[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2015037443A1 - Auto body structure - Google Patents

Auto body structure Download PDF

Info

Publication number
JPWO2015037443A1
JPWO2015037443A1 JP2015536520A JP2015536520A JPWO2015037443A1 JP WO2015037443 A1 JPWO2015037443 A1 JP WO2015037443A1 JP 2015536520 A JP2015536520 A JP 2015536520A JP 2015536520 A JP2015536520 A JP 2015536520A JP WO2015037443 A1 JPWO2015037443 A1 JP WO2015037443A1
Authority
JP
Japan
Prior art keywords
reinforced resin
fiber reinforced
layer
body structure
side frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015536520A
Other languages
Japanese (ja)
Other versions
JP6112686B2 (en
Inventor
紘 槙島
紘 槙島
朋也 彌武
朋也 彌武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of JPWO2015037443A1 publication Critical patent/JPWO2015037443A1/en
Application granted granted Critical
Publication of JP6112686B2 publication Critical patent/JP6112686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/04Superstructures, understructures, or sub-units thereof, characterised by the material thereof predominantly of synthetic material
    • B62D29/041Understructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/08Front or rear portions
    • B62D25/082Engine compartments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • F16F7/124Vibration-dampers; Shock-absorbers using plastic deformation of members characterised by their special construction from fibre-reinforced plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/542Shear strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

自動車の車体構造において、筒状閉断面のサイドフレーム(11)の複数の繊維強化樹脂層は、繊維配向角が0°の0°繊維強化樹脂層と、繊維配向角が0°以外の傾斜繊維強化樹脂層とからなり、傾斜繊維強化樹脂層の積層数は、サイドフレーム(11)の荷重入力端部(17)の近傍(第1部分(13))から反対側の端部(第4部分(16))に向けて増加する。これにより、荷重入力端部(17)の近傍の第1部分(13)の0°繊維強化樹脂層を屈曲し易くして初期荷重を低下させるとともに、荷重入力端部(17)の反対側の端部の第4部分(16)に向けて0°繊維強化樹脂層を屈曲し難くすることで、サイドフレーム(11)を荷重の入力方向に対して傾斜させることなく、前後方向に順次圧壊させてエネルギー吸収量を増加させることができる。In the body structure of an automobile, the plurality of fiber reinforced resin layers of the side frame (11) having a cylindrical closed cross section include a 0 ° fiber reinforced resin layer having a fiber orientation angle of 0 ° and an inclined fiber having a fiber orientation angle other than 0 °. It is composed of a reinforced resin layer, and the number of laminated inclined fiber reinforced resin layers is the end portion (fourth portion) on the opposite side from the vicinity (first portion (13)) of the load input end portion (17) of the side frame (11). Increase toward (16)). This makes it easy to bend the 0 ° fiber reinforced resin layer of the first portion (13) in the vicinity of the load input end portion (17) to reduce the initial load, and at the opposite side of the load input end portion (17). By making it difficult for the 0 ° fiber reinforced resin layer to bend toward the fourth portion (16) at the end, the side frames (11) are sequentially crushed in the front-rear direction without being inclined with respect to the load input direction. Energy absorption can be increased.

Description

本発明は、車体前部あるいは車体後部に前後方向に配置される筒状閉断面のサイドフレームを、前後方向に対する連続繊維の繊維配向角が異なる複数の繊維強化樹脂層を積層して構成した自動車の車体構造に関する。   The present invention relates to an automobile in which a side frame having a cylindrical closed cross section disposed in the front-rear direction at the front part of the vehicle body or the rear part of the vehicle body is configured by laminating a plurality of fiber reinforced resin layers having different fiber orientation angles with respect to the front-rear direction. Relates to the body structure.

FRP(繊維強化樹脂)製の厚肉の筒状体において、その外層部は繊維配向角が90°(軸直角方向)の繊維を0°(軸方向)の繊維よりも多くし、その内層部は繊維配向角が0°(軸方向)の繊維を90°(軸直角方向)の繊維よりも多くすることで、軸方向の荷重が入力したときに外層部の剥がれを防止して安定したエネルギー吸収を可能にしたものが、下記特許文献1により公知である。   In a thick cylindrical body made of FRP (fiber reinforced resin), the outer layer portion has a fiber orientation angle of 90 ° (axial direction perpendicular to the fiber) more than 0 ° (axial direction) fiber, and the inner layer portion By increasing the number of fibers with a fiber orientation angle of 0 ° (axial direction) to 90 ° (axial direction), the outer layer can be prevented from peeling off when an axial load is input. The thing which enabled absorption is known by the following patent document 1.

また車体前部に車幅方向に配置されたバンパービームの前面に12個のセルに分割された衝撃吸収部材を設け、衝撃吸収部材の前面を軟質のバンパーフェイスで覆うことで、歩行者の足との衝突時には数個のセルだけを大きなストロークで変形させて衝撃を小さく抑えるとともに、他車両等との衝突時には更に多数のセルを小さいストロークで変形させて車体の損傷を最小限に抑えるものが、下記特許文献2により公知である。   In addition, a shock absorbing member divided into 12 cells is provided in front of the bumper beam arranged in the vehicle width direction at the front of the vehicle body, and the front surface of the shock absorbing member is covered with a soft bumper face, thereby At the time of a collision, only a few cells are deformed with a large stroke to keep the impact small, and at the time of a collision with other vehicles, many cells are deformed with a small stroke to minimize vehicle damage. It is known from Patent Document 2 below.

日本特許第3837818号公報Japanese Patent No. 3833718 日本特開2004−237810号公報Japanese Unexamined Patent Publication No. 2004-237810

ところで、上記特許文献1のものは、外層部および内層部の繊維配向角が筒状体の長手方向(軸方向)に沿って一定であるため、筒状体の一端部に軸方向の荷重が入力した場合に、大きな曲げモーメントが作用する他端部側が屈曲してしまい、筒状体が荷重の入力方向に対して傾くことで、一端部側から他端部側に向けて順次圧壊して効率的なエネルギー吸収を行うことができない可能性がある。   By the way, in the thing of the said patent document 1, since the fiber orientation angle of an outer layer part and an inner layer part is constant along the longitudinal direction (axial direction) of a cylindrical body, the load of an axial direction is applied to the one end part of a cylindrical body. When it is input, the other end side where a large bending moment acts is bent, and the cylindrical body inclines with respect to the input direction of the load, so that it collapses sequentially from one end side to the other end side. There is a possibility that efficient energy absorption cannot be performed.

また上記特許文献2のものは、バンパービームが金属あるいは繊維強化樹脂で一体に形成された中空閉断面の部材で構成されているため、衝突によりバンパービームの一部に損傷を受けた場合であっても、バンパービーム全体を交換することが必要となって修理コストが増加する問題があった。しかも衝撃吸収部材が同一構造の12個のセルにより構成されるので、衝突荷重が入力する位置に応じてエネルギー吸収量を調整することができないという問題があった。   Further, in the above-mentioned Patent Document 2, since the bumper beam is composed of a member having a hollow closed cross section integrally formed of metal or fiber reinforced resin, a part of the bumper beam is damaged by a collision. However, there is a problem that the repair cost increases because it is necessary to replace the entire bumper beam. Moreover, since the shock absorbing member is composed of 12 cells having the same structure, there is a problem that the energy absorption amount cannot be adjusted according to the position where the collision load is input.

本発明は前述の事情に鑑みてなされたもので、筒状閉断面を有する繊維強化樹脂製のサイドフレームのエネルギー吸収効果を高め、バンパービームが損傷を受けたときの修理コストが小さく、しかも衝突荷重が入力する位置に応じてバンパービームのエネルギー吸収量を容易に調整することが可能な自動車の車体構造を提供することを目的とする。   The present invention has been made in view of the above-mentioned circumstances, and enhances the energy absorption effect of the side frame made of fiber reinforced resin having a cylindrical closed cross section, and the repair cost when the bumper beam is damaged is small, and also the collision An object of the present invention is to provide a vehicle body structure capable of easily adjusting the energy absorption amount of a bumper beam according to a position where a load is input.

上記目的を達成するために、本発明の第1の特徴によれば、車体前部あるいは車体後部に前後方向に配置される筒状閉断面のサイドフレームを、前後方向に対する連続繊維の繊維配向角が異なる複数の繊維強化樹脂層を積層して構成した自動車の車体構造であって、前記複数の繊維強化樹脂層は、繊維配向角が0°の0°繊維強化樹脂層と、繊維配向角が0°以外の傾斜繊維強化樹脂層とからなり、前記傾斜繊維強化樹脂層の積層数は、前記サイドフレームの荷重入力端部の近傍から反対側の端部に向けて増加することを特徴とする自動車の車体構造が提案される。   In order to achieve the above object, according to the first feature of the present invention, a side frame having a cylindrical closed cross section disposed in the front-rear direction at the front part of the vehicle body or the rear part of the vehicle body is provided with a fiber orientation angle of continuous fibers with respect to the front-rear direction. A plurality of fiber reinforced resin layers are laminated to form a vehicle body structure, and the plurality of fiber reinforced resin layers have a fiber orientation angle of 0 ° and a fiber orientation angle of 0 °. It is composed of an inclined fiber reinforced resin layer other than 0 °, and the number of laminated inclined fiber reinforced resin layers increases from the vicinity of the load input end of the side frame toward the opposite end. A car body structure is proposed.

また本発明の第2の特徴によれば、前記第1の特徴に加えて、前記傾斜繊維強化樹脂層の少なくとも一つは、繊維配向角が90°であることを特徴とする自動車の車体構造が提案される。   According to a second feature of the present invention, in addition to the first feature, at least one of the inclined fiber reinforced resin layers has a fiber orientation angle of 90 °. Is proposed.

また本発明の第3の特徴によれば、前記第1または第2の特徴に加えて、前記荷重入力端部は、前後方向に対して斜めに傾斜する荷重入力面を備えるとともに、前記荷重入力端部の近傍よりも前記傾斜繊維強化樹脂層の積層数が多いことを特徴とする自動車の車体構造が提案される。   According to a third feature of the present invention, in addition to the first or second feature, the load input end portion includes a load input surface inclined obliquely with respect to the front-rear direction, and the load input A vehicle body structure is proposed in which the number of the inclined fiber reinforced resin layers is larger than that in the vicinity of the end portion.

また本発明の第4の特徴によれば、前記第1〜第3の何れか1つの特徴に加えて、前記サイドフレームは、前記荷重入力端部の近傍から反対側の端部に向けて、前記0゜繊維強化樹脂層の積層数が増加することを特徴とする自動車の車体構造が提案される。   According to the fourth feature of the present invention, in addition to any one of the first to third features, the side frame is directed from the vicinity of the load input end to the opposite end. A vehicle body structure is proposed in which the number of laminated layers of the 0 ° fiber reinforced resin layer is increased.

また本発明の第5の特徴によれば、前記第1〜第4の何れか1つの特徴に加えて、少なくとも積層方向最外側および積層方向最内側に積層された前記傾斜繊維強化樹脂層は、繊維配向角が45゜あるいは−45゜であることを特徴とする自動車の車体構造が提案される。   According to a fifth feature of the present invention, in addition to any one of the first to fourth features, the inclined fiber-reinforced resin layer laminated at least on the outermost side in the laminating direction and on the innermost side in the laminating direction, A vehicle body structure is proposed in which the fiber orientation angle is 45 ° or -45 °.

また本発明の第6の特徴によれば、前記第1〜第5の何れか1つの特徴に加えて、前記複数の繊維強化樹脂層は、同一方向に引き揃えた連続繊維を樹脂で固めた1種類のプリプレグからなることを特徴とする自動車の車体構造が提案される。   According to a sixth feature of the present invention, in addition to any one of the first to fifth features, the plurality of fiber reinforced resin layers are formed by consolidating continuous fibers arranged in the same direction with a resin. A vehicle body structure characterized by comprising one type of prepreg is proposed.

また本発明の第7の特徴によれば、前記第6の特徴に加えて、前記プリプレグは、前記複数の繊維強化樹脂層に応じて前後方向の長さが異なることを特徴とする自動車の車体構造が提案される。   According to a seventh aspect of the present invention, in addition to the sixth aspect, the prepreg has a length in the front-rear direction that differs depending on the plurality of fiber reinforced resin layers. A structure is proposed.

上記目的を達成するために、本発明の第8の特徴によれば、前記第1の特徴に加えて、前記サイドフレームの端部に車幅方向に延びる連続繊維強化樹脂製のクロスメンバを接続し、前記クロスメンバの前後方向外面に衝突荷重を受けて圧縮変形することでエネルギー吸収する不連続繊維強化樹脂製のバンパービームを支持し、前記バンパービームは、車幅方向中央に配置された中央部材と、前記中央部材の車幅方向両側に配置された一対の端部部材とからなり、前記中央部材は前記端部部材よりも圧縮強度が高いことを特徴とする自動車の車体構造が提案される。   In order to achieve the above object, according to the eighth aspect of the present invention, in addition to the first aspect, a cross member made of continuous fiber reinforced resin extending in the vehicle width direction is connected to the end of the side frame. And supporting a bumper beam made of discontinuous fiber reinforced resin that absorbs energy by receiving a collision load on the outer surface in the front-rear direction of the cross member, and the bumper beam is a center disposed in the center in the vehicle width direction. A vehicle body structure for an automobile is proposed, comprising a member and a pair of end members disposed on both sides of the central member in the vehicle width direction, wherein the central member has higher compressive strength than the end member. The

また本発明の第9の特徴によれば、前記第8の特徴に加えて、前記バンパービームは、格子状に配置された複数の縦リブおよび複数の横リブを備え、前記縦リブおよび前記横リブが交差する格子点は前記バンパービームの周縁よりも内側に位置することを特徴とする自動車の車体構造が提案される。   According to a ninth feature of the present invention, in addition to the eighth feature, the bumper beam includes a plurality of vertical ribs and a plurality of horizontal ribs arranged in a lattice pattern, and the vertical ribs and the horizontal ribs are arranged. A vehicle body structure for an automobile is proposed in which the lattice points where the ribs intersect are located inside the periphery of the bumper beam.

また本発明の第10の特徴によれば、前記第9の特徴に加えて、前記中央部材の前記格子点の密度は、前記端部部材の前記格子点の密度よりも高いことを特徴とする自動車の車体構造が提案される。   According to a tenth feature of the present invention, in addition to the ninth feature, the density of the lattice points of the central member is higher than the density of the lattice points of the end member. A car body structure is proposed.

また本発明の第11の特徴によれば、前記第8〜第10の何れか1つの特徴に加えて、前記クロスメンバの断面積は、車幅方向端部から車幅方向中央部に向かって増加することを特徴とする自動車の車体構造が提案される。   According to an eleventh feature of the present invention, in addition to any one of the eighth to tenth features, the cross-sectional area of the cross member is from the vehicle width direction end portion toward the vehicle width direction center portion. A vehicle body structure characterized by an increase is proposed.

また本発明の第12の特徴によれば、前記第8〜第11の何れか1つの特徴に加えて、前記クロスメンバにナットを固定し、前記バンパービームを貫通するボルトを前記ナットに締結することを特徴とする自動車の車体構造が提案される。   According to a twelfth feature of the present invention, in addition to any one of the eighth to eleventh features, a nut is fixed to the cross member, and a bolt that penetrates the bumper beam is fastened to the nut. A vehicle body structure characterized by this is proposed.

尚、実施の形態のリヤサイドフレーム11は本発明のサイドフレームに対応し、実施の形態の後端部分17は本発明の荷重入力端部に対応し、実施の形態のフランジ17aは本発明の荷重入力面に対応する。   The rear side frame 11 of the embodiment corresponds to the side frame of the present invention, the rear end portion 17 of the embodiment corresponds to the load input end of the present invention, and the flange 17a of the embodiment corresponds to the load of the present invention. Corresponds to the input surface.

本発明の第1の特徴によれば、車体前部あるいは車体後部に前後方向に配置される筒状閉断面のサイドフレームは、前後方向に対する連続繊維の繊維配向角が異なる複数の繊維強化樹脂層を積層して構成される。複数の繊維強化樹脂層は、繊維配向角が0°の0°繊維強化樹脂層と、繊維配向角が0°以外の傾斜繊維強化樹脂層とからなり、傾斜繊維強化樹脂層の積層数は、サイドフレームの荷重入力端部の近傍から反対側の端部に向けて増加するので、荷重入力端部の近傍の0°繊維強化樹脂層を屈曲し易くして初期荷重を低下させるとともに、荷重入力端部の反対側の端部に向けて0°繊維強化樹脂層を屈曲し難くすることで、サイドフレームを荷重の入力方向に対して傾斜させることなく、前後方向に順次圧壊させてエネルギー吸収量を増加させることができる。これにより、サイドフレームを薄肉にして軽量化を図りながら、充分なエネルギー吸収量を確保することができる。   According to the first aspect of the present invention, the side frame having a cylindrical closed cross section disposed in the front-rear direction at the front part of the vehicle body or the rear part of the vehicle body has a plurality of fiber reinforced resin layers having different fiber orientation angles with respect to the front-rear direction. It is constituted by laminating. The plurality of fiber reinforced resin layers are composed of a 0 ° fiber reinforced resin layer having a fiber orientation angle of 0 ° and a tilted fiber reinforced resin layer having a fiber orientation angle other than 0 °. Since it increases from the vicinity of the load input end of the side frame toward the opposite end, the 0 ° fiber reinforced resin layer in the vicinity of the load input end can be easily bent to reduce the initial load and load input. By making it difficult for the 0 ° fiber reinforced resin layer to bend toward the end opposite to the end, the side frame is crushed sequentially in the front-rear direction without inclining the load input direction. Can be increased. As a result, a sufficient amount of energy absorption can be ensured while reducing the weight by reducing the thickness of the side frames.

また本発明の第2の特徴によれば、傾斜繊維強化樹脂層の少なくとも一つは繊維配向角が90°であるので、繊維配向角が90°の傾斜繊維強化樹脂層で0°繊維強化樹脂層の座屈強度を高めて面外変形を抑制することで、0°繊維強化樹脂層のエネルギー吸収量を増加することができ、しかもサイドフレームが前後方向に順次圧壊する過程で傾斜繊維強化樹脂層の積層数の増加によりエネルギー吸収量を順次増加することができる。   According to the second feature of the present invention, since at least one of the inclined fiber reinforced resin layers has a fiber orientation angle of 90 °, the inclined fiber reinforced resin layer having a fiber orientation angle of 90 ° is a 0 ° fiber reinforced resin. By suppressing the out-of-plane deformation by increasing the buckling strength of the layer, it is possible to increase the energy absorption of the 0 ° fiber reinforced resin layer, and in addition, the inclined fiber reinforced resin in the process of side crushing in the front-rear direction The amount of energy absorption can be increased sequentially by increasing the number of layers.

また本発明の第3の特徴によれば、荷重入力端部は前後方向に対して斜めに傾斜する荷重入力面を備えるので、衝突荷重の入力により荷重入力端部に曲げモーメントが作用するが、荷重入力端部は荷重入力端部の近傍よりも傾斜繊維強化樹脂層の積層数が多いので、その屈曲を防止して衝突荷重を反対側の端部に向けて伝達することができる。   Further, according to the third feature of the present invention, the load input end portion has a load input surface inclined obliquely with respect to the front-rear direction, so that a bending moment acts on the load input end portion by the input of the collision load. Since the load input end portion has a larger number of inclined fiber reinforced resin layers than the vicinity of the load input end portion, the load input end portion can prevent the bending and transmit the collision load toward the opposite end portion.

また本発明の第4の特徴によれば、サイドフレームは荷重入力端部の近傍から反対側の端部に向けて、0゜繊維強化樹脂層の積層数が増加するので、荷重入力端部に衝突荷重が入力して反対側の端部に大きな曲げモーメントが作用しても、0゜繊維強化樹脂層の積層数が多い反対側の端部の屈曲を防止してエネルギー吸収量を確保することができる。   Further, according to the fourth feature of the present invention, the number of laminated layers of 0 ° fiber reinforced resin layers increases from the vicinity of the load input end portion to the opposite end portion. Even when a collision load is input and a large bending moment acts on the opposite end, the opposite end where the number of 0 ° fiber reinforced resin layers is large is prevented from bending to ensure energy absorption. Can do.

また本発明の第5の特徴によれば、少なくとも積層方向最外側および積層方向最内側に積層された傾斜繊維強化樹脂層は、繊維配向角が45゜あるいは−45゜であるので、前後方向に対して斜めに衝突荷重が入力した場合であっても、サイドフレームの屈曲を抑制してエネルギー吸収量を確保することができる。   According to the fifth aspect of the present invention, the inclined fiber reinforced resin layer laminated at least on the outermost side in the laminating direction and on the innermost side in the laminating direction has a fiber orientation angle of 45 ° or −45 °, so On the other hand, even when the collision load is input obliquely, the side frame can be prevented from bending and the amount of energy absorption can be ensured.

また本発明の第6の特徴によれば、複数の繊維強化樹脂層は同一方向に引き揃えた連続繊維を樹脂で固めた1種類のプリプレグからなるので、1種類のプリプレグを異なる方向に裁断して複数の繊維強化樹脂層を構成することで材料コストを低減することができる。   According to the sixth aspect of the present invention, the plurality of fiber reinforced resin layers are composed of one type of prepreg obtained by consolidating continuous fibers aligned in the same direction with a resin, so that one type of prepreg is cut in different directions. Thus, the material cost can be reduced by forming a plurality of fiber reinforced resin layers.

また本発明の第7の特徴によれば、プリプレグは複数の繊維強化樹脂層に応じて前後方向の長さが異なるので、プリプレグの継ぎ目の数を最小限に抑えて強度を高めながら、サイドフレームの各部で繊維強化樹脂層の積層数を変化させることができる。   According to the seventh feature of the present invention, the prepreg has different lengths in the front-rear direction depending on the plurality of fiber reinforced resin layers. Therefore, the side frame can be increased while minimizing the number of seams of the prepreg and increasing the strength. The number of laminated fiber reinforced resin layers can be changed in each part.

また本発明の第8の特徴によれば、前後方向に延びる左右一対の連続繊維強化樹脂製のサイドフレームの端部に、車幅方向に延びる連続繊維強化樹脂製のクロスメンバを接続し、クロスメンバの前後方向外面に衝突荷重を受けて圧縮変形することでエネルギー吸収する不連続繊維強化樹脂製のバンパービームを支持する。バンパービームは、車幅方向中央に配置された中央部材と、中央部材の車幅方向両側に配置された一対の端部部材とからなるので、バンパービームの一部が損傷した場合に、損傷した中央部材あるいは端部部材だけを交換することで修理コストを削減することができる。しかも中央部材は端部部材よりも圧縮強度が高いので、クルージング等の高速走行時に衝突荷重が入力する可能性が高い中央部材のエネルギー吸収量を大きくできるだけでなく、車庫入れ等の低速走行時に衝突荷重が入力する可能性が高い端部部材の重量を削減することができ、これによりバンパービームのエネルギー吸収性および軽量化を両立させることができる。更に、バンパービームを3分割したことで、それを製造する金型を小型化して初期投資を削減することができる。   According to an eighth aspect of the present invention, a cross member made of continuous fiber reinforced resin extending in the vehicle width direction is connected to the end of a pair of left and right continuous fiber reinforced resin side frames extending in the front-rear direction. A bumper beam made of discontinuous fiber reinforced resin that absorbs energy by receiving a collision load on the outer surface in the front-rear direction of the member and compressing it is supported. The bumper beam is composed of a central member arranged at the center in the vehicle width direction and a pair of end members arranged on both sides of the central member in the vehicle width direction. Therefore, when a part of the bumper beam is damaged, the bumper beam is damaged. Repair cost can be reduced by replacing only the central member or the end member. In addition, since the central member has higher compressive strength than the end member, it is possible not only to increase the energy absorption amount of the central member, which is highly likely to receive a collision load during high speed traveling such as cruising, but also during low speed traveling such as garage storage. It is possible to reduce the weight of the end member that is highly likely to receive a load, thereby making it possible to achieve both energy absorption and weight reduction of the bumper beam. Furthermore, by dividing the bumper beam into three parts, it is possible to reduce the initial investment by reducing the size of the mold for manufacturing the bumper beam.

また本発明の第9の特徴によれば、バンパービームは格子状に配置された複数の縦リブおよび複数の横リブを備え、縦リブおよび横リブが交差する格子点はバンパービームの周縁よりも内側に位置するので、剛性が高い格子点が衝突荷重で潰れて大きなエネルギー吸収効果が発揮されるだけでなく、バンパービームの周縁よりも内側に位置する格子点が潰れることで縦リブおよび横リブの潰れ残りがなくなってエネルギー吸収効果が更に高まり、しかもバンパービームの周縁における縦リブおよび横リブの突出高さを低減することで、バンパービームがバンパーフェイスと干渉するのを防止することができる。   According to the ninth aspect of the present invention, the bumper beam includes a plurality of vertical ribs and a plurality of horizontal ribs arranged in a lattice pattern, and the lattice point where the vertical ribs and the horizontal rib intersect is more than the periphery of the bumper beam. Because it is located on the inside, the lattice points with high rigidity are crushed by the collision load, and not only a large energy absorption effect is exhibited, but also the lattice points located on the inner side of the periphery of the bumper beam are crushed so that the vertical and horizontal ribs As a result, the energy absorption effect is further enhanced, and the protrusion height of the vertical and horizontal ribs at the periphery of the bumper beam is reduced, so that the bumper beam can be prevented from interfering with the bumper face.

また本発明の第10の特徴によれば、中央部材の格子点の密度は端部部材の格子点の密度よりも高いので、端部部材に比べて大きな衝突荷重が入力する確立が高い中央部材の強度を端部部材の強度よりも高めることができる。   According to the tenth feature of the present invention, since the density of the lattice points of the central member is higher than the density of the lattice points of the end member, the central member is more likely to input a large collision load than the end member. This strength can be higher than the strength of the end member.

また本発明の第11の特徴によれば、クロスメンバの断面積は車幅方向端部から車幅方向中央部に向かって増加するので、高速衝突時に大きな衝突荷重が入力するクロスメンバの中央部の剪断破壊を防止することができる。   According to the eleventh feature of the present invention, since the cross-sectional area of the cross member increases from the end in the vehicle width direction toward the center in the vehicle width direction, the center portion of the cross member to which a large collision load is input during a high-speed collision. Can be prevented.

また本発明の第12の特徴によれば、クロスメンバにナットを固定し、バンパービームを貫通するボルトをナットに締結するので、バンパービームをクロスメンバに容易に着脱することが可能となって損傷したバンパービームの交換が容易になる。   According to the twelfth feature of the present invention, the nut is fixed to the cross member, and the bolt that penetrates the bumper beam is fastened to the nut. Therefore, the bumper beam can be easily attached to and detached from the cross member. It is easy to change the bumper beam.

図1は自動車の車体後部骨格の平面図である。(第1の実施の形態)FIG. 1 is a plan view of a rear skeleton of an automobile. (First embodiment) 図2は図1の2方向矢視図である。(第1の実施の形態)FIG. 2 is a view in the direction of the arrow 2 in FIG. (First embodiment) 図3はリヤサイドフレームの繊維強化樹脂層の積層状態を示す図である。(第1の実施の形態)FIG. 3 is a view showing a laminated state of the fiber reinforced resin layer of the rear side frame. (First embodiment) 図4はリヤサイドフレームの繊維強化樹脂層の積層状態を示す表である。(第1の実施の形態)FIG. 4 is a table showing the laminated state of the fiber reinforced resin layers of the rear side frame. (First embodiment) 図5は 衝突荷重によるリヤサイドフレームの変形ストロークと荷重との関係を示すグラフである。(第1の実施の形態)FIG. 5 is a graph showing the relationship between the rear side frame deformation stroke and the load due to the collision load. (First embodiment) 図6は自動車の車体後部の骨格を示す平面図である。(第2の実施の形態)FIG. 6 is a plan view showing the skeleton of the rear part of the vehicle body. (Second Embodiment) 図7は図6の7方向矢視図である。(第2の実施の形態)7 is a view in the direction of arrow 7 in FIG. (Second Embodiment) 図8は図6の8A−8A線断面図および8B−8B線断面図である。(第2の実施の形態)8 is a cross-sectional view taken along line 8A-8A and a cross-sectional view taken along line 8B-8B in FIG. (Second Embodiment) 図9は後面衝突によるリヤバンパーのストロークと発生荷重との関係を示すグラフである。(第2の実施の形態)FIG. 9 is a graph showing the relationship between the rear bumper stroke and the generated load due to a rear collision. (Second Embodiment) 図10はバンパービームの他の実施の形態を示す図である。(第2の実施の形態)FIG. 10 is a diagram showing another embodiment of the bumper beam. (Second Embodiment)

11 リヤサイドフレーム(サイドフレーム)
17 後端部分(荷重入力端部)
17a フランジ(荷重入力面)
113 クロスメンバ
114 バンパービーム
114C 中央部材
114L、114R 端部部材
114b 縦リブ
114c 横リブ
114d 格子点
115 ナット
116 ボルト
11 Rear side frame (side frame)
17 Rear end (load input end)
17a Flange (Load input surface)
113 Cross member 114 Bumper beam 114C Central member 114L, 114R End member 114b Vertical rib 114c Horizontal rib 114d Lattice point 115 Nut 116 Bolt

添付図面に基づいて本発明の実施の形態を説明する。尚、本明細書において、前後方向、左右方向(車幅方向)および上下方向とは、運転席に着座した乗員を基準として定義される。   Embodiments of the present invention will be described with reference to the accompanying drawings. In the present specification, the front-rear direction, the left-right direction (vehicle width direction), and the up-down direction are defined with reference to an occupant seated in the driver's seat.

第1の実施の形態First embodiment

先ず、図1〜図5に基づいて本発明の第1の実施の形態を説明する。   First, a first embodiment of the present invention will be described with reference to FIGS.

図1に示すように、自動車の車体後部には左右一対のリヤサイドフレーム11,11が前後方向に配置されており、左右のリヤサイドフレーム11,11の後端間が車幅方向に延びるリヤバンパービーム12で接続される。リヤサイドフレーム11,11およびリヤバンパービーム12は、カーボンの連続繊維を一方向に引き揃えた連続繊維層を複数層に積層して樹脂で固めたCFRP(カーボン繊維強化樹脂)製である。   As shown in FIG. 1, a pair of left and right rear side frames 11, 11 are arranged in the front-rear direction at the rear part of the vehicle body, and a rear bumper beam extending between the rear ends of the left and right rear side frames 11, 11 in the vehicle width direction. 12 is connected. The rear side frames 11 and 11 and the rear bumper beam 12 are made of CFRP (carbon fiber reinforced resin) in which continuous fiber layers in which carbon continuous fibers are aligned in one direction are laminated in a plurality of layers and hardened with a resin.

図2に示すように、リヤサイドフレーム11は矩形状断面を有する中空筒状部材であり、繊維強化樹脂層の積層数が異なる四つの部分に分かれている。即ち、リヤサイドフレーム11は、後面衝突の衝突荷重が入力する後端部側から前端部側に向けて順番に第1部分13、第2部分14、第3部分15および第4部分16に分かれており、第1部分13の後方には短い後端部分17が設けられる。後端部分17の後面には平板状のフランジ17aが設けられており、フランジ17aがリヤバンパービーム12の前面に固定される。フランジ17aは、車幅方向外端が前方に偏倚するように傾斜している(図1参照)。   As shown in FIG. 2, the rear side frame 11 is a hollow cylindrical member having a rectangular cross section, and is divided into four parts having different numbers of laminated fiber reinforced resin layers. That is, the rear side frame 11 is divided into a first portion 13, a second portion 14, a third portion 15, and a fourth portion 16 in order from the rear end side where the collision load of the rear collision is input to the front end side. A short rear end portion 17 is provided behind the first portion 13. A flat flange 17 a is provided on the rear surface of the rear end portion 17, and the flange 17 a is fixed to the front surface of the rear bumper beam 12. The flange 17a is inclined so that the outer end in the vehicle width direction is biased forward (see FIG. 1).

図2〜図4に示すように、リヤサイドフレーム11の繊維強化樹脂層の積層数は、第1部分13が10層であり、第2部分14が12層であり、第3部分15が14層であり、第4部分16が18層であり、後端部分17が12層である。各部分の繊維強化樹脂層は、積層方向中央の対称面に対して表面側および裏面側が対称に積層される。繊維強化樹脂層の連続繊維の繊維配向角は、リヤサイドフレーム11の長手方向(前後方向)に対する角度で定義され、0°は長手方向と平行であることを示し、±45°は長手方向に対して左右に45°傾斜することを示し、90°は長手方向に対して90°で交差することを示している。   As shown in FIGS. 2 to 4, the number of laminated fiber reinforced resin layers of the rear side frame 11 is such that the first portion 13 is 10 layers, the second portion 14 is 12 layers, and the third portion 15 is 14 layers. The fourth portion 16 has 18 layers, and the rear end portion 17 has 12 layers. The fiber reinforced resin layer of each part is laminated | stacked symmetrically in the surface side and the back surface side with respect to the symmetrical surface of the lamination direction center. The fiber orientation angle of the continuous fibers of the fiber reinforced resin layer is defined by an angle with respect to the longitudinal direction (front-rear direction) of the rear side frame 11, 0 ° indicates parallel to the longitudinal direction, and ± 45 ° indicates relative to the longitudinal direction. The angle is 45 ° to the left and right, and 90 ° indicates that it intersects the longitudinal direction at 90 °.

18層に積層された第4部分16は、対称面の外側に第1層〜第9層が積層され、対称面の内側に第1′層〜第9′層が積層される。対称面の両側の第1層および第1′層は0°繊維強化樹脂層であり、対称面の両側の第2、3層および第2′、3′層は±45°繊維強化樹脂層であり、対称面の両側の第4層および第4′層は0°繊維強化樹脂層であり、対称面の両側の第5〜7層および第5′〜7′層は90°繊維強化樹脂層であり、対称面の両側の第8、9層および第8′、9′層は±45°繊維強化樹脂層である。   In the fourth portion 16 laminated in 18 layers, the first layer to the ninth layer are laminated outside the symmetry plane, and the first ′ layer to the 9 ′ layer are laminated inside the symmetry plane. The first and first layers on both sides of the symmetry plane are 0 ° fiber reinforced resin layers, and the second, third and second 'and 3' layers on both sides of the symmetry plane are ± 45 ° fiber reinforced resin layers. The fourth layer and the 4 'layer on both sides of the symmetry plane are 0 ° fiber reinforced resin layers, and the fifth to seventh layers and the 5' to 7 'layers on both sides of the symmetry surface are 90 ° fiber reinforced resin layers. The 8th and 9th layers and the 8 'and 9' layers on both sides of the symmetry plane are ± 45 ° fiber reinforced resin layers.

第4部分16の後端で、第1層および第1′層(0°繊維強化樹脂層)と、第3層および第3′層(45°繊維強化樹脂層)とが途切れており、よって第4部分16の後方に連なる第3部分15は第1層、第1′層、第3層および第3′層を持たない14層構造となる。   At the rear end of the fourth portion 16, the first layer and the first 'layer (0 ° fiber reinforced resin layer) are disconnected from the third layer and the third' layer (45 ° fiber reinforced resin layer). The third portion 15 connected to the rear of the fourth portion 16 has a 14-layer structure without the first layer, the first 'layer, the third layer, and the third' layer.

第3部分15の後端で、第2層および第2′層(−45°繊維強化樹脂層)が途切れており、よって第3部分15の後方に連なる第2部分14は第1層、第1′層、第2層、第2′層、第3層および第3′層を持たない12層構造となる。   At the rear end of the third portion 15, the second layer and the second ′ layer (−45 ° fiber reinforced resin layer) are interrupted, so that the second portion 14 connected to the rear of the third portion 15 is the first layer, A 12-layer structure having no 1 'layer, 2nd layer, 2' layer, 3rd layer and 3 'layer is obtained.

第2部分14の後端で、第5層および第5′層(90°繊維強化樹脂層)が途切れており、よって第2部分14の後方に連なる第1部分13は第1層、第1′層、第2層、第2′層、第3層、第3′層、第5層および第5′層を持たない10層構造となる。   At the rear end of the second portion 14, the fifth layer and the 5 'layer (90 ° fiber reinforced resin layer) are interrupted. Therefore, the first portion 13 connected to the rear of the second portion 14 is the first layer, the first layer It has a 10-layer structure without the 'layer, the second layer, the second' layer, the third layer, the third 'layer, the fifth layer and the fifth' layer.

そして第1部分13の後端に連なる後端部分17は、第1部分13に短い第5層および第5′層(90°繊維強化樹脂層)を付加することで、第2部分14と同じ12層構造となる。   The rear end portion 17 connected to the rear end of the first portion 13 is the same as the second portion 14 by adding a short fifth layer and a fifth 5 ′ layer (90 ° fiber reinforced resin layer) to the first portion 13. It has a 12-layer structure.

かかる構造のリヤサイドフレーム11は、カーボン連続繊維を一方向に引き揃えたシートに熱硬化性樹脂を含浸させたプリプレグを所定形状に裁断し、複数枚のプリプレグを積層した状態で樹脂を加熱硬化させることで製造される。その際に、本実施の形態では1種類のプリプレグの裁断方向を異ならせることで、0°繊維強化樹脂層、±45°繊維強化樹脂層および90°繊維強化樹脂層を得ることができ、これら複数枚のプリプレグの前後方向の長さを異ならせるとともに、前後方向位置をずらすことで、図4の表に示す積層状態を実現することができる。   The rear side frame 11 having such a structure cuts a prepreg obtained by impregnating a sheet of carbon continuous fibers aligned in one direction with a thermosetting resin into a predetermined shape, and heat cures the resin in a state where a plurality of prepregs are laminated. It is manufactured by. In this case, in this embodiment, by changing the cutting direction of one kind of prepreg, a 0 ° fiber reinforced resin layer, a ± 45 ° fiber reinforced resin layer, and a 90 ° fiber reinforced resin layer can be obtained. The stacked state shown in the table of FIG. 4 can be realized by changing the lengths of the prepregs in the front-rear direction and by shifting the position in the front-rear direction.

次に、上記構成を備えた本発明の第1の実施の形態の作用を説明する。   Next, the operation of the first embodiment of the present invention having the above configuration will be described.

自動車が後面衝突を受けてリヤバンパービーム12に前向きの衝突荷重が入力すると、その衝突荷重はリヤバンパービーム12からフランジ17aを介してリヤサイドフレーム11の後端部分17に前後方向の圧縮荷重として入力し、この圧縮荷重でリヤサイドフレーム11が前後方向に圧壊することで衝突エネルギーを吸収する。   When the automobile receives a rear collision and a forward collision load is input to the rear bumper beam 12, the collision load is input from the rear bumper beam 12 to the rear end portion 17 of the rear side frame 11 through the flange 17a as a longitudinal compression load. Then, the rear side frame 11 is crushed in the front-rear direction by this compressive load to absorb the collision energy.

その際に、リヤサイドフレーム11は0°繊維強化樹脂層と傾斜繊維強化樹脂層(±45°繊維強化樹脂層および90°繊維強化樹脂層)とからなり、衝突荷重が入力する後端部分17に近い第1部分13から遠い第4部分16に向かって傾斜繊維強化樹脂層の積層数が増加するので、つまり傾斜繊維強化樹脂層の積層数は、第1部分13が8層、第2部分14が10層、第3部分15が12層、第4部分16が14層なので、連続繊維が荷重の入力方向と平行であるために座屈し易い0°繊維強化樹脂層の強度が後方から前方に向かって順次高まるように傾斜繊維強化樹脂層で補強することができる。   At that time, the rear side frame 11 is composed of a 0 ° fiber reinforced resin layer and an inclined fiber reinforced resin layer (± 45 ° fiber reinforced resin layer and 90 ° fiber reinforced resin layer). Since the number of layers of the inclined fiber reinforced resin layer increases from the near first portion 13 toward the fourth portion 16 which is far from the first portion 13, that is, the number of the inclined fiber reinforced resin layers is eight in the first portion 13 and the second portion 14. Is 10 layers, the third portion 15 is 12 layers, and the fourth portion 16 is 14 layers. Therefore, the strength of the 0 ° fiber reinforced resin layer that is easy to buckle because the continuous fibers are parallel to the input direction of the load is from the rear to the front. It can reinforce with the inclination fiber reinforced resin layer so that it may increase gradually toward it.

その結果、後端部分17の近傍の第1部分13の0°繊維強化樹脂層を屈曲し易くして初期荷重を低下させるとともに、その反対側の前端部に向けて0°繊維強化樹脂層を屈曲し難くすることで、リヤサイドフレーム11を荷重の入力方向に対して傾斜させることなく、後端から前端に向かって順次圧壊させてエネルギー吸収量を増加させることができる。これにより、リヤサイドフレーム11を薄肉にして軽量化を図りながら、充分なエネルギー吸収量を確保することができる。   As a result, the 0 ° fiber reinforced resin layer of the first portion 13 in the vicinity of the rear end portion 17 is easily bent to reduce the initial load, and the 0 ° fiber reinforced resin layer is applied to the opposite front end portion. By making it difficult to bend, it is possible to increase the energy absorption amount by sequentially crushing the rear side frame 11 from the rear end toward the front end without inclining the rear side frame 11 with respect to the input direction of the load. As a result, a sufficient amount of energy absorption can be secured while reducing the weight of the rear side frame 11 and reducing the weight.

図5は、衝突荷重によるリヤサイドフレーム11の変形ストロークと荷重との関係を示すグラフである。   FIG. 5 is a graph showing the relationship between the deformation stroke of the rear side frame 11 due to the collision load and the load.

破線のラインはリヤサイドフレーム11を0°繊維強化樹脂層だけで構成した場合の理論値であり、変形ストロークに対して大きな荷重を発生して高いエネルギー吸収効果が見込まれる。鎖線のラインは上記理論値に対する実測値であり、発生する荷重が理論値に比べて大幅に減少している。その理由は、0°繊維強化樹脂層は、その軸方向に入力する初期荷重で樹脂が破壊して連続繊維が屈曲してしまい、充分な荷重を発生できないためである。実線は本実施の形態を示すもので、傾斜繊維強化樹脂層で0°繊維強化樹脂層を覆うことで、0°繊維強化樹脂層を屈曲させることなく軸方向に圧壊し、充分な荷重を発生することが可能となる。しかも傾斜繊維強化樹脂層の層数を第1部分13から第4部分16に向けて順次増加させることで、変形ストロークの増加に応じて荷重を漸増させることができる。   The broken line is a theoretical value in the case where the rear side frame 11 is composed of only the 0 ° fiber reinforced resin layer, and a large load is generated with respect to the deformation stroke, and a high energy absorption effect is expected. The chain line is an actual measurement value with respect to the theoretical value, and the generated load is significantly reduced compared to the theoretical value. The reason is that the 0 ° fiber reinforced resin layer breaks the resin by the initial load input in the axial direction and the continuous fiber bends, so that a sufficient load cannot be generated. The solid line shows this embodiment. By covering the 0 ° fiber reinforced resin layer with the inclined fiber reinforced resin layer, the 0 ° fiber reinforced resin layer is crushed in the axial direction without bending, and a sufficient load is generated. It becomes possible to do. In addition, by sequentially increasing the number of inclined fiber reinforced resin layers from the first portion 13 toward the fourth portion 16, it is possible to gradually increase the load according to an increase in the deformation stroke.

また傾斜繊維強化樹脂層は繊維配向角が90°のものを含むので、繊維配向角が90°の傾斜繊維強化樹脂層で0°繊維強化樹脂層の座屈強度を高めて面外変形を抑制することで、0°繊維強化樹脂層のエネルギー吸収量を効果的に増加することができる。   In addition, since the tilted fiber reinforced resin layer includes those with a fiber orientation angle of 90 °, the tilted fiber reinforced resin layer with a fiber orientation angle of 90 ° increases the buckling strength of the 0 ° fiber reinforced resin layer and suppresses out-of-plane deformation. By doing so, the energy absorption amount of the 0 ° fiber reinforced resin layer can be effectively increased.

またリヤサイドフレーム11の後端部分17は前後方向に対して斜めに傾斜するフランジ17aを備えるので、後面衝突の衝突荷重の入力により後端部分17に車幅方向の荷重が加わってリヤサイドフレーム11に曲げモーメントが作用するが、後端部分17はそれに連続する第1部分13よりも傾斜繊維強化樹脂層の積層数が第5層および第5′層の分だけ多いので、その後端部分17の屈曲を防止して衝突荷重をリヤサイドフレーム11の前端に向けて伝達することができる。   Further, since the rear end portion 17 of the rear side frame 11 includes a flange 17a inclined obliquely with respect to the front-rear direction, a load in the vehicle width direction is applied to the rear end portion 17 by the input of the collision load of the rear collision, and the rear side frame 11 Although the bending moment is applied, the rear end portion 17 has a larger number of inclined fiber reinforced resin layers than the first portion 13 that is continuous to the fifth portion and the 5 ′ layer. Thus, the collision load can be transmitted toward the front end of the rear side frame 11.

またリヤサイドフレーム11は後端部分17に連続する第1部分13から第4部分16に向けて0゜繊維強化樹脂層の積層数が増加するので、つまり第4部分16は第1〜第3部分13,14,15が持たない第1層および第1′層の0°繊維強化樹脂層を持つため、後端部分17衝突荷重が入力して反対側の第4部分16に大きな曲げモーメントが作用しても、0゜繊維強化樹脂層の積層数が多い第4部分16の屈曲を防止してエネルギー吸収量を確保することができる。   Further, since the rear side frame 11 increases in the number of 0 ° fiber reinforced resin layers from the first portion 13 continuing to the rear end portion 17 toward the fourth portion 16, that is, the fourth portion 16 is composed of the first to third portions. Since the first, first, and first ′ layer 0 ° fiber reinforced resin layers 13, 14, and 15 do not have, a rear end portion 17 collision load is input and a large bending moment acts on the opposite fourth portion 16. Even so, it is possible to prevent the bending of the fourth portion 16 having a large number of laminated layers of 0 ° fiber reinforced resin layers and to secure an energy absorption amount.

またリヤサイドフレーム11の積層方向最外側および積層方向最内側に積層された傾斜繊維強化樹脂層(第9層および第9′層)は繊維配向角が45゜であるので、前後方向に対して斜めに衝突荷重が入力した場合であっても、リヤサイドフレーム11の屈曲を抑制してエネルギー吸収量を確保することができる。   Further, since the inclined fiber reinforced resin layers (the ninth layer and the ninth 'layer) laminated on the outermost side and the innermost side of the rear side frame 11 have a fiber orientation angle of 45 °, they are inclined with respect to the front-rear direction. Even when a collision load is input to the rear side frame, it is possible to suppress the bending of the rear side frame 11 and secure an energy absorption amount.

また第1層〜第9層および第1′層〜第9′層の繊維強化樹脂層は同一方向に引き揃えた連続繊維を樹脂で固めた1種類のプリプレグからなるので、1種類のプリプレグを異なる方向に裁断して複数の繊維強化樹脂層を構成することで材料コストを低減することができる。しかもプリプレグは第1層〜第9層および第1′層〜第9′層の繊維強化樹脂層に応じて前後方向の長さが異なるので、プリプレグの継ぎ目の数を最小限に抑えて強度を高めながら、リヤサイドフレーム11の各部で繊維強化樹脂層の積層数を変化させることができる。   Further, the fiber reinforced resin layers of the first layer to the ninth layer and the first 'layer to the ninth' layer are composed of one type of prepreg obtained by consolidating continuous fibers aligned in the same direction with a resin. The material cost can be reduced by forming a plurality of fiber reinforced resin layers by cutting in different directions. Moreover, since the length of the prepreg differs depending on the fiber reinforced resin layers of the first layer to the ninth layer and the first 'layer to the ninth' layer, the strength of the prepreg is minimized by minimizing the number of seams of the prepreg. While increasing, the number of laminated fiber reinforced resin layers can be changed in each part of the rear side frame 11.

第2の実施の形態Second embodiment

次に、図6〜図10に基づいて本発明の第2の実施の形態を説明する。第1の実施の形態に対応する部材は同じ符号を用いて表示した。   Next, a second embodiment of the present invention will be described with reference to FIGS. The members corresponding to the first embodiment are indicated using the same reference numerals.

図6〜図8に示すように、左右一対のリヤサイドフレーム11,11の後端に設けた取付フランジ112,112に車幅方向に延びるクロスメンバ113の前面が固定される。クロスメンバ113はリヤサイドフレーム11,11と同様にCFRP製の中空閉断面の部材であり、その骨材であるカーボン連続繊維はクロスメンバ113の長手方向(車幅方向)に沿って配置される。   As shown in FIGS. 6 to 8, the front surface of the cross member 113 extending in the vehicle width direction is fixed to mounting flanges 112, 112 provided at the rear ends of the pair of left and right rear side frames 11, 11. The cross member 113 is a member having a hollow closed cross section made of CFRP like the rear side frames 11, 11, and the carbon continuous fiber as the aggregate is arranged along the longitudinal direction (vehicle width direction) of the cross member 113.

クロスメンバ113は車幅方向中央部が後方に突出するように弧状に湾曲した部材であり、板状の後部部材113aと、後面が開放するハット状断面の前部部材113bとを結合して中空閉断面に構成される。クロスメンバ113の上下方向高さは車幅方向に一定であるが、前後方向厚さは車幅方向中央部で大きく、車幅方向両端部で小さくなっている。   The cross member 113 is a member that is curved in an arc shape so that the central portion in the vehicle width direction protrudes rearward, and is formed by connecting a plate-like rear member 113a and a front member 113b having a hat-shaped cross-section with the rear surface open. Constructed in a closed section. The vertical height of the cross member 113 is constant in the vehicle width direction, but the thickness in the front-rear direction is large at the center in the vehicle width direction and small at both ends in the vehicle width direction.

クロスメンバ113の後面には、車幅方向に3分割されたバンパービーム114が取り付けられる。バンパービーム114は、車幅方向中央に位置する中央部材114Cと、中央部材114Cの左右両側に位置する左右一対の端部部材114L,114Rとからなり、左右の端部部材114L,114Rは車体中心面に対して面対称な形状である。   A bumper beam 114 divided into three in the vehicle width direction is attached to the rear surface of the cross member 113. The bumper beam 114 includes a center member 114C located at the center in the vehicle width direction and a pair of left and right end members 114L and 114R located on both left and right sides of the center member 114C. The left and right end members 114L and 114R The shape is symmetrical with respect to the surface.

中央部材114Cはカーボン不連続繊維を骨材とするCFRP製の部材であり、平坦な連結壁114aと、連結壁114aの後面に形成された複数の縦リブ114b…と、連結壁114aの後面に形成された複数の横リブ114c…とを備えており、上下方向に延びる縦リブ114b…と左右方向に延びる横リブ114c…とは格子点114d…において相互に格子状に交差する。連結壁114aの左右両側縁には縦リブ114b…が形成されておらず、かつ連結壁114aの上縁および下縁には横リブ114c…が形成されていないため、格子点114d…は連結壁114aの周縁よりも内側に位置している。そして縦リブ114b…および横リブ114c…は、連結壁114aの周縁に最も近い格子点114d…から前記周縁に向かって高さを減じている。   The central member 114C is a CFRP member having carbon discontinuous fibers as an aggregate, and includes a flat connecting wall 114a, a plurality of vertical ribs 114b formed on the rear surface of the connecting wall 114a, and a rear surface of the connecting wall 114a. Are formed, and the vertical ribs 114b extending in the vertical direction and the horizontal ribs 114c extending in the left-right direction intersect with each other at a lattice point 114d. The vertical ribs 114b are not formed on the left and right side edges of the connecting wall 114a, and the horizontal ribs 114c are not formed on the upper and lower edges of the connecting wall 114a. It is located inside the peripheral edge of 114a. The vertical ribs 114b and the horizontal ribs 114c are reduced in height from the lattice points 114d closest to the periphery of the connecting wall 114a toward the periphery.

クロスメンバ113の後部部材113aの前面に複数のナット115…が埋設されており、中央部材114Cの連結壁114aを後から前に貫通する複数のボルト116…を前記複数のナット115…に締結することで、中央部材114Cがクロスメンバ113の後面に着脱自在に取り付けられる。   A plurality of nuts 115 are embedded in the front surface of the rear member 113a of the cross member 113, and a plurality of bolts 116 penetrating through the connecting wall 114a of the central member 114C from the rear to the front are fastened to the plurality of nuts 115. Thus, the central member 114C is detachably attached to the rear surface of the cross member 113.

左右の端部部材114L,114Rは、上述した中央部材114Cと実質的に同じ構造であるが、衝突荷重の入力方向(前後方向)の圧縮強度が中央部材114Cと端部部材114L,114Rとで異なっている。即ち、中央部材114Cの縦リブ114b…および横リブ114c…の厚さを、端部部材114L,114Rの縦リブ114b…および横リブ114c…の厚さよりも大きくすることで、両者の圧縮強度に差を持たせている。また図10に示すように、中央部材114Cの縦リブ114b…、横リブ114c…および格子点114d…の密度を、端部部材114L,114Rのそれよりも密にすることで、両者の圧縮強度に差を持たせても良い。   The left and right end members 114L and 114R have substantially the same structure as the above-described center member 114C, but the compressive strength in the input direction (front-rear direction) of the collision load is different between the center member 114C and the end members 114L and 114R. Is different. That is, the thickness of the longitudinal ribs 114b and the lateral ribs 114c of the central member 114C is made larger than the thickness of the longitudinal ribs 114b and the lateral ribs 114c of the end members 114L and 114R, thereby increasing the compressive strength of both. Make a difference. Further, as shown in FIG. 10, the density of the longitudinal ribs 114b,..., The lateral ribs 114c, and the lattice points 114d of the central member 114C is made denser than that of the end members 114L and 114R, thereby compressing both of them. You may make a difference.

バンパービーム114の中央部材114Cおよび端部部材114L,114Rは複数の縦リブ114b…および横リブ114c…を有する複雑な形状であるため、金型を用いてプレス成形される。即ち、凹状のキャビティを有する雌型と凸状のコアを有する雄型とを型開きし、カーボン不連続繊維のマットに熱可塑性樹脂(ナイロン6、ナイロン66、ポリプロピレン等)を含浸したプリプレグを予備加熱した状態で雌型のキャビティの上部に載置し、金型を閉じて加圧成形した後に冷却することで、中央部材114Cおよび端部部材114L,114Rが成形される。   Since the central member 114C and the end members 114L and 114R of the bumper beam 114 have a complicated shape having a plurality of vertical ribs 114b and horizontal ribs 114c, they are press-molded using a mold. That is, a female mold having a concave cavity and a male mold having a convex core are opened, and a prepreg in which a carbon discontinuous fiber mat is impregnated with a thermoplastic resin (nylon 6, nylon 66, polypropylene, etc.) is preliminarily prepared. The center member 114C and the end members 114L and 114R are molded by placing the sample on the upper part of the female cavity in a heated state, closing the mold, press-molding, and cooling.

次に、上記構成を備えた本発明の第2の実施の形態の作用を説明する。   Next, the operation of the second embodiment of the present invention having the above configuration will be described.

自動車が後面衝突を受けてリヤバンパーのバンパービーム114の一部が損傷した場合、バンパービーム114全体を交換すると修理コストが大きくなるが、本実施の形態によれば、バンパービーム114が車幅方向中央に位置する中央部材114Cと、その車幅方向両側に位置する端部部材114L,114Rとに分割されているため、損傷した部分だけを交換して損傷していない部分を引き続き使用することで、修理コストを削減することができる。このとき、中央部材114Cおよび端部部材114L,114Rは、クロスメンバ113に埋設したナット115…に螺合するボルト116…により着脱自在に固定されているため、その交換作業が極めて容易である。しかも、バンパービーム114を3分割したことで、それを製造する金型を小型化して初期投資を削減することができる。   If a part of the bumper beam 114 of the rear bumper is damaged due to a rear collision, the replacement cost increases if the entire bumper beam 114 is replaced. However, according to the present embodiment, the bumper beam 114 moves in the vehicle width direction. Since it is divided into a central member 114C located at the center and end members 114L and 114R located on both sides in the vehicle width direction, only the damaged portion is replaced and the undamaged portion is used continuously. Repair costs can be reduced. At this time, since the central member 114C and the end members 114L and 114R are detachably fixed by bolts 116 that are screwed into nuts 115 that are embedded in the cross member 113, the replacement work is extremely easy. In addition, by dividing the bumper beam 114 into three, the mold for manufacturing the bumper beam 114 can be reduced in size and the initial investment can be reduced.

さて、クルージング等の高速走行中におけるフルラップ衝突時には中央部材114Cおよび左右の端部部材114L,114Rに衝突荷重が入力し、70%ラップ衝突時には中央部材114Cおよび左右一方の端部部材114L,114Rに衝突荷重が入力するが、上記何れの場合にも衝突荷重が入力する中央部材114Cの圧縮強度を端部部材114L,114Rの圧縮強度よりも高くしたことで、必要なエネルギー吸収性能を確保することができる。また車庫入れ等の低速走行時には端部部材114L,114Rに衝突荷重が入力する可能性が高くなるが、その際の衝突荷重は比較的に小さいものである。よって、端部部材114L,114Rの圧縮強度を中央部材114Cの圧縮強度よりも低くすることで、バンパービーム114の重量を削減することができる。   A collision load is input to the central member 114C and the left and right end members 114L and 114R at the time of a full lap collision during high-speed traveling such as cruising, and the center member 114C and the left and right end members 114L and 114R are input to the central member 114C and the left and right end members 114L and 114R at a 70% lap collision. Although the collision load is input, the required energy absorption performance is ensured by making the compressive strength of the central member 114C to which the collision load is input higher than the compressive strength of the end members 114L and 114R in any of the above cases. Can do. Further, when traveling at a low speed such as in a garage, there is a high possibility that a collision load is input to the end members 114L and 114R, but the collision load at that time is relatively small. Therefore, the weight of the bumper beam 114 can be reduced by making the compressive strength of the end members 114L and 114R lower than the compressive strength of the central member 114C.

このように、バンパービーム114を中央部材114Cおよび端部部材114L,114Rに3分割したことで、バンパービーム114のエネルギー吸収性能および軽量化を容易に両立させることが可能となる。   Thus, by dividing the bumper beam 114 into the central member 114C and the end members 114L and 114R, it is possible to easily achieve both energy absorption performance and weight reduction of the bumper beam 114.

またバンパービーム114への衝突荷重の入力時に、連結壁114aから後方に突出する縦リブ114b…、横リブ114cおよび格子点114d…が圧壊して衝突エネルギーを吸収するが、連結壁114aの左右両側縁には縦リブ114b…が形成されておらず、かつ連結壁114aの上縁および下縁には横リブ114c…が形成されておらず、格子点114d…は連結壁114aの周縁よりも内側に位置しているため、強度の高い格子点114d…が圧壊して大きなエネルギー吸収効果が発揮されるだけでなく、連結壁114aの周縁には格子点114d…が存在しないために縦リブ114b…および横リブ114c…の潰れ残りがなくなってエネルギー吸収効果が高められる。   Further, when a collision load is input to the bumper beam 114, the longitudinal ribs 114b,..., The lateral ribs 114c and the lattice points 114d that protrude rearward from the connection wall 114a are crushed and absorb the collision energy. Vertical ribs 114b are not formed at the edges, and horizontal ribs 114c are not formed at the upper and lower edges of the connecting wall 114a, and the lattice points 114d are inside the peripheral edge of the connecting wall 114a. Therefore, not only does the high-strength lattice point 114d collapse, and a large energy absorption effect is exhibited, but the lattice point 114d does not exist on the periphery of the connecting wall 114a, so the vertical rib 114b. Further, the remaining ribs 114c are not crushed and the energy absorption effect is enhanced.

以上のように、縦リブ114b…、横リブ114c…および格子点114d…が潰れ残りなく圧壊することでバンパービーム114のエネルギー吸収量が増加するため、その分だけクロスメンバ113やリヤサイドフレーム11,11の強度(エネルギー吸収量)を低下させることが可能となり、全体として車体重量の低減に寄与することができる(図9参照)。   As described above, since the vertical ribs 114b, the horizontal ribs 114c, and the lattice points 114d are crushed without being crushed, the amount of energy absorbed by the bumper beam 114 increases, and accordingly, the cross member 113 and the rear side frame 11, 11 (energy absorption amount) can be reduced, and the overall weight of the vehicle can be reduced (see FIG. 9).

しかも、縦リブ114b…および横リブ114c…は、連結壁114aの周縁に最も近い格子点114d…から前記周縁に向かって高さを減じているため、バンパービーム114を覆うバンパーフェイス117(図8参照)が縦リブ114b…や横リブ114c…と干渉し難くなり、バンパーフェイス117をバンパービーム114に接近させて車体の小型化を図ることができる。   Moreover, since the vertical ribs 114b and the horizontal ribs 114c are reduced in height from the lattice points 114d closest to the periphery of the connecting wall 114a toward the periphery, the bumper face 117 that covers the bumper beam 114 (FIG. 8). ) Is less likely to interfere with the vertical ribs 114b and the horizontal ribs 114c, and the bumper face 117 can be brought close to the bumper beam 114 to reduce the size of the vehicle body.

またクロスメンバ113の断面積は車幅方向端部から車幅方向中央部に向かって増加するので(図8参照)、高速衝突時に大きな衝突荷重が入力するクロスメンバ113の中央部の剪断破壊を防止することができる。   In addition, since the cross-sectional area of the cross member 113 increases from the end in the vehicle width direction toward the center in the vehicle width direction (see FIG. 8), shear failure at the center of the cross member 113 to which a large collision load is input during high-speed collisions. Can be prevented.

以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention.

例えば、本発明のサイドフレームは実施の形態のリヤサイドフレーム11に限定されず、フロントサイドフレームであっても良い。   For example, the side frame of the present invention is not limited to the rear side frame 11 of the embodiment, and may be a front side frame.

また実施の形態のリヤサイドフレーム11は後端部分17を備えているが、後端部分17は必ずしも必要ではなく、第1部分13がリヤサイドフレーム11の後端に位置していても良い。   Although the rear side frame 11 of the embodiment includes the rear end portion 17, the rear end portion 17 is not always necessary, and the first portion 13 may be located at the rear end of the rear side frame 11.

また実施の形態のリヤサイドフレーム11は第1部分13〜第4部分16に分割されているが、その分割は任意であり、各部分の繊維強化樹脂層の積層数も任意である。   Moreover, although the rear side frame 11 of the embodiment is divided into the first portion 13 to the fourth portion 16, the division is arbitrary, and the number of laminated fiber reinforced resin layers in each portion is also arbitrary.

また本発明の繊維強化樹脂は実施の形態のCFRP(カーボン繊維強化樹脂)に限定されず、GFRP(ガラス繊維強化樹脂)等の他種のFRPであっても良い。   The fiber reinforced resin of the present invention is not limited to the CFRP (carbon fiber reinforced resin) of the embodiment, and may be other types of FRP such as GFRP (glass fiber reinforced resin).

本発明は、車体前部あるいは車体後部に前後方向に配置される筒状閉断面のサイドフレームを、前後方向に対する連続繊維の繊維配向角が異なる複数の繊維強化樹脂層を積層して構成した自動車の車体構造に関する。   The present invention relates to an automobile in which a side frame having a cylindrical closed cross section disposed in the front-rear direction at the front part of the vehicle body or the rear part of the vehicle body is configured by laminating a plurality of fiber reinforced resin layers having different fiber orientation angles with respect to the front-rear direction. Relates to the body structure.

FRP(繊維強化樹脂)製の厚肉の筒状体において、その外層部は繊維配向角が90°(軸直角方向)の繊維を0°(軸方向)の繊維よりも多くし、その内層部は繊維配向角が0°(軸方向)の繊維を90°(軸直角方向)の繊維よりも多くすることで、軸方向の荷重が入力したときに外層部の剥がれを防止して安定したエネルギー吸収を可能にしたものが、下記特許文献1により公知である。   In a thick cylindrical body made of FRP (fiber reinforced resin), the outer layer portion has a fiber orientation angle of 90 ° (axial direction perpendicular to the fiber) more than 0 ° (axial direction) fiber, and the inner layer portion By increasing the number of fibers with a fiber orientation angle of 0 ° (axial direction) to 90 ° (axial direction), the outer layer can be prevented from peeling off when an axial load is input. The thing which enabled absorption is known by the following patent document 1.

また車体前部に車幅方向に配置されたバンパービームの前面に12個のセルに分割された衝撃吸収部材を設け、衝撃吸収部材の前面を軟質のバンパーフェイスで覆うことで、歩行者の足との衝突時には数個のセルだけを大きなストロークで変形させて衝撃を小さく抑えるとともに、他車両等との衝突時には更に多数のセルを小さいストロークで変形させて車体の損傷を最小限に抑えるものが、下記特許文献2により公知である。   In addition, a shock absorbing member divided into 12 cells is provided in front of the bumper beam arranged in the vehicle width direction at the front of the vehicle body, and the front surface of the shock absorbing member is covered with a soft bumper face, thereby At the time of a collision, only a few cells are deformed with a large stroke to keep the impact small, and at the time of a collision with other vehicles, many cells are deformed with a small stroke to minimize vehicle damage. It is known from Patent Document 2 below.

日本特許第3837818号公報Japanese Patent No. 3833718 日本特開2004−237810号公報Japanese Unexamined Patent Publication No. 2004-237810

ところで、上記特許文献1のものは、外層部および内層部の繊維配向角が筒状体の長手方向(軸方向)に沿って一定であるため、筒状体の一端部に軸方向の荷重が入力した場合に、大きな曲げモーメントが作用する他端部側が屈曲してしまい、筒状体が荷重の入力方向に対して傾くことで、一端部側から他端部側に向けて順次圧壊して効率的なエネルギー吸収を行うことができない可能性がある。   By the way, in the thing of the said patent document 1, since the fiber orientation angle of an outer layer part and an inner layer part is constant along the longitudinal direction (axial direction) of a cylindrical body, the load of an axial direction is applied to the one end part of a cylindrical body. When it is input, the other end side where a large bending moment acts is bent, and the cylindrical body inclines with respect to the input direction of the load, so that it collapses sequentially from one end side to the other end side. There is a possibility that efficient energy absorption cannot be performed.

また上記特許文献2のものは、バンパービームが金属あるいは繊維強化樹脂で一体に形成された中空閉断面の部材で構成されているため、衝突によりバンパービームの一部に損傷を受けた場合であっても、バンパービーム全体を交換することが必要となって修理コストが増加する問題があった。しかも衝撃吸収部材が同一構造の12個のセルにより構成されるので、衝突荷重が入力する位置に応じてエネルギー吸収量を調整することができないという問題があった。   Further, in the above-mentioned Patent Document 2, since the bumper beam is composed of a member having a hollow closed cross section integrally formed of metal or fiber reinforced resin, a part of the bumper beam is damaged by a collision. However, there is a problem that the repair cost increases because it is necessary to replace the entire bumper beam. Moreover, since the shock absorbing member is composed of 12 cells having the same structure, there is a problem that the energy absorption amount cannot be adjusted according to the position where the collision load is input.

本発明は前述の事情に鑑みてなされたもので、筒状閉断面を有する繊維強化樹脂製のサイドフレームのエネルギー吸収効果を高め、バンパービームが損傷を受けたときの修理コストが小さく、しかも衝突荷重が入力する位置に応じてバンパービームのエネルギー吸収量を容易に調整することが可能な自動車の車体構造を提供することを目的とする。   The present invention has been made in view of the above-mentioned circumstances, and enhances the energy absorption effect of the side frame made of fiber reinforced resin having a cylindrical closed cross section, and the repair cost when the bumper beam is damaged is small, and also the collision An object of the present invention is to provide a vehicle body structure capable of easily adjusting the energy absorption amount of a bumper beam according to a position where a load is input.

上記目的を達成するために、本発明の第1の特徴によれば、車体前部あるいは車体後部に前後方向に配置される筒状閉断面のサイドフレームを、前後方向に対する連続繊維の繊維配向角が異なる複数の繊維強化樹脂層を積層して構成した自動車の車体構造であって、前記複数の繊維強化樹脂層は、繊維配向角が0°の0°繊維強化樹脂層と、繊維配向角が0°以外の傾斜繊維強化樹脂層とからなり、前記傾斜繊維強化樹脂層の積層数は、前記サイドフレームの荷重入力端部の近傍から反対側の端部に向けて増加し、前記荷重入力端部は、前後方向に対して斜めに傾斜する荷重入力面を備えるとともに、前記荷重入力端部の近傍よりも前記傾斜繊維強化樹脂層の積層数が多いことを特徴とする自動車の車体構造が提案される。 In order to achieve the above object, according to the first feature of the present invention, a side frame having a cylindrical closed cross section disposed in the front-rear direction at the front part of the vehicle body or the rear part of the vehicle body is provided with a fiber orientation angle of continuous fibers relative to the front-rear direction A plurality of fiber reinforced resin layers are laminated to form a vehicle body structure, and the plurality of fiber reinforced resin layers have a fiber orientation angle of 0 ° and a fiber orientation angle of 0 °. The inclined fiber reinforced resin layer other than 0 °, and the number of the laminated inclined fiber reinforced resin layers increases from the vicinity of the load input end of the side frame toward the opposite end , and the load input end The vehicle body has a load input surface that is inclined obliquely with respect to the front-rear direction, and the number of the laminated layers of the inclined fiber reinforced resin layers is larger than the vicinity of the load input end portion. Is done.

また本発明の第2の特徴によれば、前記第1の特徴に加えて、前記傾斜繊維強化樹脂層の少なくとも一つは、繊維配向角が90°であることを特徴とする自動車の車体構造が提案される According to a second feature of the present invention, in addition to the first feature, at least one of the inclined fiber reinforced resin layers has a fiber orientation angle of 90 °. Is proposed .

た本発明の第の特徴によれば、前記第1またはの特徴に加えて、前記サイドフレームは、前記荷重入力端部の近傍から反対側の端部に向けて、前記0゜繊維強化樹脂層の積層数が増加することを特徴とする自動車の車体構造が提案される。 According to a third aspect of the or invention, in addition to the first or second feature, the side frame, toward the opposite end from the vicinity of the load input end, the 0 ° An automobile body structure is proposed in which the number of laminated fiber reinforced resin layers is increased.

また本発明の第の特徴によれば、前記第1〜第の何れか1つの特徴に加えて、少なくとも積層方向最外側および積層方向最内側に積層された前記傾斜繊維強化樹脂層は、繊維配向角が45゜あるいは−45゜であることを特徴とする自動車の車体構造が提案される。 According to the fourth feature of the present invention, in addition to any one of the first to third features, the inclined fiber reinforced resin layer laminated at least on the outermost side in the laminating direction and on the innermost side in the laminating direction, A vehicle body structure is proposed in which the fiber orientation angle is 45 ° or -45 °.

また本発明の第の特徴によれば、前記第1〜第の何れか1つの特徴に加えて、前記複数の繊維強化樹脂層は、同一方向に引き揃えた連続繊維を樹脂で固めた1種類のプリプレグからなることを特徴とする自動車の車体構造が提案される。 According to a fifth feature of the present invention, in addition to any one of the first to fourth features, the plurality of fiber reinforced resin layers are formed by consolidating continuous fibers arranged in the same direction with a resin. A vehicle body structure characterized by comprising one type of prepreg is proposed.

また本発明の第の特徴によれば、前記第の特徴に加えて、前記プリプレグは、前記複数の繊維強化樹脂層に応じて前後方向の長さが異なることを特徴とする自動車の車体構造が提案される。 According to a sixth aspect of the present invention, in addition to the fifth aspect, the prepreg has a length in the front-rear direction that differs depending on the plurality of fiber reinforced resin layers. A structure is proposed.

上記目的を達成するために、本発明の第の特徴によれば、車体前部あるいは車体後部に前後方向に配置される筒状閉断面のサイドフレームを、前後方向に対する連続繊維の繊維配向角が異なる複数の繊維強化樹脂層を積層して構成した自動車の車体構造であって、前記複数の繊維強化樹脂層は、繊維配向角が0°の0°繊維強化樹脂層と、繊維配向角が0°以外の傾斜繊維強化樹脂層とからなり、前記傾斜繊維強化樹脂層の積層数は、前記サイドフレームの荷重入力端部の近傍から反対側の端部に向けて増加し、前記サイドフレームの端部に車幅方向に延びる連続繊維強化樹脂製のクロスメンバを接続し、前記クロスメンバの前後方向外面に衝突荷重を受けて圧縮変形することでエネルギー吸収する不連続繊維強化樹脂製のバンパービームを支持し、前記バンパービームは、車幅方向中央に配置された中央部材と、前記中央部材の車幅方向両側に配置された一対の端部部材とからなり、前記中央部材は前記端部部材よりも圧縮強度が高いことを特徴とする自動車の車体構造が提案される。 In order to achieve the above object, according to a seventh aspect of the present invention, a side frame having a cylindrical closed cross section disposed in the front-rear direction at the front part of the vehicle body or the rear part of the vehicle body has a fiber orientation angle of continuous fibers with respect to the front-rear direction. A plurality of fiber reinforced resin layers are laminated to form a vehicle body structure, and the plurality of fiber reinforced resin layers have a fiber orientation angle of 0 ° and a fiber orientation angle of 0 °. The inclined fiber reinforced resin layer other than 0 °, and the number of the laminated inclined fiber reinforced resin layers increases from the vicinity of the load input end of the side frame toward the opposite end , A bumper beam made of discontinuous fiber reinforced resin that absorbs energy by connecting a cross member made of continuous fiber reinforced resin extending in the vehicle width direction to the end and compressing and deforming the cross member on the outer surface in the front-rear direction. The And the bumper beam comprises a central member disposed at the center in the vehicle width direction and a pair of end members disposed on both sides of the central member in the vehicle width direction. Also proposed is a vehicle body structure characterized by high compressive strength.

また本発明の第の特徴によれば、前記第の特徴に加えて、前記バンパービームは、格子状に配置された複数の縦リブおよび複数の横リブを備え、前記縦リブおよび前記横リブが交差する格子点は前記バンパービームの周縁よりも内側に位置することを特徴とする自動車の車体構造が提案される。 According to an eighth feature of the present invention, in addition to the seventh feature, the bumper beam includes a plurality of vertical ribs and a plurality of horizontal ribs arranged in a lattice pattern, and the vertical ribs and the horizontal ribs. A vehicle body structure for an automobile is proposed in which the lattice points where the ribs intersect are located inside the periphery of the bumper beam.

また本発明の第の特徴によれば、前記第の特徴に加えて、前記中央部材の前記格子点の密度は、前記端部部材の前記格子点の密度よりも高いことを特徴とする自動車の車体構造が提案される。 According to a ninth feature of the present invention, in addition to the eighth feature, the density of the lattice points of the central member is higher than the density of the lattice points of the end member. A car body structure is proposed.

また本発明の第10の特徴によれば、前記第〜第の何れか1つの特徴に加えて、前記クロスメンバの断面積は、車幅方向端部から車幅方向中央部に向かって増加することを特徴とする自動車の車体構造が提案される。 According to the tenth feature of the present invention, in addition to any one of the seventh to ninth features, the cross-sectional area of the cross member is from the vehicle width direction end portion toward the vehicle width direction center portion. A vehicle body structure characterized by an increase is proposed.

また本発明の第11の特徴によれば、前記第〜第10の何れか1つの特徴に加えて、前記クロスメンバにナットを固定し、前記バンパービームを貫通するボルトを前記ナットに締結することを特徴とする自動車の車体構造が提案される。 According to an eleventh feature of the present invention, in addition to any one of the seventh to tenth features, a nut is fixed to the cross member, and a bolt that penetrates the bumper beam is fastened to the nut. A vehicle body structure characterized by this is proposed.

尚、実施の形態のリヤサイドフレーム11は本発明のサイドフレームに対応し、実施の形態の後端部分17は本発明の荷重入力端部に対応し、実施の形態のフランジ17aは本発明の荷重入力面に対応する。   The rear side frame 11 of the embodiment corresponds to the side frame of the present invention, the rear end portion 17 of the embodiment corresponds to the load input end of the present invention, and the flange 17a of the embodiment corresponds to the load of the present invention. Corresponds to the input surface.

本発明の第1の特徴によれば、車体前部あるいは車体後部に前後方向に配置される筒状閉断面のサイドフレームは、前後方向に対する連続繊維の繊維配向角が異なる複数の繊維強化樹脂層を積層して構成される。複数の繊維強化樹脂層は、繊維配向角が0°の0°繊維強化樹脂層と、繊維配向角が0°以外の傾斜繊維強化樹脂層とからなり、傾斜繊維強化樹脂層の積層数は、サイドフレームの荷重入力端部の近傍から反対側の端部に向けて増加するので、荷重入力端部の近傍の0°繊維強化樹脂層を屈曲し易くして初期荷重を低下させるとともに、荷重入力端部の反対側の端部に向けて0°繊維強化樹脂層を屈曲し難くすることで、サイドフレームを荷重の入力方向に対して傾斜させることなく、前後方向に順次圧壊させてエネルギー吸収量を増加させることができる。これにより、サイドフレームを薄肉にして軽量化を図りながら、充分なエネルギー吸収量を確保することができる。   According to the first aspect of the present invention, the side frame having a cylindrical closed cross section disposed in the front-rear direction at the front part of the vehicle body or the rear part of the vehicle body has a plurality of fiber reinforced resin layers having different fiber orientation angles with respect to the front-rear direction. It is constituted by laminating. The plurality of fiber reinforced resin layers are composed of a 0 ° fiber reinforced resin layer having a fiber orientation angle of 0 ° and a tilted fiber reinforced resin layer having a fiber orientation angle other than 0 °. Since it increases from the vicinity of the load input end of the side frame toward the opposite end, the 0 ° fiber reinforced resin layer in the vicinity of the load input end can be easily bent to reduce the initial load and load input. By making it difficult for the 0 ° fiber reinforced resin layer to bend toward the end opposite to the end, the side frame is crushed sequentially in the front-rear direction without inclining the load input direction. Can be increased. As a result, a sufficient amount of energy absorption can be ensured while reducing the weight by reducing the thickness of the side frames.

また、荷重入力端部は前後方向に対して斜めに傾斜する荷重入力面を備えるので、衝突荷重の入力により荷重入力端部に曲げモーメントが作用するが、荷重入力端部は荷重入力端部の近傍よりも傾斜繊維強化樹脂層の積層数が多いので、その屈曲を防止して衝突荷重を反対側の端部に向けて伝達することができる。In addition, since the load input end has a load input surface inclined obliquely with respect to the front-rear direction, a bending moment acts on the load input end due to the collision load input. Since the number of the inclined fiber reinforced resin layers is larger than that in the vicinity, the bending load can be prevented and the collision load can be transmitted toward the opposite end.

また本発明の第2の特徴によれば、傾斜繊維強化樹脂層の少なくとも一つは繊維配向角が90°であるので、繊維配向角が90°の傾斜繊維強化樹脂層で0°繊維強化樹脂層の座屈強度を高めて面外変形を抑制することで、0°繊維強化樹脂層のエネルギー吸収量を増加することができ、しかもサイドフレームが前後方向に順次圧壊する過程で傾斜繊維強化樹脂層の積層数の増加によりエネルギー吸収量を順次増加することができる According to the second feature of the present invention, since at least one of the inclined fiber reinforced resin layers has a fiber orientation angle of 90 °, the inclined fiber reinforced resin layer having a fiber orientation angle of 90 ° is a 0 ° fiber reinforced resin. By suppressing the out-of-plane deformation by increasing the buckling strength of the layer, it is possible to increase the energy absorption of the 0 ° fiber reinforced resin layer, and in addition, the inclined fiber reinforced resin in the process of side crushing in the front-rear direction The amount of energy absorption can be increased sequentially by increasing the number of layers .

た本発明の第の特徴によれば、サイドフレームは荷重入力端部の近傍から反対側の端部に向けて、0゜繊維強化樹脂層の積層数が増加するので、荷重入力端部に衝突荷重が入力して反対側の端部に大きな曲げモーメントが作用しても、0゜繊維強化樹脂層の積層数が多い反対側の端部の屈曲を防止してエネルギー吸収量を確保することができる。 According to a third aspect of the or invention, the side frame toward the end portion on the opposite side from the vicinity of the load input end, since the number of stacked 0 ° fiber-reinforced resin layer is increased, the load input end Even if a collision load is input to the opposite end and a large bending moment acts on the opposite end, bending of the opposite end with a large number of 0 ° fiber reinforced resin layers is prevented to ensure energy absorption. be able to.

また本発明の第の特徴によれば、少なくとも積層方向最外側および積層方向最内側に積層された傾斜繊維強化樹脂層は、繊維配向角が45゜あるいは−45゜であるので、前後方向に対して斜めに衝突荷重が入力した場合であっても、サイドフレームの屈曲を抑制してエネルギー吸収量を確保することができる。 According to the fourth aspect of the present invention, the inclined fiber reinforced resin layer laminated at least on the outermost side in the laminating direction and on the innermost side in the laminating direction has a fiber orientation angle of 45 ° or −45 °, so On the other hand, even when the collision load is input obliquely, the side frame can be prevented from bending and the amount of energy absorption can be ensured.

また本発明の第の特徴によれば、複数の繊維強化樹脂層は同一方向に引き揃えた連続繊維を樹脂で固めた1種類のプリプレグからなるので、1種類のプリプレグを異なる方向に裁断して複数の繊維強化樹脂層を構成することで材料コストを低減することができる。 According to the fifth feature of the present invention, the plurality of fiber reinforced resin layers are composed of one type of prepreg obtained by consolidating continuous fibers arranged in the same direction with a resin, so that one type of prepreg is cut in different directions. Thus, the material cost can be reduced by forming a plurality of fiber reinforced resin layers.

また本発明の第の特徴によれば、プリプレグは複数の繊維強化樹脂層に応じて前後方向の長さが異なるので、プリプレグの継ぎ目の数を最小限に抑えて強度を高めながら、サイドフレームの各部で繊維強化樹脂層の積層数を変化させることができる。 According to the sixth aspect of the present invention, the prepreg has different lengths in the front-rear direction depending on the plurality of fiber reinforced resin layers, so that the side frame can be increased while minimizing the number of seams of the prepreg and increasing the strength. The number of laminated fiber reinforced resin layers can be changed in each part.

また本発明の第の特徴によれば、前後方向に延びる左右一対の連続繊維強化樹脂製のサイドフレームの端部に、車幅方向に延びる連続繊維強化樹脂製のクロスメンバを接続し、クロスメンバの前後方向外面に衝突荷重を受けて圧縮変形することでエネルギー吸収する不連続繊維強化樹脂製のバンパービームを支持する。バンパービームは、車幅方向中央に配置された中央部材と、中央部材の車幅方向両側に配置された一対の端部部材とからなるので、バンパービームの一部が損傷した場合に、損傷した中央部材あるいは端部部材だけを交換することで修理コストを削減することができる。しかも中央部材は端部部材よりも圧縮強度が高いので、クルージング等の高速走行時に衝突荷重が入力する可能性が高い中央部材のエネルギー吸収量を大きくできるだけでなく、車庫入れ等の低速走行時に衝突荷重が入力する可能性が高い端部部材の重量を削減することができ、これによりバンパービームのエネルギー吸収性および軽量化を両立させることができる。更に、バンパービームを3分割したことで、それを製造する金型を小型化して初期投資を削減することができる。 According to a seventh aspect of the present invention, a cross member made of continuous fiber reinforced resin extending in the vehicle width direction is connected to the ends of a pair of left and right continuous fiber reinforced resin side frames extending in the front-rear direction. A bumper beam made of discontinuous fiber reinforced resin that absorbs energy by receiving a collision load on the outer surface in the front-rear direction of the member and compressing it is supported. The bumper beam is composed of a central member arranged at the center in the vehicle width direction and a pair of end members arranged on both sides of the central member in the vehicle width direction. Therefore, when a part of the bumper beam is damaged, the bumper beam is damaged. Repair cost can be reduced by replacing only the central member or the end member. In addition, since the central member has higher compressive strength than the end member, it is possible not only to increase the energy absorption amount of the central member, which is highly likely to receive a collision load during high speed traveling such as cruising, but also during low speed traveling such as garage storage. It is possible to reduce the weight of the end member that is highly likely to receive a load, thereby making it possible to achieve both energy absorption and weight reduction of the bumper beam. Furthermore, by dividing the bumper beam into three parts, it is possible to reduce the initial investment by reducing the size of the mold for manufacturing the bumper beam.

また本発明の第の特徴によれば、バンパービームは格子状に配置された複数の縦リブおよび複数の横リブを備え、縦リブおよび横リブが交差する格子点はバンパービームの周縁よりも内側に位置するので、剛性が高い格子点が衝突荷重で潰れて大きなエネルギー吸収効果が発揮されるだけでなく、バンパービームの周縁よりも内側に位置する格子点が潰れることで縦リブおよび横リブの潰れ残りがなくなってエネルギー吸収効果が更に高まり、しかもバンパービームの周縁における縦リブおよび横リブの突出高さを低減することで、バンパービームがバンパーフェイスと干渉するのを防止することができる。 According to an eighth aspect of the present invention, the bumper beam includes a plurality of vertical ribs and a plurality of horizontal ribs arranged in a lattice pattern, and the lattice point where the vertical ribs and the horizontal rib intersect is more than the periphery of the bumper beam. Because it is located on the inside, the lattice points with high rigidity are crushed by the collision load, and not only a large energy absorption effect is exhibited, but also the lattice points located on the inner side of the periphery of the bumper beam are crushed so that the vertical and horizontal ribs As a result, the energy absorption effect is further enhanced, and the protrusion height of the vertical and horizontal ribs at the periphery of the bumper beam is reduced, so that the bumper beam can be prevented from interfering with the bumper face.

また本発明の第の特徴によれば、中央部材の格子点の密度は端部部材の格子点の密度よりも高いので、端部部材に比べて大きな衝突荷重が入力する確立が高い中央部材の強度を端部部材の強度よりも高めることができる。 According to the ninth feature of the present invention, since the density of the lattice points of the central member is higher than the density of the lattice points of the end member, the central member is highly likely to receive a large collision load compared to the end member. This strength can be higher than the strength of the end member.

また本発明の第10の特徴によれば、クロスメンバの断面積は車幅方向端部から車幅方向中央部に向かって増加するので、高速衝突時に大きな衝突荷重が入力するクロスメンバの中央部の剪断破壊を防止することができる。 According to the tenth feature of the present invention, since the cross-sectional area of the cross member increases from the end in the vehicle width direction toward the center in the vehicle width direction, the center of the cross member to which a large collision load is input during a high-speed collision. Can be prevented.

また本発明の第11の特徴によれば、クロスメンバにナットを固定し、バンパービームを貫通するボルトをナットに締結するので、バンパービームをクロスメンバに容易に着脱することが可能となって損傷したバンパービームの交換が容易になる。 According to the eleventh feature of the present invention, the nut is fixed to the cross member, and the bolt that penetrates the bumper beam is fastened to the nut. Therefore, the bumper beam can be easily attached to and detached from the cross member. It is easy to change the bumper beam.

図1は自動車の車体後部骨格の平面図である。(第1の実施の形態)FIG. 1 is a plan view of a rear skeleton of an automobile. (First embodiment) 図2は図1の2方向矢視図である。(第1の実施の形態)FIG. 2 is a view in the direction of the arrow 2 in FIG. (First embodiment) 図3はリヤサイドフレームの繊維強化樹脂層の積層状態を示す図である。(第1の実施の形態)FIG. 3 is a view showing a laminated state of the fiber reinforced resin layer of the rear side frame. (First embodiment) 図4はリヤサイドフレームの繊維強化樹脂層の積層状態を示す表である。(第1の実施の形態)FIG. 4 is a table showing the laminated state of the fiber reinforced resin layers of the rear side frame. (First embodiment) 図5は 衝突荷重によるリヤサイドフレームの変形ストロークと荷重との関係を示すグラフである。(第1の実施の形態)FIG. 5 is a graph showing the relationship between the rear side frame deformation stroke and the load due to the collision load. (First embodiment) 図6は自動車の車体後部の骨格を示す平面図である。(第2の実施の形態)FIG. 6 is a plan view showing the skeleton of the rear part of the vehicle body. (Second Embodiment) 図7は図6の7方向矢視図である。(第2の実施の形態)7 is a view in the direction of arrow 7 in FIG. (Second Embodiment) 図8は図6の8A−8A線断面図および8B−8B線断面図である。(第2の実施の形態)8 is a cross-sectional view taken along line 8A-8A and a cross-sectional view taken along line 8B-8B in FIG. (Second Embodiment) 図9は後面衝突によるリヤバンパーのストロークと発生荷重との関係を示すグラフである。(第2の実施の形態)FIG. 9 is a graph showing the relationship between the rear bumper stroke and the generated load due to a rear collision. (Second Embodiment) 図10はバンパービームの他の実施の形態を示す図である。(第2の実施の形態)FIG. 10 is a diagram showing another embodiment of the bumper beam. (Second Embodiment)

11 リヤサイドフレーム(サイドフレーム)
17 後端部分(荷重入力端部)
17a フランジ(荷重入力面)
113 クロスメンバ
114 バンパービーム
114C 中央部材
114L、114R 端部部材
114b 縦リブ
114c 横リブ
114d 格子点
115 ナット
116 ボルト
11 Rear side frame (side frame)
17 Rear end (load input end)
17a Flange (Load input surface)
113 Cross member 114 Bumper beam 114C Central member 114L, 114R End member 114b Vertical rib 114c Horizontal rib 114d Lattice point 115 Nut 116 Bolt

添付図面に基づいて本発明の実施の形態を説明する。尚、本明細書において、前後方向、左右方向(車幅方向)および上下方向とは、運転席に着座した乗員を基準として定義される。   Embodiments of the present invention will be described with reference to the accompanying drawings. In the present specification, the front-rear direction, the left-right direction (vehicle width direction), and the up-down direction are defined with reference to an occupant seated in the driver's seat.

第1の実施の形態First embodiment

先ず、図1〜図5に基づいて本発明の第1の実施の形態を説明する。   First, a first embodiment of the present invention will be described with reference to FIGS.

図1に示すように、自動車の車体後部には左右一対のリヤサイドフレーム11,11が前後方向に配置されており、左右のリヤサイドフレーム11,11の後端間が車幅方向に延びるリヤバンパービーム12で接続される。リヤサイドフレーム11,11およびリヤバンパービーム12は、カーボンの連続繊維を一方向に引き揃えた連続繊維層を複数層に積層して樹脂で固めたCFRP(カーボン繊維強化樹脂)製である。   As shown in FIG. 1, a pair of left and right rear side frames 11, 11 are arranged in the front-rear direction at the rear part of the vehicle body, and a rear bumper beam extending between the rear ends of the left and right rear side frames 11, 11 in the vehicle width direction. 12 is connected. The rear side frames 11 and 11 and the rear bumper beam 12 are made of CFRP (carbon fiber reinforced resin) in which continuous fiber layers in which carbon continuous fibers are aligned in one direction are laminated in a plurality of layers and hardened with a resin.

図2に示すように、リヤサイドフレーム11は矩形状断面を有する中空筒状部材であり、繊維強化樹脂層の積層数が異なる四つの部分に分かれている。即ち、リヤサイドフレーム11は、後面衝突の衝突荷重が入力する後端部側から前端部側に向けて順番に第1部分13、第2部分14、第3部分15および第4部分16に分かれており、第1部分13の後方には短い後端部分17が設けられる。後端部分17の後面には平板状のフランジ17aが設けられており、フランジ17aがリヤバンパービーム12の前面に固定される。フランジ17aは、車幅方向外端が前方に偏倚するように傾斜している(図1参照)。   As shown in FIG. 2, the rear side frame 11 is a hollow cylindrical member having a rectangular cross section, and is divided into four parts having different numbers of laminated fiber reinforced resin layers. That is, the rear side frame 11 is divided into a first portion 13, a second portion 14, a third portion 15, and a fourth portion 16 in order from the rear end side where the collision load of the rear collision is input to the front end side. A short rear end portion 17 is provided behind the first portion 13. A flat flange 17 a is provided on the rear surface of the rear end portion 17, and the flange 17 a is fixed to the front surface of the rear bumper beam 12. The flange 17a is inclined so that the outer end in the vehicle width direction is biased forward (see FIG. 1).

図2〜図4に示すように、リヤサイドフレーム11の繊維強化樹脂層の積層数は、第1部分13が10層であり、第2部分14が12層であり、第3部分15が14層であり、第4部分16が18層であり、後端部分17が12層である。各部分の繊維強化樹脂層は、積層方向中央の対称面に対して表面側および裏面側が対称に積層される。繊維強化樹脂層の連続繊維の繊維配向角は、リヤサイドフレーム11の長手方向(前後方向)に対する角度で定義され、0°は長手方向と平行であることを示し、±45°は長手方向に対して左右に45°傾斜することを示し、90°は長手方向に対して90°で交差することを示している。   As shown in FIGS. 2 to 4, the number of laminated fiber reinforced resin layers of the rear side frame 11 is such that the first portion 13 is 10 layers, the second portion 14 is 12 layers, and the third portion 15 is 14 layers. The fourth portion 16 has 18 layers, and the rear end portion 17 has 12 layers. The fiber reinforced resin layer of each part is laminated | stacked symmetrically in the surface side and the back surface side with respect to the symmetrical surface of the lamination direction center. The fiber orientation angle of the continuous fibers of the fiber reinforced resin layer is defined by an angle with respect to the longitudinal direction (front-rear direction) of the rear side frame 11, 0 ° indicates parallel to the longitudinal direction, and ± 45 ° indicates relative to the longitudinal direction. The angle is 45 ° to the left and right, and 90 ° indicates that it intersects the longitudinal direction at 90 °.

18層に積層された第4部分16は、対称面の外側に第1層〜第9層が積層され、対称面の内側に第1′層〜第9′層が積層される。対称面の両側の第1層および第1′層は0°繊維強化樹脂層であり、対称面の両側の第2、3層および第2′、3′層は±45°繊維強化樹脂層であり、対称面の両側の第4層および第4′層は0°繊維強化樹脂層であり、対称面の両側の第5〜7層および第5′〜7′層は90°繊維強化樹脂層であり、対称面の両側の第8、9層および第8′、9′層は±45°繊維強化樹脂層である。   In the fourth portion 16 laminated in 18 layers, the first layer to the ninth layer are laminated outside the symmetry plane, and the first ′ layer to the 9 ′ layer are laminated inside the symmetry plane. The first and first layers on both sides of the symmetry plane are 0 ° fiber reinforced resin layers, and the second, third and second 'and 3' layers on both sides of the symmetry plane are ± 45 ° fiber reinforced resin layers. The fourth layer and the 4 'layer on both sides of the symmetry plane are 0 ° fiber reinforced resin layers, and the fifth to seventh layers and the 5' to 7 'layers on both sides of the symmetry surface are 90 ° fiber reinforced resin layers. The 8th and 9th layers and the 8 'and 9' layers on both sides of the symmetry plane are ± 45 ° fiber reinforced resin layers.

第4部分16の後端で、第1層および第1′層(0°繊維強化樹脂層)と、第3層および第3′層(45°繊維強化樹脂層)とが途切れており、よって第4部分16の後方に連なる第3部分15は第1層、第1′層、第3層および第3′層を持たない14層構造となる。   At the rear end of the fourth portion 16, the first layer and the first 'layer (0 ° fiber reinforced resin layer) are disconnected from the third layer and the third' layer (45 ° fiber reinforced resin layer). The third portion 15 connected to the rear of the fourth portion 16 has a 14-layer structure without the first layer, the first 'layer, the third layer, and the third' layer.

第3部分15の後端で、第2層および第2′層(−45°繊維強化樹脂層)が途切れており、よって第3部分15の後方に連なる第2部分14は第1層、第1′層、第2層、第2′層、第3層および第3′層を持たない12層構造となる。   At the rear end of the third portion 15, the second layer and the second ′ layer (−45 ° fiber reinforced resin layer) are interrupted, so that the second portion 14 connected to the rear of the third portion 15 is the first layer, A 12-layer structure having no 1 'layer, 2nd layer, 2' layer, 3rd layer and 3 'layer is obtained.

第2部分14の後端で、第5層および第5′層(90°繊維強化樹脂層)が途切れており、よって第2部分14の後方に連なる第1部分13は第1層、第1′層、第2層、第2′層、第3層、第3′層、第5層および第5′層を持たない10層構造となる。   At the rear end of the second portion 14, the fifth layer and the 5 'layer (90 ° fiber reinforced resin layer) are interrupted. Therefore, the first portion 13 connected to the rear of the second portion 14 is the first layer, the first layer It has a 10-layer structure without the 'layer, the second layer, the second' layer, the third layer, the third 'layer, the fifth layer and the fifth' layer.

そして第1部分13の後端に連なる後端部分17は、第1部分13に短い第5層および第5′層(90°繊維強化樹脂層)を付加することで、第2部分14と同じ12層構造となる。   The rear end portion 17 connected to the rear end of the first portion 13 is the same as the second portion 14 by adding a short fifth layer and a fifth 5 ′ layer (90 ° fiber reinforced resin layer) to the first portion 13. It has a 12-layer structure.

かかる構造のリヤサイドフレーム11は、カーボン連続繊維を一方向に引き揃えたシートに熱硬化性樹脂を含浸させたプリプレグを所定形状に裁断し、複数枚のプリプレグを積層した状態で樹脂を加熱硬化させることで製造される。その際に、本実施の形態では1種類のプリプレグの裁断方向を異ならせることで、0°繊維強化樹脂層、±45°繊維強化樹脂層および90°繊維強化樹脂層を得ることができ、これら複数枚のプリプレグの前後方向の長さを異ならせるとともに、前後方向位置をずらすことで、図4の表に示す積層状態を実現することができる。   The rear side frame 11 having such a structure cuts a prepreg obtained by impregnating a sheet of carbon continuous fibers aligned in one direction with a thermosetting resin into a predetermined shape, and heat cures the resin in a state where a plurality of prepregs are laminated. It is manufactured by. In this case, in this embodiment, by changing the cutting direction of one kind of prepreg, a 0 ° fiber reinforced resin layer, a ± 45 ° fiber reinforced resin layer, and a 90 ° fiber reinforced resin layer can be obtained. The stacked state shown in the table of FIG. 4 can be realized by changing the lengths of the prepregs in the front-rear direction and by shifting the position in the front-rear direction.

次に、上記構成を備えた本発明の第1の実施の形態の作用を説明する。   Next, the operation of the first embodiment of the present invention having the above configuration will be described.

自動車が後面衝突を受けてリヤバンパービーム12に前向きの衝突荷重が入力すると、その衝突荷重はリヤバンパービーム12からフランジ17aを介してリヤサイドフレーム11の後端部分17に前後方向の圧縮荷重として入力し、この圧縮荷重でリヤサイドフレーム11が前後方向に圧壊することで衝突エネルギーを吸収する。   When the automobile receives a rear collision and a forward collision load is input to the rear bumper beam 12, the collision load is input from the rear bumper beam 12 to the rear end portion 17 of the rear side frame 11 through the flange 17a as a longitudinal compression load. Then, the rear side frame 11 is crushed in the front-rear direction by this compressive load to absorb the collision energy.

その際に、リヤサイドフレーム11は0°繊維強化樹脂層と傾斜繊維強化樹脂層(±45°繊維強化樹脂層および90°繊維強化樹脂層)とからなり、衝突荷重が入力する後端部分17に近い第1部分13から遠い第4部分16に向かって傾斜繊維強化樹脂層の積層数が増加するので、つまり傾斜繊維強化樹脂層の積層数は、第1部分13が8層、第2部分14が10層、第3部分15が12層、第4部分16が14層なので、連続繊維が荷重の入力方向と平行であるために座屈し易い0°繊維強化樹脂層の強度が後方から前方に向かって順次高まるように傾斜繊維強化樹脂層で補強することができる。   At that time, the rear side frame 11 is composed of a 0 ° fiber reinforced resin layer and an inclined fiber reinforced resin layer (± 45 ° fiber reinforced resin layer and 90 ° fiber reinforced resin layer). Since the number of layers of the inclined fiber reinforced resin layer increases from the near first portion 13 toward the fourth portion 16 which is far from the first portion 13, that is, the number of the inclined fiber reinforced resin layers is eight in the first portion 13 and the second portion 14. Is 10 layers, the third portion 15 is 12 layers, and the fourth portion 16 is 14 layers. Therefore, the strength of the 0 ° fiber reinforced resin layer that is easy to buckle because the continuous fibers are parallel to the input direction of the load is from the rear to the front. It can reinforce with the inclination fiber reinforced resin layer so that it may increase gradually toward it.

その結果、後端部分17の近傍の第1部分13の0°繊維強化樹脂層を屈曲し易くして初期荷重を低下させるとともに、その反対側の前端部に向けて0°繊維強化樹脂層を屈曲し難くすることで、リヤサイドフレーム11を荷重の入力方向に対して傾斜させることなく、後端から前端に向かって順次圧壊させてエネルギー吸収量を増加させることができる。これにより、リヤサイドフレーム11を薄肉にして軽量化を図りながら、充分なエネルギー吸収量を確保することができる。   As a result, the 0 ° fiber reinforced resin layer of the first portion 13 in the vicinity of the rear end portion 17 is easily bent to reduce the initial load, and the 0 ° fiber reinforced resin layer is applied to the opposite front end portion. By making it difficult to bend, it is possible to increase the energy absorption amount by sequentially crushing the rear side frame 11 from the rear end toward the front end without inclining the rear side frame 11 with respect to the input direction of the load. As a result, a sufficient amount of energy absorption can be secured while reducing the weight of the rear side frame 11 and reducing the weight.

図5は、衝突荷重によるリヤサイドフレーム11の変形ストロークと荷重との関係を示すグラフである。   FIG. 5 is a graph showing the relationship between the deformation stroke of the rear side frame 11 due to the collision load and the load.

破線のラインはリヤサイドフレーム11を0°繊維強化樹脂層だけで構成した場合の理論値であり、変形ストロークに対して大きな荷重を発生して高いエネルギー吸収効果が見込まれる。鎖線のラインは上記理論値に対する実測値であり、発生する荷重が理論値に比べて大幅に減少している。その理由は、0°繊維強化樹脂層は、その軸方向に入力する初期荷重で樹脂が破壊して連続繊維が屈曲してしまい、充分な荷重を発生できないためである。実線は本実施の形態を示すもので、傾斜繊維強化樹脂層で0°繊維強化樹脂層を覆うことで、0°繊維強化樹脂層を屈曲させることなく軸方向に圧壊し、充分な荷重を発生することが可能となる。しかも傾斜繊維強化樹脂層の層数を第1部分13から第4部分16に向けて順次増加させることで、変形ストロークの増加に応じて荷重を漸増させることができる。   The broken line is a theoretical value in the case where the rear side frame 11 is composed of only the 0 ° fiber reinforced resin layer, and a large load is generated with respect to the deformation stroke, and a high energy absorption effect is expected. The chain line is an actual measurement value with respect to the theoretical value, and the generated load is significantly reduced compared to the theoretical value. The reason is that the 0 ° fiber reinforced resin layer breaks the resin by the initial load input in the axial direction and the continuous fiber bends, so that a sufficient load cannot be generated. The solid line shows this embodiment. By covering the 0 ° fiber reinforced resin layer with the inclined fiber reinforced resin layer, the 0 ° fiber reinforced resin layer is crushed in the axial direction without bending, and a sufficient load is generated. It becomes possible to do. In addition, by sequentially increasing the number of inclined fiber reinforced resin layers from the first portion 13 toward the fourth portion 16, it is possible to gradually increase the load according to an increase in the deformation stroke.

また傾斜繊維強化樹脂層は繊維配向角が90°のものを含むので、繊維配向角が90°の傾斜繊維強化樹脂層で0°繊維強化樹脂層の座屈強度を高めて面外変形を抑制することで、0°繊維強化樹脂層のエネルギー吸収量を効果的に増加することができる。   In addition, since the tilted fiber reinforced resin layer includes those with a fiber orientation angle of 90 °, the tilted fiber reinforced resin layer with a fiber orientation angle of 90 ° increases the buckling strength of the 0 ° fiber reinforced resin layer and suppresses out-of-plane deformation. By doing so, the energy absorption amount of the 0 ° fiber reinforced resin layer can be effectively increased.

またリヤサイドフレーム11の後端部分17は前後方向に対して斜めに傾斜するフランジ17aを備えるので、後面衝突の衝突荷重の入力により後端部分17に車幅方向の荷重が加わってリヤサイドフレーム11に曲げモーメントが作用するが、後端部分17はそれに連続する第1部分13よりも傾斜繊維強化樹脂層の積層数が第5層および第5′層の分だけ多いので、その後端部分17の屈曲を防止して衝突荷重をリヤサイドフレーム11の前端に向けて伝達することができる。   Further, since the rear end portion 17 of the rear side frame 11 includes a flange 17a inclined obliquely with respect to the front-rear direction, a load in the vehicle width direction is applied to the rear end portion 17 by the input of the collision load of the rear collision, and the rear side frame 11 Although the bending moment is applied, the rear end portion 17 has a larger number of inclined fiber reinforced resin layers than the first portion 13 that is continuous to the fifth portion and the 5 ′ layer. Thus, the collision load can be transmitted toward the front end of the rear side frame 11.

またリヤサイドフレーム11は後端部分17に連続する第1部分13から第4部分16に向けて0゜繊維強化樹脂層の積層数が増加するので、つまり第4部分16は第1〜第3部分13,14,15が持たない第1層および第1′層の0°繊維強化樹脂層を持つため、後端部分17衝突荷重が入力して反対側の第4部分16に大きな曲げモーメントが作用しても、0゜繊維強化樹脂層の積層数が多い第4部分16の屈曲を防止してエネルギー吸収量を確保することができる。   Further, since the rear side frame 11 increases in the number of 0 ° fiber reinforced resin layers from the first portion 13 continuing to the rear end portion 17 toward the fourth portion 16, that is, the fourth portion 16 is composed of the first to third portions. Since the first, first, and first ′ layer 0 ° fiber reinforced resin layers 13, 14, and 15 do not have, a rear end portion 17 collision load is input and a large bending moment acts on the opposite fourth portion 16. Even so, it is possible to prevent the bending of the fourth portion 16 having a large number of laminated layers of 0 ° fiber reinforced resin layers and to secure an energy absorption amount.

またリヤサイドフレーム11の積層方向最外側および積層方向最内側に積層された傾斜繊維強化樹脂層(第9層および第9′層)は繊維配向角が45゜であるので、前後方向に対して斜めに衝突荷重が入力した場合であっても、リヤサイドフレーム11の屈曲を抑制してエネルギー吸収量を確保することができる。   Further, since the inclined fiber reinforced resin layers (the ninth layer and the ninth 'layer) laminated on the outermost side and the innermost side of the rear side frame 11 have a fiber orientation angle of 45 °, they are inclined with respect to the front-rear direction. Even when a collision load is input to the rear side frame, it is possible to suppress the bending of the rear side frame 11 and secure an energy absorption amount.

また第1層〜第9層および第1′層〜第9′層の繊維強化樹脂層は同一方向に引き揃えた連続繊維を樹脂で固めた1種類のプリプレグからなるので、1種類のプリプレグを異なる方向に裁断して複数の繊維強化樹脂層を構成することで材料コストを低減することができる。しかもプリプレグは第1層〜第9層および第1′層〜第9′層の繊維強化樹脂層に応じて前後方向の長さが異なるので、プリプレグの継ぎ目の数を最小限に抑えて強度を高めながら、リヤサイドフレーム11の各部で繊維強化樹脂層の積層数を変化させることができる。   Further, the fiber reinforced resin layers of the first layer to the ninth layer and the first 'layer to the ninth' layer are composed of one type of prepreg obtained by consolidating continuous fibers aligned in the same direction with a resin. The material cost can be reduced by forming a plurality of fiber reinforced resin layers by cutting in different directions. Moreover, since the length of the prepreg differs depending on the fiber reinforced resin layers of the first layer to the ninth layer and the first 'layer to the ninth' layer, the strength of the prepreg is minimized by minimizing the number of seams of the prepreg. While increasing, the number of laminated fiber reinforced resin layers can be changed in each part of the rear side frame 11.

第2の実施の形態Second embodiment

次に、図6〜図10に基づいて本発明の第2の実施の形態を説明する。第1の実施の形態に対応する部材は同じ符号を用いて表示した。   Next, a second embodiment of the present invention will be described with reference to FIGS. The members corresponding to the first embodiment are indicated using the same reference numerals.

図6〜図8に示すように、左右一対のリヤサイドフレーム11,11の後端に設けた取付フランジ112,112に車幅方向に延びるクロスメンバ113の前面が固定される。クロスメンバ113はリヤサイドフレーム11,11と同様にCFRP製の中空閉断面の部材であり、その骨材であるカーボン連続繊維はクロスメンバ113の長手方向(車幅方向)に沿って配置される。   As shown in FIGS. 6 to 8, the front surface of the cross member 113 extending in the vehicle width direction is fixed to mounting flanges 112, 112 provided at the rear ends of the pair of left and right rear side frames 11, 11. The cross member 113 is a member having a hollow closed cross section made of CFRP like the rear side frames 11, 11, and the carbon continuous fiber as the aggregate is arranged along the longitudinal direction (vehicle width direction) of the cross member 113.

クロスメンバ113は車幅方向中央部が後方に突出するように弧状に湾曲した部材であり、板状の後部部材113aと、後面が開放するハット状断面の前部部材113bとを結合して中空閉断面に構成される。クロスメンバ113の上下方向高さは車幅方向に一定であるが、前後方向厚さは車幅方向中央部で大きく、車幅方向両端部で小さくなっている。   The cross member 113 is a member that is curved in an arc shape so that the central portion in the vehicle width direction protrudes rearward, and is formed by connecting a plate-like rear member 113a and a front member 113b having a hat-shaped cross-section with the rear surface open. Constructed in a closed section. The vertical height of the cross member 113 is constant in the vehicle width direction, but the thickness in the front-rear direction is large at the center in the vehicle width direction and small at both ends in the vehicle width direction.

クロスメンバ113の後面には、車幅方向に3分割されたバンパービーム114が取り付けられる。バンパービーム114は、車幅方向中央に位置する中央部材114Cと、中央部材114Cの左右両側に位置する左右一対の端部部材114L,114Rとからなり、左右の端部部材114L,114Rは車体中心面に対して面対称な形状である。   A bumper beam 114 divided into three in the vehicle width direction is attached to the rear surface of the cross member 113. The bumper beam 114 includes a center member 114C located at the center in the vehicle width direction and a pair of left and right end members 114L and 114R located on both left and right sides of the center member 114C. The left and right end members 114L and 114R The shape is symmetrical with respect to the surface.

中央部材114Cはカーボン不連続繊維を骨材とするCFRP製の部材であり、平坦な連結壁114aと、連結壁114aの後面に形成された複数の縦リブ114b…と、連結壁114aの後面に形成された複数の横リブ114c…とを備えており、上下方向に延びる縦リブ114b…と左右方向に延びる横リブ114c…とは格子点114d…において相互に格子状に交差する。連結壁114aの左右両側縁には縦リブ114b…が形成されておらず、かつ連結壁114aの上縁および下縁には横リブ114c…が形成されていないため、格子点114d…は連結壁114aの周縁よりも内側に位置している。そして縦リブ114b…および横リブ114c…は、連結壁114aの周縁に最も近い格子点114d…から前記周縁に向かって高さを減じている。   The central member 114C is a CFRP member having carbon discontinuous fibers as an aggregate, and includes a flat connecting wall 114a, a plurality of vertical ribs 114b formed on the rear surface of the connecting wall 114a, and a rear surface of the connecting wall 114a. Are formed, and the vertical ribs 114b extending in the vertical direction and the horizontal ribs 114c extending in the left-right direction intersect with each other at a lattice point 114d. The vertical ribs 114b are not formed on the left and right side edges of the connecting wall 114a, and the horizontal ribs 114c are not formed on the upper and lower edges of the connecting wall 114a. It is located inside the peripheral edge of 114a. The vertical ribs 114b and the horizontal ribs 114c are reduced in height from the lattice points 114d closest to the periphery of the connecting wall 114a toward the periphery.

クロスメンバ113の後部部材113aの前面に複数のナット115…が埋設されており、中央部材114Cの連結壁114aを後から前に貫通する複数のボルト116…を前記複数のナット115…に締結することで、中央部材114Cがクロスメンバ113の後面に着脱自在に取り付けられる。   A plurality of nuts 115 are embedded in the front surface of the rear member 113a of the cross member 113, and a plurality of bolts 116 penetrating through the connecting wall 114a of the central member 114C from the rear to the front are fastened to the plurality of nuts 115. Thus, the central member 114C is detachably attached to the rear surface of the cross member 113.

左右の端部部材114L,114Rは、上述した中央部材114Cと実質的に同じ構造であるが、衝突荷重の入力方向(前後方向)の圧縮強度が中央部材114Cと端部部材114L,114Rとで異なっている。即ち、中央部材114Cの縦リブ114b…および横リブ114c…の厚さを、端部部材114L,114Rの縦リブ114b…および横リブ114c…の厚さよりも大きくすることで、両者の圧縮強度に差を持たせている。また図10に示すように、中央部材114Cの縦リブ114b…、横リブ114c…および格子点114d…の密度を、端部部材114L,114Rのそれよりも密にすることで、両者の圧縮強度に差を持たせても良い。   The left and right end members 114L and 114R have substantially the same structure as the above-described center member 114C, but the compressive strength in the input direction (front-rear direction) of the collision load is different between the center member 114C and the end members 114L and 114R. Is different. That is, the thickness of the longitudinal ribs 114b and the lateral ribs 114c of the central member 114C is made larger than the thickness of the longitudinal ribs 114b and the lateral ribs 114c of the end members 114L and 114R, thereby increasing the compressive strength of both. Make a difference. Further, as shown in FIG. 10, the density of the longitudinal ribs 114b,..., The lateral ribs 114c, and the lattice points 114d of the central member 114C is made denser than that of the end members 114L and 114R, thereby compressing both of them. You may make a difference.

バンパービーム114の中央部材114Cおよび端部部材114L,114Rは複数の縦リブ114b…および横リブ114c…を有する複雑な形状であるため、金型を用いてプレス成形される。即ち、凹状のキャビティを有する雌型と凸状のコアを有する雄型とを型開きし、カーボン不連続繊維のマットに熱可塑性樹脂(ナイロン6、ナイロン66、ポリプロピレン等)を含浸したプリプレグを予備加熱した状態で雌型のキャビティの上部に載置し、金型を閉じて加圧成形した後に冷却することで、中央部材114Cおよび端部部材114L,114Rが成形される。   Since the central member 114C and the end members 114L and 114R of the bumper beam 114 have a complicated shape having a plurality of vertical ribs 114b and horizontal ribs 114c, they are press-molded using a mold. That is, a female mold having a concave cavity and a male mold having a convex core are opened, and a prepreg in which a carbon discontinuous fiber mat is impregnated with a thermoplastic resin (nylon 6, nylon 66, polypropylene, etc.) is preliminarily prepared. The center member 114C and the end members 114L and 114R are molded by placing the sample on the upper part of the female cavity in a heated state, closing the mold, press-molding, and cooling.

次に、上記構成を備えた本発明の第2の実施の形態の作用を説明する。   Next, the operation of the second embodiment of the present invention having the above configuration will be described.

自動車が後面衝突を受けてリヤバンパーのバンパービーム114の一部が損傷した場合、バンパービーム114全体を交換すると修理コストが大きくなるが、本実施の形態によれば、バンパービーム114が車幅方向中央に位置する中央部材114Cと、その車幅方向両側に位置する端部部材114L,114Rとに分割されているため、損傷した部分だけを交換して損傷していない部分を引き続き使用することで、修理コストを削減することができる。このとき、中央部材114Cおよび端部部材114L,114Rは、クロスメンバ113に埋設したナット115…に螺合するボルト116…により着脱自在に固定されているため、その交換作業が極めて容易である。しかも、バンパービーム114を3分割したことで、それを製造する金型を小型化して初期投資を削減することができる。   If a part of the bumper beam 114 of the rear bumper is damaged due to a rear collision, the replacement cost increases if the entire bumper beam 114 is replaced. However, according to the present embodiment, the bumper beam 114 moves in the vehicle width direction. Since it is divided into a central member 114C located at the center and end members 114L and 114R located on both sides in the vehicle width direction, only the damaged portion is replaced and the undamaged portion is used continuously. Repair costs can be reduced. At this time, since the central member 114C and the end members 114L and 114R are detachably fixed by bolts 116 that are screwed into nuts 115 that are embedded in the cross member 113, the replacement work is extremely easy. In addition, by dividing the bumper beam 114 into three, the mold for manufacturing the bumper beam 114 can be reduced in size and the initial investment can be reduced.

さて、クルージング等の高速走行中におけるフルラップ衝突時には中央部材114Cおよび左右の端部部材114L,114Rに衝突荷重が入力し、70%ラップ衝突時には中央部材114Cおよび左右一方の端部部材114L,114Rに衝突荷重が入力するが、上記何れの場合にも衝突荷重が入力する中央部材114Cの圧縮強度を端部部材114L,114Rの圧縮強度よりも高くしたことで、必要なエネルギー吸収性能を確保することができる。また車庫入れ等の低速走行時には端部部材114L,114Rに衝突荷重が入力する可能性が高くなるが、その際の衝突荷重は比較的に小さいものである。よって、端部部材114L,114Rの圧縮強度を中央部材114Cの圧縮強度よりも低くすることで、バンパービーム114の重量を削減することができる。   A collision load is input to the central member 114C and the left and right end members 114L and 114R at the time of a full lap collision during high-speed traveling such as cruising, and the center member 114C and the left and right end members 114L and 114R are input to the central member 114C and the left and right end members 114L and 114R at a 70% lap collision. Although the collision load is input, the required energy absorption performance is ensured by making the compressive strength of the central member 114C to which the collision load is input higher than the compressive strength of the end members 114L and 114R in any of the above cases. Can do. Further, when traveling at a low speed such as in a garage, there is a high possibility that a collision load is input to the end members 114L and 114R, but the collision load at that time is relatively small. Therefore, the weight of the bumper beam 114 can be reduced by making the compressive strength of the end members 114L and 114R lower than the compressive strength of the central member 114C.

このように、バンパービーム114を中央部材114Cおよび端部部材114L,114Rに3分割したことで、バンパービーム114のエネルギー吸収性能および軽量化を容易に両立させることが可能となる。   Thus, by dividing the bumper beam 114 into the central member 114C and the end members 114L and 114R, it is possible to easily achieve both energy absorption performance and weight reduction of the bumper beam 114.

またバンパービーム114への衝突荷重の入力時に、連結壁114aから後方に突出する縦リブ114b…、横リブ114cおよび格子点114d…が圧壊して衝突エネルギーを吸収するが、連結壁114aの左右両側縁には縦リブ114b…が形成されておらず、かつ連結壁114aの上縁および下縁には横リブ114c…が形成されておらず、格子点114d…は連結壁114aの周縁よりも内側に位置しているため、強度の高い格子点114d…が圧壊して大きなエネルギー吸収効果が発揮されるだけでなく、連結壁114aの周縁には格子点114d…が存在しないために縦リブ114b…および横リブ114c…の潰れ残りがなくなってエネルギー吸収効果が高められる。   Further, when a collision load is input to the bumper beam 114, the longitudinal ribs 114b,..., The lateral ribs 114c and the lattice points 114d that protrude rearward from the connection wall 114a are crushed and absorb the collision energy. Vertical ribs 114b are not formed at the edges, and horizontal ribs 114c are not formed at the upper and lower edges of the connecting wall 114a, and the lattice points 114d are inside the peripheral edge of the connecting wall 114a. Therefore, not only does the high-strength lattice point 114d collapse, and a large energy absorption effect is exhibited, but the lattice point 114d does not exist on the periphery of the connecting wall 114a, so the vertical rib 114b. Further, the remaining ribs 114c are not crushed and the energy absorption effect is enhanced.

以上のように、縦リブ114b…、横リブ114c…および格子点114d…が潰れ残りなく圧壊することでバンパービーム114のエネルギー吸収量が増加するため、その分だけクロスメンバ113やリヤサイドフレーム11,11の強度(エネルギー吸収量)を低下させることが可能となり、全体として車体重量の低減に寄与することができる(図9参照)。   As described above, since the vertical ribs 114b, the horizontal ribs 114c, and the lattice points 114d are crushed without being crushed, the amount of energy absorbed by the bumper beam 114 increases, and accordingly, the cross member 113 and the rear side frame 11, 11 (energy absorption amount) can be reduced, and the overall weight of the vehicle can be reduced (see FIG. 9).

しかも、縦リブ114b…および横リブ114c…は、連結壁114aの周縁に最も近い格子点114d…から前記周縁に向かって高さを減じているため、バンパービーム114を覆うバンパーフェイス117(図8参照)が縦リブ114b…や横リブ114c…と干渉し難くなり、バンパーフェイス117をバンパービーム114に接近させて車体の小型化を図ることができる。   Moreover, since the vertical ribs 114b and the horizontal ribs 114c are reduced in height from the lattice points 114d closest to the periphery of the connecting wall 114a toward the periphery, the bumper face 117 that covers the bumper beam 114 (FIG. 8). ) Is less likely to interfere with the vertical ribs 114b and the horizontal ribs 114c, and the bumper face 117 can be brought close to the bumper beam 114 to reduce the size of the vehicle body.

またクロスメンバ113の断面積は車幅方向端部から車幅方向中央部に向かって増加するので(図8参照)、高速衝突時に大きな衝突荷重が入力するクロスメンバ113の中央部の剪断破壊を防止することができる。   In addition, since the cross-sectional area of the cross member 113 increases from the end in the vehicle width direction toward the center in the vehicle width direction (see FIG. 8), shear failure at the center of the cross member 113 to which a large collision load is input during high-speed collisions. Can be prevented.

以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention.

例えば、本発明のサイドフレームは実施の形態のリヤサイドフレーム11に限定されず、フロントサイドフレームであっても良い。   For example, the side frame of the present invention is not limited to the rear side frame 11 of the embodiment, and may be a front side frame.

また実施の形態のリヤサイドフレーム11は後端部分17を備えているが、後端部分17は必ずしも必要ではなく、第1部分13がリヤサイドフレーム11の後端に位置していても良い。   Although the rear side frame 11 of the embodiment includes the rear end portion 17, the rear end portion 17 is not always necessary, and the first portion 13 may be located at the rear end of the rear side frame 11.

また実施の形態のリヤサイドフレーム11は第1部分13〜第4部分16に分割されているが、その分割は任意であり、各部分の繊維強化樹脂層の積層数も任意である。   Moreover, although the rear side frame 11 of the embodiment is divided into the first portion 13 to the fourth portion 16, the division is arbitrary, and the number of laminated fiber reinforced resin layers in each portion is also arbitrary.

また本発明の繊維強化樹脂は実施の形態のCFRP(カーボン繊維強化樹脂)に限定されず、GFRP(ガラス繊維強化樹脂)等の他種のFRPであっても良い。
The fiber reinforced resin of the present invention is not limited to the CFRP (carbon fiber reinforced resin) of the embodiment, and may be other types of FRP such as GFRP (glass fiber reinforced resin).

Claims (12)

車体前部あるいは車体後部に前後方向に配置される筒状閉断面のサイドフレーム(11)を、前後方向に対する連続繊維の繊維配向角が異なる複数の繊維強化樹脂層を積層して構成した自動車の車体構造であって、
前記複数の繊維強化樹脂層は、繊維配向角が0°の0°繊維強化樹脂層と、繊維配向角が0°以外の傾斜繊維強化樹脂層とからなり、前記傾斜繊維強化樹脂層の積層数は、前記サイドフレーム(11)の荷重入力端部(17)の近傍から反対側の端部に向けて増加することを特徴とする自動車の車体構造。
A side frame (11) having a cylindrical closed cross section disposed in a front-rear direction or a front-rear direction of a vehicle body is configured by laminating a plurality of fiber reinforced resin layers having different fiber orientation angles with respect to the front-rear direction. A vehicle body structure,
The plurality of fiber reinforced resin layers are composed of a 0 ° fiber reinforced resin layer having a fiber orientation angle of 0 ° and a tilted fiber reinforced resin layer having a fiber orientation angle other than 0 °, and the number of the tilted fiber reinforced resin layers stacked. Increases from the vicinity of the load input end (17) of the side frame (11) toward the opposite end.
前記傾斜繊維強化樹脂層の少なくとも一つは、繊維配向角が90°であることを特徴とする、請求項1に記載の自動車の車体構造。   The vehicle body structure according to claim 1, wherein at least one of the inclined fiber reinforced resin layers has a fiber orientation angle of 90 °. 前記荷重入力端部(17)は、前後方向に対して斜めに傾斜する荷重入力面(17a)を備えるとともに、前記荷重入力端部(17)の近傍よりも前記傾斜繊維強化樹脂層の積層数が多いことを特徴とする、請求項1または請求項2に記載の自動車の車体構造。   The load input end portion (17) includes a load input surface (17a) that is inclined obliquely with respect to the front-rear direction, and the number of the inclined fiber reinforced resin layers laminated than the vicinity of the load input end portion (17). The vehicle body structure of an automobile according to claim 1, wherein the vehicle body structure is large. 前記サイドフレーム(11)は、前記荷重入力端部(17)の近傍から反対側の端部に向けて、前記0゜繊維強化樹脂層の積層数が増加することを特徴とする、請求項1〜請求項3の何れか1項に記載の自動車の車体構造。   The side frame (11) is characterized in that the number of the 0 ° fiber reinforced resin layers increases from the vicinity of the load input end (17) toward the opposite end. The vehicle body structure according to any one of claims 3 to 4. 少なくとも積層方向最外側および積層方向最内側に積層された前記傾斜繊維強化樹脂層は、繊維配向角が45゜あるいは−45゜であることを特徴とする、請求項1〜請求項4の何れか1項に記載の自動車の車体構造。   5. The inclined fiber reinforced resin layer laminated at least on the outermost side in the laminating direction and on the innermost side in the laminating direction has a fiber orientation angle of 45 [deg.] Or -45 [deg.]. 2. A vehicle body structure according to item 1. 前記複数の繊維強化樹脂層は、同一方向に引き揃えた連続繊維を樹脂で固めた1種類のプリプレグからなることを特徴とする、請求項1〜請求項5の何れか1項に記載の自動車の車体構造。   The automobile according to any one of claims 1 to 5, wherein the plurality of fiber reinforced resin layers are made of one type of prepreg obtained by solidifying continuous fibers aligned in the same direction with a resin. Car body structure. 前記プリプレグは、前記複数の繊維強化樹脂層に応じて前後方向の長さが異なることを特徴とする、請求項6に記載の自動車の車体構造。   The vehicle body structure according to claim 6, wherein the prepreg has different lengths in the front-rear direction depending on the plurality of fiber reinforced resin layers. 前記サイドフレーム(11)の端部に車幅方向に延びる連続繊維強化樹脂製のクロスメンバ(113)を接続し、前記クロスメンバ(113)の前後方向外面に衝突荷重を受けて圧縮変形することでエネルギー吸収する不連続繊維強化樹脂製のバンパービーム(114)を支持し、前記バンパービーム(114)は、車幅方向中央に配置された中央部材(114C)と、前記中央部材(114C)の車幅方向両側に配置された一対の端部部材(114L,114R)とからなり、前記中央部材(114C)は前記端部部材(114L,114R)よりも圧縮強度が高いことを特徴とする、請求項1に記載の自動車の車体構造。   A cross member (113) made of continuous fiber reinforced resin extending in the vehicle width direction is connected to the end of the side frame (11), and the outer surface of the cross member (113) is compressed and deformed by receiving a collision load. A bumper beam (114) made of discontinuous fiber reinforced resin that absorbs energy at the center is supported, and the bumper beam (114) includes a central member (114C) disposed at the center in the vehicle width direction, and It consists of a pair of end members (114L, 114R) disposed on both sides in the vehicle width direction, and the center member (114C) has a higher compressive strength than the end members (114L, 114R), The vehicle body structure according to claim 1. 前記バンパービーム(114)は、格子状に配置された複数の縦リブ(114b)および複数の横リブ(114c)を備え、前記縦リブ(114b)および前記横リブ(114c)が交差する格子点(114d)は前記バンパービーム(114)の周縁よりも内側に位置することを特徴とする、請求項8に記載の自動車の車体構造。   The bumper beam (114) includes a plurality of vertical ribs (114b) and a plurality of horizontal ribs (114c) arranged in a lattice shape, and lattice points where the vertical ribs (114b) and the horizontal ribs (114c) intersect with each other. The vehicle body structure according to claim 8, wherein (114d) is located inside a periphery of the bumper beam (114). 前記中央部材(114C)の前記格子点(114d)の密度は、前記端部部材(114L,114R)の前記格子点(114d)の密度よりも高いことを特徴とする、請求項9に記載の自動車の車体構造。   The density of the lattice points (114d) of the central member (114C) is higher than the density of the lattice points (114d) of the end members (114L, 114R). Auto body structure. 前記クロスメンバ(113)の断面積は、車幅方向端部から車幅方向中央部に向かって増加することを特徴とする、請求項8〜請求項10の何れか1項に記載の自動車の車体構造。   11. The automobile according to claim 8, wherein a cross-sectional area of the cross member (113) increases from an end portion in the vehicle width direction toward a center portion in the vehicle width direction. Body structure. 前記クロスメンバ(113)にナット(115)を固定し、前記バンパービーム(114)を貫通するボルト(116)を前記ナット(115)に締結することを特徴とする、請求項8〜請求項11の何れか1項に記載の自動車の車体構造。   The nut (115) is fixed to the cross member (113), and a bolt (116) passing through the bumper beam (114) is fastened to the nut (115). The vehicle body structure according to any one of the above.
JP2015536520A 2013-09-10 2014-08-27 Auto body structure Active JP6112686B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013187075 2013-09-10
JP2013187076 2013-09-10
JP2013187076 2013-09-10
JP2013187075 2013-09-10
PCT/JP2014/072436 WO2015037443A1 (en) 2013-09-10 2014-08-27 Automobile body structure

Publications (2)

Publication Number Publication Date
JPWO2015037443A1 true JPWO2015037443A1 (en) 2017-03-02
JP6112686B2 JP6112686B2 (en) 2017-04-12

Family

ID=52665556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015536520A Active JP6112686B2 (en) 2013-09-10 2014-08-27 Auto body structure

Country Status (2)

Country Link
JP (1) JP6112686B2 (en)
WO (1) WO2015037443A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6365893B2 (en) * 2015-11-20 2018-08-01 マツダ株式会社 Vehicle shock absorbing member structure
JP6551700B2 (en) * 2017-05-12 2019-07-31 マツダ株式会社 Vehicle body structure

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045178A (en) * 1990-04-23 1992-01-09 Nissan Motor Co Ltd Side member structure of automobile
JPH06155500A (en) * 1992-11-27 1994-06-03 Nippon Steel Corp Molding method of fiber-reinforced thermoplastic resin stampable sheet
JPH06344837A (en) * 1993-06-04 1994-12-20 Nippon Steel Corp Bumper beam made of stampable sheet
JPH07137587A (en) * 1993-11-15 1995-05-30 Mitsubishi Motors Corp Bumper supporting device
JP2005271875A (en) * 2004-03-26 2005-10-06 Nissan Motor Co Ltd Energy absorption structure of automobile
JP2006347442A (en) * 2005-06-17 2006-12-28 Toyota Industries Corp Composite material
JP2009001238A (en) * 2007-06-25 2009-01-08 Nissan Motor Co Ltd Energy absorption structure and energy absorption method
JP2010173422A (en) * 2009-01-28 2010-08-12 Toyota Motor Corp Vehicle body structure for automobile
JP2010208605A (en) * 2009-03-12 2010-09-24 Toyota Motor Corp Vehicular body front structure
WO2014069108A1 (en) * 2012-11-05 2014-05-08 本田技研工業株式会社 Fiber-reinforced resinous impact-receiving member and method for manufacturing impact-receiving member
JP2014121955A (en) * 2012-12-21 2014-07-03 Honda Motor Co Ltd Vehicular body structure
JP2014139037A (en) * 2013-01-21 2014-07-31 Honda Motor Co Ltd Vehicle body structure

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045178A (en) * 1990-04-23 1992-01-09 Nissan Motor Co Ltd Side member structure of automobile
JPH06155500A (en) * 1992-11-27 1994-06-03 Nippon Steel Corp Molding method of fiber-reinforced thermoplastic resin stampable sheet
JPH06344837A (en) * 1993-06-04 1994-12-20 Nippon Steel Corp Bumper beam made of stampable sheet
JPH07137587A (en) * 1993-11-15 1995-05-30 Mitsubishi Motors Corp Bumper supporting device
JP2005271875A (en) * 2004-03-26 2005-10-06 Nissan Motor Co Ltd Energy absorption structure of automobile
JP2006347442A (en) * 2005-06-17 2006-12-28 Toyota Industries Corp Composite material
JP2009001238A (en) * 2007-06-25 2009-01-08 Nissan Motor Co Ltd Energy absorption structure and energy absorption method
JP2010173422A (en) * 2009-01-28 2010-08-12 Toyota Motor Corp Vehicle body structure for automobile
JP2010208605A (en) * 2009-03-12 2010-09-24 Toyota Motor Corp Vehicular body front structure
WO2014069108A1 (en) * 2012-11-05 2014-05-08 本田技研工業株式会社 Fiber-reinforced resinous impact-receiving member and method for manufacturing impact-receiving member
JP2014121955A (en) * 2012-12-21 2014-07-03 Honda Motor Co Ltd Vehicular body structure
JP2014139037A (en) * 2013-01-21 2014-07-31 Honda Motor Co Ltd Vehicle body structure

Also Published As

Publication number Publication date
WO2015037443A1 (en) 2015-03-19
JP6112686B2 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
US8376426B2 (en) Plastic composite bumper beam for vehicle
JP5581404B2 (en) Vehicle floor structure
US9487168B2 (en) Automobile bumper beam
JP5862555B2 (en) Auto body structure
WO2015104889A1 (en) Automobile bumper
US20080048462A1 (en) Thermoplastic composite bumper system
WO2014106924A1 (en) Shock-absorbing member for automotive vehicle and body structure of automotive vehicle
KR101714809B1 (en) Vehicle chassis
CN105008210A (en) Frame structure for vehicle
WO2015079876A1 (en) Automobile bumper
JPWO2015080037A1 (en) Automotive bumper
EP3707030B1 (en) Bumper beam and production method thereof
CN206579590U (en) Collision energy absorbing box for motor vehicle and the collision prevention girders including the collision energy absorbing box
JP2019506577A (en) Energy absorbing member and method of making energy absorbing member
JP5995115B2 (en) Automotive bumper beam structure
JP6109131B2 (en) Bumper beam for automobile
JP4462978B2 (en) Energy absorption structure of automobile
JP6112686B2 (en) Auto body structure
JP5881117B2 (en) Auto body structure
US10913417B2 (en) Composite energy absorbing structure for a vehicle
CN109963752B (en) Impact absorbing structure for vehicle
WO2014097765A1 (en) Automobile body structure
JP7035906B2 (en) Manufacturing method of roof reinforcement and resin hollow skeleton member
KR102383484B1 (en) Structure member of vehicle using composite material
JP6020911B2 (en) Auto body structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170310

R150 Certificate of patent or registration of utility model

Ref document number: 6112686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150