[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2014199728A1 - 光半導体リフレクタ用エポキシ樹脂組成物、光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、封止型光半導体素子ならびに光半導体装置 - Google Patents

光半導体リフレクタ用エポキシ樹脂組成物、光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、封止型光半導体素子ならびに光半導体装置 Download PDF

Info

Publication number
JPWO2014199728A1
JPWO2014199728A1 JP2014520092A JP2014520092A JPWO2014199728A1 JP WO2014199728 A1 JPWO2014199728 A1 JP WO2014199728A1 JP 2014520092 A JP2014520092 A JP 2014520092A JP 2014520092 A JP2014520092 A JP 2014520092A JP WO2014199728 A1 JPWO2014199728 A1 JP WO2014199728A1
Authority
JP
Japan
Prior art keywords
optical semiconductor
semiconductor device
resin composition
thermosetting resin
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014520092A
Other languages
English (en)
Other versions
JP5825650B2 (ja
Inventor
佑一 深道
佑一 深道
一浩 福家
一浩 福家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52022030&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPWO2014199728(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2014520092A priority Critical patent/JP5825650B2/ja
Application granted granted Critical
Publication of JP5825650B2 publication Critical patent/JP5825650B2/ja
Publication of JPWO2014199728A1 publication Critical patent/JPWO2014199728A1/ja
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • H01L33/60
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • H01L33/62

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)

Abstract

本発明は、第1のプレート部1と第2のプレート部2とからなる金属リードフレームと、その金属リードフレームに搭載された光半導体素子3の周囲を囲うように形成されるリフレクタ4を備えた光半導体装置において、上記リフレクタ4の形成材料が、熱硬化性樹脂(A),バンドギャップ(禁制帯)が3.3〜5.5eVである白色顔料(B)および無機質充填剤(C)を含有する光半導体装置用熱硬化性樹脂組成物からなるものである。このため、高い初期光反射率のみならず、優れた長期耐光性をも備えるようになる。

Description

本発明は、例えば、光半導体素子から発する光を反射させる、リフレクタ(反射部)の形成材料となる光半導体リフレクタ用エポキシ樹脂組成物、光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、封止型光半導体素子ならびに光半導体装置に関するものである。
従来、光半導体素子を搭載してなる光半導体装置は、例えば、図1に示すように、第1のプレート部1と第2のプレート部2とからなる金属リードフレーム上に光半導体素子3が搭載され、上記光半導体素子3の周囲を囲むように、さらに第1のプレート部1と第2のプレート部2の間を埋めるように、樹脂材料からなる光反射用のリフレクタ4が形成されているという構成をとる。そして、上記金属リードフレームとリフレクタ4の内周面として形成される凹部5に搭載された光半導体素子3を、必要に応じて蛍光体を含有するシリコーン樹脂等の透明樹脂を用いて樹脂封止することにより封止樹脂層6が形成されている。図1において、7,8は金属リードフレームと光半導体素子3とを電気的に接続するボンディングワイヤーであり、必要に応じて設けられるものである。
このような光半導体装置では、近年、上記リフレクタ4を、エポキシ樹脂等に代表される熱硬化性樹脂を用いて、例えば、トランスファー成形等により成形し製造している。そして、上記熱硬化性樹脂には、従来から白色顔料として酸化チタンを配合し、上記光半導体素子3から発する光を反射させている(特許文献1参照)。
特開2011−258845号公報
しかしながら、上記のように白色顔料として酸化チタンを用いてリフレクタを形成した場合、初期の光反射率に関しては問題無く高い光反射率を実現しているが、経時的使用によりその光反射率が低下してしまうという問題があった。このように、長期にわたり高い光反射率を発揮する、すなわち長期にわたる耐光性という点においては未だ充分ではなく、この長期耐光性に関してさらなる向上が強く要望されている。
本発明は、このような事情に鑑みなされたもので、高い初期光反射率のみならず、長期耐光性に優れた光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、封止型光半導体素子ならびに光半導体装置の提供をその目的とする。
上記目的を達成するために、本発明は、下記の(A)〜(C)を含有する光半導体装置用熱硬化性樹脂組成物を第1の要旨とする。
(A)熱硬化性樹脂。
(B)バンドギャップ(禁制帯)が3.3〜5.5eVである白色顔料。
(C)無機質充填剤。
一方で、本発明は、下記の測定方法(x)にて測定されてなる、光反射率の低下度(α2−α1)が−5〜0の範囲である光半導体リフレクタ用エポキシ樹脂組成物を要旨とするものである。
(x)所定の硬化条件(条件:175℃×2分間の成形+175℃×3時間キュア)にして作製してなる厚み1mmの試験片を用い、室温(25℃)下での波長600nmの光反射率(α1)を測定するとともに、その試験片を110℃のホットプレートで加熱した状態で、波長436nmの光を1W/cm2の強さで15分間照射した後、室温(25℃)下での波長600nmの光反射率(α2)を測定する。
そして、本発明は、厚み方向の片面のみに光半導体素子を搭載するための板状の光半導体装置用リードフレームであって、互いに隙間を隔てて配置される複数のプレート部を備えるとともに、上記隙間に、上記第1の要旨の光半導体装置用熱硬化性樹脂組成物を用いて充填し、硬化してなるリフレクタが形成されてなる光半導体装置用リードフレームを第2の要旨とする。また、本発明は、光半導体素子搭載領域を備え、それ自体の少なくとも一部で素子搭載領域の周囲を囲んだ状態でリフレクタが形成されてなる立体状の光半導体装置用リードフレームであって、上記リフレクタが、上記第1の要旨の光半導体装置用熱硬化性樹脂組成物を用いて形成されてなる光半導体装置用リードフレームを第3の要旨とする。
さらに、本発明は、その片面に光半導体素子を搭載するための素子搭載領域を有するプレート部が、互いに隙間を隔てて配置され、上記素子搭載領域の所定位置に光半導体素子が搭載されてなる光半導体装置であって、上記隙間に、上記第1の要旨の光半導体装置用熱硬化性樹脂組成物を用いて充填し、硬化してなるリフレクタが形成されてなる光半導体装置を第4の要旨とする。また、本発明は、光半導体素子搭載領域を備え、それ自体の少なくとも一部で素子搭載領域の周囲を囲んだ状態でリフレクタが形成されてなる光半導体装置用リードフレームの所定位置に光半導体素子が搭載されてなる光半導体装置であって、上記リフレクタが、上記第1の要旨の光半導体装置用熱硬化性樹脂組成物を用いて形成されてなる光半導体装置を第5の要旨とする。
そして、本発明は、裏面に複数の接続用電極が形成されてなる光半導体素子の側面に上記第1の要旨の光半導体装置用熱硬化性樹脂組成物からなるリフレクタが形成され、上記光半導体素子上部の発光面あるいは受光面が封止層にて被覆されてなる封止型光半導体素子を第6の要旨とする。また、本発明は、配線回路基板の所定位置に、上記第6の要旨の封止型光半導体素子が、その接続用電極を介して搭載されてなる光半導体装置を第7の要旨とする。
本発明者らは、高い初期光反射率に加えて、長期耐光性に優れた光半導体装置用熱硬化性樹脂組成物を得るべく鋭意検討を重ねた。その研究の過程で、従来とは異なる視点から白色顔料を特定することを想起し、物性の一つであるバンドギャップに着目し、この物性に基づき、更なる研究を重ねた。その結果、白色顔料として、バンドギャップ(禁制帯)が3.3〜5.5eVの範囲内のものを用いると、上記バンドギャップの範囲内であることにより、例えば、光半導体素子から発せられる光の吸収が抑制され、また白色顔料自体の着色も抑制されて、高い光反射率を維持することとなり、結果、高い初期光反射率のみならず、長期耐光性に優れたリフレクタ形成材料となりうる熱硬化性樹脂組成物が得られることを見出した。
このように、本発明は、前記熱硬化性樹脂(A)と、特定のバンドギャップ(禁制帯)を有する白色顔料(B)と、無機質充填剤(C)を含有する光半導体装置用熱硬化性樹脂組成物である。このため、高い初期光反射率のみならず、優れた長期耐光性をも備えるようになる。したがって、上記光半導体装置用熱硬化性樹脂組成物を用いてリフレクタを形成してなる光半導体装置では、信頼性の高い光半導体装置が得られる。
そして、上記白色顔料(B)と無機質充填剤(C)の合計含有割合が特定範囲であり、かつ白色顔料(B)の含有割合が特定範囲であると、より一層優れた長期耐光性を備えるようになる。
光半導体装置の構成を模式的に示す断面図である。 光半導体装置の他の構成を模式的に示す平面図である。 上記光半導体装置の他の構成を模式的に示す図2のX−X′矢視断面図である。 封止型光半導体素子の構成を模式的に示す断面図である。
本発明の光半導体装置用熱硬化性樹脂組成物(以下、「熱硬化性樹脂組成物」ともいう)は、例えば、先に述べたように、図1に示す光半導体装置あるいは後述の図2および図3に示す光半導体装置、図4に示す封止型光半導体素子の、リフレクタ4,11,15形成材料として用いられるものであって、熱硬化性樹脂(A成分)と、特定の白色顔料(B成分)と、無機質充填剤(C成分)とを用いて得られるものであり、通常、液状、あるいはシート状、粉末状、もしくはその粉末を打錠したタブレット状にしてリフレクタ4,11,15形成材料に供される。
〈A:熱硬化性樹脂〉
上記熱硬化性樹脂(A成分)としては、例えば、エポキシ樹脂、シリコーン樹脂等があげられる。これらは単独でもしくは併せて用いられる。
上記エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、モノグリシジルイソシアヌレート、ジグリシジルイソシアヌレート、トリグリシジルイソシアヌレート、ヒダントインエポキシ樹脂等の含窒素環エポキシ樹脂、水素添加ビスフェノールA型エポキシ樹脂、水素添加ビスフェノールF型エポキシ樹脂、脂肪族系エポキシ樹脂、シリコーン変性エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、アルキル置換ビスフェノール等のジグリシジルエーテル、ジアミノジフェニルメタンおよびイソシアヌル酸等のポリアミンとエピクロルヒドリンとの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族および脂環式エポキシ樹脂、低吸水率硬化体タイプの主流であるビフェニル型エポキシ樹脂、ジシクロ環型エポキシ樹脂、ナフタレン型エポキシ樹脂等があげられる。これらは単独でもしくは2種以上併せて用いることができる。これらエポキシ樹脂の中でも、透明性および耐変色性に優れるという点から、脂環式エポキシ樹脂や、トリグリシジルイソシアヌレート等のイソシアヌル環構造を有するものを単独でもしくは併せて用いることが好ましい。同様の理由から、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルテトラヒドロフタル酸、ナジック酸、メチルナジック酸等のジカルボン酸のジグリシジルエステルも好適である。また、芳香環が水素化された脂環式構造を有する核水素化トリメリット酸、核水素化ピロメリット酸等のグリシジルエステル等もあげられる。
上記エポキシ樹脂としては、常温で固形であっても液状であってもよいが、一般に、使用するエポキシ樹脂の平均エポキシ当量が90〜1000のものが好ましく、また、固形の場合には、取り扱い性の利便性の観点から、軟化点が50〜160℃のものが好ましい。すなわち、エポキシ当量が小さすぎると、熱硬化性樹脂組成物硬化物が脆くなる場合がある。また、エポキシ当量が大きすぎると、熱硬化性樹脂組成物硬化物のガラス転移温度(Tg)が低くなる傾向がみられるからである。
熱硬化性樹脂(A成分)として上記エポキシ樹脂を用いる際には、通常、硬化剤が用いられる。上記硬化剤としては、例えば、酸無水物系硬化剤、イソシアヌル酸誘導体系硬化剤等があげられる。これらは単独でもしくは2種以上併せて用いることができる。これらのなかでも、耐熱性および耐光性の観点から、酸無水物系硬化剤を用いることが好ましい。
上記酸無水物系硬化剤としては、例えば、無水フタル酸、無水マレイン酸、無水コハク酸、無水トリメリット酸、無水ピロメリット酸、ナフタレン−1,4,5,8−テトラカルボン酸二無水物、およびその核水素化物、ヘキサヒドロ無水フタル酸、3−メチルヘキサヒドロ無水フタル酸、4−メチルヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、3−メチルテトラヒドロ無水フタル酸、4−メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、シクロヘキサン−1,2,3−トリカルボン酸−2,3−無水物、およびその位置異性体、シクロヘキサン−1,2,3,4−テトラカルボン酸−3,4−無水物、およびその位置異性体、無水ナジック酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸等があげられる。これらは単独でもしくは2種以上併せて用いることができる。また、飽和脂肪鎖骨格、不飽和脂肪鎖骨格、またはシリコーン骨格の末端基、ないし、側鎖としてこれら酸無水物を有するオリゴマーも単独で、もしくは2種以上併せて、および、上記酸無水物と併せて用いることができる。これら酸無水物系硬化剤の中でも、無水フタル酸、ヘキサヒドロ無水フタル酸、3−メチルヘキサヒドロ無水フタル酸、4−メチルヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、3−メチルテトラヒドロ無水フタル酸、4−メチルテトラヒドロ無水フタル酸を用いることが好ましい。さらに、酸無水物系硬化剤としては、無色ないし淡黄色の酸無水物系硬化剤が好ましい。また、上記酸無水物の加水分解物であるカルボン酸を併用してもよい。
また、上記イソシアヌル酸誘導体系硬化剤としては、例えば、1,3,5−トリス(1−カルボキシメチル)イソシアヌレート、1,3,5−トリス(2−カルボキシエチル)イソシアヌレート、1,3,5−トリス(3−カルボキシプロピル)イソシアヌレート、1,3−ビス(2−カルボキシエチル)イソシアヌレート等があげられる。これらは単独でもしくは2種以上併せて用いることができる。さらに、イソシアヌル酸誘導体系硬化剤としては、無色ないし淡黄色の硬化剤が好ましい。
ここで、上記エポキシ樹脂と上記硬化剤との配合割合は、エポキシ樹脂中のエポキシ基1当量に対して、硬化剤中におけるエポキシ基と反応可能な活性基(酸無水基あるいはカルボキシル基)が0.4〜1.4当量となるよう設定することが好ましく、より好ましくは0.6〜1.2当量である。すなわち、活性基が少なすぎると、熱硬化性樹脂組成物の硬化速度が遅くなるとともに、その硬化物のガラス転移温度(Tg)が低くなる傾向がみられ、活性基が多すぎると耐湿性が低下する傾向がみられるからである。
また、その目的および用途に応じて、上述の上記酸無水物系硬化剤およびイソシアヌル酸誘導体系硬化剤以外の他のエポキシ樹脂用硬化剤、例えば、フェノール系硬化剤、アミン系硬化剤、上記酸無水物系硬化剤をアルコールで部分エステル化したもの等の硬化剤を、単独でもしくは2種以上併せて用いることができる。なお、これら硬化剤を用いる場合においても、その配合割合は、上述のエポキシ樹脂と硬化剤との配合割合(当量比)に準じればよい。
つぎに、上記熱硬化性樹脂(A成分)として上記シリコーン樹脂を用いる場合について述べる。上記シリコーン樹脂としては、少なくとも触媒を含有し、具体的には、触媒およびシリコーン樹脂を含有する。上記触媒は、例えば、シリコーン樹脂の反応を促進させてシリコーン樹脂を硬化させる硬化触媒であって、好ましくは、後述するシリコーン樹脂のヒドロシリル化反応を促進させてシリコーン樹脂をヒドロシリル付加により硬化させるヒドロシリル化触媒である。そして、上記触媒は、遷移金属を含有し、上記遷移金属としては、例えば、白金、パラジウム、ロジウム等の白金属元素、好ましくは、白金があげられる。具体的には、触媒としては、触媒が白金を含有する場合には、例えば、白金黒、塩化白金、塩化白金酸等の無機白金、例えば、白金−オレフィン錯体、白金−カルボニル錯体、白金−アセチルアセテート等の白金錯体等があげられ、好ましくは、白金錯体があげられる。より具体的には、白金錯体としては、例えば、白金−ビニルシロキサン錯体、白金−テトラメチルジビニルジシロキサン錯体、白金−カルボニルシクロビニルメチルシロキサン錯体、白金−ジビニルテトラメチルジシロキサン錯体、白金−シクロビニルメチルシロキサン錯体、白金−オクタナル/オクタノール錯体等があげられる。なお、上記触媒は、後述のシリコーン樹脂と区別して配合される態様や、シリコーン樹脂を構成する成分としてシリコーン樹脂に含有される態様がある。
上記触媒中の遷移金属の含有割合(濃度)は、シリコーン樹脂全体に対して、質量基準で、好ましくは0.1〜500ppm、より好ましくは0.15〜100ppm、さらに好ましくは0.2〜50ppm、特に好ましくは0.3〜10ppmである。
上記シリコーン樹脂は、触媒によって反応が促進されて硬化する硬化性シリコーン樹脂であって、例えば、1段階硬化型シリコーン樹脂、2段階硬化型シリコーン樹脂等の熱硬化性シリコーン樹脂等があげられる。
上記2段階硬化型シリコーン樹脂は、2段階の反応機構を有しており、1段階目の反応でBステージ化(半硬化)し、2段階目の反応でCステージ化(完全硬化)する熱硬化性シリコーン樹脂である。なお、上記Bステージとは、熱硬化性シリコーン樹脂が、溶剤に可溶なAステージと、完全硬化したCステージとの間の状態であって、硬化およびゲル化がわずかに進行し、溶剤に膨潤するが完全に溶解せず、加熱によって軟化するが溶融しない状態である。
上記1段階硬化型シリコーン樹脂は、1段階の反応機構を有しており、1段階目の反応で完全硬化する熱硬化性シリコーン樹脂である。上記1段階硬化型シリコーン樹脂としては、例えば、特開2012−124428号公報に開示される付加反応硬化型ポリオルガノポリシロキサンがあげられる。具体的には、付加反応硬化型ポリオルガノポリシロキサンは、例えば、エチレン系不飽和炭化水素基含有ケイ素化合物およびヒドロシリル基含有ケイ素化合物を含有する。
上記エチレン系不飽和炭化水素基含有ケイ素化合物として、例えば、分子内に2個以上のビニル基を有するビニル基含有ポリオルガノシロキサン、好ましくは、両末端ビニルポリジメチルシロキサンがあげられる。
上記ヒドロシリル基含有ケイ素化合物として、例えば、分子内に2個以上のヒドロシリル基を有するヒドロシリル基含有ポリオルガノシロキサン、好ましくは、両末端ヒドロシリルポリジメチルシロキサン、両末端トリメチルシリル封鎖メチルヒドロシロキサン−ジメチルシロキサンコポリマー等があげられる。
上記2段階硬化型シリコーン樹脂としては、例えば、縮合反応と付加反応との2つの反応系を有する縮合反応・付加反応硬化型シリコーン樹脂等があげられる。このような縮合反応・付加反応硬化型シリコーン樹脂は、触媒を含有しており、例えば、シラノール両末端ポリシロキサン、アルケニル基含有トリアルコキシシラン、オルガノハイドロジェンポリシロキサン、縮合触媒およびヒドロシリル化触媒を含有する第1の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、シラノール基両末端ポリシロキサン、エチレン系不飽和炭化水素基含有ケイ素化合物、エチレン系不飽和炭化水素基含有ケイ素化合物、オルガノハイドロジェンポリシロキサン、縮合触媒およびヒドロシリル化触媒を含有する第2の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、両末端シラノール型シリコーンオイル、アルケニル基含有ジアルコキシアルキルシラン、オルガノハイドロジェンポリシロキサン、縮合触媒およびヒドロシリル化触媒を含有する第3の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、1分子中に少なくとも2個のアルケニルシリル基を有するオルガノポリシロキサン、1分子中に少なくとも2個のヒドロシリル基を有するオルガノポリシロキサン、ヒドロシリル化触媒および硬化遅延剤を含有する第4の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、少なくとも2つのエチレン系不飽和炭化水素基と少なくとも2つのヒドロシリル基とを1分子中に併有する第1オルガノポリシロキサン、エチレン系不飽和炭化水素基を含まず、少なくとも2つのヒドロシリル基を1分子中に有する第2オルガノポリシロキサン、ヒドロシリル化触媒およびヒドロシリル化抑制剤を含有する第5の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、少なくとも2つのエチレン系不飽和炭化水素基と少なくとも2つのシラノール基とを1分子中に併有する第1オルガノポリシロキサン、エチレン系不飽和炭化水素基を含まず、少なくとも2つのヒドロシリル基を1分子中に有する第2オルガノポリシロキサン、ヒドロシリル化抑制剤、および、ヒドロシリル化触媒を含有する第6の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、ケイ素化合物、および、ホウ素化合物またはアルミニウム化合物を含有する第7の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、ポリアルミノシロキサンおよびシランカップリング剤を含有する第8の縮合反応・付加反応硬化型シリコーン樹脂等があげられる。
これら縮合反応・付加反応硬化型シリコーン樹脂は、単独でもしくは2種以上併せて用いられる。
上記縮合反応・付加反応硬化型シリコーン樹脂として、好ましくは、上記第2の縮合反応・付加反応硬化型シリコーン樹脂があげられ、具体的には、特開2010−265436号公報等に詳細に記載されており、例えば、シラノール基両末端ポリジメチルシロキサン、ビニルトリメトキシシラン、(3−グリシドキシプロピル)トリメトキシシラン、ジメチルポリシロキサン−co−メチルハイドロジェンポリシロキサン、水酸化テトラメチルアンモニウムおよび白金−カルボニル錯体を含有する。具体的には、上記第2の縮合反応・付加反応硬化型シリコーン樹脂を調製するには、例えば、まず、縮合原料であるエチレン系不飽和炭化水素基含有ケイ素化合物およびエチレン系不飽和炭化水素基含有ケイ素化合物と、縮合触媒とを一度に加え、ついで、付加原料であるオルガノハイドロジェンポリシロキサンを加え、その後、ヒドロシリル化触媒(付加触媒)を加えることにより調製することができる。
〈B:特定の白色顔料〉
上記A成分とともに用いられる特定の白色顔料(B成分)としては、バンドギャップ(禁制帯)が3.3〜5.5eVである白色顔料が用いられる。このバンドギャップとは、その結晶のバンド構造における価電子帯の上端から、伝導帯の下端までの間のエネルギー差をいい、各単体、化合物およびそれらの結晶系に固有の値である。上記特定範囲のバンドギャップを有する白色顔料(B成分)としては、具体的には、単体では、ダイヤモンド(バンドギャップ5.5eV、屈折率2.4)等があげられ、酸化物としては、酸化亜鉛(バンドギャップ3.3eV、屈折率2.0)、酸化ジルコニウム(ZrO2)(バンドギャップ4〜5eV、屈折率2.1)、酸化セリウム(バンドギャップ3.4eV、屈折率2.2)、酸化スズ(I)(バンドギャップ3.8eV、屈折率2.0)、酸化ニッケル(バンドギャップ4eV、屈折率2.2)、酸化アルミニウム(バンドギャップ5eV、屈折率1.8)等があげられる。また、窒化物としては、窒化ガリウム(バンドギャップ3.4eV、屈折率2.4)、窒化ケイ素(バンドギャップ5eV、屈折率2.0)、窒化ホウ素(六方晶)(バンドギャップ5eV、屈折率1.8)等があげられる。さらに、硫化物としては、硫化亜鉛(ウルツ)(バンドギャップ3.9eV、屈折率2.4)等があげられる。そして、長期耐光性のみならず初期光反射率の観点から、屈折率が2.0〜3.0のものが好ましい。さらに、着色が少なく、化学的安定性、安全性、価格を含む入手容易性、および生産性の観点から、酸化亜鉛、酸化ジルコニウム(ZrO2)が好ましく用いられ、酸化ジルコニウム、特に単斜晶の酸化ジルコニウムが好ましく用いられる。さらに、その中でも、流動性という観点から、平均粒径が0.01〜50μmのものを用いることが好ましく、0.01〜30μmのものを用いることがより好ましい。なお、上記平均粒径は、例えば、レーザー回折散乱式粒度分布計を用いて測定することができる。また、光反射率の観点から、白色顔料に含まれる不純物の中でもFe23の含有量が0.01質量%以下であることが好ましい。
上記特定の白色顔料(B成分)の配合割合は、熱硬化性樹脂組成物全体に対して、好ましくは3〜50体積%であり、より好ましくは5〜30体積%である。すなわち、B成分の含有割合が少なすぎると、充分な光反射性、特に優れた初期光反射率が得られ難くなる傾向がみられる。B成分の含有割合が多すぎると、著しい増粘により混練等での熱硬化性樹脂組成物の作製に関して困難が生じる可能性がみられるからである。
〈C:無機質充填剤〉
上記A〜B成分にとともに用いられる無機質充填剤(C成分)としては、例えば、石英ガラス粉末、タルク、溶融シリカ粉末や結晶性シリカ粉末等のシリカ粉末、アルミナ粉末、窒化アルミニウム粉末、窒化ケイ素粉末等があげられる。中でも、線膨張係数の低減等の観点から、溶融シリカ粉末を用いることが好ましく、特に高充填性および高流動性という観点から、溶融球状シリカ粉末を用いることが好ましい。なお、無機質充填剤(C成分)は、上記特定の白色顔料(B成分)を除く。上記無機質充填剤(C成分)の粒径およびその分布に関しては、上記特定の白色顔料(B成分)の粒径およびその分布との組み合わせを、熱硬化性樹脂組成物をトランスファー成形等により成形する際のバリ等が最も低減するように配慮することが好ましい。具体的には、無機質充填剤(C成分)の平均粒径は、5〜100μmであることが好ましく、特に好ましくは10〜80μmである。なお、上記平均粒径は、前述と同様、例えば、レーザー回折散乱式粒度分布計を用いて測定することができる。
そして、上記無機質充填剤(C成分)の含有割合においては、上記特定の白色顔料(B成分)と無機質充填剤(C成分)の合計の含有割合が、熱硬化性樹脂組成物全体の10〜90体積%となるように設定することが好ましい。より好ましくは60〜90体積%であり、特に好ましくは65〜85体積%である。すなわち、上記合計の含有割合が少なすぎると、成形時に反りが発生する等の問題が生じる傾向がみられる。また、合計の含有割合が多すぎると、配合成分を混練する際、混練機に多大な負荷がかかり、混練が不可能となる傾向がみられ、結果、成形材料である熱硬化性樹脂組成物を作製することが困難となる傾向がみられる。
さらに、上記特定の白色顔料(B成分)と無機質充填剤(C成分)の混合割合は、初期光反射率の観点から、体積比で、(C成分)/(B成分)=1〜36であることが好ましく、特に好ましくは2〜30である。すなわち、B成分とC成分の混合割合が、上記範囲を外れ、体積比が小さすぎると、熱硬化性樹脂組成物の溶融粘度が上昇して混練が困難になる傾向がみられ、体積比が大きすぎると、熱硬化性樹脂組成物の初期光反射率が低下する傾向がみられる。
〈他の添加剤〉
そして、本発明の熱硬化性樹脂組成物には、上記A〜C成分以外に、必要に応じて、硬化促進剤、離型剤、シラン化合物を配合することができる。さらには、変性剤(可塑剤)、酸化防止剤、難燃剤、脱泡剤、レベリング剤、紫外線吸収剤等の各種添加剤を適宜配合することができる。
上記硬化促進剤は、上記熱硬化性樹脂(A成分)がエポキシ樹脂の場合に用いることができ、硬化促進剤としては、例えば、1,8−ジアザビシクロ[5.4.0]ウンデセン−7、トリエチレンジアミン、トリ−2,4,6−ジメチルアミノメチルフェノール、N,N−ジメチルベンジルアミン、N,N−ジメチルアミノベンゼン、N,N−ジメチルアミノシクロヘキサン等の3級アミン類、2−エチル−4−メチルイミダゾール、2−メチルイミダゾール等のイミダゾール類、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフルオロボレート、テトラフェニルホスホニウムテトラフェニルボレート、テトラ−n−ブチルホスホニウムブロマイド、テトラフェニルホスホニウムブロマイド、メチルトリブチルホスホニウムジメチルホスホエート、テトラフェニルホスホニウム−o,o−ジエチルホスホロジチオエート、テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエート等のリン化合物、トリエチレンジアンモニウム・オクチルカルボキシレート等の4級アンモニウム塩、有機金属塩類、およびこれらの誘導体等があげられる。これらは単独でもしくは2種以上併せて用いられる。これら硬化促進剤の中では、3級アミン類、イミダゾール類、リン化合物を用いることが好ましい。その中でも、着色が少ない硬化物を得るためには、リン化合物を用いることが特に好ましい。
上記硬化促進剤の含有量は、上記熱硬化性樹脂(A成分)に対して0.001〜8重量%に設定することが好ましく、より好ましくは0.01〜5重量%である。すなわち、硬化促進剤の含有量が少なすぎると、充分な硬化促進効果を得られない場合があり、また硬化促進剤の含有量が多すぎると、得られる硬化物に変色が生じる傾向がみられるからである。
上記離型剤としては、各種離型剤が用いられるが、中でもエーテル結合を有する離型剤を用いることが好ましく、例えば、下記の一般式(1)で表される構造式を備えた離型剤があげられる。
CH3・(CH3)k・CH2O(CHRm・CHRn・O)x・H ・・・(1)
[式(1)中、Rm,Rnは水素原子または一価のアルキル基であり、両者は互いに同じであっても異なっていてもよい。また、kは1〜100の正数であり、xは1〜100の正数である。]
上記式(1)において、Rm,Rnは水素原子または一価のアルキル基であり、好ましくはkは10〜50の正数、xは3〜30の正数である。より好ましくはRmおよびRnは水素原子であり、kは28〜48の正数、xは5〜20の正数である。すなわち、繰り返し数kの値が小さすぎると、離型性が低下し、また繰り返し数xの値が小さすぎると、分散性が低下するため、安定した強度と離型性が得られなくなる傾向がみられる。一方、繰り返し数kの値が大きすぎると、融点が高くなるため混練が困難となり、熱硬化性樹脂組成物の製造工程において困難を生じる傾向がみられ、繰り返し数xの値が大きすぎると、離型性が低下する傾向がみられるからである。
上記離型剤の含有量は、熱硬化性樹脂組成物全体の0.001〜3重量%の範囲に設定することが好ましく、0.01〜2重量%の範囲に設定することがより好ましい。すなわち、離型剤の含有量が少なすぎたり、多すぎたりすると、硬化体の強度不足を招いたり、離型性の低下を引き起こす傾向がみられるからである。
上記シラン化合物としは、シランカップリング剤やシランがあげられる。上記シランカップリング剤としては、例えば、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルメチルエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン等があげられる。また、上記シランとしては、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエチルシラン、フェニルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デジルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ヘキサメチルジシラザン、加水分解性基を含むシロキサン等があげられる。これらは単独でもしくは2種以上併せて用いられる。
上記変性剤(可塑剤)としては、例えば、シリコーン類、アルコール類等があげられる。
上記酸化防止剤としては、例えば、フェノール系化合物、アミン系化合物、有機硫黄系化合物、ホスフィン系化合物等があげられる。
上記難燃剤としては、例えば、水酸化マグネシウム等の金属水酸化物、臭素系難燃剤、窒素系難燃剤、リン系難燃剤等があげられ、さらに三酸化アンチモン等の難燃助剤を用いることもできる。
上記消泡剤としては、例えば、シリコーン系等の従来公知の消泡剤があげられる。
〈熱硬化性樹脂組成物〉
本発明の熱硬化性樹脂組成物は、例えば、つぎのようにして製造することができる。すなわち、上記A〜C成分、さらには硬化促進剤および離型剤、ならびに必要に応じて用いられる各種添加剤を適宜配合した後、混練機等を用いて溶融混合し、ついで、これを冷却し固化して粉砕することにより粉末状の熱硬化性樹脂組成物を製造することができる。
そして、上記得られた熱硬化性樹脂組成物を、例えば、トランスファー成形または射出成形することで得られる硬化物としては、その光反射率が、波長450〜800nmにおいて80%以上であることが好ましく、より好ましくは90%以上である。なお、上限は、通常100%である。具体的には、上記硬化物の波長450nmにおける光反射率が85〜98%であることが好ましい。上記光反射率は、例えば、つぎのようにして測定される。すなわち、厚み1mmの熱硬化性樹脂組成物の硬化物を、所定の硬化条件、例えば、175℃×2分間の成形後、175℃×3時間の後硬化にて作製し、室温(25±10℃)にて上記範囲内の波長での上記硬化物の光反射率を分光光度計(例えば、日本分光社製の分光光度計V−670)を用いることにより測定することができる。
本発明の熱硬化性樹脂組成物を用いてなる光半導体装置は、例えば、つぎのようにして製造される。すなわち、金属リードフレームをトランスファー成形機の金型内に設置して上記熱硬化性樹脂組成物を用いてトランスファー成形によりリフレクタを形成する。このようにして、光半導体素子搭載領域の周囲を囲うように環状のリフレクタが形成されてなる光半導体装置用の金属リードフレームを作製する。ついで、上記リフレクタの内部の、金属リードフレーム上の光半導体素子搭載領域に光半導体素子を搭載し、光半導体素子と金属リードフレームとをボンディングワイヤーを用いて電気的に接続する。そして、上記光半導体素子を含むリフレクタの内側領域を、シリコーン樹脂等を用いて樹脂封止することにより封止樹脂層が形成される。このようにして、例えば、図1に示す立体状(カップ型)の光半導体装置が作製される。この光半導体装置は、前述のとおり、第1のプレート部1と第2のプレート部2とからなる金属リードフレームの第2のプレート部2上に光半導体素子3が搭載され、上記光半導体素子3の周囲を囲むように、本発明の熱硬化性樹脂組成物からなる光反射用のリフレクタ4が形成されているという構成をとる。そして、上記金属リードフレームとリフレクタ4の内周面とで形成される凹部5には、光半導体素子3を封止する透明性を有する封止樹脂層6が形成されている。この封止樹脂層6には必要に応じて蛍光体が含有されている。図1において、7,8は金属リードフレームと光半導体素子3とを電気的に接続するボンディングワイヤーである。
なお、本発明において、上記図1の金属リードフレームに代えて各種基板を用いてもよい。上記各種基板としては、例えば、有機基板、無機基板、フレキシブルプリント基板等があげられる。また、上記トランスファー成形に変えて、射出成形によりリフレクタを形成してもよい。
また、上記構成と異なる光半導体装置として、板状の光半導体装置用リードフレームを用いた、例えば、図2および図3(図2のX−X′矢視断面図)に示す光半導体装置があげられる。すなわち、この光半導体装置は、互いに間隔を設けて配置された金属リードフレーム10の厚み方向の片面の所定位置に光半導体素子3がそれぞれ搭載され、上記金属リードフレーム10間の隙間に本発明の熱硬化性樹脂組成物からなる光反射用のリフレクタ11が形成されているという構成をとる。また、図3に示すように、金属リードフレーム10の隙間に本発明の熱硬化性樹脂組成物を充填し硬化してなるリフレクタ11が複数箇所形成されている。なお、図2および図3において、12は、上記光半導体素子3と金属リードフレーム10とを電気的に接続するボンディングワイヤーである。このような光半導体装置は、上記金属リードフレーム10をトランスファー成形機の金型内に設置してトランスファー成形により、間隔を設けて配置された金属リードフレーム10の隙間および金属リードフレーム10の光半導体素子3搭載面とは反対面に形成された凹部に、熱硬化性樹脂組成物を充填し、硬化させることによりリフレクタ11をそれぞれ形成する。ついで、上記金属リードフレーム10の所定位置となる光半導体素子搭載領域に光半導体素子3を搭載した後、光半導体素子3と金属リードフレーム10とをボンディングワイヤー12を用いて電気的に接続する。このようにして、図2および図3に示す光半導体装置が作製される。
〈封止型光半導体素子〉
さらに、本発明の熱硬化性樹脂組成物をリフレクタ形成材料として用いた封止型光半導体素子を、図4に示す。すなわち、この封止型光半導体素子は、光半導体素子3の側面全面に本発明の熱硬化性樹脂組成物からなる光反射用のリフレクタ15が形成され、さらに上記光半導体素子3の上部(発光面あるいは受光面)が封止層16にて被覆されているという構成をとる。図において、17は接続用電極(バンプ)である。また、上記封止層16はエポキシ樹脂やシリコーン樹脂、あるいはガラスやセラミックス等の無機材料によって形成され、上記封止層16には蛍光体が含有されていてもよいし蛍光体が配合されていないものであってもよい。
このような封止型光半導体素子は、例えば、つぎのようにして製造することができる。すなわち、ダイシングテープ等の粘着面上にフリップチップタイプの光半導体(発光)素子3(例えば、青色LEDチップ等)を、その発光面とは反対面に設けられた接続用電極(バンプ)17を上記テープ面に埋め込んだ状態で一定の間隔を設けて配置する。ついで、圧縮成形機,トランスファー成形機,または射出成形機を用いて上記光半導体素子3の側面全面、さらには発光面を本発明の熱硬化性樹脂組成物を用いて包埋する。そして、乾燥機等により後加熱を行なうことにより、上記熱硬化性樹脂組成物の熱硬化反応を完了させて光半導体素子3の側面全面に本発明の熱硬化性樹脂組成物からなる光反射用のリフレクタ15を形成する。つぎに、発光面上に形成されたリフレクタ15を研削して除去することにより発光面を露呈させ、この露呈した発光面上にシリコーン樹脂等の封止材を、周囲をダム材にて囲った状態で注型する、あるいはシート状の封止材を発光面に貼付して封止層16を形成する。つぎに、互いに光半導体素子3間の中央線をブレードダイサーを用いてダイシングすることにより個々の素子に個片化させる。そして、ダイシングテープを拡張延伸して粘着性を低減させ、ダイシングテープ上のリフレクタ15が形成された封止型の光半導体素子3同士を完全に分離,個片化させることにより、図4に示す封止型の光半導体素子3を製造することができる。
このようにして得られる封止型の光半導体素子3を用いた構成の光半導体装置としては、例えば、配線回路基板の回路が形成された所定位置に、上記光半導体素子3の接続用電極17を介して搭載してなる構成を備えた光半導体装置があげられる。
つぎに、実施例について比較例と併せて説明する。ただし、本発明は、これら実施例に限定されるものではない。
まず、熱硬化性樹脂組成物の作製に先立って下記に示す各成分を準備した。
[エポキシ樹脂]
トリグリシジルイソシアヌレート(エポキシ当量100)
[硬化性成分]
4−メチルヘキサヒドロ無水フタル酸(酸無水物当量168)
[白色顔料b1]
酸化亜鉛(バンドギャップ3.3eV、屈折率2.0、平均粒径2.9μm)(ハクスイテック社製、酸化亜鉛1種)
[白色顔料b2]
酸化ジルコニウム(バンドギャップ4〜5eV、屈折率2.1、平均粒径4.3μm、Fe23含有量0.001質量%、単斜晶)(第一稀元素化学工業社製、SG酸化ジルコニウム)
[白色顔料b′]
ルチル型酸化チタン(バンドギャップ3.0eV、屈折率2.7、単一粒子径0.2μm)(石原産業社製、CR−97)
[無機質充填剤]
溶融球状シリカ粉末(平均粒径20μm)
[硬化促進剤]
テトラ−n−ブチルホスホニウムブロマイド
[離型剤]
C(炭素数)>14、エトキシ化アルコール/エチレンホモポリマー(丸菱油化工業社製、UNT750)
[カップリング剤]
3−グリシドキシプロピルトリメトキシシラン(信越化学工業社製、KBM−403)
[実施例1〜15、比較例1]
後記の表1〜表3に示す各成分を同表に示す割合で配合し、ニーダーで溶融混練(温度100〜130℃)を行ない、熟成した後、室温(25℃)まで冷却して粉砕することにより目的とする粉末状の熱硬化性樹脂組成物を作製した。
このようにして得られた実施例および比較例の熱硬化性樹脂組成物を用い、下記の方法に従って各種評価[初期光反射率、長期耐光性]の測定を行なった。その結果を後記の表1〜表3に示す。
[初期光反射率]
上記各熱硬化性樹脂組成物を用い、厚み1mmの試験片を所定の硬化条件(条件:175℃×2分間の成形+175℃×3時間キュア)にて作製し、この試験片(硬化物)を用いて、室温(25℃)での光反射率を測定した。なお、測定装置として日本分光社製の分光光度計V−670を使用して、波長450nmの光反射率を室温(25℃)にて測定した。
[長期耐光性]
上記と同様にして作製した各試験片を用い、波長600nmの光反射率を室温(25℃)にて測定した。その後、その試験片を110℃のホットプレートで加熱した状態で、436nmの光を1W/cm2の強さで15分間照射した後に、上記と同様にして波長600nmの光反射率を測定した(加速試験)。そして、上記加速試験前後での光反射率の低下度(加熱・光照射後の光反射率−加熱・光照射前の光反射率)を算出した。なお、測定には、上記と同様、日本分光社製の分光光度計V−670を使用した。上記光反射率の低下度において、実施例11〜13,15に関しては、0を超えた値が測定・算出されたが、上記値は測定誤差であり、実質的には0以下になることから表中には「0」と記載した。
Figure 2014199728
Figure 2014199728
Figure 2014199728
上記結果から、特定の白色顔料を配合してなる実施例品は、高い初期光反射率のみならず、長期耐光性に関しても優れた結果が得られた。
これに対して、バンドギャップが特定範囲を外れ小さい値である酸化チタンを用いた比較例1品は、初期光反射率に関しては実施例品と同程度の高い測定結果が得られたが、長期耐光性に劣る結果となった。
[光半導体(発光)装置の作製]
つぎに、上記実施例品である粉末を打錠したタブレット状の熱硬化性樹脂組成物を用いて、図1に示す構成の光半導体(発光)装置を製造した。すなわち、銅(銀メッキ)製の複数の対となった第1のプレート部1と第2のプレート部2を有する金属リードフレームをトランスファー成形機の金型内に設置し、上記熱硬化性樹脂組成物を用いてトランスファー成形(条件:175℃×2分間の成形+175℃×3時間キュア)を行なうことにより、図1に示す、金属リードフレームの所定位置にリフレクタ4を形成した。ついで、光半導体(発光)素子(大きさ:0.5mm×0.5mm)3を搭載し、この光半導体素子3と上記金属リードフレームをボンディングワイヤー7,8にて電気的に接続することにより、リフレクタ4と、金属リードフレームと、光半導体素子3とを備えたユニットを製造した。
つぎに、上記金属リードフレームとリフレクタ4の内周面とで形成される凹部5に、シリコーン樹脂(信越シリコーン社製、KER−2500)を充填して上記光半導体素子3を樹脂封止(成形条件:150℃×4時間)することにより透明な封止樹脂層6を形成し、リフレクタごとにダイシングにより個片化し、図1に示す光半導体(発光)装置を作製した。得られた光半導体(発光)装置は、高い初期光反射率とともに、長期耐光性に優れたリフレクタ4を備えており、高信頼性を備えた良好なものが得られた。
また、前述の図2および図3に示す光半導体装置、および、図4に示す封止型光半導体素子におけるリフレクタ11,15形成材料として、上記実施例品である粉末を打錠したタブレット状の熱硬化性樹脂組成物を用い、前述の製造方法に従って、図2および図3に示す光半導体装置、および、図4に示す封止型光半導体素子を作製した。得られた光半導体装置は、上記と同様、高信頼性を備えた良好なものが得られた。一方、上記得られた封止型光半導体素子を、配線回路基板の回路が形成された所定位置に、上記封止型光半導体素子の接続用電極を介して搭載することにより光半導体装置を作製した。得られた光半導体装置は、上記と同様、高信頼性を備えた良好なものが得られた。
上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。
本発明の光半導体装置用熱硬化性樹脂組成物は、光半導体装置に内蔵された光半導体素子から発する光を反射させるリフレクタの形成材料として有用である。
1 第1のプレート部
2 第2のプレート部
3 光半導体素子
4,11,15 リフレクタ
5 凹部
6,封止樹脂層
7,8,12 ボンディングワイヤー
10 金属リードフレーム
16 封止層
本発明は、例えば、光半導体素子から発する光を反射させる、リフレクタ(反射部)の形成材料となる光半導体リフレクタ用エポキシ樹脂組成物、光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、封止型光半導体素子ならびに光半導体装置に関するものである。
従来、光半導体素子を搭載してなる光半導体装置は、例えば、図1に示すように、第1のプレート部1と第2のプレート部2とからなる金属リードフレーム上に光半導体素子3が搭載され、上記光半導体素子3の周囲を囲むように、さらに第1のプレート部1と第2のプレート部2の間を埋めるように、樹脂材料からなる光反射用のリフレクタ4が形成されているという構成をとる。そして、上記金属リードフレームとリフレクタ4の内周面として形成される凹部5に搭載された光半導体素子3を、必要に応じて蛍光体を含有するシリコーン樹脂等の透明樹脂を用いて樹脂封止することにより封止樹脂層6が形成されている。図1において、7,8は金属リードフレームと光半導体素子3とを電気的に接続するボンディングワイヤーであり、必要に応じて設けられるものである。
このような光半導体装置では、近年、上記リフレクタ4を、エポキシ樹脂等に代表される熱硬化性樹脂を用いて、例えば、トランスファー成形等により成形し製造している。そして、上記熱硬化性樹脂には、従来から白色顔料として酸化チタンを配合し、上記光半導体素子3から発する光を反射させている(特許文献1参照)。
特開2011−258845号公報
しかしながら、上記のように白色顔料として酸化チタンを用いてリフレクタを形成した場合、初期の光反射率に関しては問題無く高い光反射率を実現しているが、経時的使用によりその光反射率が低下してしまうという問題があった。このように、長期にわたり高い光反射率を発揮する、すなわち長期にわたる耐光性という点においては未だ充分ではなく、この長期耐光性に関してさらなる向上が強く要望されている。
本発明は、このような事情に鑑みなされたもので、高い初期光反射率のみならず、長期耐光性に優れた光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、封止型光半導体素子ならびに光半導体装置の提供をその目的とする。
上記目的を達成するために、本発明は、下記の(A)〜(C)を含有する光半導体装置用熱硬化性樹脂組成物を第1の要旨とする。
(A)熱硬化性樹脂。
(B)バンドギャップ(禁制帯)が3.3〜5.5eVである、酸化亜鉛、酸化ジルコニウムおよび硫化亜鉛からなる群から選ばれた少なくとも一つの白色顔料。
(C)無機質充填剤。
そして、本発明は、厚み方向の片面のみに光半導体素子を搭載するための板状の光半導体装置用リードフレームであって、互いに隙間を隔てて配置される複数のプレート部を備えるとともに、上記隙間に、上記第1の要旨の光半導体装置用熱硬化性樹脂組成物を用いて充填し、硬化してなるリフレクタが形成されてなる光半導体装置用リードフレームを第2の要旨とする。また、本発明は、光半導体素子搭載領域を備え、それ自体の少なくとも一部で素子搭載領域の周囲を囲んだ状態でリフレクタが形成されてなる立体状の光半導体装置用リードフレームであって、上記リフレクタが、上記第1の要旨の光半導体装置用熱硬化性樹脂組成物を用いて形成されてなる光半導体装置用リードフレームを第3の要旨とする。
さらに、本発明は、その片面に光半導体素子を搭載するための素子搭載領域を有するプレート部が、互いに隙間を隔てて配置され、上記素子搭載領域の所定位置に光半導体素子が搭載されてなる光半導体装置であって、上記隙間に、上記第1の要旨の光半導体装置用熱硬化性樹脂組成物を用いて充填し、硬化してなるリフレクタが形成されてなる光半導体装置を第4の要旨とする。また、本発明は、光半導体素子搭載領域を備え、それ自体の少なくとも一部で素子搭載領域の周囲を囲んだ状態でリフレクタが形成されてなる光半導体装置用リードフレームの所定位置に光半導体素子が搭載されてなる光半導体装置であって、上記リフレクタが、上記第1の要旨の光半導体装置用熱硬化性樹脂組成物を用いて形成されてなる光半導体装置を第5の要旨とする。
そして、本発明は、裏面に複数の接続用電極が形成されてなる光半導体素子の側面に上記第1の要旨の光半導体装置用熱硬化性樹脂組成物からなるリフレクタが形成され、上記光半導体素子上部の発光面あるいは受光面が封止層にて被覆されてなる封止型光半導体素子を第6の要旨とする。また、本発明は、配線回路基板の所定位置に、上記第6の要旨の封止型光半導体素子が、その接続用電極を介して搭載されてなる光半導体装置を第7の要旨とする。
本発明者らは、高い初期光反射率に加えて、長期耐光性に優れた光半導体装置用熱硬化性樹脂組成物を得るべく鋭意検討を重ねた。その研究の過程で、従来とは異なる視点から白色顔料を特定することを想起し、物性の一つであるバンドギャップに着目し、この物性に基づき、更なる研究を重ねた。その結果、白色顔料として、バンドギャップ(禁制帯)が3.3〜5.5eVの範囲内の特定の白色顔料を用いると、上記バンドギャップの範囲内であることにより、例えば、光半導体素子から発せられる光の吸収が抑制され、また白色顔料自体の着色も抑制されて、高い光反射率を維持することとなり、結果、高い初期光反射率のみならず、長期耐光性に優れたリフレクタ形成材料となりうる熱硬化性樹脂組成物が得られることを見出した。
このように、本発明は、前記熱硬化性樹脂(A)と、特定のバンドギャップ(禁制帯)を有する特定の白色顔料(B)と、無機質充填剤(C)を含有する光半導体装置用熱硬化性樹脂組成物である。このため、高い初期光反射率のみならず、優れた長期耐光性をも備えるようになる。したがって、上記光半導体装置用熱硬化性樹脂組成物を用いてリフレクタを形成してなる光半導体装置では、信頼性の高い光半導体装置が得られる。
そして、上記白色顔料(B)と無機質充填剤(C)の合計含有割合が特定範囲であり、かつ白色顔料(B)の含有割合が特定範囲であると、より一層優れた長期耐光性を備えるようになる。
光半導体装置の構成を模式的に示す断面図である。 光半導体装置の他の構成を模式的に示す平面図である。 上記光半導体装置の他の構成を模式的に示す図2のX−X′矢視断面図である。 封止型光半導体素子の構成を模式的に示す断面図である。
本発明の光半導体装置用熱硬化性樹脂組成物(以下、「熱硬化性樹脂組成物」ともいう)は、例えば、先に述べたように、図1に示す光半導体装置あるいは後述の図2および図3に示す光半導体装置、図4に示す封止型光半導体素子の、リフレクタ4,11,15形成材料として用いられるものであって、熱硬化性樹脂(A成分)と、特定の白色顔料(B成分)と、無機質充填剤(C成分)とを用いて得られるものであり、通常、液状、あるいはシート状、粉末状、もしくはその粉末を打錠したタブレット状にしてリフレクタ4,11,15形成材料に供される。
〈A:熱硬化性樹脂〉
上記熱硬化性樹脂(A成分)としては、例えば、エポキシ樹脂、シリコーン樹脂等があげられる。これらは単独でもしくは併せて用いられる。
上記エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、モノグリシジルイソシアヌレート、ジグリシジルイソシアヌレート、トリグリシジルイソシアヌレート、ヒダントインエポキシ樹脂等の含窒素環エポキシ樹脂、水素添加ビスフェノールA型エポキシ樹脂、水素添加ビスフェノールF型エポキシ樹脂、脂肪族系エポキシ樹脂、シリコーン変性エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、アルキル置換ビスフェノール等のジグリシジルエーテル、ジアミノジフェニルメタンおよびイソシアヌル酸等のポリアミンとエピクロルヒドリンとの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族および脂環式エポキシ樹脂、低吸水率硬化体タイプの主流であるビフェニル型エポキシ樹脂、ジシクロ環型エポキシ樹脂、ナフタレン型エポキシ樹脂等があげられる。これらは単独でもしくは2種以上併せて用いることができる。これらエポキシ樹脂の中でも、透明性および耐変色性に優れるという点から、脂環式エポキシ樹脂や、トリグリシジルイソシアヌレート等のイソシアヌル環構造を有するものを単独でもしくは併せて用いることが好ましい。同様の理由から、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルテトラヒドロフタル酸、ナジック酸、メチルナジック酸等のジカルボン酸のジグリシジルエステルも好適である。また、芳香環が水素化された脂環式構造を有する核水素化トリメリット酸、核水素化ピロメリット酸等のグリシジルエステル等もあげられる。
上記エポキシ樹脂としては、常温で固形であっても液状であってもよいが、一般に、使用するエポキシ樹脂の平均エポキシ当量が90〜1000のものが好ましく、また、固形の場合には、取り扱い性の利便性の観点から、軟化点が50〜160℃のものが好ましい。すなわち、エポキシ当量が小さすぎると、熱硬化性樹脂組成物硬化物が脆くなる場合がある。また、エポキシ当量が大きすぎると、熱硬化性樹脂組成物硬化物のガラス転移温度(Tg)が低くなる傾向がみられるからである。
熱硬化性樹脂(A成分)として上記エポキシ樹脂を用いる際には、通常、硬化剤が用いられる。上記硬化剤としては、例えば、酸無水物系硬化剤、イソシアヌル酸誘導体系硬化剤等があげられる。これらは単独でもしくは2種以上併せて用いることができる。これらのなかでも、耐熱性および耐光性の観点から、酸無水物系硬化剤を用いることが好ましい。
上記酸無水物系硬化剤としては、例えば、無水フタル酸、無水マレイン酸、無水コハク酸、無水トリメリット酸、無水ピロメリット酸、ナフタレン−1,4,5,8−テトラカルボン酸二無水物、およびその核水素化物、ヘキサヒドロ無水フタル酸、3−メチルヘキサヒドロ無水フタル酸、4−メチルヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、3−メチルテトラヒドロ無水フタル酸、4−メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、シクロヘキサン−1,2,3−トリカルボン酸−2,3−無水物、およびその位置異性体、シクロヘキサン−1,2,3,4−テトラカルボン酸−3,4−無水物、およびその位置異性体、無水ナジック酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸等があげられる。これらは単独でもしくは2種以上併せて用いることができる。また、飽和脂肪鎖骨格、不飽和脂肪鎖骨格、またはシリコーン骨格の末端基、ないし、側鎖としてこれら酸無水物を有するオリゴマーも単独で、もしくは2種以上併せて、および、上記酸無水物と併せて用いることができる。これら酸無水物系硬化剤の中でも、無水フタル酸、ヘキサヒドロ無水フタル酸、3−メチルヘキサヒドロ無水フタル酸、4−メチルヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、3−メチルテトラヒドロ無水フタル酸、4−メチルテトラヒドロ無水フタル酸を用いることが好ましい。さらに、酸無水物系硬化剤としては、無色ないし淡黄色の酸無水物系硬化剤が好ましい。また、上記酸無水物の加水分解物であるカルボン酸を併用してもよい。
また、上記イソシアヌル酸誘導体系硬化剤としては、例えば、1,3,5−トリス(1−カルボキシメチル)イソシアヌレート、1,3,5−トリス(2−カルボキシエチル)イソシアヌレート、1,3,5−トリス(3−カルボキシプロピル)イソシアヌレート、1,3−ビス(2−カルボキシエチル)イソシアヌレート等があげられる。これらは単独でもしくは2種以上併せて用いることができる。さらに、イソシアヌル酸誘導体系硬化剤としては、無色ないし淡黄色の硬化剤が好ましい。
ここで、上記エポキシ樹脂と上記硬化剤との配合割合は、エポキシ樹脂中のエポキシ基1当量に対して、硬化剤中におけるエポキシ基と反応可能な活性基(酸無水基あるいはカルボキシル基)が0.4〜1.4当量となるよう設定することが好ましく、より好ましくは0.6〜1.2当量である。すなわち、活性基が少なすぎると、熱硬化性樹脂組成物の硬化速度が遅くなるとともに、その硬化物のガラス転移温度(Tg)が低くなる傾向がみられ、活性基が多すぎると耐湿性が低下する傾向がみられるからである。
また、その目的および用途に応じて、上述の上記酸無水物系硬化剤およびイソシアヌル酸誘導体系硬化剤以外の他のエポキシ樹脂用硬化剤、例えば、フェノール系硬化剤、アミン系硬化剤、上記酸無水物系硬化剤をアルコールで部分エステル化したもの等の硬化剤を、単独でもしくは2種以上併せて用いることができる。なお、これら硬化剤を用いる場合においても、その配合割合は、上述のエポキシ樹脂と硬化剤との配合割合(当量比)に準じればよい。
つぎに、上記熱硬化性樹脂(A成分)として上記シリコーン樹脂を用いる場合について述べる。上記シリコーン樹脂としては、少なくとも触媒を含有し、具体的には、触媒およびシリコーン樹脂を含有する。上記触媒は、例えば、シリコーン樹脂の反応を促進させてシリコーン樹脂を硬化させる硬化触媒であって、好ましくは、後述するシリコーン樹脂のヒドロシリル化反応を促進させてシリコーン樹脂をヒドロシリル付加により硬化させるヒドロシリル化触媒である。そして、上記触媒は、遷移金属を含有し、上記遷移金属としては、例えば、白金、パラジウム、ロジウム等の白金属元素、好ましくは、白金があげられる。具体的には、触媒としては、触媒が白金を含有する場合には、例えば、白金黒、塩化白金、塩化白金酸等の無機白金、例えば、白金−オレフィン錯体、白金−カルボニル錯体、白金−アセチルアセテート等の白金錯体等があげられ、好ましくは、白金錯体があげられる。より具体的には、白金錯体としては、例えば、白金−ビニルシロキサン錯体、白金−テトラメチルジビニルジシロキサン錯体、白金−カルボニルシクロビニルメチルシロキサン錯体、白金−ジビニルテトラメチルジシロキサン錯体、白金−シクロビニルメチルシロキサン錯体、白金−オクタナル/オクタノール錯体等があげられる。なお、上記触媒は、後述のシリコーン樹脂と区別して配合される態様や、シリコーン樹脂を構成する成分としてシリコーン樹脂に含有される態様がある。
上記触媒中の遷移金属の含有割合(濃度)は、シリコーン樹脂全体に対して、質量基準で、好ましくは0.1〜500ppm、より好ましくは0.15〜100ppm、さらに好ましくは0.2〜50ppm、特に好ましくは0.3〜10ppmである。
上記シリコーン樹脂は、触媒によって反応が促進されて硬化する硬化性シリコーン樹脂であって、例えば、1段階硬化型シリコーン樹脂、2段階硬化型シリコーン樹脂等の熱硬化性シリコーン樹脂等があげられる。
上記2段階硬化型シリコーン樹脂は、2段階の反応機構を有しており、1段階目の反応でBステージ化(半硬化)し、2段階目の反応でCステージ化(完全硬化)する熱硬化性シリコーン樹脂である。なお、上記Bステージとは、熱硬化性シリコーン樹脂が、溶剤に可溶なAステージと、完全硬化したCステージとの間の状態であって、硬化およびゲル化がわずかに進行し、溶剤に膨潤するが完全に溶解せず、加熱によって軟化するが溶融しない状態である。
上記1段階硬化型シリコーン樹脂は、1段階の反応機構を有しており、1段階目の反応で完全硬化する熱硬化性シリコーン樹脂である。上記1段階硬化型シリコーン樹脂としては、例えば、特開2012−124428号公報に開示される付加反応硬化型ポリオルガノポリシロキサンがあげられる。具体的には、付加反応硬化型ポリオルガノポリシロキサンは、例えば、エチレン系不飽和炭化水素基含有ケイ素化合物およびヒドロシリル基含有ケイ素化合物を含有する。
上記エチレン系不飽和炭化水素基含有ケイ素化合物として、例えば、分子内に2個以上のビニル基を有するビニル基含有ポリオルガノシロキサン、好ましくは、両末端ビニルポリジメチルシロキサンがあげられる。
上記ヒドロシリル基含有ケイ素化合物として、例えば、分子内に2個以上のヒドロシリル基を有するヒドロシリル基含有ポリオルガノシロキサン、好ましくは、両末端ヒドロシリルポリジメチルシロキサン、両末端トリメチルシリル封鎖メチルヒドロシロキサン−ジメチルシロキサンコポリマー等があげられる。
上記2段階硬化型シリコーン樹脂としては、例えば、縮合反応と付加反応との2つの反応系を有する縮合反応・付加反応硬化型シリコーン樹脂等があげられる。このような縮合反応・付加反応硬化型シリコーン樹脂は、触媒を含有しており、例えば、シラノール両末端ポリシロキサン、アルケニル基含有トリアルコキシシラン、オルガノハイドロジェンポリシロキサン、縮合触媒およびヒドロシリル化触媒を含有する第1の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、シラノール基両末端ポリシロキサン、エチレン系不飽和炭化水素基含有ケイ素化合物、エチレン系不飽和炭化水素基含有ケイ素化合物、オルガノハイドロジェンポリシロキサン、縮合触媒およびヒドロシリル化触媒を含有する第2の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、両末端シラノール型シリコーンオイル、アルケニル基含有ジアルコキシアルキルシラン、オルガノハイドロジェンポリシロキサン、縮合触媒およびヒドロシリル化触媒を含有する第3の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、1分子中に少なくとも2個のアルケニルシリル基を有するオルガノポリシロキサン、1分子中に少なくとも2個のヒドロシリル基を有するオルガノポリシロキサン、ヒドロシリル化触媒および硬化遅延剤を含有する第4の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、少なくとも2つのエチレン系不飽和炭化水素基と少なくとも2つのヒドロシリル基とを1分子中に併有する第1オルガノポリシロキサン、エチレン系不飽和炭化水素基を含まず、少なくとも2つのヒドロシリル基を1分子中に有する第2オルガノポリシロキサン、ヒドロシリル化触媒およびヒドロシリル化抑制剤を含有する第5の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、少なくとも2つのエチレン系不飽和炭化水素基と少なくとも2つのシラノール基とを1分子中に併有する第1オルガノポリシロキサン、エチレン系不飽和炭化水素基を含まず、少なくとも2つのヒドロシリル基を1分子中に有する第2オルガノポリシロキサン、ヒドロシリル化抑制剤、および、ヒドロシリル化触媒を含有する第6の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、ケイ素化合物、および、ホウ素化合物またはアルミニウム化合物を含有する第7の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、ポリアルミノシロキサンおよびシランカップリング剤を含有する第8の縮合反応・付加反応硬化型シリコーン樹脂等があげられる。
これら縮合反応・付加反応硬化型シリコーン樹脂は、単独でもしくは2種以上併せて用いられる。
上記縮合反応・付加反応硬化型シリコーン樹脂として、好ましくは、上記第2の縮合反応・付加反応硬化型シリコーン樹脂があげられ、具体的には、特開2010−265436号公報等に詳細に記載されており、例えば、シラノール基両末端ポリジメチルシロキサン、ビニルトリメトキシシラン、(3−グリシドキシプロピル)トリメトキシシラン、ジメチルポリシロキサン−co−メチルハイドロジェンポリシロキサン、水酸化テトラメチルアンモニウムおよび白金−カルボニル錯体を含有する。具体的には、上記第2の縮合反応・付加反応硬化型シリコーン樹脂を調製するには、例えば、まず、縮合原料であるエチレン系不飽和炭化水素基含有ケイ素化合物およびエチレン系不飽和炭化水素基含有ケイ素化合物と、縮合触媒とを一度に加え、ついで、付加原料であるオルガノハイドロジェンポリシロキサンを加え、その後、ヒドロシリル化触媒(付加触媒)を加えることにより調製することができる。
〈B:特定の白色顔料〉
上記A成分とともに用いられる特定の白色顔料(B成分)としては、バンドギャップ(禁制帯)が3.3〜5.5eVである特定の白色顔料が用いられる。このバンドギャップとは、その結晶のバンド構造における価電子帯の上端から、伝導帯の下端までの間のエネルギー差をいい、各単体、化合物およびそれらの結晶系に固有の値である。上記特定範囲のバンドギャップを有する特定の白色顔料(B成分)としては、具体的には、酸化亜鉛(バンドギャップ3.3eV、屈折率2.0)、酸化ジルコニウム(ZrO2)(バンドギャップ4〜5eV、屈折率2.1)があげられる。さらに、硫化物としては、硫化亜鉛(ウルツ)(バンドギャップ3.9eV、屈折率2.4)があげられる。そして、長期耐光性のみならず初期光反射率の観点から、屈折率が2.0〜3.0のものが好ましい。さらに、着色が少なく、化学的安定性、安全性、価格を含む入手容易性、および生産性の観点から、酸化亜鉛、酸化ジルコニウム(ZrO2)が好ましく用いられ、酸化ジルコニウム、特に単斜晶の酸化ジルコニウムが好ましく用いられる。さらに、その中でも、流動性という観点から、平均粒径が0.01〜50μmのものを用いることが好ましく、0.01〜30μmのものを用いることがより好ましい。なお、上記平均粒径は、例えば、レーザー回折散乱式粒度分布計を用いて測定することができる。また、光反射率の観点から、白色顔料に含まれる不純物の中でもFe23の含有量が0.01質量%以下であることが好ましい。
上記特定の白色顔料(B成分)の配合割合は、熱硬化性樹脂組成物全体に対して、好ましくは3〜50体積%であり、より好ましくは5〜30体積%である。すなわち、B成分の含有割合が少なすぎると、充分な光反射性、特に優れた初期光反射率が得られ難くなる傾向がみられる。B成分の含有割合が多すぎると、著しい増粘により混練等での熱硬化性樹脂組成物の作製に関して困難が生じる可能性がみられるからである。
〈C:無機質充填剤〉
上記A〜B成分にとともに用いられる無機質充填剤(C成分)としては、例えば、石英ガラス粉末、タルク、溶融シリカ粉末や結晶性シリカ粉末等のシリカ粉末、アルミナ粉末、窒化アルミニウム粉末、窒化ケイ素粉末等があげられる。中でも、線膨張係数の低減等の観点から、溶融シリカ粉末を用いることが好ましく、特に高充填性および高流動性という観点から、溶融球状シリカ粉末を用いることが好ましい。なお、無機質充填剤(C成分)は、上記特定の白色顔料(B成分)を除く。上記無機質充填剤(C成分)の粒径およびその分布に関しては、上記特定の白色顔料(B成分)の粒径およびその分布との組み合わせを、熱硬化性樹脂組成物をトランスファー成形等により成形する際のバリ等が最も低減するように配慮することが好ましい。具体的には、無機質充填剤(C成分)の平均粒径は、5〜100μmであることが好ましく、特に好ましくは10〜80μmである。なお、上記平均粒径は、前述と同様、例えば、レーザー回折散乱式粒度分布計を用いて測定することができる。
そして、上記無機質充填剤(C成分)の含有割合においては、上記特定の白色顔料(B成分)と無機質充填剤(C成分)の合計の含有割合が、熱硬化性樹脂組成物全体の10〜90体積%となるように設定することが好ましい。より好ましくは60〜90体積%であり、特に好ましくは65〜85体積%である。すなわち、上記合計の含有割合が少なすぎると、成形時に反りが発生する等の問題が生じる傾向がみられる。また、合計の含有割合が多すぎると、配合成分を混練する際、混練機に多大な負荷がかかり、混練が不可能となる傾向がみられ、結果、成形材料である熱硬化性樹脂組成物を作製することが困難となる傾向がみられる。
さらに、上記特定の白色顔料(B成分)と無機質充填剤(C成分)の混合割合は、初期光反射率の観点から、体積比で、(C成分)/(B成分)=1〜36であることが好ましく、特に好ましくは2〜30である。すなわち、B成分とC成分の混合割合が、上記範囲を外れ、体積比が小さすぎると、熱硬化性樹脂組成物の溶融粘度が上昇して混練が困難になる傾向がみられ、体積比が大きすぎると、熱硬化性樹脂組成物の初期光反射率が低下する傾向がみられる。
〈他の添加剤〉
そして、本発明の熱硬化性樹脂組成物には、上記A〜C成分以外に、必要に応じて、硬化促進剤、離型剤、シラン化合物を配合することができる。さらには、変性剤(可塑剤)、酸化防止剤、難燃剤、脱泡剤、レベリング剤、紫外線吸収剤等の各種添加剤を適宜配合することができる。
上記硬化促進剤は、上記熱硬化性樹脂(A成分)がエポキシ樹脂の場合に用いることができ、硬化促進剤としては、例えば、1,8−ジアザビシクロ[5.4.0]ウンデセン−7、トリエチレンジアミン、トリ−2,4,6−ジメチルアミノメチルフェノール、N,N−ジメチルベンジルアミン、N,N−ジメチルアミノベンゼン、N,N−ジメチルアミノシクロヘキサン等の3級アミン類、2−エチル−4−メチルイミダゾール、2−メチルイミダゾール等のイミダゾール類、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフルオロボレート、テトラフェニルホスホニウムテトラフェニルボレート、テトラ−n−ブチルホスホニウムブロマイド、テトラフェニルホスホニウムブロマイド、メチルトリブチルホスホニウムジメチルホスホエート、テトラフェニルホスホニウム−o,o−ジエチルホスホロジチオエート、テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエート等のリン化合物、トリエチレンジアンモニウム・オクチルカルボキシレート等の4級アンモニウム塩、有機金属塩類、およびこれらの誘導体等があげられる。これらは単独でもしくは2種以上併せて用いられる。これら硬化促進剤の中では、3級アミン類、イミダゾール類、リン化合物を用いることが好ましい。その中でも、着色が少ない硬化物を得るためには、リン化合物を用いることが特に好ましい。
上記硬化促進剤の含有量は、上記熱硬化性樹脂(A成分)に対して0.001〜8重量%に設定することが好ましく、より好ましくは0.01〜5重量%である。すなわち、硬化促進剤の含有量が少なすぎると、充分な硬化促進効果を得られない場合があり、また硬化促進剤の含有量が多すぎると、得られる硬化物に変色が生じる傾向がみられるからである。
上記離型剤としては、各種離型剤が用いられるが、中でもエーテル結合を有する離型剤を用いることが好ましく、例えば、下記の一般式(1)で表される構造式を備えた離型剤があげられる。
CH3・(CH3)k・CH2O(CHRm・CHRn・O)x・H ・・・(1)
[式(1)中、Rm,Rnは水素原子または一価のアルキル基であり、両者は互いに同じであっても異なっていてもよい。また、kは1〜100の正数であり、xは1〜100の正数である。]
上記式(1)において、Rm,Rnは水素原子または一価のアルキル基であり、好ましくはkは10〜50の正数、xは3〜30の正数である。より好ましくはRmおよびRnは水素原子であり、kは28〜48の正数、xは5〜20の正数である。すなわち、繰り返し数kの値が小さすぎると、離型性が低下し、また繰り返し数xの値が小さすぎると、分散性が低下するため、安定した強度と離型性が得られなくなる傾向がみられる。一方、繰り返し数kの値が大きすぎると、融点が高くなるため混練が困難となり、熱硬化性樹脂組成物の製造工程において困難を生じる傾向がみられ、繰り返し数xの値が大きすぎると、離型性が低下する傾向がみられるからである。
上記離型剤の含有量は、熱硬化性樹脂組成物全体の0.001〜3重量%の範囲に設定することが好ましく、0.01〜2重量%の範囲に設定することがより好ましい。すなわち、離型剤の含有量が少なすぎたり、多すぎたりすると、硬化体の強度不足を招いたり、離型性の低下を引き起こす傾向がみられるからである。
上記シラン化合物としは、シランカップリング剤やシランがあげられる。上記シランカップリング剤としては、例えば、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルメチルエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン等があげられる。また、上記シランとしては、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエチルシラン、フェニルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デジルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ヘキサメチルジシラザン、加水分解性基を含むシロキサン等があげられる。これらは単独でもしくは2種以上併せて用いられる。
上記変性剤(可塑剤)としては、例えば、シリコーン類、アルコール類等があげられる。
上記酸化防止剤としては、例えば、フェノール系化合物、アミン系化合物、有機硫黄系化合物、ホスフィン系化合物等があげられる。
上記難燃剤としては、例えば、水酸化マグネシウム等の金属水酸化物、臭素系難燃剤、窒素系難燃剤、リン系難燃剤等があげられ、さらに三酸化アンチモン等の難燃助剤を用いることもできる。
上記消泡剤としては、例えば、シリコーン系等の従来公知の消泡剤があげられる。
〈熱硬化性樹脂組成物〉
本発明の熱硬化性樹脂組成物は、例えば、つぎのようにして製造することができる。すなわち、上記A〜C成分、さらには硬化促進剤および離型剤、ならびに必要に応じて用いられる各種添加剤を適宜配合した後、混練機等を用いて溶融混合し、ついで、これを冷却し固化して粉砕することにより粉末状の熱硬化性樹脂組成物を製造することができる。
そして、上記得られた熱硬化性樹脂組成物を、例えば、トランスファー成形または射出成形することで得られる硬化物としては、その光反射率が、波長450〜800nmにおいて80%以上であることが好ましく、より好ましくは90%以上である。なお、上限は、通常100%である。具体的には、上記硬化物の波長450nmにおける光反射率が85〜98%であることが好ましい。上記光反射率は、例えば、つぎのようにして測定される。すなわち、厚み1mmの熱硬化性樹脂組成物の硬化物を、所定の硬化条件、例えば、175℃×2分間の成形後、175℃×3時間の後硬化にて作製し、室温(25±10℃)にて上記範囲内の波長での上記硬化物の光反射率を分光光度計(例えば、日本分光社製の分光光度計V−670)を用いることにより測定することができる。
本発明の熱硬化性樹脂組成物を用いてなる光半導体装置は、例えば、つぎのようにして製造される。すなわち、金属リードフレームをトランスファー成形機の金型内に設置して上記熱硬化性樹脂組成物を用いてトランスファー成形によりリフレクタを形成する。このようにして、光半導体素子搭載領域の周囲を囲うように環状のリフレクタが形成されてなる光半導体装置用の金属リードフレームを作製する。ついで、上記リフレクタの内部の、金属リードフレーム上の光半導体素子搭載領域に光半導体素子を搭載し、光半導体素子と金属リードフレームとをボンディングワイヤーを用いて電気的に接続する。そして、上記光半導体素子を含むリフレクタの内側領域を、シリコーン樹脂等を用いて樹脂封止することにより封止樹脂層が形成される。このようにして、例えば、図1に示す立体状(カップ型)の光半導体装置が作製される。この光半導体装置は、前述のとおり、第1のプレート部1と第2のプレート部2とからなる金属リードフレームの第2のプレート部2上に光半導体素子3が搭載され、上記光半導体素子3の周囲を囲むように、本発明の熱硬化性樹脂組成物からなる光反射用のリフレクタ4が形成されているという構成をとる。そして、上記金属リードフレームとリフレクタ4の内周面とで形成される凹部5には、光半導体素子3を封止する透明性を有する封止樹脂層6が形成されている。この封止樹脂層6には必要に応じて蛍光体が含有されている。図1において、7,8は金属リードフレームと光半導体素子3とを電気的に接続するボンディングワイヤーである。
なお、本発明において、上記図1の金属リードフレームに代えて各種基板を用いてもよい。上記各種基板としては、例えば、有機基板、無機基板、フレキシブルプリント基板等があげられる。また、上記トランスファー成形に変えて、射出成形によりリフレクタを形成してもよい。
また、上記構成と異なる光半導体装置として、板状の光半導体装置用リードフレームを用いた、例えば、図2および図3(図2のX−X′矢視断面図)に示す光半導体装置があげられる。すなわち、この光半導体装置は、互いに間隔を設けて配置された金属リードフレーム10の厚み方向の片面の所定位置に光半導体素子3がそれぞれ搭載され、上記金属リードフレーム10間の隙間に本発明の熱硬化性樹脂組成物からなる光反射用のリフレクタ11が形成されているという構成をとる。また、図3に示すように、金属リードフレーム10の隙間に本発明の熱硬化性樹脂組成物を充填し硬化してなるリフレクタ11が複数箇所形成されている。なお、図2および図3において、12は、上記光半導体素子3と金属リードフレーム10とを電気的に接続するボンディングワイヤーである。このような光半導体装置は、上記金属リードフレーム10をトランスファー成形機の金型内に設置してトランスファー成形により、間隔を設けて配置された金属リードフレーム10の隙間および金属リードフレーム10の光半導体素子3搭載面とは反対面に形成された凹部に、熱硬化性樹脂組成物を充填し、硬化させることによりリフレクタ11をそれぞれ形成する。ついで、上記金属リードフレーム10の所定位置となる光半導体素子搭載領域に光半導体素子3を搭載した後、光半導体素子3と金属リードフレーム10とをボンディングワイヤー12を用いて電気的に接続する。このようにして、図2および図3に示す光半導体装置が作製される。
〈封止型光半導体素子〉
さらに、本発明の熱硬化性樹脂組成物をリフレクタ形成材料として用いた封止型光半導体素子を、図4に示す。すなわち、この封止型光半導体素子は、光半導体素子3の側面全面に本発明の熱硬化性樹脂組成物からなる光反射用のリフレクタ15が形成され、さらに上記光半導体素子3の上部(発光面あるいは受光面)が封止層16にて被覆されているという構成をとる。図において、17は接続用電極(バンプ)である。また、上記封止層16はエポキシ樹脂やシリコーン樹脂、あるいはガラスやセラミックス等の無機材料によって形成され、上記封止層16には蛍光体が含有されていてもよいし蛍光体が配合されていないものであってもよい。
このような封止型光半導体素子は、例えば、つぎのようにして製造することができる。すなわち、ダイシングテープ等の粘着面上にフリップチップタイプの光半導体(発光)素子3(例えば、青色LEDチップ等)を、その発光面とは反対面に設けられた接続用電極(バンプ)17を上記テープ面に埋め込んだ状態で一定の間隔を設けて配置する。ついで、圧縮成形機,トランスファー成形機,または射出成形機を用いて上記光半導体素子3の側面全面、さらには発光面を本発明の熱硬化性樹脂組成物を用いて包埋する。そして、乾燥機等により後加熱を行なうことにより、上記熱硬化性樹脂組成物の熱硬化反応を完了させて光半導体素子3の側面全面に本発明の熱硬化性樹脂組成物からなる光反射用のリフレクタ15を形成する。つぎに、発光面上に形成されたリフレクタ15を研削して除去することにより発光面を露呈させ、この露呈した発光面上にシリコーン樹脂等の封止材を、周囲をダム材にて囲った状態で注型する、あるいはシート状の封止材を発光面に貼付して封止層16を形成する。つぎに、互いに光半導体素子3間の中央線をブレードダイサーを用いてダイシングすることにより個々の素子に個片化させる。そして、ダイシングテープを拡張延伸して粘着性を低減させ、ダイシングテープ上のリフレクタ15が形成された封止型の光半導体素子3同士を完全に分離,個片化させることにより、図4に示す封止型の光半導体素子3を製造することができる。
このようにして得られる封止型の光半導体素子3を用いた構成の光半導体装置としては、例えば、配線回路基板の回路が形成された所定位置に、上記光半導体素子3の接続用電極17を介して搭載してなる構成を備えた光半導体装置があげられる。
つぎに、実施例について比較例と併せて説明する。ただし、本発明は、これら実施例に限定されるものではない。
まず、熱硬化性樹脂組成物の作製に先立って下記に示す各成分を準備した。
[エポキシ樹脂]
トリグリシジルイソシアヌレート(エポキシ当量100)
[硬化性成分]
4−メチルヘキサヒドロ無水フタル酸(酸無水物当量168)
[白色顔料b1]
酸化亜鉛(バンドギャップ3.3eV、屈折率2.0、平均粒径2.9μm)(ハクスイテック社製、酸化亜鉛1種)
[白色顔料b2]
酸化ジルコニウム(バンドギャップ4〜5eV、屈折率2.1、平均粒径4.3μm、Fe23含有量0.001質量%、単斜晶)(第一稀元素化学工業社製、SG酸化ジルコニウム)
[白色顔料b′]
ルチル型酸化チタン(バンドギャップ3.0eV、屈折率2.7、単一粒子径0.2μm)(石原産業社製、CR−97)
[無機質充填剤]
溶融球状シリカ粉末(平均粒径20μm)
[硬化促進剤]
テトラ−n−ブチルホスホニウムブロマイド
[離型剤]
C(炭素数)>14、エトキシ化アルコール/エチレンホモポリマー(丸菱油化工業社製、UNT750)
[カップリング剤]
3−グリシドキシプロピルトリメトキシシラン(信越化学工業社製、KBM−403)
[実施例1〜15、比較例1]
後記の表1〜表3に示す各成分を同表に示す割合で配合し、ニーダーで溶融混練(温度100〜130℃)を行ない、熟成した後、室温(25℃)まで冷却して粉砕することにより目的とする粉末状の熱硬化性樹脂組成物を作製した。
このようにして得られた実施例および比較例の熱硬化性樹脂組成物を用い、下記の方法に従って各種評価[初期光反射率、長期耐光性]の測定を行なった。その結果を後記の表1〜表3に示す。
[初期光反射率]
上記各熱硬化性樹脂組成物を用い、厚み1mmの試験片を所定の硬化条件(条件:175℃×2分間の成形+175℃×3時間キュア)にて作製し、この試験片(硬化物)を用いて、室温(25℃)での光反射率を測定した。なお、測定装置として日本分光社製の分光光度計V−670を使用して、波長450nmの光反射率を室温(25℃)にて測定した。
[長期耐光性]
上記と同様にして作製した各試験片を用い、波長600nmの光反射率を室温(25℃)にて測定した。その後、その試験片を110℃のホットプレートで加熱した状態で、436nmの光を1W/cm2の強さで15分間照射した後に、上記と同様にして波長600nmの光反射率を測定した(加速試験)。そして、上記加速試験前後での光反射率の低下度(加熱・光照射後の光反射率−加熱・光照射前の光反射率)を算出した。なお、測定には、上記と同様、日本分光社製の分光光度計V−670を使用した。上記光反射率の低下度において、実施例11〜13,15に関しては、0を超えた値が測定・算出されたが、上記値は測定誤差であり、実質的には0以下になることから表中には「0」と記載した。
Figure 2014199728
Figure 2014199728
Figure 2014199728
上記結果から、特定の白色顔料を配合してなる実施例品は、高い初期光反射率のみならず、長期耐光性に関しても優れた結果が得られた。
これに対して、バンドギャップが特定範囲を外れ小さい値である酸化チタンを用いた比較例1品は、初期光反射率に関しては実施例品と同程度の高い測定結果が得られたが、長期耐光性に劣る結果となった。
[光半導体(発光)装置の作製]
つぎに、上記実施例品である粉末を打錠したタブレット状の熱硬化性樹脂組成物を用いて、図1に示す構成の光半導体(発光)装置を製造した。すなわち、銅(銀メッキ)製の複数の対となった第1のプレート部1と第2のプレート部2を有する金属リードフレームをトランスファー成形機の金型内に設置し、上記熱硬化性樹脂組成物を用いてトランスファー成形(条件:175℃×2分間の成形+175℃×3時間キュア)を行なうことにより、図1に示す、金属リードフレームの所定位置にリフレクタ4を形成した。ついで、光半導体(発光)素子(大きさ:0.5mm×0.5mm)3を搭載し、この光半導体素子3と上記金属リードフレームをボンディングワイヤー7,8にて電気的に接続することにより、リフレクタ4と、金属リードフレームと、光半導体素子3とを備えたユニットを製造した。
つぎに、上記金属リードフレームとリフレクタ4の内周面とで形成される凹部5に、シリコーン樹脂(信越シリコーン社製、KER−2500)を充填して上記光半導体素子3を樹脂封止(成形条件:150℃×4時間)することにより透明な封止樹脂層6を形成し、リフレクタごとにダイシングにより個片化し、図1に示す光半導体(発光)装置を作製した。得られた光半導体(発光)装置は、高い初期光反射率とともに、長期耐光性に優れたリフレクタ4を備えており、高信頼性を備えた良好なものが得られた。
また、前述の図2および図3に示す光半導体装置、および、図4に示す封止型光半導体素子におけるリフレクタ11,15形成材料として、上記実施例品である粉末を打錠したタブレット状の熱硬化性樹脂組成物を用い、前述の製造方法に従って、図2および図3に示す光半導体装置、および、図4に示す封止型光半導体素子を作製した。得られた光半導体装置は、上記と同様、高信頼性を備えた良好なものが得られた。一方、上記得られた封止型光半導体素子を、配線回路基板の回路が形成された所定位置に、上記封止型光半導体素子の接続用電極を介して搭載することにより光半導体装置を作製した。得られた光半導体装置は、上記と同様、高信頼性を備えた良好なものが得られた。
上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。
本発明の光半導体装置用熱硬化性樹脂組成物は、光半導体装置に内蔵された光半導体素子から発する光を反射させるリフレクタの形成材料として有用である。
1 第1のプレート部
2 第2のプレート部
3 光半導体素子
4,11,15 リフレクタ
5 凹部
6,封止樹脂層
7,8,12 ボンディングワイヤー
10 金属リードフレーム
16 封止層
上記目的を達成するために、本発明は、下記の(A)〜(C)を含有する光半導体装置用熱硬化性樹脂組成物を第1の要旨とする。
(A)熱硬化性樹脂。
(B)バンドギャップ(禁制帯)が3.3〜5.5eVで、Fe 2 3 の含有量が0.01質量%以下である、酸化亜鉛、酸化ジルコニウムおよび硫化亜鉛からなる群から選ばれた少なくとも一つの白色顔料。
(C)無機質充填剤。
本発明者らは、高い初期光反射率に加えて、長期耐光性に優れた光半導体装置用熱硬化性樹脂組成物を得るべく鋭意検討を重ねた。その研究の過程で、従来とは異なる視点から白色顔料を特定することを想起し、物性の一つであるバンドギャップに着目し、この物性に基づき、更なる研究を重ねた。その結果、白色顔料として、バンドギャップ(禁制帯)が3.3〜5.5eVの範囲内で、Fe 2 3 の含有量が0.01質量%以下の特定の白色顔料を用いると、上記バンドギャップの範囲内であることにより、例えば、光半導体素子から発せられる光の吸収が抑制され、また白色顔料自体の着色も抑制されて、高い光反射率を維持することとなり、結果、高い初期光反射率のみならず、長期耐光性に優れたリフレクタ形成材料となりうる熱硬化性樹脂組成物が得られることを見出した。
このように、本発明は、前記熱硬化性樹脂(A)と、特定のバンドギャップ(禁制帯)を有し、Fe 2 3 の含有量が0.01質量%以下の特定の白色顔料(B)と、無機質充填剤(C)を含有する光半導体装置用熱硬化性樹脂組成物である。このため、高い初期光反射率のみならず、優れた長期耐光性をも備えるようになる。したがって、上記光半導体装置用熱硬化性樹脂組成物を用いてリフレクタを形成してなる光半導体装置では、信頼性の高い光半導体装置が得られる。
〈B:特定の白色顔料〉
上記A成分とともに用いられる特定の白色顔料(B成分)としては、バンドギャップ(禁制帯)が3.3〜5.5eVである特定の白色顔料が用いられる。このバンドギャップとは、その結晶のバンド構造における価電子帯の上端から、伝導帯の下端までの間のエネルギー差をいい、各単体、化合物およびそれらの結晶系に固有の値である。上記特定範囲のバンドギャップを有する特定の白色顔料(B成分)としては、具体的には、酸化亜鉛(バンドギャップ3.3eV、屈折率2.0)、酸化ジルコニウム(ZrO2)(バンドギャップ4〜5eV、屈折率2.1)があげられる。さらに、硫化物としては、硫化亜鉛(ウルツ)(バンドギャップ3.9eV、屈折率2.4)があげられる。そして、長期耐光性のみならず初期光反射率の観点から、屈折率が2.0〜3.0のものが好ましい。さらに、着色が少なく、化学的安定性、安全性、価格を含む入手容易性、および生産性の観点から、酸化亜鉛、酸化ジルコニウム(ZrO2)が好ましく用いられ、酸化ジルコニウム、特に単斜晶の酸化ジルコニウムが好ましく用いられる。さらに、その中でも、流動性という観点から、平均粒径が0.01〜50μmのものを用いることが好ましく、0.01〜30μmのものを用いることがより好ましい。なお、上記平均粒径は、例えば、レーザー回折散乱式粒度分布計を用いて測定することができる。また、光反射率の観点から、白色顔料に含まれる不純物の中でもFe23の含有量が0.01質量%以下でなければならない。

Claims (15)

  1. 下記の測定方法(x)にて測定されてなる、光反射率の低下度(α2−α1)が−5〜0の範囲であることを特徴とする光半導体リフレクタ用エポキシ樹脂組成物。
    (x)所定の硬化条件(条件:175℃×2分間の成形+175℃×3時間キュア)にして作製してなる厚み1mmの試験片を用い、室温(25℃)下での波長600nmの光反射率(α1)を測定するとともに、その試験片を110℃のホットプレートで加熱した状態で、波長436nmの光を1W/cm2の強さで15分間照射した後、室温(25℃)下での波長600nmの光反射率(α2)を測定する。
  2. 下記の(A)〜(C)を含有することを特徴とする光半導体装置用熱硬化性樹脂組成物。
    (A)熱硬化性樹脂。
    (B)バンドギャップ(禁制帯)が3.3〜5.5eVである白色顔料。
    (C)無機質充填剤。
  3. 上記(B)の屈折率が2.0〜3.0である請求項2記載の光半導体装置用熱硬化性樹脂組成物。
  4. 上記(B)が、酸化亜鉛、酸化ジルコニウムおよび硫化亜鉛からなる群から選ばれた少なくとも一つである請求項2または3記載の光半導体装置用熱硬化性樹脂組成物。
  5. 上記(B)が、酸化ジルコニウムである請求項2または3記載の光半導体装置用熱硬化性樹脂組成物。
  6. 上記(B)および(C)の合計の含有割合が、熱硬化性樹脂組成物全体の10〜90体積%であり、かつ(B)の含有割合が熱硬化性樹脂組成物全体の3〜50体積%である請求項2〜5のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物。
  7. 厚み方向の片面のみに光半導体素子を搭載するための板状の光半導体装置用リードフレームであって、互いに隙間を隔てて配置される複数のプレート部を備えるとともに、上記隙間に、請求項2〜6のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物を用いて充填し、硬化してなるリフレクタが形成されてなることを特徴とする光半導体装置用リードフレーム。
  8. 光半導体素子搭載領域を備え、それ自体の少なくとも一部で素子搭載領域の周囲を囲んだ状態でリフレクタが形成されてなる立体状の光半導体装置用リードフレームであって、上記リフレクタが、請求項2〜6のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物を用いて形成されてなることを特徴とする光半導体装置用リードフレーム。
  9. 上記リフレクタが、リードフレームの片面にのみ形成されている請求項8記載の光半導体装置用リードフレーム。
  10. 上記リフレクタがトランスファー成形または射出成形により光半導体装置用リードフレームに形成されてなる請求項7〜9のいずれか一項に記載の光半導体装置用リードフレーム。
  11. その片面に光半導体素子を搭載するための素子搭載領域を有するプレート部が、互いに隙間を隔てて配置され、上記素子搭載領域の所定位置に光半導体素子が搭載されてなる光半導体装置であって、上記隙間に、請求項2〜6のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物を用いて充填し、硬化してなるリフレクタが形成されてなることを特徴とする光半導体装置。
  12. 光半導体素子搭載領域を備え、それ自体の少なくとも一部で素子搭載領域の周囲を囲んだ状態でリフレクタが形成されてなる光半導体装置用リードフレームの所定位置に光半導体素子が搭載されてなる光半導体装置であって、上記リフレクタが、請求項2〜6のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物を用いて形成されてなることを特徴とする光半導体装置。
  13. リフレクタで囲まれた光半導体素子を含む領域をシリコーン樹脂にて樹脂封止されてなる請求項12記載の光半導体装置。
  14. 裏面に複数の接続用電極が形成されてなる光半導体素子の側面に請求項2〜6のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物からなるリフレクタが形成され、上記光半導体素子上部の発光面あるいは受光面が封止層にて被覆されてなることを特徴とする封止型光半導体素子。
  15. 配線回路基板の所定位置に、請求項14記載の封止型光半導体素子が、その接続用電極を介して搭載されてなる光半導体装置。
JP2014520092A 2013-06-13 2014-04-22 光半導体リフレクタ用エポキシ樹脂組成物、光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、封止型光半導体素子ならびに光半導体装置 Ceased JP5825650B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014520092A JP5825650B2 (ja) 2013-06-13 2014-04-22 光半導体リフレクタ用エポキシ樹脂組成物、光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、封止型光半導体素子ならびに光半導体装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013124772 2013-06-13
JP2013124772 2013-06-13
JP2013251256 2013-12-04
JP2013251256 2013-12-04
JP2014520092A JP5825650B2 (ja) 2013-06-13 2014-04-22 光半導体リフレクタ用エポキシ樹脂組成物、光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、封止型光半導体素子ならびに光半導体装置
PCT/JP2014/061303 WO2014199728A1 (ja) 2013-06-13 2014-04-22 光半導体リフレクタ用エポキシ樹脂組成物、光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、封止型光半導体素子ならびに光半導体装置

Publications (2)

Publication Number Publication Date
JP5825650B2 JP5825650B2 (ja) 2015-12-02
JPWO2014199728A1 true JPWO2014199728A1 (ja) 2017-02-23

Family

ID=52022030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014520092A Ceased JP5825650B2 (ja) 2013-06-13 2014-04-22 光半導体リフレクタ用エポキシ樹脂組成物、光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、封止型光半導体素子ならびに光半導体装置

Country Status (5)

Country Link
JP (1) JP5825650B2 (ja)
KR (1) KR20160019407A (ja)
CN (1) CN105122484A (ja)
TW (1) TW201446873A (ja)
WO (1) WO2014199728A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6883185B2 (ja) * 2015-09-24 2021-06-09 日東電工株式会社 光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、光半導体装置、光半導体素子
WO2017051838A1 (ja) * 2015-09-24 2017-03-30 日東電工株式会社 光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、光半導体装置、光半導体素子
US20230192968A1 (en) 2020-05-19 2023-06-22 Byk-Chemie Gmbh Thermoset polymer powder

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5421546B2 (ja) * 2007-07-05 2014-02-19 日立化成株式会社 熱硬化性光反射用樹脂組成物、並びにその樹脂組成物を用いた光半導体素子搭載用基板及び光半導体装置
JP4623322B2 (ja) * 2007-12-26 2011-02-02 信越化学工業株式会社 光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物並びに光半導体ケース及びその成形方法
JP5550230B2 (ja) * 2008-07-22 2014-07-16 日立化成株式会社 熱硬化性樹脂組成物、これを用いた光半導体素子搭載用基板及びその製造方法並びに光半導体装置
JP5721969B2 (ja) 2010-06-11 2015-05-20 日東電工株式会社 光半導体装置のリフレクタ用エポキシ樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、ならびに光半導体装置
JP2012175030A (ja) * 2011-02-24 2012-09-10 Nitto Denko Corp 光半導体素子収納用実装パッケージ用樹脂組成物およびそれを用いて得られる光半導体発光装置
JP5840377B2 (ja) * 2011-04-14 2016-01-06 日東電工株式会社 反射樹脂シートおよび発光ダイオード装置の製造方法
JP5644831B2 (ja) * 2012-10-23 2014-12-24 日立化成株式会社 リフレクターの製造方法及びled装置

Also Published As

Publication number Publication date
WO2014199728A1 (ja) 2014-12-18
TW201446873A (zh) 2014-12-16
JP5825650B2 (ja) 2015-12-02
KR20160019407A (ko) 2016-02-19
CN105122484A (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
KR101746890B1 (ko) 경화성 에폭시 수지 조성물
JP5976806B2 (ja) 光半導体装置用エポキシ樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、封止型光半導体素子ならびに光半導体装置
JPWO2007125956A1 (ja) 光半導体用熱硬化性組成物、光半導体素子用ダイボンド材、光半導体素子用アンダーフィル材、光半導体素子用封止剤及び光半導体素子
JP2013159670A (ja) 硬化性シリコーン組成物、その硬化物、および光半導体装置
JP2012175030A (ja) 光半導体素子収納用実装パッケージ用樹脂組成物およびそれを用いて得られる光半導体発光装置
JP2008189917A (ja) 光半導体用熱硬化性組成物、光半導体素子用ダイボンド材、光半導体素子用アンダーフィル材、光半導体素子用封止剤及び光半導体素子
JP2008045088A (ja) 光半導体用熱硬化性組成物、光半導体素子用封止剤、光半導体素子用ダイボンド材、光半導体素子用アンダーフィル材及び光半導体装置
JP5721969B2 (ja) 光半導体装置のリフレクタ用エポキシ樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、ならびに光半導体装置
JP2008056857A (ja) 光半導体用熱硬化性組成物、光半導体素子用封止剤、光半導体素子用ダイボンド材、光半導体素子用アンダーフィル材及び光半導体装置
JP2012041403A (ja) 熱硬化性エポキシ樹脂組成物及び半導体装置
WO2015083576A1 (ja) 光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、ならびに光半導体装置
JP5825650B2 (ja) 光半導体リフレクタ用エポキシ樹脂組成物、光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、封止型光半導体素子ならびに光半導体装置
TWI480338B (zh) 用於膠囊封裝光學半導體元件的樹脂組成物
JP2008053529A (ja) 光半導体素子用封止剤及び光半導体装置
WO2015083532A1 (ja) 光半導体装置用エポキシ樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、封止型光半導体素子ならびに光半導体装置
WO2015083629A1 (ja) 光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、ならびに光半導体装置
JP2008106108A (ja) 光半導体用熱硬化性組成物、光半導体素子用ダイボンド材、光半導体素子用アンダーフィル材、光半導体素子用封止剤及び光半導体素子
JP6883185B2 (ja) 光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、光半導体装置、光半導体素子
JP2014095051A (ja) 熱硬化性エポキシ樹脂組成物、該組成物を用いたled用リフレクター及びled装置
JP5072070B2 (ja) 光半導体素子封止用エポキシ樹脂組成物およびそれを用いた光半導体装置
JP6322929B2 (ja) 光反射用熱硬化性樹脂組成物、光半導体素子搭載用基板及びその製造方法、並びに光半導体装置
KR101405532B1 (ko) 에폭시 수지 조성물 및 이를 포함하는 광반도체 장치
WO2017051838A1 (ja) 光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、光半導体装置、光半導体素子
JP2015000885A (ja) 光半導体装置用エポキシ樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、ならびに光半導体装置

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151007

R150 Certificate of patent or registration of utility model

Ref document number: 5825650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RVOP Cancellation by post-grant opposition