobalt / manganese composite hydroxide powder having a composition of (Ni x Co x Mn z ) (OH) 2 (where x + y + z = 1) in the molar ratio shown in Table 1. Prepared. This composite hydroxide powder is an oriented aggregate of plate-like primary particles. This powder was pulverized with a ball mill for a predetermined time (for example, 24 hours) to obtain a raw material powder. The raw material powder and the LiOH.H 2 O powder were weighed and mixed so that the molar ratio of Li / (Ni x Co y Mn z ) was 1.05, and then calcined at 600 ° C. for 3 hours. 100 parts by weight of the obtained powder, 100 parts by weight of a dispersion medium (a mixed solvent containing toluene and isopropanol at a weight ratio of 1: 1), and 10 parts by weight of a binder (polyvinyl butyral, BM-2, manufactured by Sekisui Chemical Co., Ltd.) Parts, 4 parts by weight of a plasticizer (DOP (di (2-ethylhexyl) phthalate), manufactured by Kurokin Kasei Co., Ltd.) and 2 parts by weight of a dispersant (Leodol SP-O30, manufactured by Kao Corporation) were mixed. The mixture was defoamed by stirring under reduced pressure and adjusted to a viscosity of 3000 to 4000 cP. The viscosity was measured with an LVT viscometer manufactured by Brookfield.
上述のようにして調製されたスラリーを、ドクターブレード法によって、PETフィルムの上に、乾燥後の厚さが60μmとなるようにシート状に成形した。得られたシートをPETフィルムから剥がし、2cm×2cmとなるように切り取った。切り取ったシートを400層積層し、積層機にて120℃で仮プレスを行ない、グリーンバルクを得た。得られたグリーンバルクを20℃/hで600℃まで昇温し、60時間保持し、20℃/hで降温することで脱脂した。得られた脱脂バルクを真空パック後、CIPにて所定のプレス圧(例えば3t)でプレスした。得られた脱脂バルクを100℃/hで所定の焼成温度(例えば875℃)まで大気雰囲気で昇温し、20時間保持した。得られた焼結バルクを、断面方向が板面となるように、加工により切り出し、板面の表面を研磨することで正極板を得た。得られた正極板を、集電体としてのAl箔上にカーボンを含有した導電性エポキシ接着剤にて接着した。こうして得られた正極板について、厚さ、相対密度、配向度及び表面粗さRaを前述した方法により測定した。その結果を表1に示す。表1に示されるように例1〜21で作製された正極板は様々な厚さ、相対密度、配向度及び表面粗さRaを有するが、これらは製造条件を適宜調整することによって任意に付与されたものである(例えば、配向度や相対密度の制御は、原料の粉砕時間、焼成温度、成形時の圧力を適宜調整することにより行った)。 The slurry prepared as described above was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 60 μm. The obtained sheet was peeled off from the PET film and cut to 2 cm × 2 cm. 400 layers of the cut sheets were laminated and pre-pressed at 120 ° C. with a laminator to obtain a green bulk. The obtained green bulk was heated to 600 ° C. at 20 ° C./h, held for 60 hours, and degreased by lowering the temperature at 20 ° C./h. The obtained degreased bulk was vacuum packed and then pressed with CIP at a predetermined pressing pressure (for example, 3 t). The obtained degreased bulk was heated up to a predetermined firing temperature (for example, 875 ° C.) at 100 ° C./h in an air atmosphere and held for 20 hours. The obtained sintered bulk was cut out by processing so that the cross-sectional direction was the plate surface, and the positive electrode plate was obtained by polishing the surface of the plate surface. The obtained positive electrode plate was bonded to an Al foil as a current collector with a conductive epoxy adhesive containing carbon. About the positive electrode plate obtained in this way, thickness, relative density, orientation degree, and surface roughness Ra were measured by the method mentioned above. The results are shown in Table 1. As shown in Table 1, the positive electrode plates produced in Examples 1 to 21 have various thicknesses, relative densities, orientation degrees, and surface roughness Ra, which are arbitrarily given by appropriately adjusting the production conditions. (For example, the degree of orientation and the relative density were controlled by appropriately adjusting the pulverization time of the raw material, the firing temperature, and the pressure during molding).
(2)固体電解質層の作製
固体電解質層として、Li−La−Zr−O系固体電解質AD膜を以下のようにして正極板上に作製した。焼成用原料調製のための各原料成分として、水酸化リチウム(関東化学株式会社)、水酸化ランタン(信越化学工業株式会社)、酸化ジルコニウム(東ソー株式会社)、酸化タンタルを用意した。これらの粉末をLiOH:La(OH)3:ZrO2:Ta2O5=7:3:1.625:0.1875になるように秤量及び配合し、ライカイ機にて混合して焼成用原料を得た。第一の焼成工程として、上記焼成用原料をアルミナ坩堝に入れて大気雰囲気で600℃/時間にて昇温し900℃にて6時間保持した。第二の焼成工程として、第一の焼成工程で得られた粉末に対しγ−Al2O3を0.6質量%の濃度となるように添加し、この粉末と玉石を混合し振動ミルを用いて3時間粉砕して、出発原料組成がLi7.0La3.0Zr1.625Ta0.375O12Al0.1の粉末を得た。なお、このγ−Al2O3の添加量は、一次焼成粉末が仕込み組成通りの組成を有しているものと想定した組成式Li7.0La3.0Zr1.625Ta0.375O12に対するモル比で0.1のAlとなる量に相当している。得られた原料粉末をマグネシア製のサヤに入れ、Ar雰囲気中にて800℃で1時間熱処理して、原料粉末に含有されうるCO2及びH2Oを除去した。こうして得られた原料粉末は、Li及びOは焼成時の欠損等により仕込み組成のモル数である7及び12からずれている可能性があるものの、仕込み組成のLi7.0La3.0Zr1.625Ta0.375O12Al0.1に概ね基づく組成を有し、炭酸リチウムを含まない。(2) Production of Solid Electrolyte Layer A Li—La—Zr—O-based solid electrolyte AD film was produced on the positive electrode plate as a solid electrolyte layer as follows. Lithium hydroxide (Kanto Chemical Co., Inc.), lanthanum hydroxide (Shin-Etsu Chemical Co., Ltd.), zirconium oxide (Tosoh Corp.), and tantalum oxide were prepared as raw material components for preparing the raw material for firing. These powders are weighed and blended so as to be LiOH: La (OH) 3 : ZrO 2 : Ta 2 O 5 = 7: 3: 1.625: 0.1875, and mixed by a laika machine to be a raw material for firing. Got. As the first firing step, the firing raw material was placed in an alumina crucible, heated at 600 ° C./hour in the air atmosphere, and held at 900 ° C. for 6 hours. As a second firing step, γ-Al 2 O 3 is added to the powder obtained in the first firing step so as to have a concentration of 0.6% by mass, and this powder and cobblestone are mixed to form a vibration mill. And pulverized for 3 hours to obtain a powder having a starting material composition of Li 7.0 La 3.0 Zr 1.625 Ta 0.375 O 12 Al 0.1 . The amount of γ-Al 2 O 3 added is such that the compositional formula Li 7.0 La 3.0 Zr 1.625 Ta 0.375 assumes that the primary calcined powder has a composition as charged. This corresponds to an amount of 0.1 Al in molar ratio to O 12 . The obtained raw material powder was put in a magnesia sheath and heat-treated at 800 ° C. for 1 hour in an Ar atmosphere to remove CO 2 and H 2 O that can be contained in the raw material powder. In the raw material powder thus obtained, although Li and O may deviate from 7 and 12, which are the number of moles of the charged composition, due to defects during firing, etc., the charged composition of Li 7.0 La 3.0 Zr It has a composition generally based on 1.625 Ta 0.375 O 12 Al 0.1 and does not contain lithium carbonate.
熱処理後の原料粉末をAr雰囲気のグローブボックス中で、開口径75μmのナイロンメッシュを用いて解砕した後、キャリアガスとしてN2ガスを用いてエアロゾルデポジション(AD)法により成膜を行った。このAD成膜は、図2に示されるような成膜装置20を用いて行った。図2に示される成膜装置20は、大気圧より低い気圧の雰囲気下で原料粉末を基板上に噴射するAD法に用いられる装置として構成されている。この成膜装置20は、原料成分を含む原料粉末のエアロゾルを生成するエアロゾル生成部22と、原料粉末を基板21に噴射して原料成分を含む膜を形成する成膜部30とを備えている。エアロゾル生成部22は、原料粉末を収容し図示しないガスボンベからのキャリアガスの供給を受けてエアロゾルを生成するエアロゾル生成室23と、生成したエアロゾルを成膜部30へ供給する原料供給管24と、エアロゾル生成室23及びその中のエアロゾルに10〜100Hzの振動数で振動が付与する加振器25とを備えている。成膜部30は、基板21にエアロゾルを噴射する成膜チャンバ32と、成膜チャンバ32の内部に配設され基板21を固定する基板ホルダ34と、基板ホルダ34をX軸−Y軸方向に移動するX−Yステージ33とを備えている。また、成膜部30は、先端にスリット37が形成されエアロゾルを基板21へ噴射する噴射ノズル36と、成膜チャンバ32を減圧する真空ポンプ38とを備えている。この成膜装置20は、成膜チャンバ32内に加熱装置や耐熱部材等を設けて原料粉末を加熱できるように構成されてもよい。例えば、原料粉末が単結晶化する温度での加熱処理を行えるように石英ガラスやセラミックス等の耐熱部材を用いてもよい。成膜装置20による固体電解質膜の作製条件は以下のとおりとした。基板としては、先に合成した正極板を用いた。また、キャリアガスとして流量2L/minの酸素ガスを使用し、成膜チャンバ内の圧力が0.1〜0.2kPa、エアロゾル化室の圧力を50〜70kPaになるように調整して、成膜を行った。その際、ノズルの開口サイズは10mm×1.8mmとし、ノズルの短辺方向に走査距離10mm、走査速度5mm/secで60往復分、成膜と同時に走査させた。こうして、厚さ2μmのLi−La−Zr−O系固体電解質AD膜を正極板上に形成した。The raw material powder after the heat treatment was crushed in a glove box under an Ar atmosphere using a nylon mesh having an opening diameter of 75 μm, and then deposited by an aerosol deposition (AD) method using N 2 gas as a carrier gas. . This AD film formation was performed using a
(3)全固体リチウム電池の組み立て
イオンスパッタリング装置(日本電子製、JFC−1500)を用いたスパッタリングにより、固体電解質層上に厚さ500ÅのAu膜を形成した。得られたAu膜上に、Ar雰囲気のグローブボックス中で、Li金属箔、及び集電層としてのCu箔を載置し、200℃のホットプレート上にて加圧圧着した。こうして得られた素子をラミネートパックして、全固体リチウム電池パックを得た。(3) Assembly of all-solid lithium battery An Au film having a thickness of 500 mm was formed on the solid electrolyte layer by sputtering using an ion sputtering apparatus (manufactured by JEOL, JFC-1500). On the obtained Au film, a Li metal foil and a Cu foil as a current collecting layer were placed in a glove box in an Ar atmosphere, and pressure-bonded on a hot plate at 200 ° C. The device thus obtained was laminated and a full solid lithium battery pack was obtained.
例22〜25
原料粉末としてニッケル・コバルト・マンガン複合水酸化物粉末を用いる代わりに、表1に示されるモル比となるように(NixCoy)(OH)2の組成を有するニッケル・コバルト複合水酸化物粉末とAlOOH(SASOL社製)粉末とを秤量して得た混合粉末を用いたこと、及び脱脂バルクの焼成を酸素雰囲気にて775℃で20時間保持することにより行ったこと以外は、例1〜21と同様の基本手順にて全固体リチウム電池の作製及び各種評価を行った。なお、このニッケル・コバルト複合水酸化物粉末は板状一次粒子の配向集合体である。結果は表1に示されるとおりであった。 Examples 22-25
Instead of using nickel-cobalt-manganese composite hydroxide powder as the raw material powder, nickel-cobalt composite hydroxide having a composition of (Ni x Co y ) (OH) 2 so as to have the molar ratio shown in Table 1 Example 1 except that a mixed powder obtained by weighing powder and AlOOH (made by SASOL) was used, and that the degreasing bulk was fired by holding at 775 ° C. for 20 hours in an oxygen atmosphere. The all-solid-state lithium battery was prepared and evaluated in the same basic procedure as in FIG. The nickel / cobalt composite hydroxide powder is an oriented aggregate of plate-like primary particles. The results were as shown in Table 1.
例26〜28
原料粉末としてニッケル・コバルト・マンガン複合水酸化物粉末を用いる代わりに、水酸化コバルト(Co(OH)2)粉末を用いたこと以外は、例1〜21と同様の基本手順にて全固体リチウム電池の作製及び各種評価を行った。なお、この水酸化コバルト粉末は板状一次粒子の配向集合体である。結果は表1に示されるとおりであった。 Examples 26-28
Instead of using nickel-cobalt-manganese composite hydroxide powder as the raw material powder, all solid lithium was obtained in the same basic procedure as in Examples 1 to 21 except that cobalt hydroxide (Co (OH) 2 ) powder was used. Battery preparation and various evaluations were performed. The cobalt hydroxide powder is an oriented aggregate of plate-like primary particles. The results were as shown in Table 1.
例29〜34
固体電解質層として、Li−La−Zr−O系固体電解質AD膜の代わりに、LiPON系固体電解質スパッタ膜を以下のようにして作製したこと以外は、例1〜21と同様の基本手順にて全固体リチウム電池の作製及び各種評価を行った。結果は表2に示されるとおりであった。 Examples 29-34
As a solid electrolyte layer, instead of the Li-La-Zr-O-based solid electrolyte AD film, a LiPON-based solid electrolyte sputtered film was prepared in the same basic procedure as in Examples 1 to 21 except that it was produced as follows. An all-solid lithium battery was prepared and subjected to various evaluations. The results were as shown in Table 2.
(LiPON系固体電解質スパッタ膜の作製)
直径4インチ(約10cm)のリン酸リチウム焼結体ターゲットを準備した。このターゲットを用いてスパッタリング装置(キャノンアネルバ製、SPF−430H)を用いてRFマグネトロン方式にてガス種N2を0.2Pa、出力0.2kWにて膜厚1μmとなる様にスパッタリングを行なった。こうして、厚さ1μmのLiPON系固体電解質スパッタ膜を正極板上に形成した。(Preparation of LiPON-based solid electrolyte sputtered film)
A lithium phosphate sintered compact target having a diameter of 4 inches (about 10 cm) was prepared. Using this target, sputtering was performed using a sputtering apparatus (SPF-430H, manufactured by Canon Anelva) with an RF magnetron method so that the gas type N 2 was 0.2 Pa, the output was 0.2 kW, and the film thickness was 1 μm. . Thus, a LiPON-based solid electrolyte sputtered film having a thickness of 1 μm was formed on the positive electrode plate.
例35
原料粉末としてニッケル・コバルト・マンガン複合水酸化物粉末を用いる代わりに、表2に示されるモル比となるように(NixCoy)(OH)2の組成を有するニッケル・コバルト複合水酸化物粉末とAlOOH(SASOL社製)粉末とを秤量して得た混合粉末を用いたこと、及び脱脂バルクの焼成を酸素雰囲気にて775℃で20時間保持することにより行ったこと以外は、例29〜34と同様の基本手順にて全固体リチウム電池の作製及び各種評価を行った。なお、このニッケル・コバルト複合水酸化物粉末は板状一次粒子の配向集合体である。結果は表2に示されるとおりであった。 Example 35
Instead of using nickel-cobalt-manganese composite hydroxide powder as a raw material powder, nickel-cobalt composite hydroxide having a composition of (Ni x Co y ) (OH) 2 so as to have a molar ratio shown in Table 2 Example 29, except that a mixed powder obtained by weighing powder and AlOOH (manufactured by SASOL) was used, and that the degreasing bulk was fired by holding at 775 ° C. for 20 hours in an oxygen atmosphere. All-solid lithium batteries were prepared and evaluated in the same basic procedure as in ˜34. The nickel / cobalt composite hydroxide powder is an oriented aggregate of plate-like primary particles. The results were as shown in Table 2.
例36
原料粉末としてニッケル・コバルト・マンガン複合水酸化物粉末を用いる代わりに、水酸化コバルト(Co(OH)2)粉末を用いたこと以外は、例29〜34と同様の基本手順にて全固体リチウム電池の作製及び各種評価を行った。なお、この水酸化コバルト粉末は板状一次粒子の配向集合体である。結果は表2に示されるとおりであった。 Example 36
Instead of using nickel-cobalt-manganese composite hydroxide powder as raw material powder, all-solid lithium was obtained in the same basic procedure as in Examples 29 to 34 except that cobalt hydroxide (Co (OH) 2 ) powder was used. Battery preparation and various evaluations were performed. The cobalt hydroxide powder is an oriented aggregate of plate-like primary particles. The results were as shown in Table 2.
Claims (10)
前記正極板上に設けられ、Li−La−Zr−O系セラミックス材料及び/又はリン酸リチウムオキシナイトライド(LiPON)系セラミックス材料で構成される固体電解質層と、
前記固体電解質層上に設けられる負極層と、
を備えた、全固体リチウム電池。A positive electrode plate comprising oriented polycrystalline body having the above thickness and 15 to 85% degree of orientation 10 [mu] m, the orientation polycrystalline material, Li p (Ni x, Co y, Mn z) O 2 ( wherein Medium, 0.9 ≦ p ≦ 1.3, 0 <x <0.8, 0 <y <1, 0 ≦ z ≦ 0.7, x + y + z = 1) or Li p (Ni x , Co y , Al z ) O 2 (where 0.9 ≦ p ≦ 1.3, 0.6 <x <0.9, 0.1 <y ≦ 0.3, 0 ≦ z ≦ 0.2, x + y + z = 1) A positive electrode plate comprising a plurality of lithium transition metal oxide particles having a layered rock salt structure of the basic composition represented;
A solid electrolyte layer provided on the positive electrode plate and composed of a Li-La-Zr-O-based ceramic material and / or a lithium phosphate oxynitride (LiPON) -based ceramic material;
A negative electrode layer provided on the solid electrolyte layer;
An all-solid-state lithium battery.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014073607 | 2014-03-31 | ||
JP2014073607 | 2014-03-31 | ||
JP2014087867 | 2014-04-22 | ||
JP2014087867 | 2014-04-22 | ||
PCT/JP2015/052276 WO2015151566A1 (en) | 2014-03-31 | 2015-01-28 | All-solid-state lithium cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2015151566A1 true JPWO2015151566A1 (en) | 2017-04-13 |
JP6433086B2 JP6433086B2 (en) | 2018-12-05 |
Family
ID=54239909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016511416A Active JP6433086B2 (en) | 2014-03-31 | 2015-01-28 | All solid lithium battery |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6433086B2 (en) |
WO (1) | WO2015151566A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016117499A1 (en) * | 2015-01-23 | 2017-11-02 | 日本碍子株式会社 | Positive plate for all solid state battery, all solid state battery |
EP3274845B1 (en) | 2015-03-26 | 2021-07-07 | Red Bend Ltd. | Security systems and method for identification of in-vehicle attack originator |
JPWO2017065034A1 (en) * | 2015-10-15 | 2018-08-02 | 日本碍子株式会社 | Manufacturing method of all-solid-state lithium battery |
JP6779221B2 (en) * | 2015-10-15 | 2020-11-04 | 日本碍子株式会社 | All-solid-state lithium battery |
JP6409794B2 (en) * | 2016-02-18 | 2018-10-24 | トヨタ自動車株式会社 | Method for producing positive electrode mixture, method for producing positive electrode, and method for producing all solid lithium ion secondary battery |
KR20230051267A (en) | 2020-12-22 | 2023-04-17 | 엔지케이 인슐레이터 엘티디 | Lithium complex oxide sintered plate and all-solid-state secondary battery |
JP7553503B2 (en) | 2022-05-02 | 2024-09-18 | トヨタ自動車株式会社 | Electrode laminate and all-solid-state battery |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004311108A (en) * | 2003-04-03 | 2004-11-04 | Nissan Motor Co Ltd | Total polymer electrolyte battery and manufacturing method |
JP2012048898A (en) * | 2010-08-25 | 2012-03-08 | Sumitomo Electric Ind Ltd | Positive electrode body, manufacturing method for the same and nonaqueous electrolyte battery |
JP2012099405A (en) * | 2010-11-04 | 2012-05-24 | Toyota Motor Corp | Sintered body, oriented electrode containing the sintered body, and battery comprising the oriented electrode |
JP2013097912A (en) * | 2011-10-28 | 2013-05-20 | Kyocera Corp | Secondary battery |
WO2013141254A1 (en) * | 2012-03-21 | 2013-09-26 | 株式会社コベルコ科研 | Oxide sintered body and sputtering target, and method for manufacturing same |
JP2014053178A (en) * | 2012-09-07 | 2014-03-20 | Ngk Insulators Ltd | All-solid battery |
-
2015
- 2015-01-28 WO PCT/JP2015/052276 patent/WO2015151566A1/en active Application Filing
- 2015-01-28 JP JP2016511416A patent/JP6433086B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004311108A (en) * | 2003-04-03 | 2004-11-04 | Nissan Motor Co Ltd | Total polymer electrolyte battery and manufacturing method |
JP2012048898A (en) * | 2010-08-25 | 2012-03-08 | Sumitomo Electric Ind Ltd | Positive electrode body, manufacturing method for the same and nonaqueous electrolyte battery |
JP2012099405A (en) * | 2010-11-04 | 2012-05-24 | Toyota Motor Corp | Sintered body, oriented electrode containing the sintered body, and battery comprising the oriented electrode |
JP2013097912A (en) * | 2011-10-28 | 2013-05-20 | Kyocera Corp | Secondary battery |
WO2013141254A1 (en) * | 2012-03-21 | 2013-09-26 | 株式会社コベルコ科研 | Oxide sintered body and sputtering target, and method for manufacturing same |
JP2014053178A (en) * | 2012-09-07 | 2014-03-20 | Ngk Insulators Ltd | All-solid battery |
Also Published As
Publication number | Publication date |
---|---|
WO2015151566A1 (en) | 2015-10-08 |
JP6433086B2 (en) | 2018-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6277079B2 (en) | All solid lithium battery | |
JP6433086B2 (en) | All solid lithium battery | |
JP6646666B2 (en) | All-solid lithium battery | |
JP6779221B2 (en) | All-solid-state lithium battery | |
US11211599B2 (en) | Lithium composite oxide sintered body plate | |
WO2016152565A1 (en) | All solid state lithium battery | |
KR102233591B1 (en) | Secondary battery | |
JP6166584B2 (en) | Lithium ion conductive solid electrolyte and composite and battery using the same | |
JP5837266B1 (en) | Backup system for volatile memory using all solid state battery | |
JP6018930B2 (en) | Method for producing positive electrode-solid electrolyte composite | |
JP6246079B2 (en) | Method for producing positive electrode active material plate for lithium secondary battery | |
KR102381016B1 (en) | secondary battery | |
CN111279538A (en) | All-solid-state lithium battery and method for manufacturing same | |
WO2017065034A1 (en) | Production method for all-solid-state lithium battery | |
JP6549041B2 (en) | Use of all solid state battery | |
JP6019269B2 (en) | Method for producing lithium cobaltate oriented sintered plate | |
JP2017054761A (en) | Method for inspecting all-solid lithium battery, and method for manufacturing all-solid lithium battery | |
JP2016072241A (en) | Lithium cobaltate orientated sintered plate and manufacturing method thereof, and method for forming solid electrolyte layer on lithium cobaltate orientated sintered plate | |
JP2019192609A (en) | All-solid lithium battery and method of manufacturing the same | |
JP2016115681A (en) | Negative electrode layer for lithium battery, lithium battery | |
JP2017135100A (en) | Lithium ion battery | |
WO2017029899A1 (en) | Oriented positive electrode plate for lithium secondary battery | |
JP2014220174A (en) | Method for manufacturing lithium ion conductive solid electrolyte-electrode composite | |
WO2014050572A1 (en) | Method for manufacturing all-solid-state lithium ion secondary battery | |
JP2016069269A (en) | Method for production of lithium cobaltate-oriented sintered plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180813 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180925 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181102 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181105 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6433086 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |