[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2014115252A1 - Circuit board and circuit board manufacturing method - Google Patents

Circuit board and circuit board manufacturing method Download PDF

Info

Publication number
JPWO2014115252A1
JPWO2014115252A1 JP2014558321A JP2014558321A JPWO2014115252A1 JP WO2014115252 A1 JPWO2014115252 A1 JP WO2014115252A1 JP 2014558321 A JP2014558321 A JP 2014558321A JP 2014558321 A JP2014558321 A JP 2014558321A JP WO2014115252 A1 JPWO2014115252 A1 JP WO2014115252A1
Authority
JP
Japan
Prior art keywords
oxide
circuit board
substrate
wavelength
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014558321A
Other languages
Japanese (ja)
Other versions
JP5948444B2 (en
Inventor
雅徳 宮城
雅徳 宮城
内藤 孝
内藤  孝
正 藤枝
藤枝  正
沢井 裕一
裕一 沢井
拓也 青柳
拓也 青柳
一宗 児玉
一宗 児玉
利則 川村
利則 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of JP5948444B2 publication Critical patent/JP5948444B2/en
Publication of JPWO2014115252A1 publication Critical patent/JPWO2014115252A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4623Manufacturing multilayer circuits by laminating two or more circuit boards the circuit boards having internal via connections between two or more circuit layers before lamination, e.g. double-sided circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4069Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in organic insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/096Vertically aligned vias, holes or stacked vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • H05K3/0038Etching of the substrate by chemical or physical means by laser ablation of organic insulating material combined with laser drilling through a metal layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Conductive Materials (AREA)

Abstract

層間の導通を得るための材料と回路基板との密着力を向上させ、電気的接続に関して、安定して低抵抗を得ることを目的とする。目的を達成するため、配線が形成された基板が複数枚積層され、前記基板の層間を導通する導電材料を有する回路基板において、前記導電材料は、P又はAgの何れかとVとTeとを含む酸化物と、導電性物質とを含む。また、配線が形成された基板が複数枚積層された回路基板の製造方法において、前記基板に開けられた穴に、P又はAgの何れかとVとTeとを含む酸化物と導電性物質とを供給する工程と、前記酸化物と前記導電性物質に電磁波を照射し、穴内で軟化溶融させる工程とを有する。The object is to improve the adhesion between the material for obtaining conduction between layers and the circuit board, and to stably obtain a low resistance in terms of electrical connection. In order to achieve the object, in a circuit board having a conductive material in which a plurality of substrates on which wirings are formed are stacked and conducting between the layers of the substrate, the conductive material includes either P or Ag and V and Te. An oxide and a conductive material are included. Further, in the method of manufacturing a circuit board in which a plurality of substrates on which wiring is formed are stacked, an oxide containing either P or Ag, V, and Te, and a conductive substance are formed in the hole formed in the substrate. A step of supplying, and a step of irradiating the oxide and the conductive material with electromagnetic waves and softening and melting them in the holes.

Description

本発明は、層間の電気的接続を図るために酸化物ガラスを用いた回路基板とその製造方法に関する。   The present invention relates to a circuit board using an oxide glass for electrical connection between layers and a method for manufacturing the circuit board.

近年、情報機器や電子機器分野の発展に伴い、回路基板の小型化、高密度化が求められている。従来、回路基板の層間の電気的な接続は銅メッキが主流であった。銅メッキでは
スルーホールと呼ばれる貫通穴が必要となり、配線可能な領域を減少させるため、配線の高密度化が困難になりつつある。また銅メッキでは薬品使用量が多いことや、その薬品を洗浄するために多くの水を使用すること、排水中和汚泥などの産業廃棄物が排出され、地球環境負荷が大きいという問題があった。まためっき工程はエッチング、穴あけ、めっき、洗浄など複数の工程を経るため、製造効率の向上が求められている。そこで近年、銅メッキの工程短縮化、環境負荷低減を目的とした代替方法として、導電性ペーストをビアホールに充填して層間の電気的接続を得るプリント配線基板が開示されている。
In recent years, with the development of the information equipment and electronic equipment fields, there has been a demand for smaller and higher density circuit boards. Conventionally, copper plating has been the mainstream for electrical connection between circuit board layers. Copper plating requires through-holes called through-holes, and the area where wiring is possible is reduced, so it is becoming difficult to increase the density of wiring. In addition, copper plating has a problem that it uses a large amount of chemicals, uses a lot of water to clean the chemicals, and discharges industrial waste such as wastewater neutralized sludge, resulting in a large global environmental impact. . In addition, since the plating process goes through a plurality of processes such as etching, drilling, plating, and washing, improvement in manufacturing efficiency is required. Therefore, recently, as an alternative method for shortening the copper plating process and reducing the environmental load, a printed wiring board has been disclosed in which a conductive paste is filled in via holes to obtain electrical connection between layers.

例えば特許文献1では、プリント基板のビアホール内に金属粒子とバインダ樹脂を含有する導電性ペーストを充填した後、加圧しながら、加熱することによって、プリント基板の層間の電気的接続を得るものである。   For example, in Patent Document 1, an electrical connection between layers of a printed circuit board is obtained by filling a conductive paste containing metal particles and a binder resin in a via hole of the printed circuit board and then heating while applying pressure. .

特開平7−176846号公報Japanese Patent Laid-Open No. 7-176846

上記の従来方法では、プリント基板の層間の電気的な接続は、ビアホール内の金属粒子同士の接触によって導通が得られる。しかしながら、基板と金属粒子との密着力が十分ではなく、金属粒子同士の接触は不安定となり、安定した導通を得ることが困難である。またこの課題は回路基板の高密度化が進むとさらに深刻な問題となる。   In the above-described conventional method, electrical connection between the layers of the printed circuit board is obtained by contact between the metal particles in the via hole. However, the adhesion between the substrate and the metal particles is not sufficient, the contact between the metal particles becomes unstable, and it is difficult to obtain stable conduction. This problem becomes more serious as the density of circuit boards increases.

本発明の目的は、層間の導通を得るための材料と回路基板との密着力を向上させ、電気的接続に関して、安定して低抵抗を得ることにある。   An object of the present invention is to improve adhesion between a material for obtaining conduction between layers and a circuit board, and to stably obtain low resistance with respect to electrical connection.

上記課題を解決するために、本発明は、配線が形成された基板が複数枚積層され、前記基板の層間を導通する導電材料を有する回路基板において、前記導電材料は、P又はAgの何れかとVとTeとを含む酸化物と、導電性物質とを含むことを特徴とする。   In order to solve the above-described problems, the present invention provides a circuit board having a conductive material in which a plurality of substrates on which wirings are formed are stacked and conducting between the layers of the substrate, wherein the conductive material is either P or Ag. It contains an oxide containing V and Te and a conductive substance.

また、配線が形成された基板が複数枚積層された回路基板の製造方法において、前記基板に開けられた穴に、P又はAgの何れかとVとTeとを含む酸化物と導電性物質とを供給する工程と、前記酸化物と前記導電性物質に電磁波を照射し、穴内で軟化溶融させる工程とを有することを特徴とする。   Further, in the method of manufacturing a circuit board in which a plurality of substrates on which wiring is formed are stacked, an oxide containing either P or Ag, V, and Te, and a conductive substance are formed in the hole formed in the substrate. And a step of irradiating the oxide and the conductive material with electromagnetic waves and softening and melting them in the holes.

本発明によれば、層間の導通を得るための材料と回路基板との密着力を向上させ、電気的接続に関して、安定して低抵抗を得ることができる。   According to the present invention, it is possible to improve adhesion between a material for obtaining conduction between layers and a circuit board, and to stably obtain low resistance with respect to electrical connection.

酸化物の示差熱分析で得られるDTA曲線の1例である。It is an example of the DTA curve obtained by the differential thermal analysis of an oxide. 酸化物の透過率曲線の1例である。It is an example of the transmittance | permeability curve of an oxide. 複合部材の断面概略図の1例である。It is an example of the cross-sectional schematic of a composite member. 導電性酸化物ペーストを充填した樹脂基板の斜視図及び断面図である。It is the perspective view and sectional drawing of a resin substrate with which the conductive oxide paste was filled. 多層基板の作製手順の1例である。It is an example of a manufacturing procedure of a multilayer substrate. 多層基板の作製手順の1例である。It is an example of a manufacturing procedure of a multilayer substrate.

回路基板の層間の電気的接続を得るための酸化物は、V(バナジウム)、Te(テルル)及びP(リン)を含む。または、V、Te及びAg(銀)を含む。これらの酸化物にはPb(鉛)とBi(ビスマス)を実質的に含まない。上述した酸化物に対し、例えば、Ag、Au、Pt、Cu、Al、Sn、Zn、Bi、Inなどの導電性物質を混合することによって、層間の電気伝導性を得ることが可能である。   Oxides for obtaining electrical connections between circuit board layers include V (vanadium), Te (tellurium), and P (phosphorus). Alternatively, V, Te and Ag (silver) are included. These oxides are substantially free of Pb (lead) and Bi (bismuth). For example, by mixing a conductive material such as Ag, Au, Pt, Cu, Al, Sn, Zn, Bi, and In with the oxide described above, it is possible to obtain electrical conductivity between layers.

V、Te及びPを含む酸化物は、転移点Tgが340℃以下と比較的低温であるだけでなくレーザ吸収性が高いことによって、レーザの照射により容易に加熱されるので軟化流動しやすい。また、V、Te及びAgを含む酸化物は、V、Te及びPを含む酸化物よりもレーザ吸収性は劣るが、転移点Tgが270℃以下と更に低いために、レーザの照射によって容易に軟化流動させることができる。これらの酸化物を使用すれば、樹脂などの基板であっても、樹脂を劣化させない温度範囲で酸化物が軟化するので、層間を接続することができる。軟化流動した後の酸化物は非晶質(ガラス)、結晶質の少なくとも何れかを含む。An oxide containing V, Te, and P is not only relatively low in temperature at a transition point Tg of 340 ° C. or lower, but also has high laser absorptivity, so that it is easily heated by laser irradiation, so that it tends to soften and flow. . In addition, an oxide containing V, Te, and Ag is inferior in laser absorptivity to an oxide containing V, Te, and P. However, since the transition point Tg is lower than 270 ° C., it can be easily irradiated by laser irradiation. Can be softened and fluidized. If these oxides are used, even a substrate such as a resin softens the oxide in a temperature range that does not deteriorate the resin, so that the layers can be connected. The oxide after softening and flowing contains at least one of amorphous (glass) and crystalline.

これらの酸化物にFe、Sb、W、Ba、Kの何れかを更に含有させることによって、酸化物の構造をより安定に保つことが可能になる。特に、Fe又はSbを含む場合は、レーザ、マイクロ波の吸収が大きく発熱しやすいため、更に良く軟化流動させることができる。特にW、Ba又はKを含む場合は、結晶化を抑制することができる。   By further containing any of Fe, Sb, W, Ba, and K in these oxides, the oxide structure can be kept more stable. In particular, when Fe or Sb is contained, the laser and microwave absorption is large and heat is easily generated. In particular, when W, Ba or K is contained, crystallization can be suppressed.

使用するレーザの波長としては、この酸化物が効率的に吸収する2000nm以下が有効である。波長が2000nm以下であると、酸化物がレーザを吸収し易いためである。   As the wavelength of the laser to be used, 2000 nm or less which is effectively absorbed by the oxide is effective. This is because if the wavelength is 2000 nm or less, the oxide easily absorbs the laser.

Agが含まれていない酸化物の場合は、酸化物換算でV25が最も多く含有されるとよい。またFe23、Sb23を含有させることによって2000nmの波長範囲のレーザを吸収しやすくなる。In the case of an oxide containing no Ag, V 2 O 5 is most preferably contained in terms of oxide. Further, by containing Fe 2 O 3 and Sb 2 O 3 , it becomes easy to absorb a laser having a wavelength range of 2000 nm.

TeとPはガラス化させるための成分であり、これらを含むことでレーザ照射によっても容易に軟化流動させることができる。Pは低熱膨張化にも有効であるが、酸化物換算でP25の含有量(質量%)をTeO2よりも多くすると転移点Tgが高くなりやすいので、P25の含有量をTeO2の含有量以下にするとよい。Te and P are components for vitrification, and by including these, they can be softened and flowed easily by laser irradiation. P is effective also in a low thermal expansion, since the oxide equivalent by P 2 O content of 5 (mass%) of TeO 2 are many and the transition point T g tends to be higher than the content of P 2 O 5 The amount should be less than or equal to the TeO 2 content.

酸化物の有効な組成範囲は、上記条件を満たした上で、次の酸化物換算でV25が17〜50質量%、TeO2が20〜33質量%、P25が4〜12質量%である。レーザ吸収特性が更に良くなる組成範囲として、V25が37〜50質量%、TeO2が20〜32質量%、P25が6〜12質量%、Fe23が10〜19質量%が好ましい。The effective composition range of the oxide satisfies the above conditions, and in terms of the following oxide, V 2 O 5 is 17 to 50% by mass, TeO 2 is 20 to 33% by mass, and P 2 O 5 is 4 to 4%. 12% by mass. As a composition range in which the laser absorption characteristics are further improved, V 2 O 5 is 37 to 50% by mass, TeO 2 is 20 to 32% by mass, P 2 O 5 is 6 to 12% by mass, and Fe 2 O 3 is 10 to 19%. Mass% is preferred.

または、V25が17〜50質量%、TeO2が25〜35質量%、Ag2Oが20〜50質量%であり、V25+TeO2+Ag2Oが85質量%以上が好ましい。Alternatively, V 2 O 5 is 17 to 50% by mass, TeO 2 is 25 to 35% by mass, Ag 2 O is 20 to 50% by mass, and V 2 O 5 + TeO 2 + Ag 2 O is preferably 85% by mass or more. .

上述した酸化物に対し、例えば、SiO2、ZrO2、Al23、Nb25、ZrSiO4、Zr2(WO4)(PO42、コージェライト、ムライト、ユークリプタイトなどの充填材を混合することで、基板の材質に応じて熱膨張係数を所定の値に調整して基板と酸化物との接着強度を高めたり、酸化物自体の強度を高めたりすることが可能である。接着する基板間に大きな熱膨張係数差がある場合、熱膨張係数の異なる酸化物を重ねることにより、接着強度を高めることが可能である。To the aforementioned oxides, e.g., SiO 2, ZrO 2, Al 2 O 3, Nb 2 O 5, ZrSiO 4, Zr 2 (WO 4) (PO 4) 2, cordierite, mullite, such as eucryptite By mixing the filler, it is possible to adjust the thermal expansion coefficient to a predetermined value according to the material of the substrate to increase the bond strength between the substrate and the oxide, or to increase the strength of the oxide itself. is there. When there is a large difference in thermal expansion coefficient between the substrates to be bonded, it is possible to increase the bonding strength by stacking oxides having different thermal expansion coefficients.

ただし、ここで取り上げた実施例の記載に限定されることはなく、適宜組み合わせてもよい。   However, it is not limited to description of the Example taken up here, You may combine suitably.

本実施例では、基板にポリカーボネート基板、酸化物として次の酸化物換算で20V25−35TeO2−45Ag2O(質量%)を用い、電磁波照射実験を行い、酸化物の樹脂基板への接着性の確認試験を行った。電磁波としては、波長が約400nm、600nm及び800nmのレーザを用いた。In this example, an electromagnetic wave irradiation experiment was performed using a polycarbonate substrate as the substrate and 20V 2 O 5 -35TeO 2 -45Ag 2 O (mass%) as an oxide in terms of the following oxide, and the oxide was applied to the resin substrate. An adhesion confirmation test was conducted. As electromagnetic waves, lasers having wavelengths of about 400 nm, 600 nm, and 800 nm were used.

上記酸化物の作製は、(株)高純度化学研究所製試薬V25、TeO2、Ag2Oを用い、合計200gになるように、所定量配合、混合し、白金ルツボに入れ、電気炉にて5〜10℃/分の昇温速度で900〜950℃まで加熱し、溶融した。この温度で均一にするために撹拌しながら1〜2時間保持した。その後、ルツボを取り出し、予め150℃程度に加熱しておいたステンレス板上に流し込んだ。The above oxide was prepared using a reagent V 2 O 5 , TeO 2 , and Ag 2 O manufactured by High Purity Chemical Laboratory Co., Ltd., and mixed in a predetermined amount so as to be a total of 200 g, and placed in a platinum crucible. It heated to 900-950 degreeC with the temperature increase rate of 5-10 degreeC / min with the electric furnace, and fuse | melted. In order to make it uniform at this temperature, it was kept for 1 to 2 hours with stirring. Thereafter, the crucible was taken out and poured onto a stainless steel plate heated to about 150 ° C. in advance.

ステンレス板上に流し込んだ酸化物は、平均粒子径(D50)が20μm未満になるまで粉砕した。この酸化物を5℃/分の昇温速度で550℃まで示差熱分析(DTA)することによって、転移点(Tg)、屈伏点(Mg)、軟化点(Ts)及び結晶化温度(Tcry)を測定した。なお、標準サンプルとしてアルミナ(Al23)粉末を用いた。The oxide poured on the stainless steel plate was pulverized until the average particle size (D 50 ) was less than 20 μm. This oxide is subjected to differential thermal analysis (DTA) up to 550 ° C. at a rate of temperature increase of 5 ° C./min, so that the transition point (T g ), the yield point (M g ), the softening point (T s ), and the crystallization temperature. ( Tcry ) was measured. Note that alumina (Al 2 O 3 ) powder was used as a standard sample.

図1に酸化物の代表的なDTA曲線を示す。図1に示すように、Tgは第一吸熱ピークの開始温度、Mgはそのピーク温度、Tsは第二吸熱ピーク温度、Tcryは結晶化による顕著な発熱ピークの開始温度とした。本実施例の酸化物のTgは163℃、Mgは172℃、Tsは208℃であった。Tcryは263℃までのDTAでは認められなかった。FIG. 1 shows a typical DTA curve of an oxide. As shown in FIG. 1, T g is the first endothermic peak start temperature, Mg is the peak temperature, T s is the second endothermic peak temperature, and T cry is the start temperature of the remarkable exothermic peak due to crystallization. The oxide of this example had T g of 163 ° C., M g of 172 ° C., and T s of 208 ° C. T cry was not observed with DTA up to 263 ° C.

酸化物の光学特性を、紫外可視分光光度計を用いて透過率によって評価した。評価サンプルは、酸化物をジェットミルで平均粒径(D50)が2μm以下になるまで粉砕し、その酸化物粉末に樹脂バインダー4%を溶解した溶剤を入れ、混合することによって、印刷用ペーストを作製した。ここで、樹脂バインダーにはエチルセルロース、溶剤にはブチルカルビトールアセテートを用いた。The optical properties of the oxide were evaluated by transmittance using an ultraviolet-visible spectrophotometer. The evaluation sample is a paste for printing by pulverizing an oxide with a jet mill until the average particle size (D 50 ) is 2 μm or less, and adding and mixing a solvent in which 4% of a resin binder is dissolved in the oxide powder. Was made. Here, ethyl cellulose was used as the resin binder, and butyl carbitol acetate was used as the solvent.

ペーストをスクリーン印刷にてスライド酸化物に塗布し、150℃で乾燥させた。その塗膜の平均厚みは、それぞれ約5μm、10μm、20μmになるようにペーストの粘度や印刷方法をコントロールした。スライド酸化物に形成した塗膜を、紫外可視分光光度計を用いて300〜2000nmの波長域における透過率曲線を測定した。その際、スライド酸化物のみの透過率曲線をベースラインとして差し引き、極力、酸化物の焼成塗膜のみの透過率曲線が得られるようにした。本実施例の酸化物の各膜厚における透過率曲線を図2に示す。この酸化物は、300〜2000nmの波長域において、波長が小さいほど透過率が小さく、波長が400nm未満の紫外線はほとんど透過しなかった。   The paste was applied to the slide oxide by screen printing and dried at 150 ° C. The viscosity of the paste and the printing method were controlled so that the average thickness of the coating film was about 5 μm, 10 μm, and 20 μm, respectively. The transmittance curve in the wavelength region of 300 to 2000 nm was measured for the coating film formed on the slide oxide using an ultraviolet-visible spectrophotometer. At that time, the transmittance curve of only the slide oxide was subtracted as a baseline so that the transmittance curve of only the oxide fired coating film was obtained as much as possible. FIG. 2 shows a transmittance curve for each film thickness of the oxide of this example. In the wavelength region of 300 to 2000 nm, this oxide has a smaller transmittance as the wavelength is smaller, and hardly transmits ultraviolet rays having a wavelength of less than 400 nm.

電磁波照射実験では、上記同様に酸化物をジェットミルで平均粒径(D50)が2μm以下になるまで粉砕した。その酸化物粉末に樹脂バインダー1%を溶解した溶剤を入れ、混合することによって、スプレー噴霧用のスラリーを作製した。ここで、樹脂バインダーにはエチルセルロース、溶剤にはブチルカルビトールアセテートを用いた。このスラリーをスプレーによってポリカーボネート基板へ均一に噴霧し、約70℃で乾燥後した。その後、波長が約400nm、600nm、800nmの半導体レーザをそれぞれ照射した。図3に複合部材の断面概略図を示す。In the electromagnetic wave irradiation experiment, the oxide was pulverized with a jet mill until the average particle size (D 50 ) was 2 μm or less as described above. A slurry for spray spraying was prepared by adding and mixing a solvent in which 1% of a resin binder was dissolved in the oxide powder. Here, ethyl cellulose was used as the resin binder, and butyl carbitol acetate was used as the solvent. This slurry was sprayed uniformly onto a polycarbonate substrate by spraying and dried at about 70 ° C. Thereafter, semiconductor lasers with wavelengths of about 400 nm, 600 nm, and 800 nm were respectively irradiated. FIG. 3 shows a schematic cross-sectional view of the composite member.

レーザヘッドを動かすことによって樹脂基板1上のスラリーにレーザ3を照射した。酸化物がレーザを吸収し加熱されることによって比較的低温で軟化流動するので、樹脂基板1を劣化させることなく樹脂基板1上に酸化物2の膜を形成することができた。しかもこの膜は強固に樹脂基板に接着、密着していた。酸化物はどの波長のレーザを照射しても、ポリカーボネート基板に強固に接着、密着していた。また、破線で示すレーザ3のように基板側からレーザを照射しても、樹脂基板を透過したレーザが酸化物に吸収されるので、同様な結果が得られた。   By moving the laser head, the slurry on the resin substrate 1 was irradiated with the laser 3. Since the oxide absorbs the laser and is heated to soften and flow at a relatively low temperature, the oxide 2 film can be formed on the resin substrate 1 without deteriorating the resin substrate 1. Moreover, this film was firmly adhered and adhered to the resin substrate. The oxide was firmly adhered and adhered to the polycarbonate substrate regardless of the wavelength of the laser. Further, even when the laser was irradiated from the substrate side as in the laser 3 indicated by a broken line, the laser transmitted through the resin substrate was absorbed by the oxide, and the same result was obtained.

本実施例においては、実施例1の酸化物、樹脂バインダー、溶剤に更に導電材を混合して導電性酸化物ペーストを作製し、該導電性酸化物ペーストを用いて回路基板のビアホールを充填し、導電性を評価した。図4は、ビアホールに導電性酸化物ペーストを充填した樹脂基板の斜視図及び断面図である。4はビアホール、5は金属粒子を示している。ビアホール内には酸化物2と金属粒子(導電性物質)が含まれる。
(導電性酸化物ペーストの作製)
金属粒子としては福田金属箔粉工業(株)製の銀粒子:AGC−103(球状粒子、平均粒径1.4μm)を用いた。ペースト中の酸化物粉末の含有率は、銀粒子に対して10体積%とした。また、ペースト中の固形分(銀粒子、酸化物粉末)の含有率は80〜85質量%とした。
(ペーストの充填及び電気的評価)
上述で用意したペーストを用いて、ポリカーボネート基板及びポリイミド基板上へ印刷法によりビアホールにペーストを充填した。150℃で乾燥した後、波長が約800nmの半導体レーザを用いて、ビアホール内にレーザ照射し、軟化・固化させた。導電性酸化物ペーストはビアホール内にしっかり密着していた。穴の抵抗値を測定した結果、平均0.48mΩ/穴であり、優れた電気抵抗を示した。
In this example, a conductive oxide paste is prepared by further mixing a conductive material with the oxide, resin binder, and solvent of Example 1, and filling the via hole of the circuit board with the conductive oxide paste. The conductivity was evaluated. FIG. 4 is a perspective view and a sectional view of a resin substrate in which a via hole is filled with a conductive oxide paste. 4 is a via hole and 5 is a metal particle. The via hole contains oxide 2 and metal particles (conductive substance).
(Preparation of conductive oxide paste)
As the metal particles, silver particles: AGC-103 (spherical particles, average particle size of 1.4 μm) manufactured by Fukuda Metal Foil Industry Co., Ltd. were used. The content of the oxide powder in the paste was 10% by volume with respect to the silver particles. Moreover, the content rate of solid content (silver particle, oxide powder) in a paste was 80-85 mass%.
(Paste filling and electrical evaluation)
Using the paste prepared above, the via hole was filled on the polycarbonate substrate and the polyimide substrate by a printing method. After drying at 150 ° C., a laser beam was irradiated into the via hole using a semiconductor laser having a wavelength of about 800 nm to soften and solidify. The conductive oxide paste was firmly adhered in the via hole. As a result of measuring the resistance value of the holes, the average was 0.48 mΩ / hole, and an excellent electrical resistance was shown.

上記のペーストは、酸化物の軟化点が従来よりも低く(従来よりも低温で軟化流動する)、波長が200〜2000nmのレーザを吸収することから、レーザによる局所加熱によりビアホールの導通を得ることができた。   The above paste has a lower oxide softening point than before (softens and flows at a lower temperature than before) and absorbs a laser having a wavelength of 200 to 2000 nm. I was able to.

本実施例では、ポリアミドイミド、ポリアリレート、ポリサルホン、エポキシ樹脂、フッ素樹脂、フッ素ゴム、シリコーンゴム、アクリルゴム等の基板やフィルム上にビアホールを形成し、実施例2の導電性酸化物ペーストを充填し、レーザを照射して軟化・固化させた。波長が約800nmの半導体レーザを使用した。導電性酸化物ペーストはビアホール内に密着しており、金属粒子をしっかりと固定していた。   In this example, via holes are formed on a substrate or film of polyamideimide, polyarylate, polysulfone, epoxy resin, fluororesin, fluororubber, silicone rubber, acrylic rubber, etc., and the conductive oxide paste of Example 2 is filled. Then, it was softened and solidified by laser irradiation. A semiconductor laser having a wavelength of about 800 nm was used. The conductive oxide paste was in close contact with the via hole, and the metal particles were firmly fixed.

形成したビアホールの電気抵抗を測定した結果、平均0.51mΩ/穴であり、優れた電気抵抗を示した。ペーストは、回路を形成する樹脂基板として、本実施例のように幅広い種類の樹脂に対しても、レーザ照射条件を調整することで適用可能であることを確認した。   As a result of measuring the electrical resistance of the formed via holes, the average was 0.51 mΩ / hole, indicating an excellent electrical resistance. It was confirmed that the paste can be applied to a wide variety of resins as in this embodiment as a resin substrate for forming a circuit by adjusting the laser irradiation conditions.

次に実施例2のペーストをフッ素樹脂基板のビアホールに充填した。四国計測(株)製μリアクターを用い2.45GHz帯(波長:125mm)のマイクロ波を照射し、導電性酸化物ペーストを軟化・固化させた。上記レーザの照射と同様に軟化流動でき、樹脂基板は劣化せず、ビアホール内にしっかり密着していた。形成したビアホールの電気抵抗を測定した結果、平均0.48mΩ/穴であり、優れた電気抵抗を示した。酸化物は、半導体的な導電性を有しているために、2.45GHz帯(波長:125mm)のマイクロ波を吸収し、軟化させることができる。この結果より、波長が0.1〜1000mmの範囲にあるマイクロ波においても2.45GHz帯に代表されるように酸化物を軟化・固化できる。   Next, the paste of Example 2 was filled in the via hole of the fluororesin substrate. Using a μ reactor manufactured by Shikoku Keiki Co., Ltd., microwaves in a 2.45 GHz band (wavelength: 125 mm) were irradiated to soften and solidify the conductive oxide paste. It was softened and flowed in the same manner as the laser irradiation, and the resin substrate was not deteriorated and was firmly adhered in the via hole. As a result of measuring the electric resistance of the formed via hole, the average was 0.48 mΩ / hole, and an excellent electric resistance was shown. Since the oxide has semiconducting conductivity, it can absorb and soften microwaves in the 2.45 GHz band (wavelength: 125 mm). From this result, even in the microwave having a wavelength in the range of 0.1 to 1000 mm, the oxide can be softened and solidified as represented by the 2.45 GHz band.

また他の金属粒子、Au、Al、Cu、Pt、Pd、Sn、Zn、Bi、Inを入れてもAg粒子を入れた場合と同様の結果が得られ、安定した導電性を有していた。   Further, even when other metal particles, Au, Al, Cu, Pt, Pd, Sn, Zn, Bi, and In were added, the same result as that obtained when Ag particles were added was obtained, and stable conductivity was obtained. .

本実施例では、基板にアルミナを用いて、アルミナ基板上に形成されたビアホールに、実施例2の導電性酸化物ペーストを充填し、レーザまたはマイクロ波を照射して軟化・固化させた。レーザは波長が約800nmの半導体レーザを用い、マイクロ波には四国計測(株)製μリアクターを使用して、2.45GHz帯(波長:125mm)のマイクロ波を照射した。レーザ及びマイクロ波、どちらの場合でも導電性酸化物ペーストはビアホール内に密着しており、金属粒子をしっかりと固定していた。   In this example, alumina was used for the substrate, and the conductive oxide paste of Example 2 was filled in the via hole formed on the alumina substrate, and softened and solidified by irradiation with laser or microwave. The laser was a semiconductor laser having a wavelength of about 800 nm, and the microwave was irradiated with a microwave of 2.45 GHz band (wavelength: 125 mm) using a μ reactor manufactured by Shikoku Keiki Co., Ltd. In both cases of laser and microwave, the conductive oxide paste was in close contact with the via hole, and the metal particles were firmly fixed.

形成したビアホールの電気抵抗を測定した結果、平均0.51mΩ/穴であり、優れた電気抵抗を示した。ペーストは、セラミック基板に対しても有効であることを確認した。   As a result of measuring the electrical resistance of the formed via holes, the average was 0.51 mΩ / hole, indicating an excellent electrical resistance. It was confirmed that the paste was also effective for the ceramic substrate.

本実施例では、酸化物の組成と特性について検討した。検討した酸化物の組成と特性を表1に示す。酸化物原料には、高純度化学研究所製試薬V25、TeO2、P25、Fe23、Ag2O、WO3、Sb23、BaO、及びK2Oを用い、実施例1と同様にして酸化物を作製した。作製した酸化物の転移点は、実施例1と同様にしてDTAにて測定した。作製した酸化物の軟化流動性は、酸化物粉末をハンドプレスにより圧粉成形し、そこにチタンサファイアレーザ(波長:808nm)、YAGレーザ(波長:1064nm)、及び2.45GHz帯(波長:125mm)のマイクロ波をそれぞれ照射した。In this example, the composition and characteristics of the oxide were examined. Table 1 shows the composition and characteristics of the examined oxides. The oxide raw materials include reagents V 2 O 5 , TeO 2 , P 2 O 5 , Fe 2 O 3 , Ag 2 O, WO 3 , Sb 2 O 3 , BaO, and K 2 O manufactured by High Purity Chemical Laboratory. The oxide was prepared in the same manner as in Example 1. The transition point of the produced oxide was measured by DTA in the same manner as in Example 1. The softening fluidity of the produced oxide was obtained by compacting an oxide powder by hand pressing, and then using a titanium sapphire laser (wavelength: 808 nm), a YAG laser (wavelength: 1064 nm), and a 2.45 GHz band (wavelength: 125 mm). ) Microwaves were respectively irradiated.

酸化物を良く流動させることができた場合には「◎」、流動させることができた場合には「○」、流動も軟化もできなかった場合には「×」と評価した。酸化物No.1〜35の実施例では、レーザ及びマイクロ波を良く吸収し、流動させることが可能であり、樹脂基板やセラミック基板を劣化させることなく固化することができた。また、これらの酸化物に導電材を含有させることで、ビアホールで導通を得ることが可能となった。   It was evaluated as “◎” when the oxide was able to flow well, “◯” when it was able to flow, and “x” when it was not able to flow or soften. Oxide No. In Examples 1 to 35, it was possible to absorb and flow the laser and microwave well, and the resin substrate and the ceramic substrate could be solidified without deteriorating. In addition, by including a conductive material in these oxides, it has become possible to obtain conduction through the via hole.

本実施例では、実勢例2の導電性酸化物ペーストを用いて多層基板を作製した例を述べる。ペースト中の酸化物粉末の含有率が銀粒子に対して10体積%のものをビアホールの充填材料として使用した。
図5に作製手順の例を示す。6は基板、7は銅箔、8は単層基板、9は多層基板を示している。基板にはガラスエポキシを用いた。
まず(a)基板6に対し、(b)のように所定の位置にレーザ3によりビアホール4を形成した。次いで、(c)銅箔7を圧着し、(d)導電性酸化物ペーストをスクリーン印刷により充填した。充填後、120℃で10分間加熱し、溶剤を揮発させた。(e)充填したペーストに対し、波長が約800nmの半導体レーザ3を用いて、軟化・固化させた。次いで、(f)基板6上に銅箔7を圧着させ、(g)フォトリソグラフィ法により銅箔7に導体のパターンを形成した。(g)で作製した単層基板に対し、(h)片側にのみ銅箔7を圧着した単層基板8を重ねて真空プレスにより多層化した。(i)フォトリソグラフィ法により銅箔7に導体パターンを形成した。
In this example, an example in which a multilayer substrate is manufactured using the conductive oxide paste of Example 2 will be described. A paste containing 10% by volume of oxide powder in the paste with respect to silver particles was used as a filling material for via holes.
FIG. 5 shows an example of a manufacturing procedure. 6 is a substrate, 7 is a copper foil, 8 is a single layer substrate, and 9 is a multilayer substrate. Glass epoxy was used for the substrate.
First, via holes 4 were formed on the substrate 6 by a laser 3 at predetermined positions as shown in FIG. Next, (c) the copper foil 7 was pressure-bonded, and (d) the conductive oxide paste was filled by screen printing. After filling, the mixture was heated at 120 ° C. for 10 minutes to volatilize the solvent. (e) The filled paste was softened and solidified using the semiconductor laser 3 having a wavelength of about 800 nm. Next, (f) the copper foil 7 was pressure-bonded on the substrate 6, and (g) a conductor pattern was formed on the copper foil 7 by photolithography. (h) The single-layer substrate 8 to which the copper foil 7 was pressure-bonded only on one side was stacked on the single-layer substrate prepared in (g), and multilayered by vacuum press. (I) A conductor pattern was formed on the copper foil 7 by photolithography.

このように本実施例では3層の多層基板9を作製した。また本実施例では熱源に半導体レーザを用いたが、マイクロ波を用いることも可能である。また本実施例では基板にガラスエポキシを用いたが、他の樹脂基板、セラミック基板でも同様に作製することができる。また本実施例では配線に銅箔を用いているが、アルミなどの他の金属でも可能である。また本実施例では、(b)のレーザによりビアホールを形成した後、(c)銅箔を圧着したが、銅箔の圧着前に導電性酸化物ペーストを充填し、乾燥させて、レーザを照射した後に、銅箔を圧着しても作製可能である。   As described above, in this example, the multilayer substrate 9 having three layers was manufactured. In this embodiment, a semiconductor laser is used as a heat source, but a microwave can also be used. In this embodiment, glass epoxy is used for the substrate, but other resin substrates and ceramic substrates can be similarly produced. In this embodiment, copper foil is used for the wiring, but other metal such as aluminum is also possible. Further, in this example, the via hole was formed by the laser of (b), and (c) the copper foil was pressure-bonded. However, before the copper foil was pressure-bonded, the conductive oxide paste was filled, dried, and irradiated with the laser. Then, it can also be produced by crimping a copper foil.

本実施例では、実勢例2の導電性酸化物ペーストを用いて多層基板を作製した例を述べる。ペースト中の酸化物粉末の含有率が銀粒子に対して10体積%のものをビアホールの充填材料として使用し、基板にはガラスエポキシを用いた。   In this example, an example in which a multilayer substrate is manufactured using the conductive oxide paste of Example 2 will be described. A paste containing 10% by volume of oxide powder in the paste was used as a filling material for via holes, and glass epoxy was used for the substrate.

図6に作製手順の例を示す。まず(i)箔7が圧着された基板6に対し、(k)のように所定の位置にレーザ7によりビアホール4を形成した。次いで、(l)ビアホール4に導電性酸化物ペーストをスクリーン印刷により充填した。導電性酸化物ペーストは銅箔7に接するまで充填した。充填後、120℃で10分間加熱し、溶剤を揮発させた。(m)充填したペーストに対し、波長が約800nmの半導体レーザ3を用いて、軟化・固化させた。次いで、(n)フォトリソグラフィ法により銅箔7に導体のパターンを形成した。(n)で作製した単層基板に対し、(o)片側にのみ銅箔7を圧着した単層基板8を重ねて真空プレスにより多層化した。(p)フォトリソグラフィ法により銅箔7に導体パターンを形成した。このように本実施例では3層の多層基板9を作製した。また本実施例では熱源に半導体レーザを用いたが、マイクロ波を用いることも可能である。また本実施例では基板にガラスエポキシを用いたが、他の樹脂基板、セラミック基板でも同様に作製することができる。また本実施例では配線に銅箔を用いているが、アルミなどの他の金属でも可能である。   FIG. 6 shows an example of a manufacturing procedure. First, (i) the via hole 4 was formed by the laser 7 at a predetermined position as shown in (k) on the substrate 6 to which the foil 7 was bonded. Next, (l) a conductive oxide paste was filled in the via hole 4 by screen printing. The conductive oxide paste was filled until it contacted the copper foil 7. After filling, the mixture was heated at 120 ° C. for 10 minutes to volatilize the solvent. (M) The filled paste was softened and solidified using the semiconductor laser 3 having a wavelength of about 800 nm. Next, (n) a conductor pattern was formed on the copper foil 7 by photolithography. (O) A single-layer substrate 8 to which a copper foil 7 was pressure-bonded only on one side was overlaid on the single-layer substrate prepared in (n), and multilayered by vacuum press. (P) A conductor pattern was formed on the copper foil 7 by photolithography. As described above, in this example, the multilayer substrate 9 having three layers was manufactured. In this embodiment, a semiconductor laser is used as a heat source, but a microwave can also be used. In this embodiment, glass epoxy is used for the substrate, but other resin substrates and ceramic substrates can be similarly produced. In this embodiment, copper foil is used for the wiring, but other metal such as aluminum is also possible.

Figure 2014115252
Figure 2014115252

1 樹脂基板
2 酸化物
3 レーザ
4 ビアホール
5 金属粒子(導電性物質)
6 基板
7 銅箔
8 単層基板
9 多層基板
1 Resin substrate 2 Oxide 3 Laser 4 Via hole 5 Metal particle (conductive substance)
6 Substrate 7 Copper foil 8 Single layer substrate 9 Multilayer substrate

Claims (14)

配線が形成された基板が複数枚積層され、前記基板の層間を導通する導電材料を有する回路基板において、前記導電材料は、P又はAgの何れかとVとTeとを含む酸化物と、導電性物質とを含むことを特徴とする回路基板。   In a circuit board having a conductive material in which a plurality of substrates on which wiring is formed are stacked and conducting between the layers of the substrate, the conductive material includes an oxide containing either P or Ag, V and Te, and a conductive material A circuit board comprising a substance. 請求項1において、前記酸化物がV、Te、Pを含み、転移点が340℃以下であることを特徴とする回路基板。   The circuit board according to claim 1, wherein the oxide includes V, Te, and P, and has a transition point of 340 ° C. or lower. 請求項1において、前記酸化物がV25、TeO2、P25を含み、酸化物換算でV25>TeO2>P25(質量%)であることを特徴とする回路基板。 2. The oxide according to claim 1, wherein the oxide contains V 2 O 5 , TeO 2 , and P 2 O 5 , and V 2 O 5 > TeO 2 > P 2 O 5 (mass%) in terms of oxide. Circuit board to do. 請求項1において、前記酸化物がV、Te、Agを含み、転移点が270℃以下であることを特徴とする回路基板。   The circuit board according to claim 1, wherein the oxide includes V, Te, and Ag, and a transition point is 270 ° C. or lower. 請求項1において、前記酸化物がV25、TeO2、Ag2Oを含み、酸化物換算でV25+TeO2+Ag2O≧85質量%であることを特徴とする回路基板。The circuit board according to claim 1, wherein the oxide contains V 2 O 5 , TeO 2 , and Ag 2 O, and V 2 O 5 + TeO 2 + Ag 2 O ≧ 85 mass% in terms of oxide. 請求項1において、前記酸化物がFe、Sb、W、Ba、Kのいずれかを含むことを特徴とする回路基板。   The circuit board according to claim 1, wherein the oxide contains any one of Fe, Sb, W, Ba, and K. 請求項1において、前記導電性物質がAu、Ag、Al、Cu、Pt、Pd、Sn、Zn、Bi、Inの少なくとも一種であることを特徴とする回路基板。   2. The circuit board according to claim 1, wherein the conductive substance is at least one of Au, Ag, Al, Cu, Pt, Pd, Sn, Zn, Bi, and In. 請求項1において、前記酸化物が電磁波の照射によって軟化して形成されたことを特徴とする回路基板。   2. The circuit board according to claim 1, wherein the oxide is formed by being softened by irradiation with electromagnetic waves. 請求項8において、前記電磁波の波長が2000nm以下のレーザ又は0.1−1000mmのマイクロ波であることを特徴とする回路基板。   9. The circuit board according to claim 8, wherein the wavelength of the electromagnetic wave is a laser having a wavelength of 2000 nm or less or a microwave having a wavelength of 0.1 to 1000 mm. 配線が形成された基板が複数枚積層された回路基板の製造方法において、前記基板に開けられた穴に、P又はAgの何れかとVとTeとを含む酸化物と導電性物質とを供給する工程と、前記酸化物と前記導電性物質に電磁波を照射し、穴内で軟化溶融させる工程とを有することを特徴とする回路基板の製造方法。   In a method of manufacturing a circuit board in which a plurality of substrates on which wirings are formed are stacked, an oxide containing P or Ag, V, and Te and a conductive material are supplied to holes formed in the substrate. A method of manufacturing a circuit board comprising: a step; and a step of irradiating the oxide and the conductive material with electromagnetic waves to soften and melt the oxide in the hole. 請求項10において、前記酸化物がV25、TeO2、P25を含み、酸化物換算でV25>TeO2>P25(質量%)であることを特徴とする回路基板の製造方法。The oxide according to claim 10, wherein the oxide contains V 2 O 5 , TeO 2 , and P 2 O 5 , and V 2 O 5 > TeO 2 > P 2 O 5 (mass%) in terms of oxide. Circuit board manufacturing method. 請求項10において、前記酸化物がV25、TeO2、Ag2Oを含み、酸化物換算でV25+TeO2+Ag2O≧85質量%であることを特徴とする回路基板の製造方法。The circuit board according to claim 10, wherein the oxide contains V 2 O 5 , TeO 2 , and Ag 2 O, and V 2 O 5 + TeO 2 + Ag 2 O ≧ 85 mass% in terms of oxide. Production method. 請求項10において、前記導電性物質がAu、Ag、Al、Cu、Pt、Pd、Sn、Zn、Bi、Inの少なくとも一種であることを特徴とする回路基板の製造方法。   11. The method for manufacturing a circuit board according to claim 10, wherein the conductive substance is at least one of Au, Ag, Al, Cu, Pt, Pd, Sn, Zn, Bi, and In. 請求項10において、前記電磁波の波長が2000nm以下のレーザ又は0.1−1000mmのマイクロ波であることを特徴とする回路基板の製造方法。   The method of manufacturing a circuit board according to claim 10, wherein the wavelength of the electromagnetic wave is a laser having a wavelength of 2000 nm or less or a microwave having a wavelength of 0.1 to 1000 mm.
JP2014558321A 2013-01-23 2013-01-23 Circuit board and circuit board manufacturing method Expired - Fee Related JP5948444B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/051232 WO2014115252A1 (en) 2013-01-23 2013-01-23 Circuit board and circuit-board manufacturing method

Publications (2)

Publication Number Publication Date
JP5948444B2 JP5948444B2 (en) 2016-07-06
JPWO2014115252A1 true JPWO2014115252A1 (en) 2017-01-19

Family

ID=51227069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014558321A Expired - Fee Related JP5948444B2 (en) 2013-01-23 2013-01-23 Circuit board and circuit board manufacturing method

Country Status (2)

Country Link
JP (1) JP5948444B2 (en)
WO (1) WO2014115252A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293344A (en) * 1989-04-19 1990-12-04 Natl Starch & Chem Corp Low softening point metal oxide glass suitable for electronic usage
JP2006165467A (en) * 2004-12-10 2006-06-22 Toyo Ink Mfg Co Ltd Electronic device manufacturing method
JP2009206233A (en) * 2008-02-27 2009-09-10 Kyocera Corp Method of manufacturing ceramic substrate
JP2009209032A (en) * 2008-02-08 2009-09-17 Hitachi Powdered Metals Co Ltd Glass composition
JP2010184852A (en) * 2009-01-16 2010-08-26 Hitachi Powdered Metals Co Ltd Low melting point glass composition, low-temperature sealing material using the same, and electronic component
WO2010109905A1 (en) * 2009-03-27 2010-09-30 日立粉末冶金株式会社 Glass composition, electrically conductive paste composition comprising same, electrode wiring member, and electronic component
WO2011118300A1 (en) * 2010-03-23 2011-09-29 株式会社日立製作所 Electronic component, conductive paste, and method for manufacturing an electronic component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293344A (en) * 1989-04-19 1990-12-04 Natl Starch & Chem Corp Low softening point metal oxide glass suitable for electronic usage
JP2006165467A (en) * 2004-12-10 2006-06-22 Toyo Ink Mfg Co Ltd Electronic device manufacturing method
JP2009209032A (en) * 2008-02-08 2009-09-17 Hitachi Powdered Metals Co Ltd Glass composition
JP2009206233A (en) * 2008-02-27 2009-09-10 Kyocera Corp Method of manufacturing ceramic substrate
JP2010184852A (en) * 2009-01-16 2010-08-26 Hitachi Powdered Metals Co Ltd Low melting point glass composition, low-temperature sealing material using the same, and electronic component
WO2010109905A1 (en) * 2009-03-27 2010-09-30 日立粉末冶金株式会社 Glass composition, electrically conductive paste composition comprising same, electrode wiring member, and electronic component
WO2011118300A1 (en) * 2010-03-23 2011-09-29 株式会社日立製作所 Electronic component, conductive paste, and method for manufacturing an electronic component

Also Published As

Publication number Publication date
JP5948444B2 (en) 2016-07-06
WO2014115252A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
KR101300384B1 (en) Conductive material, conductive paste, circuit board, and semiconductor device
KR100791208B1 (en) Thick film conductor paste compositions for ltcc tape in microwave applications
JP4817951B2 (en) Thick film conductor composition and use thereof in LTCC circuits and devices
JP5212298B2 (en) Power module substrate, power module substrate with cooler, power module, and method of manufacturing power module substrate
JP5304508B2 (en) Conductive composition
JP5844299B2 (en) Bonding material, bonding structure
JPWO2008047918A1 (en) Electronic device package structure and package manufacturing method
US20210259105A1 (en) Ceramic substrate and electronic component-embedded module
US9824900B2 (en) Bonded structure and production method therefor
JP5707885B2 (en) Power module substrate, power module substrate with cooler, power module, and method of manufacturing power module substrate
JP5948444B2 (en) Circuit board and circuit board manufacturing method
WO2018139209A1 (en) Joining material and joined body
JP5948432B2 (en) Wiring board and manufacturing method thereof
CN110692110A (en) Composition for forming conductor and method for producing the same, and chip resistor
KR100744855B1 (en) High Thermal Cycle Conductor System
US7740725B2 (en) Thick film conductor paste composition for LTCC tape in microwave applications
JP5585407B2 (en) Conductive composition
KR102297961B1 (en) Thermal and conductive path-forming adhesive including low melting point filler and high melting point filler and soldering method using same
JP2000044332A (en) Glass ceramic composition for wiring board and package for housing semiconductor element
JP2005191307A (en) Wiring board
JP4974421B2 (en) Manufacturing method of multilayer wiring board
JPH06279097A (en) Production of sintered glass ceramic and sintered glass ceramic
JP2005064339A (en) Wiring board and semiconductor element packaging wiring board
JPH09191063A (en) Circuit board, its manufacture, electronic device mounting element and green sheet
JP2001093327A (en) Cu BASED CONDUCTOR COMPOSITION AND GLASS CERAMIC WIRING BOARD AS WELL AS ITS MANUFACTURING METHOD

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160606

R151 Written notification of patent or utility model registration

Ref document number: 5948444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees