JPWO2003023202A1 - 排ガス浄化装置の劣化状態評価装置 - Google Patents
排ガス浄化装置の劣化状態評価装置 Download PDFInfo
- Publication number
- JPWO2003023202A1 JPWO2003023202A1 JP2003527247A JP2003527247A JPWO2003023202A1 JP WO2003023202 A1 JPWO2003023202 A1 JP WO2003023202A1 JP 2003527247 A JP2003527247 A JP 2003527247A JP 2003527247 A JP2003527247 A JP 2003527247A JP WO2003023202 A1 JPWO2003023202 A1 JP WO2003023202A1
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- catalyst
- adsorption
- hydrocarbon
- humidity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0835—Hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
- F01N11/007—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0814—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1454—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
- F01N2550/03—Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/02—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
- F01N2560/025—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/02—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
- F01N2560/028—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting humidity or water
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0418—Air humidity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1454—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
- F02D41/1456—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Exhaust Gas After Treatment (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
炭化水素吸着触媒2から成る排ガス浄化装置の下流側に湿度センサ4を設け、排ガス浄化装置の下流側及び上流側のうちの少なくとも下流側に空燃比センサ5を設ける。湿度センサ4の出力データを用いて炭化水素吸着触媒2(排ガス浄化装置)の炭化水素吸着材による炭化水素吸着能力を評価し、空燃比センサ5の出力データを用いて炭化水素吸着触媒2の触媒作用による未燃ガス浄化能力を評価し、それらの評価結果に基づいて、排ガス浄化装置の全体的な劣化状態を評価する。これにより、炭化水素吸着触媒2を備える排ガス浄化装置の全体的な劣化状態の評価を適正に行うことができる。
Description
技術分野
本発明は、炭化水素吸着触媒を含む排ガス浄化装置の劣化状態を評価する装置に関する。
背景技術
内燃機関の排気通路には、一般に、三元触媒等から構成された触媒装置が備えられ、該触媒装置により排ガス中の炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)等の未燃ガスを触媒作用(酸化・還元作用)により浄化するようにしている。しかるに、この種の触媒装置は、内燃機関の冷間始動時のように、該触媒装置の温度が低い状態では活性化しておらず、このような状態では特に炭化水素の排出量が多くなりやすい。
このため、ゼオライト等の炭化水素吸着材と三元触媒とを複合的に備えたハイブリッド型の炭化水素吸着触媒を排ガス通路に備えたものが知られている。この炭化水素吸着触媒は、例えば、ハニカム構造の担体表面に、炭化水素吸着材としてのゼオライトをコーティングし、さらに、三元触媒の構成要素としての白金、パラジウム、ロジウム等の貴金属を担持させることにより構成される。尚、ゼオライト等の炭化水素吸着材は、比較的低温状態(例えば100℃以下)では排ガス中の炭化水素を吸着する機能を有し、ある程度の温度(例えば100〜250℃)以上に加熱されると、吸着した炭化水素を脱離するという作用を呈する。
一方、近年では排ガス浄化装置の交換の必要性等を把握するために、排ガス浄化装置の劣化状態を把握することが望まれており、このことは炭化水素吸着触媒を備えた排ガス浄化装置においても同様である。そして、炭化水素吸着触媒の劣化状態を評価する技術としては、従来、例えば特開平10−159543号公報に見られるものが知られている。この技術では、炭化水素吸着触媒を備えた排ガス浄化装置の上流側及び下流側にそれぞれ温度センサが設けられ、炭化水素吸着触媒が劣化していない新品状態であるとして上流側の温度センサの検出温度から排ガス浄化装置の下流側の温度が推定される。そして、この推定温度と下流側の温度センサの検出温度との差に基づいて、炭化水素吸着触媒の劣化状態が評価される。
しかしながら、この技術は、炭化水素吸着触媒の炭化水素吸着材による炭化水素の吸着能力の劣化状態を評価するものであり、排ガス浄化装置の三元触媒による浄化能力を含めて該排ガス浄化装置の全体的な劣化状態を評価するものではない。このため、例えば炭化水素吸着触媒の炭化水素吸着能力よりも三元触媒の劣化が早期に生じたような場合には、特開平10−159543号公報の技術により、炭化水素吸着触媒の劣化(交換が必要な程度の劣化)が把握された時点では、炭化水素吸着触媒の全体の本来の排ガス浄化能力は既に失われているという事態が生じることとなる。つまり、特開平10−159543号公報のものでは、炭化水素吸着触媒を備えた排ガス浄化装置の全体的な劣化状態を適正に評価することができない。
また、排ガス浄化装置の上流側及び下流側の温度センサの検出温度が環境温度等の様々の要因の影響を受け易いため、炭化水素吸着触媒の炭化水素吸着材の劣化状態を精度よく評価することも困難である。さらに、排ガス浄化装置の上流側及び下流側の両者に温度センサが必要となるため、コスト的にも不利である。
尚、三元触媒等からなる触媒装置の劣化状態を評価する技術は種々の技術が公知となっている(例えば本願出願人による特開平8−144744号公報や、特開2001−182528号公報、PCT国際公開公報WO/01/46569/A1等)。これらの技術は、基本的には、触媒装置の下流側に備えた酸素濃度センサ等の空燃比センサ、あるいは触媒装置の下流側及び上流側の両者に備えた空燃比センサの出力データを用いて触媒装置の劣化状態(触媒による未燃ガスの浄化能力の劣化状態)を評価するものである。
本発明はかかる背景に鑑みてなされたものであり、炭化水素吸着触媒を備える排ガス浄化装置の全体的な劣化状態の評価を適正に行うことができる劣化状態評価装置を提供することを目的とするものである。
発明の開示
本願発明者等の知見によれば、炭化水素吸着触媒の構成要素の一つであるゼオライト等の炭化水素吸着材は、炭化水素だけでなく排ガス中の水分も吸着する性質を有する。そして、その水分の吸着能力(吸着可能な最大の水分量)は、炭化水素の吸着能力(吸着可能な最大の炭化水素量)と高い相関性を有し、炭化水素吸着材の劣化の進行に伴い、水分の吸着能力と炭化水素の吸着能力とは同じように低下する。そして、例えば炭化水素吸着触媒の下流側に湿度センサを設けたとき、その湿度センサの出力が表す湿度(検出湿度)、すなわち炭化水素吸着触媒の下流側の湿度は、本願発明者等の知見によれば、内燃機関の運転開始後、次のように推移する。すなわち、内燃機関の運転開始直後は、排ガス中に含まれる水分が炭化水素吸着材により吸着されることで、基本的には炭化水素吸着触媒の下流側の湿度は低湿度側で大略一定レベルになる。そして、炭化水素吸着材による水分の吸着が進行して、その吸着が飽和すると、炭化水素吸着材が排ガス中の水分を吸着することができなくなるため、炭化水素吸着触媒の下流側の湿度は、炭化水素吸着材によって吸着されずに炭化水素吸着触媒を通過する排ガス中に含まれる水分によって高湿度側に向かって単調的に増加していく。従って、このような炭化水素吸着触媒の下流側の湿度を検出する湿度センサの出力のデータを用いることで、炭化水素吸着触媒の炭化水素吸着材による水分の吸着状態、ひいては炭化水素の吸着状態を把握できる。より具体的には、炭化水素吸着触媒の下流側の湿度センサにより検出される湿度が、単調増加状態となるタイミングを該炭化水素吸着触媒の炭化水素吸着材による水分の吸着が飽和したタイミングとして把握できる。このため、該炭化水素吸着触媒の炭化水素吸着能力の劣化状態を評価することが可能となる。
また、詳細は後述するが、炭化水素吸着触媒の下流側だけでなく、上流側の湿度をも湿度センサにより検出するようにしたときには、炭化水素吸着触媒の下流側及び上流側の両者の湿度センサの出力データを用いて、炭化水素吸着材による水分の吸着状態をより正確に把握することが可能である。これは、例えば前記のように下流側の湿度センサの出力データに基づいて、炭化水素吸着触媒の炭化水素吸着材による水分の吸着の飽和タイミングを把握できると同時に、上流側の湿度センサの出力データに基づいて、炭化水素吸着材による水分の吸着が実質的に開始するタイミングを把握できるからである。その結果、炭化水素吸着触媒の炭化水素吸着能力をより好適に評価することが可能となる。
また、炭化水素吸着触媒の触媒作用による未燃ガス浄化能力の劣化状態の評価については、触媒装置の劣化状態を評価する従来の技術(触媒装置の下流側等に空燃比センサを備える技術)を用いて、炭化水素吸着触媒の未燃ガス浄化能力の劣化状態を評価することが可能である。さらに、炭化水素吸着触媒とその下流側もしくは上流側に該炭化水素吸着触媒とは別に三元触媒等からなる触媒装置を備えた場合であっても、該炭化水素吸着触媒と触媒装置とを合わせた全体的な未燃ガス浄化能力の劣化状態を上記と同様に空燃比センサを用いて評価することが可能である。尚、以下に説明する本発明を含めて、本願明細書では、“未燃ガス”という用語は、本来の意味での可燃性ガス(CO、HC等)よりも広い概念で使用しており、内燃機関の排ガス中のNOx等を含めた“浄化対象成分”(浄化の対象とするガス成分)を総称的に意味するものとして使用される。
本発明の排ガス浄化装置の劣化状態評価装置は、上述した事項を考慮してなされたものであり、前記の目的を達成するための基本的発明として4種類の態様がある。その第1の態様と第2の態様とは、内燃機関の排気通路に設けられ、該排気通路を流れる排ガス中の炭化水素を吸着する機能と該排ガス中の未燃ガスを触媒作用により浄化する機能とを有する炭化水素吸着触媒から成る排ガス浄化装置の劣化状態を評価する装置である。そして、本発明の第1の態様は、前記炭化水素吸着触媒の下流側に設けられ、前記排ガスの湿度に応じた出力を発生する湿度センサと、前記炭化水素吸着触媒の上流側及び下流側のうちの少なくとも下流側に設けられ、前記排ガスの空燃比に応じた出力を発生する空燃比センサと、前記湿度センサの出力データを用いて前記炭化水素吸着触媒の炭化水素吸着能力を評価する吸着能力評価手段と、前記空燃比センサの出力データを用いて前記炭化水素吸着触媒の未燃ガス浄化能力を評価する浄化能力評価手段とを備え、該吸着能力評価手段及び浄化能力評価手段の両者の評価結果に基づいて、前記排ガス浄化装置の劣化状態を評価するようにしたことを特徴とするものである(第1発明)。
また、第2の態様は、前記炭化水素吸着触媒の下流側及び上流側にそれぞれ設けられ、前記排ガスの湿度に応じた出力をそれぞれ発生する下流側湿度センサ及び上流側湿度センサと、前記炭化水素吸着触媒の上流側及び下流側のうちの少なくとも下流側に設けられ、前記排ガスの空燃比に応じた出力を発生する空燃比センサと、前記上流側湿度センサ及び下流側湿度センサの出力データを用いて前記炭化水素吸着触媒の炭化水素吸着能力を評価する吸着能力評価手段と、前記空燃比センサの出力データを用いて前記炭化水素吸着触媒の未燃ガス浄化能力を評価する浄化能力評価手段とを備え、該吸着能力評価手段及び浄化能力評価手段の両者の評価結果に基づいて、前記排ガス浄化装置の劣化状態を評価するようにしたことを特徴とするものである(第2発明)。
前記本発明の第1の態様(第1発明)によれば、炭化水素吸着触媒からなる排ガス浄化装置の下流側に湿度センサを設けることで、前述のように該湿度センサの出力データを用いて、炭化水素吸着触媒の炭化水素吸着材による水分の吸着状態、ひいては炭化水素の吸着状態を把握することができるため、前記吸着能力評価手段により該湿度センサの出力データを用いて炭化水素吸着触媒の炭化水素吸着能力を評価することができる。また、前記第2の態様(第2発明)によれば、炭化水素吸着触媒からなる排ガス浄化装置の下流側及び上流側にそれぞれ湿度センサを設けることで、それらの上流側及び下流側湿度センサの出力データを用いて、炭化水素吸着触媒の炭化水素吸着材による水分の吸着状態、ひいては炭化水素の吸着状態をより正確に把握することができるため、前記吸着能力評価手段により該湿度センサの出力データを用いて炭化水素吸着触媒の炭化水素吸着能力をより好適に評価することができる。
さらに、本発明の第1及び第2の態様(第1及び第2発明)では、いずれの態様でも、炭化水素吸着触媒の少なくとも下流側に空燃比センサを備えることで、該空燃比センサの出力データを用いて、炭化水素吸着触媒の触媒作用による未燃ガス浄化能力を前記浄化能力評価手段により評価することができる。そして、本発明の第1及び第2の態様は、これらの評価手段の両者の評価結果に基づいて、排ガス浄化装置の劣化状態を評価するので、炭化水素吸着触媒からなる排ガス浄化装置の全体的な劣化状態を適正に評価することができる。
この場合、例えば、排ガス浄化装置の所定の劣化状態(例えば排ガス浄化装置又はその炭化水素吸着触媒の交換が必要な程度の劣化状態)を検知する場合には、炭化水素吸着触媒の炭化水素吸着能力と未燃ガス浄化能力とのいずれかの能力があらかじめ定めた所定度合いの低下を生じたときに、排ガス浄化装置の全体が劣化したと判断するようにすればよい。
より具体的には、前記第1あるいは第2発明において、例えば前記吸着能力評価手段が、前記炭化水素吸着触媒の炭化水素吸着能力を高低2段階に分類して評価する手段であると共に、前記浄化能力評価手段は、前記炭化水素吸着触媒の未燃ガス浄化能力を高低2段階に分類して評価する手段であるときには、前記吸着能力評価手段により炭化水素吸着触媒の炭化水素吸着能力が高いと評価され、且つ前記浄化能力評価手段により炭化水素吸着触媒の未燃ガス浄化能力が高いと評価された場合には、前記排ガス浄化装置が劣化していないと判断し、炭化水素吸着能力及び未燃ガス浄化能力のいずれか一方が低いと評価された場合に、前記排ガス浄化装置が劣化していると判断する(第9発明)。これにより、炭化水素吸着能力及び未燃ガス浄化能力のいずれか一方が劣化すれば、排ガス浄化装置が劣化していると判断される。従って、排ガス浄化装置が劣化していると判断される前に、炭化水素吸着能力及び未燃ガス浄化能力のいずれか一方が既に劣化していたような事態が発生するのを防止できる。
次に、本発明の排ガス浄化装置の劣化状態の評価装置の第3及び第4の態様は、内燃機関の排気通路に設けられ、該排気通路を流れる排ガス中の炭化水素を吸着する機能と該排ガス中の未燃ガスを触媒作用による浄化する機能とを有する炭化水素吸着触媒と、該炭化水素吸着触媒とは独立して前記排気通路に設けられ、未燃ガスを触媒作用により浄化する触媒装置とを備えた排ガス浄化装置の劣化状態を評価する装置である。そして、本発明の第3の態様は、前記炭化水素吸着触媒の下流側に設けられ、前記排ガスの湿度に応じた出力を発生する湿度センサと、前記排ガス浄化装置の上流側及び下流側のうちの少なくとも下流側に設けられ、前記排ガスの空燃比に応じた出力を発生する空燃比センサと、前記湿度センサの出力データを用いて前記炭化水素吸着触媒の炭化水素吸着能力を評価する吸着能力評価手段と、前記空燃比センサの出力データを用いて前記排ガス浄化装置の全体の未燃ガス浄化能力を評価する浄化能力評価手段とを備え、該吸着能力評価手段及び浄化能力評価手段の両者の評価結果に基づいて該排ガス浄化装置の劣化状態を評価するようにしたことを特徴とするものである(第3発明)。
また、本発明の第4の態様は、前記炭化水素吸着触媒の下流側及び上流側にそれぞれ設けられ、前記排ガスの湿度に応じた出力をそれぞれ発生する下流側湿度センサ及び上流側湿度センサと、前記排ガス浄化装置の上流側及び下流側のうちの少なくとも下流側に設けられ、前記排ガスの空燃比に応じた出力を発生する空燃比センサと、前記湿度センサの出力データを用いて前記炭化水素吸着触媒の炭化水素吸着能力を評価する吸着能力評価手段と、前記空燃比センサの出力データを用いて前記排ガス浄化装置の全体の未燃ガス浄化能力を評価する浄化能力評価手段とを備え、該吸着能力評価手段及び浄化能力評価手段の両者の評価結果に基づいて前記排ガス浄化装置の劣化状態を評価するようにしたことを特徴とするものである(第4発明)。
前記本発明の第3及び第4の態様(第3及び第4発明)では、排ガス浄化装置は、炭化水素吸着触媒と触媒装置とをそれぞれ独立に備えるものであり、触媒装置は、炭化水素吸着触媒の例えば上流側、あるいは下流側に配置されることとなる。そして、本発明の第3の態様(第3発明)では、炭化水素吸着触媒の下流側(触媒装置が炭化水素吸着触媒の下流側にある場合には、炭化水素吸着触媒とその下流側の触媒装置との間の箇所)に湿度センサを設けることで、該湿度センサの出力データを用いて、炭化水素吸着触媒の炭化水素吸着材による水分の吸着状態、ひいては炭化水素の吸着状態を把握することができるため、前記吸着能力評価手段により該湿度センサの出力データを用いて炭化水素吸着触媒の炭化水素吸着能力を評価することができる。また、本発明の第4の態様(第4発明)では、炭化水素吸着触媒の下流側(触媒装置が炭化水素吸着触媒の下流側にある場合には、炭化水素吸着触媒とその下流側の触媒装置との間の箇所)に下流側湿度センサを設けると共に、炭化水素吸着触媒の上流側(触媒装置が炭化水素吸着触媒の上流側にある場合には、炭化水素吸着材とその上流側の触媒装置との間の箇所)に上流側湿度センサを設けることで、炭化水素吸着触媒の炭化水素吸着材による水分の吸着状態、ひいては炭化水素の吸着状態をより正確に把握することができるため、前記吸着能力評価手段により該湿度センサの出力データを用いて炭化水素吸着触媒の炭化水素吸着能力をより好適に評価することができる。
また、本発明の第3及び第4の態様のいずれの態様でも、排ガス浄化装置の全体の少なくとも下流側に空燃比センサを備えることで、該空燃比センサの出力データを用いて、炭化水素吸着触媒の触媒作用による未燃ガス浄化能力と触媒装置による未燃ガス浄化能力とを合わせた排ガス浄化装置の全体的な未燃ガス浄化能力を前記浄化能力評価手段により評価することができる。そして、本発明の第3及び第4の態様は、前記第1及び第2の態様と同様、これらの評価手段の両者の評価結果に基づいて、排ガス浄化装置の劣化状態を評価するので、炭化水素吸着触媒と触媒装置とを備えた排ガス浄化装置の全体的な劣化状態を適正に評価することができる。
この場合、例えば、排ガス浄化装置の所定の劣化状態(例えば排ガス浄化装置又はその炭化水素吸着触媒の交換が必要な程度の劣化状態)を検知する場合には、前記第1あるいは第2の態様と同様、炭化水素吸着触媒の炭化水素吸着能力と排ガス浄化装置の全体の未燃ガス浄化能力とのいずれかの能力があらかじめ定めた所定度合いの低下を生じたときに、排ガス浄化装置の全体が劣化したと判断するようにすればよい。
より具体的には、前記第3あるいは第4発明において、例えば前記吸着能力評価手段が、前記炭化水素吸着触媒の炭化水素吸着能力を高低2段階に分類して評価する手段であると共に、前記浄化能力評価手段は、前記排ガス浄化装置の全体の未燃ガス浄化能力を高低2段階に分類して評価する手段であるときには、前記吸着能力評価手段により炭化水素吸着触媒の炭化水素吸着能力が高いと評価され、且つ前記浄化能力評価手段により排ガス浄化装置の全体の未燃ガス浄化能力が高いと評価された場合には、該排ガス浄化装置が劣化していないと判断し、炭化水素吸着能力及び未燃ガス浄化能力のいずれか一方が低いと評価された場合に、該排ガス浄化装置が劣化していると判断する(第10発明)。これにより、炭化水素吸着触媒の炭化水素吸着能力と、排ガス浄化装置の全体の未燃ガス浄化能力のいずれか一方が劣化すれば、排ガス浄化装置が劣化していると判断される。従って、排ガス浄化装置が劣化していると判断される前に、炭化水素吸着触媒とこれと独立した触媒装置とのいずれか一方が既に劣化していたような事態が発生するのを防止できる。
前述したように炭化水素吸着触媒の下流側に湿度センサを備える前記第1の態様(第1発明もしくはこれに前記第9発明を複合させたもの)あるいは第3の態様(第3発明もしくはこれに前記第10発明を複合させたもの)では、特に、炭化水素吸着触媒の炭化水素吸着能力の評価に関しては、前記内燃機関の運転開始時から前記炭化水素吸着触媒に前記排ガスを介して与えられた積算水分量を表す劣化評価パラメータを逐次生成する手段を備え、前記吸着能力評価手段は、前記内燃機関の運転開始後、前記湿度センサの出力を逐次監視しつつ、該湿度センサの出力データにより表される湿度が単調増加状態となるタイミングを検出し、その検出したタイミングにおける前記劣化評価パラメータの値を所定の閾値と比較することにより、前記炭化水素吸着触媒の炭化水素吸着能力を評価することが好適である(第5発明)。
すなわち、炭化水素吸着触媒の下流の湿度センサの出力データにより表される湿度(検出湿度)は、前述したように内燃機関の運転開始後、炭化水素吸着触媒の炭化水素吸着材による水分の吸着が飽和するまでは、大略一定レベルとなるが、水分の吸着の飽和後には、湿度センサによる検出湿度は単調的に増加していく。従って、該湿度センサの出力データにより表される湿度が単調増加状態となるタイミングを検出することで、炭化水素吸着触媒による水分の吸着が飽和するタイミング(このタイミングは炭化水素吸着材による炭化水素の吸着が飽和するタイミングでもある)を把握されることととなる。また、内燃機関の運転開始後、上記タイミング(以下、ここでは吸着飽和タイミングという)までに炭化水素吸着触媒に供給された積算水分量が、炭化水素吸着触媒が現在の炭化水素吸着能力で吸着可能な最大水分量に対応するものとなり、これは、炭化水素吸着触媒の炭化水素吸着能力を表す。つまり、前記吸着飽和タイミングまでの積算水分量は、炭化水素吸着触媒の炭化水素吸着能力の低下に伴い少なくなる。
そこで、本発明の第1及び第3の態様では、前記積算水分量を表す劣化評価パラメータを内燃機関の運転開始時から逐次生成する一方、湿度センサの出力データに基づいて上記吸着飽和タイミングを検出する。そして、この検出した吸着飽和タイミングにおける前記劣化評価パラメータの値を所定の閾値と比較することにより、炭化水素吸着触媒の炭化水素吸着能力を評価する。これにより、該炭化水素吸着触媒の炭化水素吸着能力を適正に評価することが可能となる。
尚、この場合、上記閾値は、内燃機関の運転開始時における炭化水素吸着触媒の温度状態に応じて設定することが好適である。
さらに、上記のように、吸着飽和タイミングを検出する第5発明では、前記吸着能力評価手段は、前記内燃機関の運転開始後、前記湿度センサの出力データにより表される湿度が極小値を採る状態を逐次検索し、該湿度が最新の極小値から所定量以上、増加した時点を前記湿度センサの出力データにより表される湿度が単調増加状態となるタイミングとして検出することが好適である(第6発明)。
すなわち、炭化水素吸着触媒の下流側の湿度センサにより検出される湿度は、内燃機関の運転開始前における排気通路内の湿度分布のばらつき等によって上下に変動することがある。このため、第6発明では、該湿度センサにより検出される湿度が極小値を採る状態を逐次検索し、該湿度が最新の極小値(最後に検索された極小値)から、所定量以上、増加した時点を前記吸着飽和タイミングとして検出する。これにより、前記単調増加状態が生じる前(吸着飽和タイミングの前)における湿度の変動の影響を補償して、該吸着飽和タイミングを適正に検出することができる。その結果、前記劣化評価パラメータに基づく炭化水素吸着触媒の炭化水素吸着能力の評価の信頼性を高めることができる。
また、前述したように炭化水素吸着触媒の下流側及び上流側にそれぞれ下流側湿度センサ及び上流側湿度センサを備える前記第2の態様(第2発明もしくはこれに前記第11発明を複合させたもの)あるいは第4の態様(第4発明もしくはこれに前記第12発明を複合させたもの)では、特に、炭化水素吸着触媒の炭化水素吸着能力の評価に関しては、前記内燃機関の運転開始後、前記上流側湿度センサの出力を逐次監視しつつ、該上流側湿度センサの出力データにより表される湿度が単調増加状態となるタイミングを検出する第1検出手段と、前記内燃機関の運転開始後、前記下流側湿度センサの出力を逐次監視しつつ、該下流側湿度センサの出力データにより表される湿度が単調増加状態となるタイミングを検出する第2検出手段と、前記第1検出手段により検出されたタイミングから、前記第2検出手段により検出されたタイミングまでに前記炭化水素吸着触媒に前記排ガスを介して与えられた積算水分量を表す劣化評価パラメータを生成する手段とを備える。そして、前記吸着能力評価手段は、前記劣化評価パラメータの値を所定の閾値と比較することにより、前記炭化水素吸着触媒の炭化水素吸着能力を評価する(第7発明)。
すなわち、内燃機関の運転停止中に炭化水素吸着触媒の炭化水素吸着材は、その周囲の水分を多少吸着するため、内燃機関の運転開始時における炭化水素吸着触媒の近傍の湿度は、該炭化水素吸着触媒の上流側を含めて比較的低湿度になっている。また、内燃機関の運転を開始しても、内燃機関で生成された水分を含んだ排ガスが炭化水素吸着触媒の入り口近傍に達するまでには多少の遅れを伴う。このため、炭化水素吸着触媒の上流側の湿度(前記上流側湿度センサの出力データにより表される湿度)は、内燃機関の運転開始直後は、比較的短い時間、低湿度になっており、その後、高湿度の排ガスが炭化水素吸着触媒の入り口近傍に達することで該炭化水素吸着触媒の上流側の湿度が低湿度側から、高湿度側に単調増加する状態に変転する。この場合、炭化水素吸着触媒の上流側の湿度が単調増加状態なるタイミングは、内燃機関の排気系の構成や炭化水素吸着触媒の上流側に備えた触媒装置による吸湿等の影響によってばらつきを生じることがある。そして、このような場合には、炭化水素吸着触媒の炭化水素吸着材による実質的な排ガス中の水分の吸着の開始タイミングがばらつきを生じることとなる。このため、このような場合には、炭化水素吸着触媒による水分の吸着能力ひいては炭化水素吸着能力をより適正に評価する上では、炭化水素吸着触媒の上流側の湿度が単調増加状態となって該炭化水素吸着触媒の炭化水素吸着材による実質的な水分の吸着が開始するタイミング(以下、ここでは吸着開始タイミングという)を、炭化水素吸着触媒の上流側に備えた上流側湿度センサを用いて検出し、その検出した吸着開始タイミングから、下流側湿度センサが検出する湿度が単調増加状態となる吸着飽和タイミングまでに炭化水素吸着触媒に排ガスを介して与えられた積算水分量を表すデータを劣化評価用パラメータとして取得することが好ましい。
このため、第7発明では、前記第2検出手段によって、下流側湿度センサが検出する湿度が単調増加状態となる吸着飽和タイミングを検出することに加えて、前記第1検出手段によって、上流側湿度センサが検出する湿度が単調増加状態をなる吸着開始タイミングを検出する。そして、該吸着開始タイミングから吸着飽和タイミングまでに排ガスを介して炭化水素吸着触媒に与えられた積算水分量を表す劣化評価パラメータを求め、この劣化評価パラメータの値を所定の閾値と比較することにより、前記炭化水素吸着触媒の炭化水素吸着能力を評価する。このようにすることにより、吸着開始タイミングのばらつきが生じても、上記劣化評価パラメータは、炭化水素吸着触媒の炭化水素吸着材が吸着可能な水分量を表すものとしてのとしての信頼性が高まる。その結果、該劣化評価パラメータに基づいて、炭化水素吸着触媒の炭化水素吸着能力をより高い信頼性で適正に評価することが可能となる。
さらに、上記のように吸着開始タイミング及び吸着飽和タイミングを検出する第7発明においては、前記第1検出手段は、前記内燃機関の運転開始後、前記上流側湿度センサの出力データにより表される湿度が極小値を採る状態を逐次検索し、該湿度が最新の極小値から第1所定量以上、増加した時点を前記上流側湿度センサの出力データにより表される湿度が単調増加状態となるタイミングとして検出し、前記第2検出手段は、前記内燃機関の運転開始後、前記下流側湿度センサの出力データにより表される湿度が極小値を採る状態を逐次検索し、該湿度が最新の極小値から第2所定量以上、増加した時点を前記下流側湿度センサの出力データにより表される湿度が単調増加状態となるタイミングとして検出することが好適である(第8発明)。
すなわち、前記第6発明に関して説明した場合と同様に、炭化水素吸着触媒の下流側の湿度センサ及び上流側の湿度センサによりそれぞれ検出される湿度は、内燃機関の運転開始前における排気通路内の湿度分布のばらつき等によって上下に変動することがある。このため、第8発明では、第2検出手段は、前記第6発明と同様、下流側湿度センサにより検出される湿度が極小値を採る状態を逐次検索し、該湿度が最新の極小値(最後に検索された極小値)から、第2所定量以上、増加した時点を前記吸着飽和タイミングとして検出する。同様に、前記第1検出手段は、上流側湿度センサにより検出される湿度が極小値を採る状態を逐次検索し、該湿度が最新の極小値(最後に検索された極小値)から、第1所定量以上、増加した時点を前記吸着開始タイミングとして検出する。これにより、炭化水素吸着触媒の下流側の湿度の吸着飽和タイミングの前における変動の影響や、炭化水素吸着触媒の上流側の湿度の吸着開始タイミングの前における変動の影響を補償して、該吸着飽和タイミング及び吸着開始タイミングを適正に検出することができる。その結果、これらのタイミングの間の積算水分量を表す前記劣化評価パラメータに基づく炭化水素吸着触媒の炭化水素吸着能力の評価の信頼性を高めることができる。
尚、本発明の第1および第2の態様において、前記排ガス浄化装置の未燃ガス浄化能力の評価は、触媒装置自体の劣化状態を評価する従来技術と同様に前記空燃比センサの出力データを用いて行うようにすればよい。前記した第1〜第10発明のいずれにおいても、例えば、本願出願人によるPCT国際公開公報WO/01/46569/A1に開示された技術を用いることが好適である。
この場合、本発明の第1の態様あるいは第2の態様では、前記内燃機関の運転開始後、前記炭化水素吸着触媒の下流側に設けられた前記空燃比センサの出力を所定の目標値に収束させるように該内燃機関で燃焼させる混合気の空燃比を制御する手段を備え、前記浄化能力評価手段は、該空燃比の制御が行われている際に、前記空燃比センサの出力の複数の時系列データを変数成分として有する所定の評価用線形関数の値のばらつき度合いを表すばらつき度合いパラメータを求め、その求めたばらつき度合いパラメータを所定の閾値と比較することにより、前記炭化水素吸着触媒の未燃ガス浄化能力を評価するようにすればよい。
また、本発明の第3の態様あるいは第4の態様では、前記内燃機関の運転開始後、前記排ガス浄化装置の下流側に設けられた前記空燃比センサの出力を所定の目標値に収束させるように該内燃機関で燃焼させる混合気の空燃比を制御する手段を備え、前記浄化能力評価手段は、該空燃比の制御が行われている際に、前記空燃比センサの出力の複数の時系列データを変数成分として有する所定の評価用線形関数の値のばらつき度合いを表すばらつき度合いパラメータを求め、その求めたばらつき度合いパラメータを所定の閾値と比較することにより、前記排ガス浄化装置の全体の未燃ガス浄化能力を評価するようにすればよい。
発明を実施するための最良の形態
本発明の第1実施形態を図1〜図8を参照して説明する。尚、本実施形態は、本発明の第1の態様の実施形態である。
図1は本実施形態の装置の全体的システム構成を示すブロック図であり、図中1は、自動車やハイブリッド車に搭載されるエンジン(内燃機関)である。このエンジン1が燃料及び空気の混合気の燃焼により生成する排ガスは、本発明における排ガス浄化装置としての炭化水素吸着触媒2(以下、HC吸着触媒2という)を備えた排ガス通路3を介して排出される。ここで、HC吸着触媒2は、詳細な図示は省略するが、前述したようにハニカム構造の担体にゼオライト等の炭化水素吸着材をコーティングし、さらに、三元触媒の構成要素である白金、パラジウム、ロジウム等の貴金属を担持させたものである。
そして、排気通路3には、HC吸着触媒2の下流側に、湿度センサ4と空燃比センサとしての酸素濃度センサ(O2センサ)5とが設けられている。湿度センサ4は、HC吸着触媒2を通過した排ガスの湿度(より詳しくは相対湿度)に応じた出力を発生し、O2センサ5はHC吸着触媒2を通過した排ガス中の酸素濃度に応じた出力を発生する。
この場合、本実施形態における湿度センサ4は、例えば図2に示すように、その出力電圧が湿度(相対湿度)の増加に伴い、ほぼリニアに減少していくような出力特性をもつセンサである。
また、O2センサ5が検出する排ガス中の酸素濃度は、エンジン1で燃焼した混合気の空燃比に応じたものとなるので、O2センサ5の出力は、別の言い方をすれば排ガスの空燃比(詳しくはその排ガスを燃焼に生成した混合気の空燃比)に応じたものとなる。この場合、O2センサ5の出力は、例えば図3に実線aで示すように、排ガスの空燃比が理論空燃比近傍の比較的狭い空燃比域Δに存するときに該空燃比に応じて変化するものとなる。
さらに、排気通路3には、HC吸着触媒2の上流側に、広域空燃比センサ6が設けられている。この広域空燃比センサ6は、例えば本願出願人が特開平4−369471号公報あるいは米国特許5391282にて詳細に開示した空燃比センサであり、図3に実線bで示すように、O2センサ5よりも空燃比の広い領域に渡って排ガスの空燃比に応じて出力レベルがほぼリニアに変化するようなセンサである(以下、広域空燃比センサ6をLAFセンサ6という)。
本実施形態の装置は、上述した構成の他、図1に示すように、エンジン1の運転制御を行うコントローラ7(以下、ECU7という)と、HC吸着触媒2の劣化状態を評価するための処理を実行する劣化評価処理装置8と、その劣化状態の評価結果に応じた報知を行うための劣化報知器9とを備えている。ここで、前記ECU7及び劣化評価処理装置8は、マイクロコンピュータ等により構成されたものである。また、前記劣化報知器9は、ランプやブザー、あるいは文字、図形等を表示可能な表示器などにより構成されたものである。
前記ECU7には、前記O2センサ5及びLAFセンサ6の出力が与えられる他、図示しないセンサからエンジン1の回転数NE、機関温度TW(具体的にはエンジン1の冷却水温)等の検出データが与えられると共に、図示しない運転スイッチからエンジン1の運転開始指令信号や運転停止指令信号が与えられる。そして、ECU7は、与えられた検出データや指令信号、あらかじめ定められた制御プログラム等に基づいてエンジン1の運転制御(空燃比制御等)を行う。この運転制御は、エンジン1の図示しないスロットル弁機構、燃料噴射装置、点火装置、スタータモータ等を介して行われる。
この場合、HC吸着触媒2の劣化状態の評価に関連した処理として、ECU7は、エンジン1の通常的な運転中に、前記O2センサ5及びLAFセンサ6の出力データを用いてO2センサ5の出力を所定の目標値に収束させるようにエンジン1で燃焼させる混合気の空燃比を制御する処理を実行する。この空燃比制御の処理は、HC吸着触媒2の触媒作用(酸化・還元反応)による未燃ガス(HC、CO、NOx等)の最適な浄化性能を確保するためのものである。該空燃比制御の処理は、本願出願人によるPCT国際公開公報WO/01/46569/A1等にて詳細に説明されているので、ここでは、詳細な説明を省略するが、その概要は次の通りである。すなわち、O2センサ5及びLAFセンサ6の出力データや、あらかじめ定めた排気系のモデル等に基づくスライディングモード制御の処理等によりO2センサ5の出力を所定の目標値に収束させるように、LAFセンサ6の箇所における排ガスの目標空燃比が逐次生成され、その目標空燃比にLAFセンサ6の出力(空燃比の検出値)を収束させるように適応制御の処理等によってエンジン1の燃料噴射量が調整される。
また、ECU7は、本発明における劣化評価パラメータを逐次求める手段としての機能を有しており、ECU7が所謂TDCに同期したタイミング(エンジン1の回転速度に同期したタイミング)で逐次生成するエンジン1の燃料噴射量の指令値をエンジン1の運転開始時から逐次積算(累積加算)してなる積算値を、エンジン1の運転開始時からHC吸着触媒2に与えた積算水分量を表す劣化評価パラメータとして逐次求める処理を実行する。すなわち、エンジン1に供給される燃料の量と、その燃料及び空気の混合気の燃焼により排ガス中に含まれる水分の量との間にはほぼ一定の相関関係があり、エンジン1の運転開始時からHC吸着触媒2に排ガスを介して与えられる積算水分量は、燃料噴射量の指令値の積算値に応じたものとなる。このため、本実施形態では、燃料噴射量の指令値の積算値(以下、積算燃料噴射量Σtcylと称する)を劣化評価パラメータとしてECU7により算出するようにしている。尚、積算水分量を表す劣化評価パラメータとしては、燃料噴射量の指令値の積算値に限らず、例えばエンジン1の吸入空気量の検出値もしくは推定値の積算値を用いるようにしてもよい。また、例えばエンジン1のアイドリング状態では、エンジン1の運転開始時からの経過時間を積算水分量を表す劣化評価パラメータとして用いるようにしてもよい。
前記劣化評価処理装置8には、前記湿度センサ4及びO2センサ5の出力データが与えられると共に、前記ECU7から前記積算燃料噴射量Σtcylのデータや、エンジン1の機関温度TWのデータ等が与えられるようになっている。そして、劣化評価処理装置8は、与えられたデータやあらかじめ定められたプログラム等に基づいて、後述するようにcHC吸着触媒2の劣化状態(吸着能力)を評価する。この場合、劣化評価処理装置8は、HC吸着触媒2の劣化状態を該HC吸着触媒2の交換を要する程度に劣化が進行した状態(以下、劣化進行状態という)と、該劣化進行状態までには至らない状態(以下、未劣化状態という)とに分別して評価するようにしている。そして、該劣化評価処理装置8は、HC吸着触媒2の劣化状態が前記劣化進行状態であると判断したときに、その旨を前記劣化報知器9により報知させるようにしている。尚、劣化評価処理装置8とECU7とは、上述したデータ(積算燃料噴射量Σtcyl等のデータ)の他にも相互に種々のデータを授受可能としている。また、劣化評価処理装置8は、本発明における吸着能力評価手段及び浄化能力評価手段としての機能を有するものである。
次に、本実施形態の装置の作動、特に、HC吸着触媒2の劣化状態の評価に係わる作動を詳細に説明する。
エンジン1の運転を開始すべく図示しない運転スイッチをON操作すると、ECU7及び劣化評価処理装置8が起動する。そして、ECU7は、図示しないスタータモータを制御して、エンジン1のクランク軸(図示しない)を回転駆動させる。さらに、ECU7は、図示しない燃焼噴射器を制御してエンジン1への燃料供給を行わしめると共に、図示しない点火装置を制御することで、エンジン1を始動させる。そして、ECU7は、エンジン1の燃料供給を開始してから、前記積算燃料噴射量Σtcylを逐次算出する。また、ECU7は、エンジン1の運転開始後、O2センサ5及びLAFセンサ6の活性化等の所定の条件が満たされた後、前述のようにO2センサ5の出力を所定の目標値に収束させるようにエンジン1の空燃比を制御する。
上述のようにエンジン1の運転が開始されると、該エンジン1の排ガスは、HC吸着触媒2を通って流れ、このとき該排ガス中のHCがHC吸着触媒2のHC吸着材により吸着される。従って、エンジン1の冷間始動を行った場合のように、HC吸着触媒2の触媒機能が未だ活性化していない段階であっても、大気側にHCが排出されるのが防止される。尚、HC吸着触媒2のHC吸着材は、排ガス中のHCを吸着すると共に、該排ガス中の水分も吸着する。
一方、劣化評価処理装置8は、その起動後、まず、図4のフローチャートに示す処理を実行する。この処理は、エンジン1の運転開始時にのみ行われる処理である。
劣化評価処理装置8は、まず、ECU7から与えられるエンジン1の運転開始時の機関温度TW(以下、初期機関温度TWという)の検出データを、該運転開始時のHC吸着触媒2の温度状態を表すデータとして取得する(STEP1)。尚、このデータは、例えばHC吸着触媒2もしくはその近傍の温度を検出するセンサを備えた場合には、そのセンサにより取得するようにしてもよい。
次いで、劣化評価処理装置8は、前記初期機関温度TWが所定の範囲内(TWL≦TW≦TWH)にあるか否かを判断する(STEP2)。このとき、初期機関温度TWが、上記所定範囲内に無い場合には、HC吸着触媒2の後述する劣化状態の評価を禁止するために、フラグF/MCNDの値が「0」に設定される(STEP3)。そして、この場合には、図4のルーチン処理は終了する。このようにするのは、HC吸着触媒2の温度が過剰に低い(例えば0℃以下)場合、あるいは過剰に高い場合(例えば50℃以上)には、特にHC吸着触媒2のHC吸着能力を適正に評価することが困難であるからである。
一方、STEP2の判断で、初期機関温度TWが上記所定範囲内の温度である場合には、劣化評価処理装置8は、HC吸着触媒2の劣化状態の評価処理を実行するために、前記フラグF/MCNDの値を「1」に設定する(STEP4)。さらに、劣化評価処理装置8は、湿度センサ4の現在の出力電圧VRSTのデータを取得し(STEP5)、この出力電圧VRSTに対応する相対湿度VHUMD0をエンジン1の運転開始時の初期相対湿度として求める(STEP6)。この初期相対湿度VHUMDは、図2に示した湿度センサ4の出力特性を表すデータテーブルあるいは演算式等に基づいて、STEP5で取得した出力電圧VRSTの値から求められる。
そして、劣化評価処理装置8は、上記初期相対湿度VHUMD0の値を、HC吸着触媒2の下流の湿度センサ4の箇所における湿度(相対湿度)の極小値の最新値を表すパラメータVHUMD/MIN(以下、極小湿度パラメータVHUMD/MINという)の値と、該相対湿度の前回値(劣化評価処理装置8が処理を行うサイクルタイム毎の前回値)を表すパラメータVHUMD/PRE(以下、前回相対湿度パラメータVHUMD/PREという)の値として記憶保持する(STEP7)。すなわち、これらのパラメータVHUMD/MIN、VHUMD/PREの値を、エンジン1の運転開始時におけるHC吸着触媒2の上流側の湿度(相対湿度)としての初期相対湿度VHUMD0の値で初期化する。
次いで、劣化評価処理装置8は、STEP1で取得した初期機関温度TWの検出データから、図5に実線で示すようにあらかじめ定められたデータテーブルにより、HC吸着触媒2のHC吸着能力の劣化状態を評価するための吸着劣化評価用閾値TRSDTを求め(STEP8)、図4のルーチン処理を終了する。
ここで、HC吸着触媒2のHC吸着材は、その初期温度が低い程、吸着可能な水分の最大量、ひいては、吸着可能なHCの最大量が多くなるので、図5の実線示のデータテーブルでは、吸着劣化評価用閾値TRSDTは、基本的には、エンジン1の運転開始時の初期機関温度TWが低い程、大きな値になるように定められている。該吸着劣化評価用閾値TRSDTは、HC吸着触媒2のHC吸着能力が、該HC吸着触媒2の劣化状態を未劣化状態と判断する限界(劣化進行状態と判断する直前の状態)のHC吸着能力である場合において、HC吸着触媒2のHC吸着材が吸着可能な水分の最大量(これは吸着可能なHCの最大量に対応し、本実施形態では実際の水分量の代わりに積算燃料噴射量を代用している)に相当するものであり、あらかじめ実験等に基づいて定めらたものである。尚、図5の仮想線のデータテーブルは後述の第3実施形態に関するものである。
劣化評価処理装置8は、図4のルーチン処理をエンジン1の運転開始時に実行した後、所定のサイクルタイムで図6のフローチャートに示す処理を実行する。
すなわち、劣化評価処理装置8は、まず、HC吸着触媒2のHC吸着能力の評価処理が完了したか否かをそれぞれ値「1」、「0」で示すフラグF/DONEの値を判断する(STEP11)。ここで、フラグF/DONEの値は、エンジン1の運転が開始される毎に「0」に初期化されるものである。このときF/DONE=1である場合には、HC吸着触媒2のHC吸着能力の評価処理が完了しているので、図6のルーチン処理が終了される。
また、F/DONE=0である場合には、劣化評価処理装置8は、さらに前記フラグF/MCNDの値を判断する(STEP12)。このとき、F/MCND=0である場合には、劣化評価処理装置8は、前述のようにHC吸着触媒2の初期温度が該HC吸着触媒2のHC吸着能力を評価する上で不適切な温度状態であって、該HC吸着能力を適正に評価することができないので、図6のルーチン処理を終了する。
一方、STEP11でF/MCND=1であった場合には、劣化評価処理装置8は、湿度センサ4の現在の出力電圧VRSTのデータを取得し(STEP13)、その出力電圧VRSTに対応する現在の相対湿度VHUMDを求める(STEP14)。この場合、該相対湿度VHUMDは、図2に示した湿度センサ4の出力特性を表すデータテーブルあるいは演算式等に基づいて、STEP13で取得した出力電圧VRSTの値から求められる。
そして、劣化評価処理装置8は、この相対湿度VHUMDの値と、前記前回相対湿度パラメータVHUMD/PREの現在値とを比較する(STEP15)。このとき、VHUMD≧VHUMD/PREである場合(相対湿度VHUMDの増加状態)には、劣化評価処理装置8は、前回相対湿度パラメータVHUMD/PREの値を相対湿度VHUMDの現在値(STEP14で求めた値)に更新する(STEP17)。また、VHUMD<VHUMD/PREである場合(相対湿度VHUMDの減少状態)には、劣化評価処理装置8は、前記極小湿度パラメータVHUMD/MINの値を、相対湿度VHUMDの現在値に更新した後(STEP16)、前記STEP17の処理を実行し、前回相対湿度パラメータVHUMD/PREの値を更新する。
このようなSTEP13〜17の処理によって、湿度センサ4により検出された相対湿度VHUMDが減少している状態では、極小湿度パラメータVHUMD/MINの値が劣化評価処理装置8の処理のサイクルタイム毎に、逐次更新されていくこととなる。そして、極小湿度パラメータVHUMD/MINの値は、相対湿度VHUMDが増加している状態では更新されず、この増加状態が開始する直前の相対湿度VHUMDの極小値(最新の極小値)に維持されることとなる。
劣化評価処理装置8は、STEP17の処理を実行した後、相対湿度VHUMDが単調的な増加状態になったか否かを判断するために、相対湿度VHUMDの現在値を、極小湿度パラメータVHUMD/MINの現在値(相対湿度VHUMDの最新の極小値)にあらかじめ定めた所定量VHUMD/SK(図7参照)を加えた値(=VHUMD/MIN+VHUMD/SK。以下、この値を増加判断閾値という)と比較する(STEP18)。
ここで、図7を参照して、湿度センサ4の出力電圧VRSTに基づく相対湿度VHUMDは、実線cのグラフで示すように、エンジン1の運転開始直後は、排ガス中の水分がHCと共にHC吸着触媒2のHC吸着材に吸着されることで、低湿度側で概ね一定のレベルになり、その後、HC吸着材による水分の吸着の飽和によって水分を含んだ排ガスがそのままHC吸着触媒2を通過することで、相対湿度VHUMDは低湿度側から高湿度側に向かって単調的に増加する状態に変転する。そこで、本実施形態では、劣化評価処理装置8は、相対湿度VHUMDが、最新の極小値VHUMD/MINに若干の所定量VHUMD/SKを加えてなる増加判断閾値(=VHUMD/MIN+VHUMD/SK)を超えた時点(図7の時刻t1)をHC吸着触媒2のHC吸着材による水分の吸着が飽和したタイミング、すなわち、HCの吸着が飽和した吸着飽和タイミングとして検出する。
前記STEP18は、この吸着飽和タイミングを検出するための判断処理であり、劣化評価処理装置8は、相対湿度VHUMDの現在値が前記増加判断閾値を超えていない場合(図7の時刻t1よりも前の期間)には、今回のサイクルタイムにおける図6のルーチン処理を終了する。
一方、STEP18でVHUMD>増加判断閾値である場合には、劣化評価処理装置8は、今回のサイクルタイムの時点(図7の時刻t1)が前記吸着飽和タイミングであるとして、前記ECU7から前記積算燃料噴射量Σtcylの現在値のデータを取得し(STEP19)、この積算燃料噴射量Σtcylの値をHC吸着触媒2のHC吸着材の吸着飽和タイミングにおける劣化評価パラメータTPHとして記憶保持する(STEP20)。例えば、図7の例では、時刻t1における積算燃料噴射量Σtcylが吸着飽和タイミングにおける劣化評価パラメータTPHとして記憶保持される。
そして、劣化評価処理装置8は、この劣化評価パラメータTPHの値を、エンジン1の運転開始時に前述のように図4のSTEP8で求めた吸着劣化評価用閾値TRSDTと比較する(STEP21)。このとき、TPH>TRSDTである場合には、HC吸着触媒2のHC吸着材が排ガス中の水分、ひいてはHCを十分に吸着可能な状態であるので、劣化評価処理装置8は、HC吸着触媒2のHC吸着能力は良好であるとしてフラグF/HBDTの値を「0」に設定する(STEP22)。該フラグF/HBDTは、HC吸着触媒2のHC吸着能力が良好であるか否かをそれぞれ値「0」、「1」で示すものである。そして、劣化評価処理装置8は、HC吸着触媒2のHC吸着能力の評価処理が完了したものとして、フラグF/DONEの値を「1」に設定し(STEP24)、図6のルーチン処理を終了する。
一方、STEP21でTPH≦TRSDTである場合には、HC吸着触媒2のHC吸着材が吸着可能な排ガス中の水分、ひいてはHCの量が少ない状態となっているので、劣化評価処理装置8は、HC吸着吸着触媒2のHC吸着能力が劣化しているとして、前記フラグF/HBDTの値を「1」に設定する(STEP23)。そして、該劣化評価処理装置8は、前記STEP24でフラグF/DONEの値を「1」に設定し、図6のルーチン処理を終了する。以上説明した図6の処理により、HC吸着触媒2のHC吸着能力が評価され、その能力が良好であるか否かに応じてフラグF/HBDTの値が設定される。
また、劣化評価処理装置8は、前述のようにECU7がO2センサ5の出力を所定の目標値に収束させるようにエンジン1の空燃比を制御している際に、図8のフローチャートに示す処理を実行し、HC吸着触媒2の触媒作用による未燃ガス浄化能力の評価を行うと共に、HC吸着触媒2のHC吸着能力及び未燃ガス浄化能力を合わせた全体的な劣化状態を評価する。
この処理では、劣化評価処理装置8は、まず、HC吸着触媒2の全体的な劣化状態の評価が完了したか否かをそれぞれ値「1」、「0」で示すフラグF/DTの値を判断する(STEP31)。尚、フラグF/DTは、エンジン1の運転開始時にその値が「0」に初期化されるものである。
このとき、F/DT=1である場合には、HC吸着触媒2の劣化状態の評価が完了しているので、図8の処理は直ちに終了される。また、F/DT=0である場合には、劣化評価処理装置8は、さらに、前記フラグF/DONEの値を判断する(STEP32)。このとき、F/DONE=0である場合には、HC吸着触媒2のHC吸着能力の評価が完了していないか、もしくは、エンジン1の初期機関温度TWが前記図4のSTEP2の条件を満たさず、HC吸着能力の評価を行うことができないので、劣化評価処理装置8は、HC吸着触媒2の全体的な劣化状態の評価を行うことなく、図8の処理を終了する。
一方、STEP32でF/DONE=1である場合(HC吸着触媒2のHC吸着能力の評価が正常に完了している場合)には、劣化評価処理装置8は、O2センサ6の出力データを用いて、HC吸着触媒2の触媒作用による未燃ガス浄化能力を評価し、該能力が良好であるか否かをそれぞれ値「0」、「1」で表すフラグF/CATDTの値を設定する(STEP33)。このSTEP33で、HC吸着触媒2の未燃ガス浄化能力を評価する処理は、例えば本願出願人がPCT国際公開公報WO/01/46569/A1により詳細に説明した技術(触媒装置の劣化状態を評価する技術)を用いるものであるので、ここでは詳細な説明は省略するが、その概要は次の通りである。
すなわち、O2センサ6の出力の時系列データ(例えば現在値と1制御サイクル前の過去値)を変数成分とする所定の評価用線形関数(エンジン1の空燃比制御を行うためのスライディングモード制御用の切換関数に対応する関数)の値の二乗値が逐次求められると共に、その評価用線形関数の値の二乗値の最小二乗中心値が、HC吸着触媒2の触媒機能による未燃ガス浄化能力を評価するためのパラメータとして、逐次型の統計処理アルゴリズム(例えば逐次型最小2乗法あるいは逐次型の重み付き最小2乗法)により求められる。このようにして求められるパラメータ(上記評価用線形関数の値の二乗値の最小二乗中心値)の値は、該評価用線形関数の値のばらつき度合いを表すものであり、HC吸着触媒2の触媒機能による未燃ガス浄化能力が低下するに伴い、該パラメータの値(評価用線形関数の値のばらつき度合い)は大きくなる。そして、このパラメータの値を、あらかじめ定めた所定の閾値と比較することにより、HC吸着触媒2の未燃ガス浄化能力が良好であるか否かが判断され、それに応じて前記フラグF/CATDTの値が設定される。
このようにしてHC吸着触媒2の未燃ガス浄化能力を評価した後、劣化評価処理装置8は、STEP34〜40において、前記フラグF/CATDT及びF/HBDTの値に応じてHC吸着触媒2のHC吸着能力及び未燃ガス浄化能力の状態を判断する。さらに詳細には、F/CATDT=0且つF/HBDT=0である場合には、HC吸着触媒2のHC吸着能力及び未燃ガス浄化能力の両者が良好でであると判断される(STEP37)。また、F/CATDT=0且つF/HBDT=1である場合には、HC吸着触媒2のHC吸着能力が劣化していると判断される(STEP38)。また、F/CATDT=1且つF/HBDT=1である場合には、HC吸着触媒2のHC吸着能力及び未燃ガス浄化能力の両者が劣化していると判断される(STEP39)。また、F/CATDT=1且つF/HBDT=0である場合には、HC吸着触媒2の未燃ガス浄化能力が劣化していると判断される(STEP40)。
そして、劣化評価処理装置8は、HC吸着触媒2のHC吸着能力及び未燃ガス浄化能力の少なくともいずれか一方が劣化していると判断した場合(STEP38〜40の場合)には、HC吸着触媒2の全体的な(総合的な)劣化状態が、前記劣化進行状態であると判断し(STEP41)、その旨を前記劣化報知器9により報知させる(STEP42)。さらに、劣化評価処理装置8は、HC吸着触媒2の全体的な劣化状態の評価が完了したとして、前記フラグF/DTの値を「1」に設定し(STEP44)、図8の処理を終了する。
また、HC吸着触媒2のHC吸着能力及び未燃ガス浄化能力の両者が良好であると判断した場合(STEP37の場合)には、劣化評価処理装置8は、HC吸着触媒2の全体的な(総合的な)劣化状態が前記未劣化状態であると判断する(STEP43)。そして、この場合には、劣化評価処理装置8は、前記劣化報知器9を動作させることなく、前記STEP44でフラグF/DTの値を「1」に設定し、図8の処理を終了する。
以上説明した劣化評価処理装置8の処理によって、本実施形態における排ガス浄化装置であるHC吸着触媒2のHC吸着材によるHC吸着能力と触媒作用による未燃ガス浄化能力とがそれぞれ評価される。そして、HC吸着能力及び未燃ガス浄化能力のいずれかが劣化していると判断される場合に、HC吸着触媒2の全体的な劣化状態が前記劣化進行状態であると判断される。従って、HC吸着触媒2のHC吸着能力及び未燃ガス浄化能力のいずれかが劣化しているのに、HC吸着触媒2が未劣化状態であると判断されるようなことがなく、該HC吸着触媒2の全体的な劣化状態を適正に評価することができる。また、特に、HC吸着触媒2のHC吸着能力の評価においては、該HC吸着触媒2の下流に備えた湿度センサ4の出力データを用いることで、前記吸着飽和タイミングを精度よく把握することができるため、その吸着飽和タイミングまでにHC吸着触媒2に供給された積算水分量を表す劣化評価パラメータTPHに基づいて、HC吸着能力の評価を比較的低コストで精度よく行うことができる。
次に、本発明の第2実施形態を図9を参照して説明する。本実施形態は、本発明の第3の態様の実施形態である。尚、本実施形態の説明において、前記第1実施形態と同一構成もしくは同一機能部分については、第1実施形態と同一の参照符号を用い、詳細な説明を省略する。
図9に示すように、本実施形態の装置は、第1実施形態のものと同一の炭化水素吸着触媒(HC吸着触媒)2と、該HC吸着触媒2とは独立した(別体の)触媒装置10とを有する排ガス浄化装置11がエンジン1の排気通路3に設けられている。この場合、触媒装置10は、通常的な触媒装置と同様、三元触媒等により構成されたものであり、酸化・還元反応によりHC、CO、NOx等の未燃ガスを浄化するものである。そして、本実施形態では、HC吸着触媒2及び触媒装置10は、排気通路3に上流側から順番に備えられている。また、排気通路3には、HC吸着触媒2の下流側で且つ触媒装置10の上流側の箇所に湿度センサ4が設けられ、さらに、排ガス浄化装置11の下流側(触媒装置10の下流側)と上流側(HC吸着触媒2の上流側)とにそれぞれO2センサ5及びLAFセンサ(広域空燃比センサ)6が設けられている。これらのセンサ4〜6は前記第1実施形態のものと同一である。さらに、本実施形態の装置は、前記第1実施形態と同様に、ECU7、劣化評価処理装置8及び劣化報知器9を備えている。この場合、ECU7や、劣化評価装置8に入力されるデータは前記第1実施形態と同一である。
かかる本実施形態の装置では、ECU7が実行する処理は前記第1実施形態と同一であり、前記積算燃料噴射量Σtcylの算出処理や、エンジン1の空燃比制御の処理等が第1実施形態と全く同様に実行される。また、劣化評価処理装置8が実行する処理は、基本的には前記第1実施形態と同様であり、前記図4、図6、図8のフローチャートに示した処理が第1実施形態と同様に実行される。但し、この場合において、本実施形態の劣化評価処理装置8が図4及び図6の処理により評価するHC吸着能力は、第1実施形態と同様、HC吸着触媒2そのもののHC吸着能力であるが、前記図8のSTEP33で劣化評価処理装置8が評価する未燃ガス浄化能力は、HC吸着触媒2の触媒機能と、触媒装置10の触媒機能とを合わせた排ガス浄化装置11の全体の未燃ガス浄化能力である。そして、劣化評価処理装置8は、図8のSTEP41では排ガス浄化装置11の全体が劣化進行状態であると判断し、換言すれば、排ガス浄化装置11の全体のHC吸着能力(=HC吸着触媒2のHC吸着能力)と、排ガス浄化装置11の全体の未燃ガス浄化能力(HC吸着触媒2の触媒機能と触媒装置10とを合わせたものの未燃ガス浄化能力)とのいずれかが劣化した状態である判断する。また、劣化評価処理装置8は、図8のSTEP41では、排ガス浄化装置11の全体が未劣化状態であると判断する。
このようにして、本実施形態では、互いに独立したHC吸着触媒2と触媒装置10とを有する排ガス浄化装置11の全体的な劣化状態を適正に評価することができる。そして、排ガス浄化装置11の全体的な劣化状態を適正に評価することができるため、該排ガス浄化装置11による排ガスの最終的な浄化状態の適否を把握することができる。特に、排ガス浄化装置11のHC吸着能力の評価では、前記第1実施形態と同様、湿度センサ4の出力データを用いるため、該評価を比較的低コストで精度よく行うことができる。
尚、本実施形態では、HC吸着触媒2を上流側、触媒装置10を下流側に配した排ガス浄化装置11を例にとって説明したが、図10に示すように、HC吸着触媒2を下流側、触媒装置10を上流側に配置してもよい。この場合、前記第2実施形態と同様に排ガス浄化装置11の全体的な劣化状態を評価するためには、湿度センサ4とO2センサ5とをHC吸着触媒2の下流側(排ガス浄化装置11の下流側)に設け、LAFセンサ6を触媒装置10の上流側(排ガス浄化装置11の上流側)に設けるようにすればよい。
次に、本発明の第3実施形態を図11〜図15を参照して説明する。本実施形態は、本発明の第2の態様の実施形態である。尚、本実施形態の説明において、前記第1実施形態と同一構成もしくは同一機能部分については、第1実施形態と同一の参照符号を用い、詳細な説明を省略する。
本実施形態では、排ガス浄化装置としてのHC吸着触媒2の下流側の湿度センサ4を前記第1実施形態と同様に備えると共に、さらにHC吸着触媒2の上流側に、該HC吸着触媒2に進入する排ガスの湿度(相対湿度)を検出する湿度センサ12が備えられている。該湿度センサ12は、該HC吸着触媒2の上流側近傍箇所で排気通路3に設けられている。この湿度センサ12は、前記第1実施形態で説明した湿度センサ4と同種のものであり、該湿度センサ4と同様の出力特性(図2参照)を有するものである。そして、該湿度センサ12の出力電圧は、HC吸着触媒2のHC吸着材の劣化状態(HC吸着能力)の評価を行うために、湿度センサ4の出力電圧と共に、劣化評価処理装置8に与えられるようになっている。尚、本実施形態では、湿度センサ4,12はそれぞれ本発明の第2の態様における下流側湿度センサ、上流側湿度センサに相当するものである。また、本実施形態は、上記以外の構成は、前記第1実施形態と同一である。
次に、本実施形態におけるHC吸着触媒2の劣化状態の評価に係わる作動を詳細に説明する。エンジン1の運転を開始すべく図示しない運転スイッチをON操作すると、ECU7及び劣化評価処理装置8が起動する。このときのECU7の処理は、前記第1実施形態と全く同一である。
一方、劣化評価処理装置8は、その起動後、まず、図12のフローチャートに示す処理を実行する。この処理は、前記第1実施形態における図4の処理に対応する処理であり、エンジン1の運転開始時(始動時)にのみ行われる処理である。
この場合、STEP51〜STEP57の処理は、前記第1実施形態の図4のSTEP1〜7の処理とそれぞれ同一である。そして、本実施形態では、劣化評価処理装置8は、STEP57の処理に続いて、STEP58〜60の処理を実行する。このSTEP58〜60は、下流側湿度センサ4に係わるSTEP55〜57の処理と同様の処理を上流側湿度センサ12に関して行うものである。すなわち、STEP58においては、劣化評価処理装置8は、上流側湿度センサ12の現在の出力電圧VFSTのデータを取得する。そして、劣化評価処理装置8は、この出力電圧VFSTに対応する相対湿度VFHUM0をエンジン1の運転開始時におけるHC吸着触媒2の上流側(湿度センサ12の箇所)の初期相対湿度として求める(STEP59)。この初期相対湿度VFHUM0は、上流側湿度センサ12の出力特性(図2参照)を表すデータテーブルあるいは演算式等に基づいて、STEP58で取得した出力電圧VFSTの値から求められる。
そして、劣化評価処理装置8は、上記初期相対湿度VFHUM0の値を、HC吸着触媒2の上流の湿度センサ12の箇所における湿度(相対湿度)の極小値の最新値を表す極小湿度パラメータVFHUM/MINの値と、該相対湿度の前回値(劣化評価処理装置8が処理を行うサイクルタイム毎の前回値)を表す前回相対湿度パラメータVFHUM/PREの値として記憶保持する(STEP60)。すなわち、これらのパラメータVFHUM/MIN、VFHUM/PREの値を、エンジン1の運転開始時におけるHC吸着触媒2の上流側の湿度(相対湿度)としての初期相対湿度VFHUM0の値で初期化する。
このようにしてSTEP58〜60の処理を実行した後、劣化評価処理装置8は、STEP61の処理を実行し、図12の処理を終了する。このSTEP61の処理は、前記第1実施形態における図4のSTEP8と同様の処理であり、STEP51で取得した初期機関温度TWの検出データから、図5に仮想線で示すようにあらかじめ定められたデータテーブルにより、HC吸着触媒2のHC吸着材が前記劣化進行状態であるか前記未劣化状態であるかを判断するための吸着劣化評価用閾値TRSDTが求められる。図5の仮想線示のデータテーブルは、あらかじめ実験等に基づいて定められたものであり、前記第1実施形態と同様、機関温度TW(HC吸着触媒2のHC吸着材の温度状態)が低い程、大きな値になるように設定されている。尚、本実施形態では、後述するように劣化評価パラメータの起算タイミングが、エンジン1の運転開始時よりも遅いタイミングになるので、本実施形態における吸着劣化評価用閾値TRSDT(図5の仮想線)は、第1実施形態の場合よりもほぼ一定量だけ小さな値になっている。
劣化評価処理装置8は、図12のルーチン処理をエンジン1の運転開始時に実行した後、所定のサイクルタイムで図13及び図14のフローチャートに示す処理を実行する。
すなわち、劣化評価処理装置8は、前記第1実施形態の場合と同様に、STEP71,72でフラグF/DONE、F/MCNDの値を判断する。これらのフラグF/DONE,F/MCNDの意味は、前記第1実施形態と同一であり、STEP71でF/DONE=1であるとき、あるいはSTEP72でF/MCND=0であるときには、図13,14のルーチン処理が終了される。
STEP72でF/MCND=1である場合には、劣化評価処理装置8は、次に、フラグF/FENDの値を判断する(STEP73)。ここで、フラグF/FENDは、上流側湿度センサ12により検出される相対湿度が単調増加状態となったか否かをそれぞれ値「1」、「0」で表すものであり、エンジン1の運転開始時に「0」に初期化されている。そして、劣化評価処理装置8は、STEP73でF/FEND=1であるときには、後述する図14のSTEP83からの処理を実行し、F/FEND=0であるときには、上流側湿度センサ12に関するSTEP74〜82の処理を実行する。このSTEP74〜83の処理は、上流側湿度センサ12の出力VFSTが表す湿度VFHUM(相対湿度)が低湿度側の湿度から高湿度側に向かって単調増加状態に転じるタイミングを、HC吸着触媒2のHC吸着材による水分の吸着が開始する吸着開始タイミングとして検出するための処理であり、下流側湿度センサ4に関して第1実施形態で説明した図6のSTEP13〜20に対応する処理である。
以下、これらの処理を説明すると、STEP74において劣化評価処理装置8は、上流側湿度センサ12の現在の出力電圧VFSTのデータを取得する。そして、劣化評価処理装置8は、その出力電圧VFSTに対応する現在の相対湿度VFHUMを求める(STEP75)。この場合、該相対湿度VFHUMは、上流側湿度センサ12の出力特性を表すデータテーブルあるいは演算式等に基づいて、STEP74で取得した出力電圧VFSTの値から求められる。
そして、劣化評価処理装置8は、この相対湿度VFHUMの値と、前記前回相対湿度パラメータVFHUM/PREの現在値とを比較する(STEP76)。このとき、VFHUM≧VFHUM/PREである場合(相対湿度VFHUMの増加状態)には、劣化評価処理装置8は、前回相対湿度パラメータVFHUM/PREの値を相対湿度VFHUMの現在値(STEP75で求めた値)に更新する(STEP78)。また、VFHUM<VFHUM/PREである場合(相対湿度VFHUMの減少状態)には、劣化評価処理装置8は、前記極小湿度パラメータVFHUM/MINの値を、相対湿度VFHUMの現在値に更新した後(STEP77)、前記STEP78の処理を実行し、前回相対湿度パラメータVFHUM/PREの値を更新する。
このようなSTEP74〜78の処理によって、上流側湿度センサ12により検出された相対湿度VFHUMが減少している状態では、極小湿度パラメータVFHUM/MINの値が劣化評価処理装置8の処理のサイクルタイム毎に、逐次更新されていくこととなる。そして、極小湿度パラメータVFHUM/MINの値は、相対湿度VFHUMが増加している状態では更新されず、この増加状態が開始する直前の相対湿度VFHUMの極小値(最新の極小値)に維持されることとなる。
劣化評価処理装置8は、STEP78の処理を実行した後、相対湿度VFHUMが単調的な増加状態になったか否かを判断するために、相対湿度VFHUMの現在値を、極小湿度パラメータVFHUM/MINの現在値(相対湿度VFHUMの最新の極小値)にあらかじめ定めた所定量VFHUM/SK(図15参照)を加えた値(=VFHUM/MIN+VFHUM/SK。以下、この値を上流側増加判断閾値という)と比較する(STEP79)。
ここで、図15を参照して、上流側湿度センサ12が検出する相対湿度VFHUM(HC吸着触媒2の上流側の相対湿度)は、実線eのグラフで示すように、エンジン1の運転開始直後の短い期間(水分を多く含んだ排ガスがHC吸着触媒2の入り口近傍に達するまでの期間)は、低湿度側の湿度になる。そして、水分を多く含んだ排ガスがHC吸着触媒2の入り口に達すると(図の時刻t2)、HC吸着触媒2のHC吸着材による排ガス中の水分の実質的な吸着が開始すると共に、相対湿度VFHUMは、排ガス中に含まれる水分によって高湿度側の湿度に向かって単調的に増加していく状態に変転する。そこで、本実施形態では、劣化評価処理装置8は、相対湿度VFHUMが、最新の極小値VFHUM/MINに若干の所定量VFHUM/SKを加えてなる上流側増加判断閾値(=VFHUM/MIN+VFHUM/SK)を超えた時点(図15の時刻t2)をHC吸着触媒2のHC吸着材による水分の実質的な吸着が開始する吸着飽和タイミングとして検出する。
尚、図15において実線cで示すグラフは、下流側湿度センサ4が検出する相対湿度VHUMDの推移特性を示すグラフ、実線dで示すグラフは積算燃料噴射量Σtcylの経時変化を示すグラフである。ここでは、これらのグラフc,dは前記第1実施形態で図7に示したものと同一である。
また、前記上流側増加判断閾値に係わる上記所定量VFHUM/SKは、下流側湿度センサ19に関して前記第1実施形態で説明した所定量VHUMD/SK(図15参照)に対応するものである。そして、本実施形態では、上流側湿度センサ12は、下流側湿度センサ4とほぼ同一特性のものであるので、上流側増加判断閾値に係わる前記所定量VFHUM/SKは、例えば前記第1実施形態で下流側湿度センサ19に関して説明した所定量VHUMD/SKと同じ値に設定されている。但し、必ずしもVFHUM/SK=VHUMD/SKとする必要はなく、HC吸着触媒2の上流側及び下流側の実際の相対湿度の推移特性を考慮して、それらの値を各別の値に実験的に定めるようにしてもよい。
前記STEP79は、上述した吸着開始タイミングを検出するための判断処理であり、劣化評価処理装置8は、相対湿度VFHUMの現在値が前記上流側増加判断閾値を超えていない場合(図15の時刻t2よりも前の期間)には、後述する図14のSTEP83からの処理を実行する。
一方、STEP79でVFHUM>上流側増加判断閾値である場合には、劣化評価処理装置8は、今回のサイクルタイムの時点が前記吸着開始タイミングであるとして、前記ECU7から前記積算燃料噴射量Σtcylの現在値のデータを取得し(STEP80)、この積算燃料噴射量Σtcylの値をHC吸着触媒2のHC吸着材の吸着開始タイミングにおける吸着開始時積算燃料噴射量TPFの値として記憶保持する(STEP81)。例えば、図15の例では、時刻t2における積算燃料噴射量Σtcylが吸着開始時積算燃料噴射量TPFとして記憶保持される。尚、この吸着開始時積算燃料噴射量TPFは、エンジン1の運転開始時から吸着開始タイミングまでに該エンジン1が生成した排ガス中の総水分量を意味する。
次いで、劣化評価処理装置8は、STEP82でフラグF/FENDの値を「1」に設定した後、後述する図14のSTEP83からの処理を実行する。尚、STEP82でフラグF/FENDの値を「1」に設定したときには、次回のサイクルタイムからSTEP73の判断結果がYESとなって、STEP74〜82の処理が実行されなくなるので、STEP81で求めた吸着開始時積算燃料噴射量TPFの値は、以後変更されずに保持されることとなる。
次に、図14に示すSTEP83からの処理では、劣化評価処理装置8は、前記第1実施形態で説明した図6のSTEP13〜20とそれぞれ同一の処理をSTEP83〜90で実行する。但し、本実施形態では、STEP90(図6のSTEP20に対応)では、下流側湿度センサ4が検出する相対湿度VHUMDが低湿度側から単調増加状態に転じるタイミング、すなわち前記吸着飽和タイミングにおける積算燃料噴射量Σtcylは、劣化評価パラメータとしてではなく、エンジン1の運転開始時から、該吸着飽和タイミングまでの吸着飽和時積算燃料噴射量TPRの値(これはエンジン1の運転開始時から吸着飽和タイミングまでに該エンジン1が生成した排ガス中の総水分量を意味する)として記憶保持される。
そして、劣化評価処理装置8は、前記STEP81(図13参照)で求めた吸着開始時積算燃料噴射量TPRの値を、上記吸着飽和時積算燃料噴射量TPRの値から減算してなる値(=TPR−TPF)を劣化評価パラメータTPHとして求める(STEP91)。このようにして求められる劣化評価パラメータTPHは、吸着開始タイミングから吸着飽和タイミングまでにHC吸着触媒2のHC吸着材が実質的に吸着した積算水分量に相当するものとなる。
次いで、劣化評価処理装置8は、前記第1実施形態における図6のSTEP21〜23と同じ処理をSTEP92〜94で実行し、HC吸着触媒2のHC吸着能力の良否を示すフラグF/HBDTの値を設定する。すなわち、STEP91で求めた劣化評価パラメータTPHの値が、エンジン1の運転開始時に図12のSTEP61で求めた吸着劣化評価用閾値TRSDT(図5の仮想線を参照)と比較され、TPH>TRSDTである場合には、HC吸着触媒2のHC吸着材能力が良好であるとしてフラグF/HBDTの値が「0」に設定される。また、TPH≦TRSDTである場合には、HC吸着吸着触媒2のHC吸着能力が劣化しているとして、フラグF/HBDTの値が「1」に設定される。尚、劣化評価処理装置8は、このようにSTEP92〜94の処理を実行した後には、STEP95でフラグF/DONEの値を「1」に設定し、図13及び図14のルーチン処理を終了する。以上説明した図13及び図14の処理により、HC吸着触媒2のHC吸着能力が評価され、その能力が良好であるか否かに応じてフラグF/HBDTの値が設定される。
そして、劣化評価処理装置8は、前述のようにECU7がO2センサ5の出力を所定の目標値に収束させるようにエンジン1の空燃比を制御している際に、前記第1実施形態で説明した図8のフローチャートに示す処理を実行し、HC吸着触媒2の触媒作用による未燃ガス浄化能力の評価を行うと共に、HC吸着触媒2のHC吸着能力及び未燃ガス浄化能力を合わせた全体的な劣化状態を評価する。この処理は、前記第1実施形態と全く同一である。そして、この図8の処理によって、HC吸着触媒2のHC吸着能力及び未燃ガス浄化能力のいずれかが劣化していると判断される場合に、HC吸着触媒2の全体的な劣化状態が前記劣化進行状態であると判断される。また、HC吸着触媒2のHC吸着能力及び未燃ガス浄化能力の両者が良好であると判断される場合にのみ、HC吸着触媒2が劣化していないと判断される。従って、前記第1実施形態と同様、HC吸着触媒2のHC吸着能力及び未燃ガス浄化能力のいずれかが劣化しているのに、HC吸着触媒2が未劣化状態であると判断されるようなことがなく、該HC吸着触媒2の全体的な劣化状態を適正に評価することができる。
また、本実施形態では特に、HC吸着触媒2の下流側だけでなく、上流側にも湿度センサ12を設けている。そして、HC吸着能力の評価においては、下流側湿度センサ4の出力データを用いて、前記吸着飽和タイミングを把握すると共に、上流側湿度センサ12の出力データを用いて吸着開始タイミングを把握し、その把握した吸着開始タイミングから吸着飽和タイミングまでにHC吸着触媒2に供給された積算水分量を表す劣化評価パラメータTPHに基づいて、HC吸着能力の評価するので、その評価結果の信頼性をより高めるいことができる。ひいては、HC吸着触媒2の劣化状態の評価結果の信頼性を高めることができる。
次に、本発明の第4実施形態を図16を参照して説明する。本実施形態は、本発明の第4の態様の実施形態である。尚、本実施形態の説明において、前記第1〜第3実施形態と同一構成もしくは同一機能部分については、それらの実施形態と同一の参照符号を用い、詳細な説明を省略する。
図16に示すように、本実施形態の装置におけるエンジン1の排気系の構成は、前記第2実施形態のものと同一であり、HC吸着触媒2と、該HC吸着触媒2とは独立した(別体の)触媒装置10とを上流側から順番に有する排ガス浄化装置11がエンジン1の排気通路3に設けられている。また、排気通路3には、HC吸着触媒2の下流側で且つ触媒装置10の上流側の箇所に下流側湿度センサ4が設けられると共に、HC吸着触媒2の上流側には、該HC吸着触媒2の近傍箇所で上流側湿度センサ12が設けられている。また、前記第2実施形態のものと同様に、排ガス浄化装置11の下流側(触媒装置10の下流側)と上流側(HC吸着触媒2の上流側)とにそれぞれO2センサ5及びLAFセンサ(広域空燃比センサ)6が設けられている。さらに、本実施形態の装置は、前記第1〜第3実施形態と同様に、ECU7、劣化評価処理装置8及び劣化報知器9を備えている。この場合、ECU7や、劣化評価装置8に入力されるデータは前記第3実施形態と同一である。
かかる本実施形態の装置では、ECU7が実行する処理は前記第1実施形態と同一であり、前記積算燃料噴射量Σtcylの算出処理や、エンジン1の空燃比制御の処理等が第1実施形態と全く同様に実行される。また、劣化評価処理装置8が実行する処理は、基本的には前記第3実施形態と同様であり、前記図13、図14、図8のフローチャートに示した処理が第3実施形態と同様に実行される。但し、この場合において、本実施形態の劣化評価処理装置8が図13及び図14の処理により評価するHC吸着能力は、第3実施形態と同様、HC吸着触媒2そのもののHC吸着能力であるが、前記図8のSTEP33で劣化評価処理装置8が評価する未燃ガス浄化能力は、前記第2実施形態と同様、HC吸着触媒2の触媒機能と、触媒装置10の触媒機能とを合わせた排ガス浄化装置11の全体の未燃ガス浄化能力である。そして、劣化評価処理装置8は、前記第2実施形態と同様、図8のSTEP41では排ガス浄化装置11の全体が劣化進行状態であると判断する。換言すれば、劣化評価処理装置8は、排ガス浄化装置11の全体のHC吸着能力(=HC吸着触媒2のHC吸着能力)と、排ガス浄化装置11の全体の未燃ガス浄化能力(HC吸着触媒2の触媒機能と触媒装置10とを合わせたものの未燃ガス浄化能力)とのいずれかが劣化した状態である判断する。また、劣化評価処理装置8は、図8のSTEP41では、排ガス浄化装置11の全体が未劣化状態であると判断する。
このようにして、本実施形態では、前記第2実施形態と同様に、互いに独立したHC吸着触媒2と触媒装置10とを有する排ガス浄化装置11の全体的な劣化状態を適正に評価することができる。そして、排ガス浄化装置11の全体的な劣化状態を適正に評価することができるため、該排ガス浄化装置11による排ガスの最終的な浄化状態の適否を把握することができる。特に、本実施形態では、排ガス浄化装置11のHC吸着能力の評価では、前記第3実施形態と同様、下流側湿度センサ4の出力データだけでなく、上流側湿度センサ12の出力データをも用いるため、HC吸着能力の評価の信頼性を高めることができる。
尚、本実施形態では、HC吸着触媒2を上流側、触媒装置10を下流側に配した排ガス浄化装置11を例にとって説明したが、図17に示すように、HC吸着触媒2を下流側、触媒装置10を上流側に配置してもよい。この場合、前記第4実施形態と同様に排ガス浄化装置11の全体的な劣化状態を評価するためには、下流側湿度センサ4とO2センサ5とをHC吸着触媒2の下流側(排ガス浄化装置11の下流側)に設けると共に、上流側湿度センサ12をHC吸着触媒2と触媒装置10との間(HC吸着触媒2の上流側)でHC吸着触媒の近傍に設け、さらにLAFセンサ6を触媒装置10の上流側(排ガス浄化装置11の上流側)に設けるようにすればよい。
また、前記第1〜第4実施形態では、排ガス浄化装置2,11の触媒作用による未燃ガス浄化能力を評価するために、PCT国際公開公報WO/01/46569/A1に本願出願人が開示した技術を用いたが、該未燃ガス浄化能力の評価は、基本的には酸素濃度センサ等の空燃比センサを用いて通常的な触媒装置の劣化状態を適正に評価し得るものであればどのような技術を用いてもよい。例えば、本願出願人が特開平8−144744号公報に開示した技術を適用し、排ガス浄化装置2,11の下流側に設けたO2センサの出力の反転特性や、排ガス浄化装置2,11の上流側及び下流側にそれぞれ設けたO2センサの両者の出力の反転特性を利用して、排ガス浄化装置2,11の触媒機能による未燃ガス浄化能力の劣化を検知するようにしてもよい。
また、前記第1〜第4実施形態では、排ガス浄化装置2,11の全体的な劣化状態に応じた報知のみを劣化報知器9により行うようにしたが、さらに、排ガス浄化装置2,11のHC吸着能力及び未燃ガス浄化能力のそれぞれの評価結果に応じた報知を行うようにしてもよい。
また、前記第1及び第2実施形態では、排ガス浄化装置2,11のHC吸着能力(HC吸着触媒2のHC吸着能力)の評価処理において、湿度センサ4の出力電圧VRSTを相対湿度VHUMDのデータに換算するようにしたが、湿度センサ4の出力電圧VRSTをそのまま用いるようにすることも可能である。この場合、前記図2に示した出力特性の湿度センサ4では、相対湿度VHUMDが増加するときに、出力電圧VRST減少することとなるので、エンジン1の運転開始後、出力電圧VRSTが極大値から所定量だけ減少した時点をHC吸着触媒2のHC吸着材による水分及びHCの吸着が飽和する吸着飽和タイミングとして検出するようにすればよい。このことは、前記第3及び第4実施形態においても同様である。そして、特に第3及び第4実施形態においては、下流側湿度センサ4の出力電圧VRSTに基づく吸着飽和タイミングの検出の場合と同様に、上流側湿度センサ12の出力電圧VFSTをそのまま用いて前記吸着開始タイミングを検出するようにしてもよい。
産業上の利用可能性
以上のように、本発明は自動車等に搭載される内燃機関の排気系に備えた排ガス浄化装置の劣化状態を評価するための装置として有用である。
【図面の簡単な説明】
図1は本発明の第1実施形態の装置の全体的システム構成を示すブロック図、図2は図1の装置で用いる湿度センサの出力特性を示す線図、図3は図1の装置で用いる空燃比センサの出力特性を示す線図である。図4は図1の装置に備えた劣化評価処理装置の処理を示すフローチャート、図5は図4のフローチャートで用いるデータテーブルを示す線図、図6は図1の装置に備えた劣化評価処理装置の処理を示すフローチャート、図7は図6のフローチャートの処理を説明するための線図、図8は図1の装置に備えた劣化評価処理装置の処理を示すフローチャートである。図9は本発明の第2実施形態の装置の全体的システム構成を示すブロック図、図10は本発明の第2実施形態の変形態様の装置の全体的システム構成を示すブロック図である。図11は本発明の第3実施形態の装置の全体的システム構成を示すブロック図、図12〜図14は図11の装置に備えた劣化評価処理装置の処理を示すフローチャート、図15は図13及び図14のフローチャートの処理を説明するための線図である。図16は本発明の第4実施形態の装置の全体的システム構成を示すブロック図、図17は本発明の第4実施形態の変形態様の装置の全体的システム構成を示すブロック図である。
本発明は、炭化水素吸着触媒を含む排ガス浄化装置の劣化状態を評価する装置に関する。
背景技術
内燃機関の排気通路には、一般に、三元触媒等から構成された触媒装置が備えられ、該触媒装置により排ガス中の炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)等の未燃ガスを触媒作用(酸化・還元作用)により浄化するようにしている。しかるに、この種の触媒装置は、内燃機関の冷間始動時のように、該触媒装置の温度が低い状態では活性化しておらず、このような状態では特に炭化水素の排出量が多くなりやすい。
このため、ゼオライト等の炭化水素吸着材と三元触媒とを複合的に備えたハイブリッド型の炭化水素吸着触媒を排ガス通路に備えたものが知られている。この炭化水素吸着触媒は、例えば、ハニカム構造の担体表面に、炭化水素吸着材としてのゼオライトをコーティングし、さらに、三元触媒の構成要素としての白金、パラジウム、ロジウム等の貴金属を担持させることにより構成される。尚、ゼオライト等の炭化水素吸着材は、比較的低温状態(例えば100℃以下)では排ガス中の炭化水素を吸着する機能を有し、ある程度の温度(例えば100〜250℃)以上に加熱されると、吸着した炭化水素を脱離するという作用を呈する。
一方、近年では排ガス浄化装置の交換の必要性等を把握するために、排ガス浄化装置の劣化状態を把握することが望まれており、このことは炭化水素吸着触媒を備えた排ガス浄化装置においても同様である。そして、炭化水素吸着触媒の劣化状態を評価する技術としては、従来、例えば特開平10−159543号公報に見られるものが知られている。この技術では、炭化水素吸着触媒を備えた排ガス浄化装置の上流側及び下流側にそれぞれ温度センサが設けられ、炭化水素吸着触媒が劣化していない新品状態であるとして上流側の温度センサの検出温度から排ガス浄化装置の下流側の温度が推定される。そして、この推定温度と下流側の温度センサの検出温度との差に基づいて、炭化水素吸着触媒の劣化状態が評価される。
しかしながら、この技術は、炭化水素吸着触媒の炭化水素吸着材による炭化水素の吸着能力の劣化状態を評価するものであり、排ガス浄化装置の三元触媒による浄化能力を含めて該排ガス浄化装置の全体的な劣化状態を評価するものではない。このため、例えば炭化水素吸着触媒の炭化水素吸着能力よりも三元触媒の劣化が早期に生じたような場合には、特開平10−159543号公報の技術により、炭化水素吸着触媒の劣化(交換が必要な程度の劣化)が把握された時点では、炭化水素吸着触媒の全体の本来の排ガス浄化能力は既に失われているという事態が生じることとなる。つまり、特開平10−159543号公報のものでは、炭化水素吸着触媒を備えた排ガス浄化装置の全体的な劣化状態を適正に評価することができない。
また、排ガス浄化装置の上流側及び下流側の温度センサの検出温度が環境温度等の様々の要因の影響を受け易いため、炭化水素吸着触媒の炭化水素吸着材の劣化状態を精度よく評価することも困難である。さらに、排ガス浄化装置の上流側及び下流側の両者に温度センサが必要となるため、コスト的にも不利である。
尚、三元触媒等からなる触媒装置の劣化状態を評価する技術は種々の技術が公知となっている(例えば本願出願人による特開平8−144744号公報や、特開2001−182528号公報、PCT国際公開公報WO/01/46569/A1等)。これらの技術は、基本的には、触媒装置の下流側に備えた酸素濃度センサ等の空燃比センサ、あるいは触媒装置の下流側及び上流側の両者に備えた空燃比センサの出力データを用いて触媒装置の劣化状態(触媒による未燃ガスの浄化能力の劣化状態)を評価するものである。
本発明はかかる背景に鑑みてなされたものであり、炭化水素吸着触媒を備える排ガス浄化装置の全体的な劣化状態の評価を適正に行うことができる劣化状態評価装置を提供することを目的とするものである。
発明の開示
本願発明者等の知見によれば、炭化水素吸着触媒の構成要素の一つであるゼオライト等の炭化水素吸着材は、炭化水素だけでなく排ガス中の水分も吸着する性質を有する。そして、その水分の吸着能力(吸着可能な最大の水分量)は、炭化水素の吸着能力(吸着可能な最大の炭化水素量)と高い相関性を有し、炭化水素吸着材の劣化の進行に伴い、水分の吸着能力と炭化水素の吸着能力とは同じように低下する。そして、例えば炭化水素吸着触媒の下流側に湿度センサを設けたとき、その湿度センサの出力が表す湿度(検出湿度)、すなわち炭化水素吸着触媒の下流側の湿度は、本願発明者等の知見によれば、内燃機関の運転開始後、次のように推移する。すなわち、内燃機関の運転開始直後は、排ガス中に含まれる水分が炭化水素吸着材により吸着されることで、基本的には炭化水素吸着触媒の下流側の湿度は低湿度側で大略一定レベルになる。そして、炭化水素吸着材による水分の吸着が進行して、その吸着が飽和すると、炭化水素吸着材が排ガス中の水分を吸着することができなくなるため、炭化水素吸着触媒の下流側の湿度は、炭化水素吸着材によって吸着されずに炭化水素吸着触媒を通過する排ガス中に含まれる水分によって高湿度側に向かって単調的に増加していく。従って、このような炭化水素吸着触媒の下流側の湿度を検出する湿度センサの出力のデータを用いることで、炭化水素吸着触媒の炭化水素吸着材による水分の吸着状態、ひいては炭化水素の吸着状態を把握できる。より具体的には、炭化水素吸着触媒の下流側の湿度センサにより検出される湿度が、単調増加状態となるタイミングを該炭化水素吸着触媒の炭化水素吸着材による水分の吸着が飽和したタイミングとして把握できる。このため、該炭化水素吸着触媒の炭化水素吸着能力の劣化状態を評価することが可能となる。
また、詳細は後述するが、炭化水素吸着触媒の下流側だけでなく、上流側の湿度をも湿度センサにより検出するようにしたときには、炭化水素吸着触媒の下流側及び上流側の両者の湿度センサの出力データを用いて、炭化水素吸着材による水分の吸着状態をより正確に把握することが可能である。これは、例えば前記のように下流側の湿度センサの出力データに基づいて、炭化水素吸着触媒の炭化水素吸着材による水分の吸着の飽和タイミングを把握できると同時に、上流側の湿度センサの出力データに基づいて、炭化水素吸着材による水分の吸着が実質的に開始するタイミングを把握できるからである。その結果、炭化水素吸着触媒の炭化水素吸着能力をより好適に評価することが可能となる。
また、炭化水素吸着触媒の触媒作用による未燃ガス浄化能力の劣化状態の評価については、触媒装置の劣化状態を評価する従来の技術(触媒装置の下流側等に空燃比センサを備える技術)を用いて、炭化水素吸着触媒の未燃ガス浄化能力の劣化状態を評価することが可能である。さらに、炭化水素吸着触媒とその下流側もしくは上流側に該炭化水素吸着触媒とは別に三元触媒等からなる触媒装置を備えた場合であっても、該炭化水素吸着触媒と触媒装置とを合わせた全体的な未燃ガス浄化能力の劣化状態を上記と同様に空燃比センサを用いて評価することが可能である。尚、以下に説明する本発明を含めて、本願明細書では、“未燃ガス”という用語は、本来の意味での可燃性ガス(CO、HC等)よりも広い概念で使用しており、内燃機関の排ガス中のNOx等を含めた“浄化対象成分”(浄化の対象とするガス成分)を総称的に意味するものとして使用される。
本発明の排ガス浄化装置の劣化状態評価装置は、上述した事項を考慮してなされたものであり、前記の目的を達成するための基本的発明として4種類の態様がある。その第1の態様と第2の態様とは、内燃機関の排気通路に設けられ、該排気通路を流れる排ガス中の炭化水素を吸着する機能と該排ガス中の未燃ガスを触媒作用により浄化する機能とを有する炭化水素吸着触媒から成る排ガス浄化装置の劣化状態を評価する装置である。そして、本発明の第1の態様は、前記炭化水素吸着触媒の下流側に設けられ、前記排ガスの湿度に応じた出力を発生する湿度センサと、前記炭化水素吸着触媒の上流側及び下流側のうちの少なくとも下流側に設けられ、前記排ガスの空燃比に応じた出力を発生する空燃比センサと、前記湿度センサの出力データを用いて前記炭化水素吸着触媒の炭化水素吸着能力を評価する吸着能力評価手段と、前記空燃比センサの出力データを用いて前記炭化水素吸着触媒の未燃ガス浄化能力を評価する浄化能力評価手段とを備え、該吸着能力評価手段及び浄化能力評価手段の両者の評価結果に基づいて、前記排ガス浄化装置の劣化状態を評価するようにしたことを特徴とするものである(第1発明)。
また、第2の態様は、前記炭化水素吸着触媒の下流側及び上流側にそれぞれ設けられ、前記排ガスの湿度に応じた出力をそれぞれ発生する下流側湿度センサ及び上流側湿度センサと、前記炭化水素吸着触媒の上流側及び下流側のうちの少なくとも下流側に設けられ、前記排ガスの空燃比に応じた出力を発生する空燃比センサと、前記上流側湿度センサ及び下流側湿度センサの出力データを用いて前記炭化水素吸着触媒の炭化水素吸着能力を評価する吸着能力評価手段と、前記空燃比センサの出力データを用いて前記炭化水素吸着触媒の未燃ガス浄化能力を評価する浄化能力評価手段とを備え、該吸着能力評価手段及び浄化能力評価手段の両者の評価結果に基づいて、前記排ガス浄化装置の劣化状態を評価するようにしたことを特徴とするものである(第2発明)。
前記本発明の第1の態様(第1発明)によれば、炭化水素吸着触媒からなる排ガス浄化装置の下流側に湿度センサを設けることで、前述のように該湿度センサの出力データを用いて、炭化水素吸着触媒の炭化水素吸着材による水分の吸着状態、ひいては炭化水素の吸着状態を把握することができるため、前記吸着能力評価手段により該湿度センサの出力データを用いて炭化水素吸着触媒の炭化水素吸着能力を評価することができる。また、前記第2の態様(第2発明)によれば、炭化水素吸着触媒からなる排ガス浄化装置の下流側及び上流側にそれぞれ湿度センサを設けることで、それらの上流側及び下流側湿度センサの出力データを用いて、炭化水素吸着触媒の炭化水素吸着材による水分の吸着状態、ひいては炭化水素の吸着状態をより正確に把握することができるため、前記吸着能力評価手段により該湿度センサの出力データを用いて炭化水素吸着触媒の炭化水素吸着能力をより好適に評価することができる。
さらに、本発明の第1及び第2の態様(第1及び第2発明)では、いずれの態様でも、炭化水素吸着触媒の少なくとも下流側に空燃比センサを備えることで、該空燃比センサの出力データを用いて、炭化水素吸着触媒の触媒作用による未燃ガス浄化能力を前記浄化能力評価手段により評価することができる。そして、本発明の第1及び第2の態様は、これらの評価手段の両者の評価結果に基づいて、排ガス浄化装置の劣化状態を評価するので、炭化水素吸着触媒からなる排ガス浄化装置の全体的な劣化状態を適正に評価することができる。
この場合、例えば、排ガス浄化装置の所定の劣化状態(例えば排ガス浄化装置又はその炭化水素吸着触媒の交換が必要な程度の劣化状態)を検知する場合には、炭化水素吸着触媒の炭化水素吸着能力と未燃ガス浄化能力とのいずれかの能力があらかじめ定めた所定度合いの低下を生じたときに、排ガス浄化装置の全体が劣化したと判断するようにすればよい。
より具体的には、前記第1あるいは第2発明において、例えば前記吸着能力評価手段が、前記炭化水素吸着触媒の炭化水素吸着能力を高低2段階に分類して評価する手段であると共に、前記浄化能力評価手段は、前記炭化水素吸着触媒の未燃ガス浄化能力を高低2段階に分類して評価する手段であるときには、前記吸着能力評価手段により炭化水素吸着触媒の炭化水素吸着能力が高いと評価され、且つ前記浄化能力評価手段により炭化水素吸着触媒の未燃ガス浄化能力が高いと評価された場合には、前記排ガス浄化装置が劣化していないと判断し、炭化水素吸着能力及び未燃ガス浄化能力のいずれか一方が低いと評価された場合に、前記排ガス浄化装置が劣化していると判断する(第9発明)。これにより、炭化水素吸着能力及び未燃ガス浄化能力のいずれか一方が劣化すれば、排ガス浄化装置が劣化していると判断される。従って、排ガス浄化装置が劣化していると判断される前に、炭化水素吸着能力及び未燃ガス浄化能力のいずれか一方が既に劣化していたような事態が発生するのを防止できる。
次に、本発明の排ガス浄化装置の劣化状態の評価装置の第3及び第4の態様は、内燃機関の排気通路に設けられ、該排気通路を流れる排ガス中の炭化水素を吸着する機能と該排ガス中の未燃ガスを触媒作用による浄化する機能とを有する炭化水素吸着触媒と、該炭化水素吸着触媒とは独立して前記排気通路に設けられ、未燃ガスを触媒作用により浄化する触媒装置とを備えた排ガス浄化装置の劣化状態を評価する装置である。そして、本発明の第3の態様は、前記炭化水素吸着触媒の下流側に設けられ、前記排ガスの湿度に応じた出力を発生する湿度センサと、前記排ガス浄化装置の上流側及び下流側のうちの少なくとも下流側に設けられ、前記排ガスの空燃比に応じた出力を発生する空燃比センサと、前記湿度センサの出力データを用いて前記炭化水素吸着触媒の炭化水素吸着能力を評価する吸着能力評価手段と、前記空燃比センサの出力データを用いて前記排ガス浄化装置の全体の未燃ガス浄化能力を評価する浄化能力評価手段とを備え、該吸着能力評価手段及び浄化能力評価手段の両者の評価結果に基づいて該排ガス浄化装置の劣化状態を評価するようにしたことを特徴とするものである(第3発明)。
また、本発明の第4の態様は、前記炭化水素吸着触媒の下流側及び上流側にそれぞれ設けられ、前記排ガスの湿度に応じた出力をそれぞれ発生する下流側湿度センサ及び上流側湿度センサと、前記排ガス浄化装置の上流側及び下流側のうちの少なくとも下流側に設けられ、前記排ガスの空燃比に応じた出力を発生する空燃比センサと、前記湿度センサの出力データを用いて前記炭化水素吸着触媒の炭化水素吸着能力を評価する吸着能力評価手段と、前記空燃比センサの出力データを用いて前記排ガス浄化装置の全体の未燃ガス浄化能力を評価する浄化能力評価手段とを備え、該吸着能力評価手段及び浄化能力評価手段の両者の評価結果に基づいて前記排ガス浄化装置の劣化状態を評価するようにしたことを特徴とするものである(第4発明)。
前記本発明の第3及び第4の態様(第3及び第4発明)では、排ガス浄化装置は、炭化水素吸着触媒と触媒装置とをそれぞれ独立に備えるものであり、触媒装置は、炭化水素吸着触媒の例えば上流側、あるいは下流側に配置されることとなる。そして、本発明の第3の態様(第3発明)では、炭化水素吸着触媒の下流側(触媒装置が炭化水素吸着触媒の下流側にある場合には、炭化水素吸着触媒とその下流側の触媒装置との間の箇所)に湿度センサを設けることで、該湿度センサの出力データを用いて、炭化水素吸着触媒の炭化水素吸着材による水分の吸着状態、ひいては炭化水素の吸着状態を把握することができるため、前記吸着能力評価手段により該湿度センサの出力データを用いて炭化水素吸着触媒の炭化水素吸着能力を評価することができる。また、本発明の第4の態様(第4発明)では、炭化水素吸着触媒の下流側(触媒装置が炭化水素吸着触媒の下流側にある場合には、炭化水素吸着触媒とその下流側の触媒装置との間の箇所)に下流側湿度センサを設けると共に、炭化水素吸着触媒の上流側(触媒装置が炭化水素吸着触媒の上流側にある場合には、炭化水素吸着材とその上流側の触媒装置との間の箇所)に上流側湿度センサを設けることで、炭化水素吸着触媒の炭化水素吸着材による水分の吸着状態、ひいては炭化水素の吸着状態をより正確に把握することができるため、前記吸着能力評価手段により該湿度センサの出力データを用いて炭化水素吸着触媒の炭化水素吸着能力をより好適に評価することができる。
また、本発明の第3及び第4の態様のいずれの態様でも、排ガス浄化装置の全体の少なくとも下流側に空燃比センサを備えることで、該空燃比センサの出力データを用いて、炭化水素吸着触媒の触媒作用による未燃ガス浄化能力と触媒装置による未燃ガス浄化能力とを合わせた排ガス浄化装置の全体的な未燃ガス浄化能力を前記浄化能力評価手段により評価することができる。そして、本発明の第3及び第4の態様は、前記第1及び第2の態様と同様、これらの評価手段の両者の評価結果に基づいて、排ガス浄化装置の劣化状態を評価するので、炭化水素吸着触媒と触媒装置とを備えた排ガス浄化装置の全体的な劣化状態を適正に評価することができる。
この場合、例えば、排ガス浄化装置の所定の劣化状態(例えば排ガス浄化装置又はその炭化水素吸着触媒の交換が必要な程度の劣化状態)を検知する場合には、前記第1あるいは第2の態様と同様、炭化水素吸着触媒の炭化水素吸着能力と排ガス浄化装置の全体の未燃ガス浄化能力とのいずれかの能力があらかじめ定めた所定度合いの低下を生じたときに、排ガス浄化装置の全体が劣化したと判断するようにすればよい。
より具体的には、前記第3あるいは第4発明において、例えば前記吸着能力評価手段が、前記炭化水素吸着触媒の炭化水素吸着能力を高低2段階に分類して評価する手段であると共に、前記浄化能力評価手段は、前記排ガス浄化装置の全体の未燃ガス浄化能力を高低2段階に分類して評価する手段であるときには、前記吸着能力評価手段により炭化水素吸着触媒の炭化水素吸着能力が高いと評価され、且つ前記浄化能力評価手段により排ガス浄化装置の全体の未燃ガス浄化能力が高いと評価された場合には、該排ガス浄化装置が劣化していないと判断し、炭化水素吸着能力及び未燃ガス浄化能力のいずれか一方が低いと評価された場合に、該排ガス浄化装置が劣化していると判断する(第10発明)。これにより、炭化水素吸着触媒の炭化水素吸着能力と、排ガス浄化装置の全体の未燃ガス浄化能力のいずれか一方が劣化すれば、排ガス浄化装置が劣化していると判断される。従って、排ガス浄化装置が劣化していると判断される前に、炭化水素吸着触媒とこれと独立した触媒装置とのいずれか一方が既に劣化していたような事態が発生するのを防止できる。
前述したように炭化水素吸着触媒の下流側に湿度センサを備える前記第1の態様(第1発明もしくはこれに前記第9発明を複合させたもの)あるいは第3の態様(第3発明もしくはこれに前記第10発明を複合させたもの)では、特に、炭化水素吸着触媒の炭化水素吸着能力の評価に関しては、前記内燃機関の運転開始時から前記炭化水素吸着触媒に前記排ガスを介して与えられた積算水分量を表す劣化評価パラメータを逐次生成する手段を備え、前記吸着能力評価手段は、前記内燃機関の運転開始後、前記湿度センサの出力を逐次監視しつつ、該湿度センサの出力データにより表される湿度が単調増加状態となるタイミングを検出し、その検出したタイミングにおける前記劣化評価パラメータの値を所定の閾値と比較することにより、前記炭化水素吸着触媒の炭化水素吸着能力を評価することが好適である(第5発明)。
すなわち、炭化水素吸着触媒の下流の湿度センサの出力データにより表される湿度(検出湿度)は、前述したように内燃機関の運転開始後、炭化水素吸着触媒の炭化水素吸着材による水分の吸着が飽和するまでは、大略一定レベルとなるが、水分の吸着の飽和後には、湿度センサによる検出湿度は単調的に増加していく。従って、該湿度センサの出力データにより表される湿度が単調増加状態となるタイミングを検出することで、炭化水素吸着触媒による水分の吸着が飽和するタイミング(このタイミングは炭化水素吸着材による炭化水素の吸着が飽和するタイミングでもある)を把握されることととなる。また、内燃機関の運転開始後、上記タイミング(以下、ここでは吸着飽和タイミングという)までに炭化水素吸着触媒に供給された積算水分量が、炭化水素吸着触媒が現在の炭化水素吸着能力で吸着可能な最大水分量に対応するものとなり、これは、炭化水素吸着触媒の炭化水素吸着能力を表す。つまり、前記吸着飽和タイミングまでの積算水分量は、炭化水素吸着触媒の炭化水素吸着能力の低下に伴い少なくなる。
そこで、本発明の第1及び第3の態様では、前記積算水分量を表す劣化評価パラメータを内燃機関の運転開始時から逐次生成する一方、湿度センサの出力データに基づいて上記吸着飽和タイミングを検出する。そして、この検出した吸着飽和タイミングにおける前記劣化評価パラメータの値を所定の閾値と比較することにより、炭化水素吸着触媒の炭化水素吸着能力を評価する。これにより、該炭化水素吸着触媒の炭化水素吸着能力を適正に評価することが可能となる。
尚、この場合、上記閾値は、内燃機関の運転開始時における炭化水素吸着触媒の温度状態に応じて設定することが好適である。
さらに、上記のように、吸着飽和タイミングを検出する第5発明では、前記吸着能力評価手段は、前記内燃機関の運転開始後、前記湿度センサの出力データにより表される湿度が極小値を採る状態を逐次検索し、該湿度が最新の極小値から所定量以上、増加した時点を前記湿度センサの出力データにより表される湿度が単調増加状態となるタイミングとして検出することが好適である(第6発明)。
すなわち、炭化水素吸着触媒の下流側の湿度センサにより検出される湿度は、内燃機関の運転開始前における排気通路内の湿度分布のばらつき等によって上下に変動することがある。このため、第6発明では、該湿度センサにより検出される湿度が極小値を採る状態を逐次検索し、該湿度が最新の極小値(最後に検索された極小値)から、所定量以上、増加した時点を前記吸着飽和タイミングとして検出する。これにより、前記単調増加状態が生じる前(吸着飽和タイミングの前)における湿度の変動の影響を補償して、該吸着飽和タイミングを適正に検出することができる。その結果、前記劣化評価パラメータに基づく炭化水素吸着触媒の炭化水素吸着能力の評価の信頼性を高めることができる。
また、前述したように炭化水素吸着触媒の下流側及び上流側にそれぞれ下流側湿度センサ及び上流側湿度センサを備える前記第2の態様(第2発明もしくはこれに前記第11発明を複合させたもの)あるいは第4の態様(第4発明もしくはこれに前記第12発明を複合させたもの)では、特に、炭化水素吸着触媒の炭化水素吸着能力の評価に関しては、前記内燃機関の運転開始後、前記上流側湿度センサの出力を逐次監視しつつ、該上流側湿度センサの出力データにより表される湿度が単調増加状態となるタイミングを検出する第1検出手段と、前記内燃機関の運転開始後、前記下流側湿度センサの出力を逐次監視しつつ、該下流側湿度センサの出力データにより表される湿度が単調増加状態となるタイミングを検出する第2検出手段と、前記第1検出手段により検出されたタイミングから、前記第2検出手段により検出されたタイミングまでに前記炭化水素吸着触媒に前記排ガスを介して与えられた積算水分量を表す劣化評価パラメータを生成する手段とを備える。そして、前記吸着能力評価手段は、前記劣化評価パラメータの値を所定の閾値と比較することにより、前記炭化水素吸着触媒の炭化水素吸着能力を評価する(第7発明)。
すなわち、内燃機関の運転停止中に炭化水素吸着触媒の炭化水素吸着材は、その周囲の水分を多少吸着するため、内燃機関の運転開始時における炭化水素吸着触媒の近傍の湿度は、該炭化水素吸着触媒の上流側を含めて比較的低湿度になっている。また、内燃機関の運転を開始しても、内燃機関で生成された水分を含んだ排ガスが炭化水素吸着触媒の入り口近傍に達するまでには多少の遅れを伴う。このため、炭化水素吸着触媒の上流側の湿度(前記上流側湿度センサの出力データにより表される湿度)は、内燃機関の運転開始直後は、比較的短い時間、低湿度になっており、その後、高湿度の排ガスが炭化水素吸着触媒の入り口近傍に達することで該炭化水素吸着触媒の上流側の湿度が低湿度側から、高湿度側に単調増加する状態に変転する。この場合、炭化水素吸着触媒の上流側の湿度が単調増加状態なるタイミングは、内燃機関の排気系の構成や炭化水素吸着触媒の上流側に備えた触媒装置による吸湿等の影響によってばらつきを生じることがある。そして、このような場合には、炭化水素吸着触媒の炭化水素吸着材による実質的な排ガス中の水分の吸着の開始タイミングがばらつきを生じることとなる。このため、このような場合には、炭化水素吸着触媒による水分の吸着能力ひいては炭化水素吸着能力をより適正に評価する上では、炭化水素吸着触媒の上流側の湿度が単調増加状態となって該炭化水素吸着触媒の炭化水素吸着材による実質的な水分の吸着が開始するタイミング(以下、ここでは吸着開始タイミングという)を、炭化水素吸着触媒の上流側に備えた上流側湿度センサを用いて検出し、その検出した吸着開始タイミングから、下流側湿度センサが検出する湿度が単調増加状態となる吸着飽和タイミングまでに炭化水素吸着触媒に排ガスを介して与えられた積算水分量を表すデータを劣化評価用パラメータとして取得することが好ましい。
このため、第7発明では、前記第2検出手段によって、下流側湿度センサが検出する湿度が単調増加状態となる吸着飽和タイミングを検出することに加えて、前記第1検出手段によって、上流側湿度センサが検出する湿度が単調増加状態をなる吸着開始タイミングを検出する。そして、該吸着開始タイミングから吸着飽和タイミングまでに排ガスを介して炭化水素吸着触媒に与えられた積算水分量を表す劣化評価パラメータを求め、この劣化評価パラメータの値を所定の閾値と比較することにより、前記炭化水素吸着触媒の炭化水素吸着能力を評価する。このようにすることにより、吸着開始タイミングのばらつきが生じても、上記劣化評価パラメータは、炭化水素吸着触媒の炭化水素吸着材が吸着可能な水分量を表すものとしてのとしての信頼性が高まる。その結果、該劣化評価パラメータに基づいて、炭化水素吸着触媒の炭化水素吸着能力をより高い信頼性で適正に評価することが可能となる。
さらに、上記のように吸着開始タイミング及び吸着飽和タイミングを検出する第7発明においては、前記第1検出手段は、前記内燃機関の運転開始後、前記上流側湿度センサの出力データにより表される湿度が極小値を採る状態を逐次検索し、該湿度が最新の極小値から第1所定量以上、増加した時点を前記上流側湿度センサの出力データにより表される湿度が単調増加状態となるタイミングとして検出し、前記第2検出手段は、前記内燃機関の運転開始後、前記下流側湿度センサの出力データにより表される湿度が極小値を採る状態を逐次検索し、該湿度が最新の極小値から第2所定量以上、増加した時点を前記下流側湿度センサの出力データにより表される湿度が単調増加状態となるタイミングとして検出することが好適である(第8発明)。
すなわち、前記第6発明に関して説明した場合と同様に、炭化水素吸着触媒の下流側の湿度センサ及び上流側の湿度センサによりそれぞれ検出される湿度は、内燃機関の運転開始前における排気通路内の湿度分布のばらつき等によって上下に変動することがある。このため、第8発明では、第2検出手段は、前記第6発明と同様、下流側湿度センサにより検出される湿度が極小値を採る状態を逐次検索し、該湿度が最新の極小値(最後に検索された極小値)から、第2所定量以上、増加した時点を前記吸着飽和タイミングとして検出する。同様に、前記第1検出手段は、上流側湿度センサにより検出される湿度が極小値を採る状態を逐次検索し、該湿度が最新の極小値(最後に検索された極小値)から、第1所定量以上、増加した時点を前記吸着開始タイミングとして検出する。これにより、炭化水素吸着触媒の下流側の湿度の吸着飽和タイミングの前における変動の影響や、炭化水素吸着触媒の上流側の湿度の吸着開始タイミングの前における変動の影響を補償して、該吸着飽和タイミング及び吸着開始タイミングを適正に検出することができる。その結果、これらのタイミングの間の積算水分量を表す前記劣化評価パラメータに基づく炭化水素吸着触媒の炭化水素吸着能力の評価の信頼性を高めることができる。
尚、本発明の第1および第2の態様において、前記排ガス浄化装置の未燃ガス浄化能力の評価は、触媒装置自体の劣化状態を評価する従来技術と同様に前記空燃比センサの出力データを用いて行うようにすればよい。前記した第1〜第10発明のいずれにおいても、例えば、本願出願人によるPCT国際公開公報WO/01/46569/A1に開示された技術を用いることが好適である。
この場合、本発明の第1の態様あるいは第2の態様では、前記内燃機関の運転開始後、前記炭化水素吸着触媒の下流側に設けられた前記空燃比センサの出力を所定の目標値に収束させるように該内燃機関で燃焼させる混合気の空燃比を制御する手段を備え、前記浄化能力評価手段は、該空燃比の制御が行われている際に、前記空燃比センサの出力の複数の時系列データを変数成分として有する所定の評価用線形関数の値のばらつき度合いを表すばらつき度合いパラメータを求め、その求めたばらつき度合いパラメータを所定の閾値と比較することにより、前記炭化水素吸着触媒の未燃ガス浄化能力を評価するようにすればよい。
また、本発明の第3の態様あるいは第4の態様では、前記内燃機関の運転開始後、前記排ガス浄化装置の下流側に設けられた前記空燃比センサの出力を所定の目標値に収束させるように該内燃機関で燃焼させる混合気の空燃比を制御する手段を備え、前記浄化能力評価手段は、該空燃比の制御が行われている際に、前記空燃比センサの出力の複数の時系列データを変数成分として有する所定の評価用線形関数の値のばらつき度合いを表すばらつき度合いパラメータを求め、その求めたばらつき度合いパラメータを所定の閾値と比較することにより、前記排ガス浄化装置の全体の未燃ガス浄化能力を評価するようにすればよい。
発明を実施するための最良の形態
本発明の第1実施形態を図1〜図8を参照して説明する。尚、本実施形態は、本発明の第1の態様の実施形態である。
図1は本実施形態の装置の全体的システム構成を示すブロック図であり、図中1は、自動車やハイブリッド車に搭載されるエンジン(内燃機関)である。このエンジン1が燃料及び空気の混合気の燃焼により生成する排ガスは、本発明における排ガス浄化装置としての炭化水素吸着触媒2(以下、HC吸着触媒2という)を備えた排ガス通路3を介して排出される。ここで、HC吸着触媒2は、詳細な図示は省略するが、前述したようにハニカム構造の担体にゼオライト等の炭化水素吸着材をコーティングし、さらに、三元触媒の構成要素である白金、パラジウム、ロジウム等の貴金属を担持させたものである。
そして、排気通路3には、HC吸着触媒2の下流側に、湿度センサ4と空燃比センサとしての酸素濃度センサ(O2センサ)5とが設けられている。湿度センサ4は、HC吸着触媒2を通過した排ガスの湿度(より詳しくは相対湿度)に応じた出力を発生し、O2センサ5はHC吸着触媒2を通過した排ガス中の酸素濃度に応じた出力を発生する。
この場合、本実施形態における湿度センサ4は、例えば図2に示すように、その出力電圧が湿度(相対湿度)の増加に伴い、ほぼリニアに減少していくような出力特性をもつセンサである。
また、O2センサ5が検出する排ガス中の酸素濃度は、エンジン1で燃焼した混合気の空燃比に応じたものとなるので、O2センサ5の出力は、別の言い方をすれば排ガスの空燃比(詳しくはその排ガスを燃焼に生成した混合気の空燃比)に応じたものとなる。この場合、O2センサ5の出力は、例えば図3に実線aで示すように、排ガスの空燃比が理論空燃比近傍の比較的狭い空燃比域Δに存するときに該空燃比に応じて変化するものとなる。
さらに、排気通路3には、HC吸着触媒2の上流側に、広域空燃比センサ6が設けられている。この広域空燃比センサ6は、例えば本願出願人が特開平4−369471号公報あるいは米国特許5391282にて詳細に開示した空燃比センサであり、図3に実線bで示すように、O2センサ5よりも空燃比の広い領域に渡って排ガスの空燃比に応じて出力レベルがほぼリニアに変化するようなセンサである(以下、広域空燃比センサ6をLAFセンサ6という)。
本実施形態の装置は、上述した構成の他、図1に示すように、エンジン1の運転制御を行うコントローラ7(以下、ECU7という)と、HC吸着触媒2の劣化状態を評価するための処理を実行する劣化評価処理装置8と、その劣化状態の評価結果に応じた報知を行うための劣化報知器9とを備えている。ここで、前記ECU7及び劣化評価処理装置8は、マイクロコンピュータ等により構成されたものである。また、前記劣化報知器9は、ランプやブザー、あるいは文字、図形等を表示可能な表示器などにより構成されたものである。
前記ECU7には、前記O2センサ5及びLAFセンサ6の出力が与えられる他、図示しないセンサからエンジン1の回転数NE、機関温度TW(具体的にはエンジン1の冷却水温)等の検出データが与えられると共に、図示しない運転スイッチからエンジン1の運転開始指令信号や運転停止指令信号が与えられる。そして、ECU7は、与えられた検出データや指令信号、あらかじめ定められた制御プログラム等に基づいてエンジン1の運転制御(空燃比制御等)を行う。この運転制御は、エンジン1の図示しないスロットル弁機構、燃料噴射装置、点火装置、スタータモータ等を介して行われる。
この場合、HC吸着触媒2の劣化状態の評価に関連した処理として、ECU7は、エンジン1の通常的な運転中に、前記O2センサ5及びLAFセンサ6の出力データを用いてO2センサ5の出力を所定の目標値に収束させるようにエンジン1で燃焼させる混合気の空燃比を制御する処理を実行する。この空燃比制御の処理は、HC吸着触媒2の触媒作用(酸化・還元反応)による未燃ガス(HC、CO、NOx等)の最適な浄化性能を確保するためのものである。該空燃比制御の処理は、本願出願人によるPCT国際公開公報WO/01/46569/A1等にて詳細に説明されているので、ここでは、詳細な説明を省略するが、その概要は次の通りである。すなわち、O2センサ5及びLAFセンサ6の出力データや、あらかじめ定めた排気系のモデル等に基づくスライディングモード制御の処理等によりO2センサ5の出力を所定の目標値に収束させるように、LAFセンサ6の箇所における排ガスの目標空燃比が逐次生成され、その目標空燃比にLAFセンサ6の出力(空燃比の検出値)を収束させるように適応制御の処理等によってエンジン1の燃料噴射量が調整される。
また、ECU7は、本発明における劣化評価パラメータを逐次求める手段としての機能を有しており、ECU7が所謂TDCに同期したタイミング(エンジン1の回転速度に同期したタイミング)で逐次生成するエンジン1の燃料噴射量の指令値をエンジン1の運転開始時から逐次積算(累積加算)してなる積算値を、エンジン1の運転開始時からHC吸着触媒2に与えた積算水分量を表す劣化評価パラメータとして逐次求める処理を実行する。すなわち、エンジン1に供給される燃料の量と、その燃料及び空気の混合気の燃焼により排ガス中に含まれる水分の量との間にはほぼ一定の相関関係があり、エンジン1の運転開始時からHC吸着触媒2に排ガスを介して与えられる積算水分量は、燃料噴射量の指令値の積算値に応じたものとなる。このため、本実施形態では、燃料噴射量の指令値の積算値(以下、積算燃料噴射量Σtcylと称する)を劣化評価パラメータとしてECU7により算出するようにしている。尚、積算水分量を表す劣化評価パラメータとしては、燃料噴射量の指令値の積算値に限らず、例えばエンジン1の吸入空気量の検出値もしくは推定値の積算値を用いるようにしてもよい。また、例えばエンジン1のアイドリング状態では、エンジン1の運転開始時からの経過時間を積算水分量を表す劣化評価パラメータとして用いるようにしてもよい。
前記劣化評価処理装置8には、前記湿度センサ4及びO2センサ5の出力データが与えられると共に、前記ECU7から前記積算燃料噴射量Σtcylのデータや、エンジン1の機関温度TWのデータ等が与えられるようになっている。そして、劣化評価処理装置8は、与えられたデータやあらかじめ定められたプログラム等に基づいて、後述するようにcHC吸着触媒2の劣化状態(吸着能力)を評価する。この場合、劣化評価処理装置8は、HC吸着触媒2の劣化状態を該HC吸着触媒2の交換を要する程度に劣化が進行した状態(以下、劣化進行状態という)と、該劣化進行状態までには至らない状態(以下、未劣化状態という)とに分別して評価するようにしている。そして、該劣化評価処理装置8は、HC吸着触媒2の劣化状態が前記劣化進行状態であると判断したときに、その旨を前記劣化報知器9により報知させるようにしている。尚、劣化評価処理装置8とECU7とは、上述したデータ(積算燃料噴射量Σtcyl等のデータ)の他にも相互に種々のデータを授受可能としている。また、劣化評価処理装置8は、本発明における吸着能力評価手段及び浄化能力評価手段としての機能を有するものである。
次に、本実施形態の装置の作動、特に、HC吸着触媒2の劣化状態の評価に係わる作動を詳細に説明する。
エンジン1の運転を開始すべく図示しない運転スイッチをON操作すると、ECU7及び劣化評価処理装置8が起動する。そして、ECU7は、図示しないスタータモータを制御して、エンジン1のクランク軸(図示しない)を回転駆動させる。さらに、ECU7は、図示しない燃焼噴射器を制御してエンジン1への燃料供給を行わしめると共に、図示しない点火装置を制御することで、エンジン1を始動させる。そして、ECU7は、エンジン1の燃料供給を開始してから、前記積算燃料噴射量Σtcylを逐次算出する。また、ECU7は、エンジン1の運転開始後、O2センサ5及びLAFセンサ6の活性化等の所定の条件が満たされた後、前述のようにO2センサ5の出力を所定の目標値に収束させるようにエンジン1の空燃比を制御する。
上述のようにエンジン1の運転が開始されると、該エンジン1の排ガスは、HC吸着触媒2を通って流れ、このとき該排ガス中のHCがHC吸着触媒2のHC吸着材により吸着される。従って、エンジン1の冷間始動を行った場合のように、HC吸着触媒2の触媒機能が未だ活性化していない段階であっても、大気側にHCが排出されるのが防止される。尚、HC吸着触媒2のHC吸着材は、排ガス中のHCを吸着すると共に、該排ガス中の水分も吸着する。
一方、劣化評価処理装置8は、その起動後、まず、図4のフローチャートに示す処理を実行する。この処理は、エンジン1の運転開始時にのみ行われる処理である。
劣化評価処理装置8は、まず、ECU7から与えられるエンジン1の運転開始時の機関温度TW(以下、初期機関温度TWという)の検出データを、該運転開始時のHC吸着触媒2の温度状態を表すデータとして取得する(STEP1)。尚、このデータは、例えばHC吸着触媒2もしくはその近傍の温度を検出するセンサを備えた場合には、そのセンサにより取得するようにしてもよい。
次いで、劣化評価処理装置8は、前記初期機関温度TWが所定の範囲内(TWL≦TW≦TWH)にあるか否かを判断する(STEP2)。このとき、初期機関温度TWが、上記所定範囲内に無い場合には、HC吸着触媒2の後述する劣化状態の評価を禁止するために、フラグF/MCNDの値が「0」に設定される(STEP3)。そして、この場合には、図4のルーチン処理は終了する。このようにするのは、HC吸着触媒2の温度が過剰に低い(例えば0℃以下)場合、あるいは過剰に高い場合(例えば50℃以上)には、特にHC吸着触媒2のHC吸着能力を適正に評価することが困難であるからである。
一方、STEP2の判断で、初期機関温度TWが上記所定範囲内の温度である場合には、劣化評価処理装置8は、HC吸着触媒2の劣化状態の評価処理を実行するために、前記フラグF/MCNDの値を「1」に設定する(STEP4)。さらに、劣化評価処理装置8は、湿度センサ4の現在の出力電圧VRSTのデータを取得し(STEP5)、この出力電圧VRSTに対応する相対湿度VHUMD0をエンジン1の運転開始時の初期相対湿度として求める(STEP6)。この初期相対湿度VHUMDは、図2に示した湿度センサ4の出力特性を表すデータテーブルあるいは演算式等に基づいて、STEP5で取得した出力電圧VRSTの値から求められる。
そして、劣化評価処理装置8は、上記初期相対湿度VHUMD0の値を、HC吸着触媒2の下流の湿度センサ4の箇所における湿度(相対湿度)の極小値の最新値を表すパラメータVHUMD/MIN(以下、極小湿度パラメータVHUMD/MINという)の値と、該相対湿度の前回値(劣化評価処理装置8が処理を行うサイクルタイム毎の前回値)を表すパラメータVHUMD/PRE(以下、前回相対湿度パラメータVHUMD/PREという)の値として記憶保持する(STEP7)。すなわち、これらのパラメータVHUMD/MIN、VHUMD/PREの値を、エンジン1の運転開始時におけるHC吸着触媒2の上流側の湿度(相対湿度)としての初期相対湿度VHUMD0の値で初期化する。
次いで、劣化評価処理装置8は、STEP1で取得した初期機関温度TWの検出データから、図5に実線で示すようにあらかじめ定められたデータテーブルにより、HC吸着触媒2のHC吸着能力の劣化状態を評価するための吸着劣化評価用閾値TRSDTを求め(STEP8)、図4のルーチン処理を終了する。
ここで、HC吸着触媒2のHC吸着材は、その初期温度が低い程、吸着可能な水分の最大量、ひいては、吸着可能なHCの最大量が多くなるので、図5の実線示のデータテーブルでは、吸着劣化評価用閾値TRSDTは、基本的には、エンジン1の運転開始時の初期機関温度TWが低い程、大きな値になるように定められている。該吸着劣化評価用閾値TRSDTは、HC吸着触媒2のHC吸着能力が、該HC吸着触媒2の劣化状態を未劣化状態と判断する限界(劣化進行状態と判断する直前の状態)のHC吸着能力である場合において、HC吸着触媒2のHC吸着材が吸着可能な水分の最大量(これは吸着可能なHCの最大量に対応し、本実施形態では実際の水分量の代わりに積算燃料噴射量を代用している)に相当するものであり、あらかじめ実験等に基づいて定めらたものである。尚、図5の仮想線のデータテーブルは後述の第3実施形態に関するものである。
劣化評価処理装置8は、図4のルーチン処理をエンジン1の運転開始時に実行した後、所定のサイクルタイムで図6のフローチャートに示す処理を実行する。
すなわち、劣化評価処理装置8は、まず、HC吸着触媒2のHC吸着能力の評価処理が完了したか否かをそれぞれ値「1」、「0」で示すフラグF/DONEの値を判断する(STEP11)。ここで、フラグF/DONEの値は、エンジン1の運転が開始される毎に「0」に初期化されるものである。このときF/DONE=1である場合には、HC吸着触媒2のHC吸着能力の評価処理が完了しているので、図6のルーチン処理が終了される。
また、F/DONE=0である場合には、劣化評価処理装置8は、さらに前記フラグF/MCNDの値を判断する(STEP12)。このとき、F/MCND=0である場合には、劣化評価処理装置8は、前述のようにHC吸着触媒2の初期温度が該HC吸着触媒2のHC吸着能力を評価する上で不適切な温度状態であって、該HC吸着能力を適正に評価することができないので、図6のルーチン処理を終了する。
一方、STEP11でF/MCND=1であった場合には、劣化評価処理装置8は、湿度センサ4の現在の出力電圧VRSTのデータを取得し(STEP13)、その出力電圧VRSTに対応する現在の相対湿度VHUMDを求める(STEP14)。この場合、該相対湿度VHUMDは、図2に示した湿度センサ4の出力特性を表すデータテーブルあるいは演算式等に基づいて、STEP13で取得した出力電圧VRSTの値から求められる。
そして、劣化評価処理装置8は、この相対湿度VHUMDの値と、前記前回相対湿度パラメータVHUMD/PREの現在値とを比較する(STEP15)。このとき、VHUMD≧VHUMD/PREである場合(相対湿度VHUMDの増加状態)には、劣化評価処理装置8は、前回相対湿度パラメータVHUMD/PREの値を相対湿度VHUMDの現在値(STEP14で求めた値)に更新する(STEP17)。また、VHUMD<VHUMD/PREである場合(相対湿度VHUMDの減少状態)には、劣化評価処理装置8は、前記極小湿度パラメータVHUMD/MINの値を、相対湿度VHUMDの現在値に更新した後(STEP16)、前記STEP17の処理を実行し、前回相対湿度パラメータVHUMD/PREの値を更新する。
このようなSTEP13〜17の処理によって、湿度センサ4により検出された相対湿度VHUMDが減少している状態では、極小湿度パラメータVHUMD/MINの値が劣化評価処理装置8の処理のサイクルタイム毎に、逐次更新されていくこととなる。そして、極小湿度パラメータVHUMD/MINの値は、相対湿度VHUMDが増加している状態では更新されず、この増加状態が開始する直前の相対湿度VHUMDの極小値(最新の極小値)に維持されることとなる。
劣化評価処理装置8は、STEP17の処理を実行した後、相対湿度VHUMDが単調的な増加状態になったか否かを判断するために、相対湿度VHUMDの現在値を、極小湿度パラメータVHUMD/MINの現在値(相対湿度VHUMDの最新の極小値)にあらかじめ定めた所定量VHUMD/SK(図7参照)を加えた値(=VHUMD/MIN+VHUMD/SK。以下、この値を増加判断閾値という)と比較する(STEP18)。
ここで、図7を参照して、湿度センサ4の出力電圧VRSTに基づく相対湿度VHUMDは、実線cのグラフで示すように、エンジン1の運転開始直後は、排ガス中の水分がHCと共にHC吸着触媒2のHC吸着材に吸着されることで、低湿度側で概ね一定のレベルになり、その後、HC吸着材による水分の吸着の飽和によって水分を含んだ排ガスがそのままHC吸着触媒2を通過することで、相対湿度VHUMDは低湿度側から高湿度側に向かって単調的に増加する状態に変転する。そこで、本実施形態では、劣化評価処理装置8は、相対湿度VHUMDが、最新の極小値VHUMD/MINに若干の所定量VHUMD/SKを加えてなる増加判断閾値(=VHUMD/MIN+VHUMD/SK)を超えた時点(図7の時刻t1)をHC吸着触媒2のHC吸着材による水分の吸着が飽和したタイミング、すなわち、HCの吸着が飽和した吸着飽和タイミングとして検出する。
前記STEP18は、この吸着飽和タイミングを検出するための判断処理であり、劣化評価処理装置8は、相対湿度VHUMDの現在値が前記増加判断閾値を超えていない場合(図7の時刻t1よりも前の期間)には、今回のサイクルタイムにおける図6のルーチン処理を終了する。
一方、STEP18でVHUMD>増加判断閾値である場合には、劣化評価処理装置8は、今回のサイクルタイムの時点(図7の時刻t1)が前記吸着飽和タイミングであるとして、前記ECU7から前記積算燃料噴射量Σtcylの現在値のデータを取得し(STEP19)、この積算燃料噴射量Σtcylの値をHC吸着触媒2のHC吸着材の吸着飽和タイミングにおける劣化評価パラメータTPHとして記憶保持する(STEP20)。例えば、図7の例では、時刻t1における積算燃料噴射量Σtcylが吸着飽和タイミングにおける劣化評価パラメータTPHとして記憶保持される。
そして、劣化評価処理装置8は、この劣化評価パラメータTPHの値を、エンジン1の運転開始時に前述のように図4のSTEP8で求めた吸着劣化評価用閾値TRSDTと比較する(STEP21)。このとき、TPH>TRSDTである場合には、HC吸着触媒2のHC吸着材が排ガス中の水分、ひいてはHCを十分に吸着可能な状態であるので、劣化評価処理装置8は、HC吸着触媒2のHC吸着能力は良好であるとしてフラグF/HBDTの値を「0」に設定する(STEP22)。該フラグF/HBDTは、HC吸着触媒2のHC吸着能力が良好であるか否かをそれぞれ値「0」、「1」で示すものである。そして、劣化評価処理装置8は、HC吸着触媒2のHC吸着能力の評価処理が完了したものとして、フラグF/DONEの値を「1」に設定し(STEP24)、図6のルーチン処理を終了する。
一方、STEP21でTPH≦TRSDTである場合には、HC吸着触媒2のHC吸着材が吸着可能な排ガス中の水分、ひいてはHCの量が少ない状態となっているので、劣化評価処理装置8は、HC吸着吸着触媒2のHC吸着能力が劣化しているとして、前記フラグF/HBDTの値を「1」に設定する(STEP23)。そして、該劣化評価処理装置8は、前記STEP24でフラグF/DONEの値を「1」に設定し、図6のルーチン処理を終了する。以上説明した図6の処理により、HC吸着触媒2のHC吸着能力が評価され、その能力が良好であるか否かに応じてフラグF/HBDTの値が設定される。
また、劣化評価処理装置8は、前述のようにECU7がO2センサ5の出力を所定の目標値に収束させるようにエンジン1の空燃比を制御している際に、図8のフローチャートに示す処理を実行し、HC吸着触媒2の触媒作用による未燃ガス浄化能力の評価を行うと共に、HC吸着触媒2のHC吸着能力及び未燃ガス浄化能力を合わせた全体的な劣化状態を評価する。
この処理では、劣化評価処理装置8は、まず、HC吸着触媒2の全体的な劣化状態の評価が完了したか否かをそれぞれ値「1」、「0」で示すフラグF/DTの値を判断する(STEP31)。尚、フラグF/DTは、エンジン1の運転開始時にその値が「0」に初期化されるものである。
このとき、F/DT=1である場合には、HC吸着触媒2の劣化状態の評価が完了しているので、図8の処理は直ちに終了される。また、F/DT=0である場合には、劣化評価処理装置8は、さらに、前記フラグF/DONEの値を判断する(STEP32)。このとき、F/DONE=0である場合には、HC吸着触媒2のHC吸着能力の評価が完了していないか、もしくは、エンジン1の初期機関温度TWが前記図4のSTEP2の条件を満たさず、HC吸着能力の評価を行うことができないので、劣化評価処理装置8は、HC吸着触媒2の全体的な劣化状態の評価を行うことなく、図8の処理を終了する。
一方、STEP32でF/DONE=1である場合(HC吸着触媒2のHC吸着能力の評価が正常に完了している場合)には、劣化評価処理装置8は、O2センサ6の出力データを用いて、HC吸着触媒2の触媒作用による未燃ガス浄化能力を評価し、該能力が良好であるか否かをそれぞれ値「0」、「1」で表すフラグF/CATDTの値を設定する(STEP33)。このSTEP33で、HC吸着触媒2の未燃ガス浄化能力を評価する処理は、例えば本願出願人がPCT国際公開公報WO/01/46569/A1により詳細に説明した技術(触媒装置の劣化状態を評価する技術)を用いるものであるので、ここでは詳細な説明は省略するが、その概要は次の通りである。
すなわち、O2センサ6の出力の時系列データ(例えば現在値と1制御サイクル前の過去値)を変数成分とする所定の評価用線形関数(エンジン1の空燃比制御を行うためのスライディングモード制御用の切換関数に対応する関数)の値の二乗値が逐次求められると共に、その評価用線形関数の値の二乗値の最小二乗中心値が、HC吸着触媒2の触媒機能による未燃ガス浄化能力を評価するためのパラメータとして、逐次型の統計処理アルゴリズム(例えば逐次型最小2乗法あるいは逐次型の重み付き最小2乗法)により求められる。このようにして求められるパラメータ(上記評価用線形関数の値の二乗値の最小二乗中心値)の値は、該評価用線形関数の値のばらつき度合いを表すものであり、HC吸着触媒2の触媒機能による未燃ガス浄化能力が低下するに伴い、該パラメータの値(評価用線形関数の値のばらつき度合い)は大きくなる。そして、このパラメータの値を、あらかじめ定めた所定の閾値と比較することにより、HC吸着触媒2の未燃ガス浄化能力が良好であるか否かが判断され、それに応じて前記フラグF/CATDTの値が設定される。
このようにしてHC吸着触媒2の未燃ガス浄化能力を評価した後、劣化評価処理装置8は、STEP34〜40において、前記フラグF/CATDT及びF/HBDTの値に応じてHC吸着触媒2のHC吸着能力及び未燃ガス浄化能力の状態を判断する。さらに詳細には、F/CATDT=0且つF/HBDT=0である場合には、HC吸着触媒2のHC吸着能力及び未燃ガス浄化能力の両者が良好でであると判断される(STEP37)。また、F/CATDT=0且つF/HBDT=1である場合には、HC吸着触媒2のHC吸着能力が劣化していると判断される(STEP38)。また、F/CATDT=1且つF/HBDT=1である場合には、HC吸着触媒2のHC吸着能力及び未燃ガス浄化能力の両者が劣化していると判断される(STEP39)。また、F/CATDT=1且つF/HBDT=0である場合には、HC吸着触媒2の未燃ガス浄化能力が劣化していると判断される(STEP40)。
そして、劣化評価処理装置8は、HC吸着触媒2のHC吸着能力及び未燃ガス浄化能力の少なくともいずれか一方が劣化していると判断した場合(STEP38〜40の場合)には、HC吸着触媒2の全体的な(総合的な)劣化状態が、前記劣化進行状態であると判断し(STEP41)、その旨を前記劣化報知器9により報知させる(STEP42)。さらに、劣化評価処理装置8は、HC吸着触媒2の全体的な劣化状態の評価が完了したとして、前記フラグF/DTの値を「1」に設定し(STEP44)、図8の処理を終了する。
また、HC吸着触媒2のHC吸着能力及び未燃ガス浄化能力の両者が良好であると判断した場合(STEP37の場合)には、劣化評価処理装置8は、HC吸着触媒2の全体的な(総合的な)劣化状態が前記未劣化状態であると判断する(STEP43)。そして、この場合には、劣化評価処理装置8は、前記劣化報知器9を動作させることなく、前記STEP44でフラグF/DTの値を「1」に設定し、図8の処理を終了する。
以上説明した劣化評価処理装置8の処理によって、本実施形態における排ガス浄化装置であるHC吸着触媒2のHC吸着材によるHC吸着能力と触媒作用による未燃ガス浄化能力とがそれぞれ評価される。そして、HC吸着能力及び未燃ガス浄化能力のいずれかが劣化していると判断される場合に、HC吸着触媒2の全体的な劣化状態が前記劣化進行状態であると判断される。従って、HC吸着触媒2のHC吸着能力及び未燃ガス浄化能力のいずれかが劣化しているのに、HC吸着触媒2が未劣化状態であると判断されるようなことがなく、該HC吸着触媒2の全体的な劣化状態を適正に評価することができる。また、特に、HC吸着触媒2のHC吸着能力の評価においては、該HC吸着触媒2の下流に備えた湿度センサ4の出力データを用いることで、前記吸着飽和タイミングを精度よく把握することができるため、その吸着飽和タイミングまでにHC吸着触媒2に供給された積算水分量を表す劣化評価パラメータTPHに基づいて、HC吸着能力の評価を比較的低コストで精度よく行うことができる。
次に、本発明の第2実施形態を図9を参照して説明する。本実施形態は、本発明の第3の態様の実施形態である。尚、本実施形態の説明において、前記第1実施形態と同一構成もしくは同一機能部分については、第1実施形態と同一の参照符号を用い、詳細な説明を省略する。
図9に示すように、本実施形態の装置は、第1実施形態のものと同一の炭化水素吸着触媒(HC吸着触媒)2と、該HC吸着触媒2とは独立した(別体の)触媒装置10とを有する排ガス浄化装置11がエンジン1の排気通路3に設けられている。この場合、触媒装置10は、通常的な触媒装置と同様、三元触媒等により構成されたものであり、酸化・還元反応によりHC、CO、NOx等の未燃ガスを浄化するものである。そして、本実施形態では、HC吸着触媒2及び触媒装置10は、排気通路3に上流側から順番に備えられている。また、排気通路3には、HC吸着触媒2の下流側で且つ触媒装置10の上流側の箇所に湿度センサ4が設けられ、さらに、排ガス浄化装置11の下流側(触媒装置10の下流側)と上流側(HC吸着触媒2の上流側)とにそれぞれO2センサ5及びLAFセンサ(広域空燃比センサ)6が設けられている。これらのセンサ4〜6は前記第1実施形態のものと同一である。さらに、本実施形態の装置は、前記第1実施形態と同様に、ECU7、劣化評価処理装置8及び劣化報知器9を備えている。この場合、ECU7や、劣化評価装置8に入力されるデータは前記第1実施形態と同一である。
かかる本実施形態の装置では、ECU7が実行する処理は前記第1実施形態と同一であり、前記積算燃料噴射量Σtcylの算出処理や、エンジン1の空燃比制御の処理等が第1実施形態と全く同様に実行される。また、劣化評価処理装置8が実行する処理は、基本的には前記第1実施形態と同様であり、前記図4、図6、図8のフローチャートに示した処理が第1実施形態と同様に実行される。但し、この場合において、本実施形態の劣化評価処理装置8が図4及び図6の処理により評価するHC吸着能力は、第1実施形態と同様、HC吸着触媒2そのもののHC吸着能力であるが、前記図8のSTEP33で劣化評価処理装置8が評価する未燃ガス浄化能力は、HC吸着触媒2の触媒機能と、触媒装置10の触媒機能とを合わせた排ガス浄化装置11の全体の未燃ガス浄化能力である。そして、劣化評価処理装置8は、図8のSTEP41では排ガス浄化装置11の全体が劣化進行状態であると判断し、換言すれば、排ガス浄化装置11の全体のHC吸着能力(=HC吸着触媒2のHC吸着能力)と、排ガス浄化装置11の全体の未燃ガス浄化能力(HC吸着触媒2の触媒機能と触媒装置10とを合わせたものの未燃ガス浄化能力)とのいずれかが劣化した状態である判断する。また、劣化評価処理装置8は、図8のSTEP41では、排ガス浄化装置11の全体が未劣化状態であると判断する。
このようにして、本実施形態では、互いに独立したHC吸着触媒2と触媒装置10とを有する排ガス浄化装置11の全体的な劣化状態を適正に評価することができる。そして、排ガス浄化装置11の全体的な劣化状態を適正に評価することができるため、該排ガス浄化装置11による排ガスの最終的な浄化状態の適否を把握することができる。特に、排ガス浄化装置11のHC吸着能力の評価では、前記第1実施形態と同様、湿度センサ4の出力データを用いるため、該評価を比較的低コストで精度よく行うことができる。
尚、本実施形態では、HC吸着触媒2を上流側、触媒装置10を下流側に配した排ガス浄化装置11を例にとって説明したが、図10に示すように、HC吸着触媒2を下流側、触媒装置10を上流側に配置してもよい。この場合、前記第2実施形態と同様に排ガス浄化装置11の全体的な劣化状態を評価するためには、湿度センサ4とO2センサ5とをHC吸着触媒2の下流側(排ガス浄化装置11の下流側)に設け、LAFセンサ6を触媒装置10の上流側(排ガス浄化装置11の上流側)に設けるようにすればよい。
次に、本発明の第3実施形態を図11〜図15を参照して説明する。本実施形態は、本発明の第2の態様の実施形態である。尚、本実施形態の説明において、前記第1実施形態と同一構成もしくは同一機能部分については、第1実施形態と同一の参照符号を用い、詳細な説明を省略する。
本実施形態では、排ガス浄化装置としてのHC吸着触媒2の下流側の湿度センサ4を前記第1実施形態と同様に備えると共に、さらにHC吸着触媒2の上流側に、該HC吸着触媒2に進入する排ガスの湿度(相対湿度)を検出する湿度センサ12が備えられている。該湿度センサ12は、該HC吸着触媒2の上流側近傍箇所で排気通路3に設けられている。この湿度センサ12は、前記第1実施形態で説明した湿度センサ4と同種のものであり、該湿度センサ4と同様の出力特性(図2参照)を有するものである。そして、該湿度センサ12の出力電圧は、HC吸着触媒2のHC吸着材の劣化状態(HC吸着能力)の評価を行うために、湿度センサ4の出力電圧と共に、劣化評価処理装置8に与えられるようになっている。尚、本実施形態では、湿度センサ4,12はそれぞれ本発明の第2の態様における下流側湿度センサ、上流側湿度センサに相当するものである。また、本実施形態は、上記以外の構成は、前記第1実施形態と同一である。
次に、本実施形態におけるHC吸着触媒2の劣化状態の評価に係わる作動を詳細に説明する。エンジン1の運転を開始すべく図示しない運転スイッチをON操作すると、ECU7及び劣化評価処理装置8が起動する。このときのECU7の処理は、前記第1実施形態と全く同一である。
一方、劣化評価処理装置8は、その起動後、まず、図12のフローチャートに示す処理を実行する。この処理は、前記第1実施形態における図4の処理に対応する処理であり、エンジン1の運転開始時(始動時)にのみ行われる処理である。
この場合、STEP51〜STEP57の処理は、前記第1実施形態の図4のSTEP1〜7の処理とそれぞれ同一である。そして、本実施形態では、劣化評価処理装置8は、STEP57の処理に続いて、STEP58〜60の処理を実行する。このSTEP58〜60は、下流側湿度センサ4に係わるSTEP55〜57の処理と同様の処理を上流側湿度センサ12に関して行うものである。すなわち、STEP58においては、劣化評価処理装置8は、上流側湿度センサ12の現在の出力電圧VFSTのデータを取得する。そして、劣化評価処理装置8は、この出力電圧VFSTに対応する相対湿度VFHUM0をエンジン1の運転開始時におけるHC吸着触媒2の上流側(湿度センサ12の箇所)の初期相対湿度として求める(STEP59)。この初期相対湿度VFHUM0は、上流側湿度センサ12の出力特性(図2参照)を表すデータテーブルあるいは演算式等に基づいて、STEP58で取得した出力電圧VFSTの値から求められる。
そして、劣化評価処理装置8は、上記初期相対湿度VFHUM0の値を、HC吸着触媒2の上流の湿度センサ12の箇所における湿度(相対湿度)の極小値の最新値を表す極小湿度パラメータVFHUM/MINの値と、該相対湿度の前回値(劣化評価処理装置8が処理を行うサイクルタイム毎の前回値)を表す前回相対湿度パラメータVFHUM/PREの値として記憶保持する(STEP60)。すなわち、これらのパラメータVFHUM/MIN、VFHUM/PREの値を、エンジン1の運転開始時におけるHC吸着触媒2の上流側の湿度(相対湿度)としての初期相対湿度VFHUM0の値で初期化する。
このようにしてSTEP58〜60の処理を実行した後、劣化評価処理装置8は、STEP61の処理を実行し、図12の処理を終了する。このSTEP61の処理は、前記第1実施形態における図4のSTEP8と同様の処理であり、STEP51で取得した初期機関温度TWの検出データから、図5に仮想線で示すようにあらかじめ定められたデータテーブルにより、HC吸着触媒2のHC吸着材が前記劣化進行状態であるか前記未劣化状態であるかを判断するための吸着劣化評価用閾値TRSDTが求められる。図5の仮想線示のデータテーブルは、あらかじめ実験等に基づいて定められたものであり、前記第1実施形態と同様、機関温度TW(HC吸着触媒2のHC吸着材の温度状態)が低い程、大きな値になるように設定されている。尚、本実施形態では、後述するように劣化評価パラメータの起算タイミングが、エンジン1の運転開始時よりも遅いタイミングになるので、本実施形態における吸着劣化評価用閾値TRSDT(図5の仮想線)は、第1実施形態の場合よりもほぼ一定量だけ小さな値になっている。
劣化評価処理装置8は、図12のルーチン処理をエンジン1の運転開始時に実行した後、所定のサイクルタイムで図13及び図14のフローチャートに示す処理を実行する。
すなわち、劣化評価処理装置8は、前記第1実施形態の場合と同様に、STEP71,72でフラグF/DONE、F/MCNDの値を判断する。これらのフラグF/DONE,F/MCNDの意味は、前記第1実施形態と同一であり、STEP71でF/DONE=1であるとき、あるいはSTEP72でF/MCND=0であるときには、図13,14のルーチン処理が終了される。
STEP72でF/MCND=1である場合には、劣化評価処理装置8は、次に、フラグF/FENDの値を判断する(STEP73)。ここで、フラグF/FENDは、上流側湿度センサ12により検出される相対湿度が単調増加状態となったか否かをそれぞれ値「1」、「0」で表すものであり、エンジン1の運転開始時に「0」に初期化されている。そして、劣化評価処理装置8は、STEP73でF/FEND=1であるときには、後述する図14のSTEP83からの処理を実行し、F/FEND=0であるときには、上流側湿度センサ12に関するSTEP74〜82の処理を実行する。このSTEP74〜83の処理は、上流側湿度センサ12の出力VFSTが表す湿度VFHUM(相対湿度)が低湿度側の湿度から高湿度側に向かって単調増加状態に転じるタイミングを、HC吸着触媒2のHC吸着材による水分の吸着が開始する吸着開始タイミングとして検出するための処理であり、下流側湿度センサ4に関して第1実施形態で説明した図6のSTEP13〜20に対応する処理である。
以下、これらの処理を説明すると、STEP74において劣化評価処理装置8は、上流側湿度センサ12の現在の出力電圧VFSTのデータを取得する。そして、劣化評価処理装置8は、その出力電圧VFSTに対応する現在の相対湿度VFHUMを求める(STEP75)。この場合、該相対湿度VFHUMは、上流側湿度センサ12の出力特性を表すデータテーブルあるいは演算式等に基づいて、STEP74で取得した出力電圧VFSTの値から求められる。
そして、劣化評価処理装置8は、この相対湿度VFHUMの値と、前記前回相対湿度パラメータVFHUM/PREの現在値とを比較する(STEP76)。このとき、VFHUM≧VFHUM/PREである場合(相対湿度VFHUMの増加状態)には、劣化評価処理装置8は、前回相対湿度パラメータVFHUM/PREの値を相対湿度VFHUMの現在値(STEP75で求めた値)に更新する(STEP78)。また、VFHUM<VFHUM/PREである場合(相対湿度VFHUMの減少状態)には、劣化評価処理装置8は、前記極小湿度パラメータVFHUM/MINの値を、相対湿度VFHUMの現在値に更新した後(STEP77)、前記STEP78の処理を実行し、前回相対湿度パラメータVFHUM/PREの値を更新する。
このようなSTEP74〜78の処理によって、上流側湿度センサ12により検出された相対湿度VFHUMが減少している状態では、極小湿度パラメータVFHUM/MINの値が劣化評価処理装置8の処理のサイクルタイム毎に、逐次更新されていくこととなる。そして、極小湿度パラメータVFHUM/MINの値は、相対湿度VFHUMが増加している状態では更新されず、この増加状態が開始する直前の相対湿度VFHUMの極小値(最新の極小値)に維持されることとなる。
劣化評価処理装置8は、STEP78の処理を実行した後、相対湿度VFHUMが単調的な増加状態になったか否かを判断するために、相対湿度VFHUMの現在値を、極小湿度パラメータVFHUM/MINの現在値(相対湿度VFHUMの最新の極小値)にあらかじめ定めた所定量VFHUM/SK(図15参照)を加えた値(=VFHUM/MIN+VFHUM/SK。以下、この値を上流側増加判断閾値という)と比較する(STEP79)。
ここで、図15を参照して、上流側湿度センサ12が検出する相対湿度VFHUM(HC吸着触媒2の上流側の相対湿度)は、実線eのグラフで示すように、エンジン1の運転開始直後の短い期間(水分を多く含んだ排ガスがHC吸着触媒2の入り口近傍に達するまでの期間)は、低湿度側の湿度になる。そして、水分を多く含んだ排ガスがHC吸着触媒2の入り口に達すると(図の時刻t2)、HC吸着触媒2のHC吸着材による排ガス中の水分の実質的な吸着が開始すると共に、相対湿度VFHUMは、排ガス中に含まれる水分によって高湿度側の湿度に向かって単調的に増加していく状態に変転する。そこで、本実施形態では、劣化評価処理装置8は、相対湿度VFHUMが、最新の極小値VFHUM/MINに若干の所定量VFHUM/SKを加えてなる上流側増加判断閾値(=VFHUM/MIN+VFHUM/SK)を超えた時点(図15の時刻t2)をHC吸着触媒2のHC吸着材による水分の実質的な吸着が開始する吸着飽和タイミングとして検出する。
尚、図15において実線cで示すグラフは、下流側湿度センサ4が検出する相対湿度VHUMDの推移特性を示すグラフ、実線dで示すグラフは積算燃料噴射量Σtcylの経時変化を示すグラフである。ここでは、これらのグラフc,dは前記第1実施形態で図7に示したものと同一である。
また、前記上流側増加判断閾値に係わる上記所定量VFHUM/SKは、下流側湿度センサ19に関して前記第1実施形態で説明した所定量VHUMD/SK(図15参照)に対応するものである。そして、本実施形態では、上流側湿度センサ12は、下流側湿度センサ4とほぼ同一特性のものであるので、上流側増加判断閾値に係わる前記所定量VFHUM/SKは、例えば前記第1実施形態で下流側湿度センサ19に関して説明した所定量VHUMD/SKと同じ値に設定されている。但し、必ずしもVFHUM/SK=VHUMD/SKとする必要はなく、HC吸着触媒2の上流側及び下流側の実際の相対湿度の推移特性を考慮して、それらの値を各別の値に実験的に定めるようにしてもよい。
前記STEP79は、上述した吸着開始タイミングを検出するための判断処理であり、劣化評価処理装置8は、相対湿度VFHUMの現在値が前記上流側増加判断閾値を超えていない場合(図15の時刻t2よりも前の期間)には、後述する図14のSTEP83からの処理を実行する。
一方、STEP79でVFHUM>上流側増加判断閾値である場合には、劣化評価処理装置8は、今回のサイクルタイムの時点が前記吸着開始タイミングであるとして、前記ECU7から前記積算燃料噴射量Σtcylの現在値のデータを取得し(STEP80)、この積算燃料噴射量Σtcylの値をHC吸着触媒2のHC吸着材の吸着開始タイミングにおける吸着開始時積算燃料噴射量TPFの値として記憶保持する(STEP81)。例えば、図15の例では、時刻t2における積算燃料噴射量Σtcylが吸着開始時積算燃料噴射量TPFとして記憶保持される。尚、この吸着開始時積算燃料噴射量TPFは、エンジン1の運転開始時から吸着開始タイミングまでに該エンジン1が生成した排ガス中の総水分量を意味する。
次いで、劣化評価処理装置8は、STEP82でフラグF/FENDの値を「1」に設定した後、後述する図14のSTEP83からの処理を実行する。尚、STEP82でフラグF/FENDの値を「1」に設定したときには、次回のサイクルタイムからSTEP73の判断結果がYESとなって、STEP74〜82の処理が実行されなくなるので、STEP81で求めた吸着開始時積算燃料噴射量TPFの値は、以後変更されずに保持されることとなる。
次に、図14に示すSTEP83からの処理では、劣化評価処理装置8は、前記第1実施形態で説明した図6のSTEP13〜20とそれぞれ同一の処理をSTEP83〜90で実行する。但し、本実施形態では、STEP90(図6のSTEP20に対応)では、下流側湿度センサ4が検出する相対湿度VHUMDが低湿度側から単調増加状態に転じるタイミング、すなわち前記吸着飽和タイミングにおける積算燃料噴射量Σtcylは、劣化評価パラメータとしてではなく、エンジン1の運転開始時から、該吸着飽和タイミングまでの吸着飽和時積算燃料噴射量TPRの値(これはエンジン1の運転開始時から吸着飽和タイミングまでに該エンジン1が生成した排ガス中の総水分量を意味する)として記憶保持される。
そして、劣化評価処理装置8は、前記STEP81(図13参照)で求めた吸着開始時積算燃料噴射量TPRの値を、上記吸着飽和時積算燃料噴射量TPRの値から減算してなる値(=TPR−TPF)を劣化評価パラメータTPHとして求める(STEP91)。このようにして求められる劣化評価パラメータTPHは、吸着開始タイミングから吸着飽和タイミングまでにHC吸着触媒2のHC吸着材が実質的に吸着した積算水分量に相当するものとなる。
次いで、劣化評価処理装置8は、前記第1実施形態における図6のSTEP21〜23と同じ処理をSTEP92〜94で実行し、HC吸着触媒2のHC吸着能力の良否を示すフラグF/HBDTの値を設定する。すなわち、STEP91で求めた劣化評価パラメータTPHの値が、エンジン1の運転開始時に図12のSTEP61で求めた吸着劣化評価用閾値TRSDT(図5の仮想線を参照)と比較され、TPH>TRSDTである場合には、HC吸着触媒2のHC吸着材能力が良好であるとしてフラグF/HBDTの値が「0」に設定される。また、TPH≦TRSDTである場合には、HC吸着吸着触媒2のHC吸着能力が劣化しているとして、フラグF/HBDTの値が「1」に設定される。尚、劣化評価処理装置8は、このようにSTEP92〜94の処理を実行した後には、STEP95でフラグF/DONEの値を「1」に設定し、図13及び図14のルーチン処理を終了する。以上説明した図13及び図14の処理により、HC吸着触媒2のHC吸着能力が評価され、その能力が良好であるか否かに応じてフラグF/HBDTの値が設定される。
そして、劣化評価処理装置8は、前述のようにECU7がO2センサ5の出力を所定の目標値に収束させるようにエンジン1の空燃比を制御している際に、前記第1実施形態で説明した図8のフローチャートに示す処理を実行し、HC吸着触媒2の触媒作用による未燃ガス浄化能力の評価を行うと共に、HC吸着触媒2のHC吸着能力及び未燃ガス浄化能力を合わせた全体的な劣化状態を評価する。この処理は、前記第1実施形態と全く同一である。そして、この図8の処理によって、HC吸着触媒2のHC吸着能力及び未燃ガス浄化能力のいずれかが劣化していると判断される場合に、HC吸着触媒2の全体的な劣化状態が前記劣化進行状態であると判断される。また、HC吸着触媒2のHC吸着能力及び未燃ガス浄化能力の両者が良好であると判断される場合にのみ、HC吸着触媒2が劣化していないと判断される。従って、前記第1実施形態と同様、HC吸着触媒2のHC吸着能力及び未燃ガス浄化能力のいずれかが劣化しているのに、HC吸着触媒2が未劣化状態であると判断されるようなことがなく、該HC吸着触媒2の全体的な劣化状態を適正に評価することができる。
また、本実施形態では特に、HC吸着触媒2の下流側だけでなく、上流側にも湿度センサ12を設けている。そして、HC吸着能力の評価においては、下流側湿度センサ4の出力データを用いて、前記吸着飽和タイミングを把握すると共に、上流側湿度センサ12の出力データを用いて吸着開始タイミングを把握し、その把握した吸着開始タイミングから吸着飽和タイミングまでにHC吸着触媒2に供給された積算水分量を表す劣化評価パラメータTPHに基づいて、HC吸着能力の評価するので、その評価結果の信頼性をより高めるいことができる。ひいては、HC吸着触媒2の劣化状態の評価結果の信頼性を高めることができる。
次に、本発明の第4実施形態を図16を参照して説明する。本実施形態は、本発明の第4の態様の実施形態である。尚、本実施形態の説明において、前記第1〜第3実施形態と同一構成もしくは同一機能部分については、それらの実施形態と同一の参照符号を用い、詳細な説明を省略する。
図16に示すように、本実施形態の装置におけるエンジン1の排気系の構成は、前記第2実施形態のものと同一であり、HC吸着触媒2と、該HC吸着触媒2とは独立した(別体の)触媒装置10とを上流側から順番に有する排ガス浄化装置11がエンジン1の排気通路3に設けられている。また、排気通路3には、HC吸着触媒2の下流側で且つ触媒装置10の上流側の箇所に下流側湿度センサ4が設けられると共に、HC吸着触媒2の上流側には、該HC吸着触媒2の近傍箇所で上流側湿度センサ12が設けられている。また、前記第2実施形態のものと同様に、排ガス浄化装置11の下流側(触媒装置10の下流側)と上流側(HC吸着触媒2の上流側)とにそれぞれO2センサ5及びLAFセンサ(広域空燃比センサ)6が設けられている。さらに、本実施形態の装置は、前記第1〜第3実施形態と同様に、ECU7、劣化評価処理装置8及び劣化報知器9を備えている。この場合、ECU7や、劣化評価装置8に入力されるデータは前記第3実施形態と同一である。
かかる本実施形態の装置では、ECU7が実行する処理は前記第1実施形態と同一であり、前記積算燃料噴射量Σtcylの算出処理や、エンジン1の空燃比制御の処理等が第1実施形態と全く同様に実行される。また、劣化評価処理装置8が実行する処理は、基本的には前記第3実施形態と同様であり、前記図13、図14、図8のフローチャートに示した処理が第3実施形態と同様に実行される。但し、この場合において、本実施形態の劣化評価処理装置8が図13及び図14の処理により評価するHC吸着能力は、第3実施形態と同様、HC吸着触媒2そのもののHC吸着能力であるが、前記図8のSTEP33で劣化評価処理装置8が評価する未燃ガス浄化能力は、前記第2実施形態と同様、HC吸着触媒2の触媒機能と、触媒装置10の触媒機能とを合わせた排ガス浄化装置11の全体の未燃ガス浄化能力である。そして、劣化評価処理装置8は、前記第2実施形態と同様、図8のSTEP41では排ガス浄化装置11の全体が劣化進行状態であると判断する。換言すれば、劣化評価処理装置8は、排ガス浄化装置11の全体のHC吸着能力(=HC吸着触媒2のHC吸着能力)と、排ガス浄化装置11の全体の未燃ガス浄化能力(HC吸着触媒2の触媒機能と触媒装置10とを合わせたものの未燃ガス浄化能力)とのいずれかが劣化した状態である判断する。また、劣化評価処理装置8は、図8のSTEP41では、排ガス浄化装置11の全体が未劣化状態であると判断する。
このようにして、本実施形態では、前記第2実施形態と同様に、互いに独立したHC吸着触媒2と触媒装置10とを有する排ガス浄化装置11の全体的な劣化状態を適正に評価することができる。そして、排ガス浄化装置11の全体的な劣化状態を適正に評価することができるため、該排ガス浄化装置11による排ガスの最終的な浄化状態の適否を把握することができる。特に、本実施形態では、排ガス浄化装置11のHC吸着能力の評価では、前記第3実施形態と同様、下流側湿度センサ4の出力データだけでなく、上流側湿度センサ12の出力データをも用いるため、HC吸着能力の評価の信頼性を高めることができる。
尚、本実施形態では、HC吸着触媒2を上流側、触媒装置10を下流側に配した排ガス浄化装置11を例にとって説明したが、図17に示すように、HC吸着触媒2を下流側、触媒装置10を上流側に配置してもよい。この場合、前記第4実施形態と同様に排ガス浄化装置11の全体的な劣化状態を評価するためには、下流側湿度センサ4とO2センサ5とをHC吸着触媒2の下流側(排ガス浄化装置11の下流側)に設けると共に、上流側湿度センサ12をHC吸着触媒2と触媒装置10との間(HC吸着触媒2の上流側)でHC吸着触媒の近傍に設け、さらにLAFセンサ6を触媒装置10の上流側(排ガス浄化装置11の上流側)に設けるようにすればよい。
また、前記第1〜第4実施形態では、排ガス浄化装置2,11の触媒作用による未燃ガス浄化能力を評価するために、PCT国際公開公報WO/01/46569/A1に本願出願人が開示した技術を用いたが、該未燃ガス浄化能力の評価は、基本的には酸素濃度センサ等の空燃比センサを用いて通常的な触媒装置の劣化状態を適正に評価し得るものであればどのような技術を用いてもよい。例えば、本願出願人が特開平8−144744号公報に開示した技術を適用し、排ガス浄化装置2,11の下流側に設けたO2センサの出力の反転特性や、排ガス浄化装置2,11の上流側及び下流側にそれぞれ設けたO2センサの両者の出力の反転特性を利用して、排ガス浄化装置2,11の触媒機能による未燃ガス浄化能力の劣化を検知するようにしてもよい。
また、前記第1〜第4実施形態では、排ガス浄化装置2,11の全体的な劣化状態に応じた報知のみを劣化報知器9により行うようにしたが、さらに、排ガス浄化装置2,11のHC吸着能力及び未燃ガス浄化能力のそれぞれの評価結果に応じた報知を行うようにしてもよい。
また、前記第1及び第2実施形態では、排ガス浄化装置2,11のHC吸着能力(HC吸着触媒2のHC吸着能力)の評価処理において、湿度センサ4の出力電圧VRSTを相対湿度VHUMDのデータに換算するようにしたが、湿度センサ4の出力電圧VRSTをそのまま用いるようにすることも可能である。この場合、前記図2に示した出力特性の湿度センサ4では、相対湿度VHUMDが増加するときに、出力電圧VRST減少することとなるので、エンジン1の運転開始後、出力電圧VRSTが極大値から所定量だけ減少した時点をHC吸着触媒2のHC吸着材による水分及びHCの吸着が飽和する吸着飽和タイミングとして検出するようにすればよい。このことは、前記第3及び第4実施形態においても同様である。そして、特に第3及び第4実施形態においては、下流側湿度センサ4の出力電圧VRSTに基づく吸着飽和タイミングの検出の場合と同様に、上流側湿度センサ12の出力電圧VFSTをそのまま用いて前記吸着開始タイミングを検出するようにしてもよい。
産業上の利用可能性
以上のように、本発明は自動車等に搭載される内燃機関の排気系に備えた排ガス浄化装置の劣化状態を評価するための装置として有用である。
【図面の簡単な説明】
図1は本発明の第1実施形態の装置の全体的システム構成を示すブロック図、図2は図1の装置で用いる湿度センサの出力特性を示す線図、図3は図1の装置で用いる空燃比センサの出力特性を示す線図である。図4は図1の装置に備えた劣化評価処理装置の処理を示すフローチャート、図5は図4のフローチャートで用いるデータテーブルを示す線図、図6は図1の装置に備えた劣化評価処理装置の処理を示すフローチャート、図7は図6のフローチャートの処理を説明するための線図、図8は図1の装置に備えた劣化評価処理装置の処理を示すフローチャートである。図9は本発明の第2実施形態の装置の全体的システム構成を示すブロック図、図10は本発明の第2実施形態の変形態様の装置の全体的システム構成を示すブロック図である。図11は本発明の第3実施形態の装置の全体的システム構成を示すブロック図、図12〜図14は図11の装置に備えた劣化評価処理装置の処理を示すフローチャート、図15は図13及び図14のフローチャートの処理を説明するための線図である。図16は本発明の第4実施形態の装置の全体的システム構成を示すブロック図、図17は本発明の第4実施形態の変形態様の装置の全体的システム構成を示すブロック図である。
Claims (10)
- 内燃機関の排気通路に設けられ、該排気通路を流れる排ガス中の炭化水素を吸着する機能と該排ガス中の未燃ガスを触媒作用により浄化する機能とを有する炭化水素吸着触媒から成る排ガス浄化装置の劣化状態を評価する装置であって、
前記炭化水素吸着触媒の下流側に設けられ、前記排ガスの湿度に応じた出力を発生する湿度センサと、前記炭化水素吸着触媒の上流側及び下流側のうちの少なくとも下流側に設けられ、前記排ガスの空燃比に応じた出力を発生する空燃比センサと、前記湿度センサの出力データを用いて前記炭化水素吸着触媒の炭化水素吸着能力を評価する吸着能力評価手段と、前記空燃比センサの出力データを用いて前記炭化水素吸着触媒の未燃ガス浄化能力を評価する浄化能力評価手段とを備え、該吸着能力評価手段及び浄化能力評価手段の両者の評価結果に基づいて、前記排ガス浄化装置の劣化状態を評価するようにしたことを特徴とする排ガス浄化装置の劣化状態評価装置。 - 内燃機関の排気通路に設けられ、該排気通路を流れる排ガス中の炭化水素を吸着する機能と該排ガス中の未燃ガスを触媒作用により浄化する機能とを有する炭化水素吸着触媒から成る排ガス浄化装置の劣化状態を評価する装置であって、
前記炭化水素吸着触媒の下流側及び上流側にそれぞれ設けられ、前記排ガスの湿度に応じた出力をそれぞれ発生する下流側湿度センサ及び上流側湿度センサと、前記炭化水素吸着触媒の上流側及び下流側のうちの少なくとも下流側に設けられ、前記排ガスの空燃比に応じた出力を発生する空燃比センサと、前記上流側湿度センサ及び下流側湿度センサの出力データを用いて前記炭化水素吸着触媒の炭化水素吸着能力を評価する吸着能力評価手段と、前記空燃比センサの出力データを用いて前記炭化水素吸着触媒の未燃ガス浄化能力を評価する浄化能力評価手段とを備え、該吸着能力評価手段及び浄化能力評価手段の両者の評価結果に基づいて、前記排ガス浄化装置の劣化状態を評価するようにしたことを特徴とする排ガス浄化装置の劣化状態評価装置。 - 内燃機関の排気通路に設けられ、該排気通路を流れる排ガス中の炭化水素を吸着する機能と該排ガス中の未燃ガスを触媒作用により浄化する機能とを有する炭化水素吸着触媒と、該炭化水素吸着触媒とは独立して前記排気通路に設けられ、未燃ガスを触媒作用により浄化する触媒装置とを備えた排ガス浄化装置の劣化状態を評価する装置であって、
前記炭化水素吸着触媒の下流側及び上流側のうちの少なくとも下流側に設けられ、前記排ガスの湿度に応じた出力を発生する湿度センサと、前記排ガス浄化装置の上流側及び下流側のうちの少なくとも下流側に設けられ、前記排ガスの空燃比に応じた出力を発生する空燃比センサと、前記湿度センサの出力データを用いて前記炭化水素吸着触媒の炭化水素吸着能力を評価する吸着能力評価手段と、前記空燃比センサの出力データを用いて前記排ガス浄化装置の全体の未燃ガス浄化能力を評価する浄化能力評価手段とを備え、該吸着能力評価手段及び浄化能力評価手段の両者の評価結果に基づいて前記排ガス浄化装置の劣化状態を評価するようにしたことを特徴とする排ガス浄化装置の劣化状態評価装置。 - 内燃機関の排気通路に設けられ、該排気通路を流れる排ガス中の炭化水素を吸着する機能と該排ガス中の未燃ガスを触媒作用により浄化する機能とを有する炭化水素吸着触媒と、該炭化水素吸着触媒とは独立して前記排気通路に設けられ、未燃ガスを触媒作用により浄化する触媒装置とを備えた排ガス浄化装置の劣化状態を評価する装置であって、
前記炭化水素吸着触媒の下流側及び上流側にそれぞれ設けられ、前記排ガスの湿度に応じた出力をそれぞれ発生する下流側湿度センサ及び上流側湿度センサと、前記排ガス浄化装置の上流側及び下流側のうちの少なくとも下流側に設けられ、前記排ガスの空燃比に応じた出力を発生する空燃比センサと、前記湿度センサの出力データを用いて前記炭化水素吸着触媒の炭化水素吸着能力を評価する吸着能力評価手段と、前記空燃比センサの出力データを用いて前記排ガス浄化装置の全体の未燃ガス浄化能力を評価する浄化能力評価手段とを備え、該吸着能力評価手段及び浄化能力評価手段の両者の評価結果に基づいて前記排ガス浄化装置の劣化状態を評価するようにしたことを特徴とする排ガス浄化装置の劣化状態評価装置。 - 前記内燃機関の運転開始時から前記炭化水素吸着触媒に前記排ガスを介して与えられた積算水分量を表す劣化評価パラメータを逐次生成する手段を備え、前記吸着能力評価手段は、前記内燃機関の運転開始後、前記湿度センサの出力を逐次監視しつつ、該湿度センサの出力データにより表される湿度が単調増加状態となるタイミングを検出し、その検出したタイミングにおける前記劣化評価パラメータの値を所定の閾値と比較することにより、前記炭化水素吸着触媒の炭化水素吸着能力を評価することを特徴とする請求の範囲第1項又は第3項記載の排ガス浄化装置の劣化状態評価装置。
- 前記吸着能力評価手段は、前記内燃機関の運転開始後、前記湿度センサの出力データにより表される湿度が極小値を採る状態を逐次検索し、該湿度が最新の極小値から所定量以上、増加した時点を前記湿度センサの出力データにより表される湿度が単調増加状態となるタイミングとして検出することを特徴とする請求の範囲第5項に記載の排ガス浄化装置の劣化状態評価装置。
- 前記内燃機関の運転開始後、前記上流側湿度センサの出力を逐次監視しつつ、該上流側湿度センサの出力データにより表される湿度が単調増加状態となるタイミングを検出する第1検出手段と、前記内燃機関の運転開始後、前記下流側湿度センサの出力を逐次監視しつつ、該下流側湿度センサの出力データにより表される湿度が単調増加状態となるタイミングを検出する第2検出手段と、前記第1検出手段により検出されたタイミングから、前記第2検出手段により検出されたタイミングまでに前記炭化水素吸着触媒に前記排ガスを介して与えられた積算水分量を表す劣化評価パラメータを生成する手段とを備え、前記吸着能力評価手段は、前記劣化評価パラメータの値を所定の閾値と比較することにより、前記炭化水素吸着触媒の炭化水素吸着能力を評価することを特徴とする請求の範囲第2項又は第4項記載の排ガス浄化装置の劣化状態評価装置。
- 前記第1検出手段は、前記内燃機関の運転開始後、前記上流側湿度センサの出力データにより表される湿度が極小値を採る状態を逐次検索し、該湿度が最新の極小値から第1所定量以上、増加した時点を前記上流側湿度センサの出力データにより表される湿度が単調増加状態となるタイミングとして検出し、前記第2検出手段は、前記内燃機関の運転開始後、前記下流側湿度センサの出力データにより表される湿度が極小値を採る状態を逐次検索し、該湿度が最新の極小値から第2所定量以上、増加した時点を前記下流側湿度センサの出力データにより表される湿度が単調増加状態となるタイミングとして検出することを特徴とする請求の範囲第7項に記載の排ガス浄化装置の劣化状態評価装置。
- 前記吸着能力評価手段は、前記炭化水素吸着触媒の炭化水素吸着能力を高低2段階に分類して評価する手段であると共に、前記浄化能力評価手段は、前記炭化水素吸着触媒の未燃ガス浄化能力を高低2段階に分類して評価する手段であり、
前記吸着能力評価手段により炭化水素吸着触媒の炭化水素吸着能力が高いと評価され、且つ前記浄化能力評価手段により炭化水素吸着触媒の未燃ガス浄化能力が高いと評価された場合には、前記排ガス浄化装置が劣化していないと判断し、炭化水素吸着能力及び未燃ガス浄化能力のいずれか一方が低いと評価された場合に、前記排ガス浄化装置が劣化していると判断することを特徴とする請求の範囲第1項又は第2項に記載の排ガス浄化装置の劣化状態評価装置。 - 前記吸着能力評価手段は、前記炭化水素吸着触媒の炭化水素吸着能力を高低2段階に分類して評価する手段であると共に、前記浄化能力評価手段は、前記排ガス浄化装置の全体の未燃ガス浄化能力を高低2段階に分類して評価する手段であり、
前記吸着能力評価手段により炭化水素吸着触媒の炭化水素吸着能力が高いと評価され、且つ前記浄化能力評価手段により排ガス浄化装置の全体の未燃ガス浄化能力が高いと評価された場合には、該排ガス浄化装置が劣化していないと判断し、炭化水素吸着能力及び未燃ガス浄化能力のいずれか一方が低いと評価された場合に、該排ガス浄化装置が劣化していると判断することを特徴とする請求の範囲第3項又は第4項に記載の排ガス浄化装置の劣化状態評価装置。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001268319 | 2001-09-05 | ||
JP2001268319 | 2001-09-05 | ||
PCT/JP2002/008527 WO2003023202A1 (fr) | 2001-09-05 | 2002-08-23 | Dispositif d'evaluation de l'etat de deterioration d'un equipement de regulation d'emission de gaz d'echappement |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2003023202A1 true JPWO2003023202A1 (ja) | 2004-12-24 |
Family
ID=19094319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003527247A Pending JPWO2003023202A1 (ja) | 2001-09-05 | 2002-08-23 | 排ガス浄化装置の劣化状態評価装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US6978598B2 (ja) |
EP (1) | EP1424471B1 (ja) |
JP (1) | JPWO2003023202A1 (ja) |
DE (1) | DE60235633D1 (ja) |
WO (1) | WO2003023202A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4766238B2 (ja) * | 2005-09-08 | 2011-09-07 | 三菱自動車工業株式会社 | Hc吸着材の劣化判定装置 |
US9163588B2 (en) | 2011-03-10 | 2015-10-20 | Ford Global Technologies, Llc | Method and system for humidity sensor diagnostics |
DE102012106303A1 (de) * | 2012-07-13 | 2014-01-16 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Abgassystem für eine Verbrennungskraftmaschine |
JP6032985B2 (ja) * | 2012-07-18 | 2016-11-30 | 大阪瓦斯株式会社 | 還元剤注入装置及び脱硝装置 |
US9382861B2 (en) * | 2013-02-22 | 2016-07-05 | Ford Global Technologies, Llc | Humidity Sensor Diagnostics |
DE102013018920A1 (de) * | 2013-11-13 | 2015-05-13 | Man Truck & Bus Ag | Abgasnachbehandlungsvorrichtung für eine Brennkraftmaschine und Verfahren zum Aufheizen einer Abgasnachbehandlungsvorrichtung |
CN115614762B (zh) * | 2022-11-14 | 2023-04-04 | 湖南天闻新华印务有限公司 | 一种印刷烘箱尾气处理装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05256124A (ja) * | 1992-03-13 | 1993-10-05 | Hitachi Ltd | エンジン排気浄化システム |
JP3154431B2 (ja) * | 1992-03-25 | 2001-04-09 | マツダ株式会社 | エンジンの排気ガス浄化用触媒の劣化検出方法及びその装置 |
JP3412216B2 (ja) * | 1993-12-10 | 2003-06-03 | 株式会社デンソー | 内燃機関の排気浄化装置 |
KR0150432B1 (ko) * | 1994-05-10 | 1998-10-01 | 나까무라 유이찌 | 내연엔진의 제어장치 및 제어방법 |
JPH08144744A (ja) | 1994-11-17 | 1996-06-04 | Honda Motor Co Ltd | 内燃機関の触媒劣化検出装置 |
JPH10159543A (ja) | 1996-12-04 | 1998-06-16 | Nissan Motor Co Ltd | 排気ガス浄化装置の劣化診断方法 |
JPH116424A (ja) * | 1997-06-19 | 1999-01-12 | Nissan Motor Co Ltd | 内燃機関の排気浄化装置 |
DE59904447D1 (de) * | 1998-03-27 | 2003-04-10 | Siemens Ag | Abgassystem eines verbrennungsmotors sowie verfahren zur reduktion von schadstoffen in einem abgas |
JP3967524B2 (ja) | 1999-12-22 | 2007-08-29 | 本田技研工業株式会社 | 内燃機関の空燃比制御装置 |
JP4312325B2 (ja) | 1999-12-28 | 2009-08-12 | 本田技研工業株式会社 | 排ガス浄化用触媒装置の劣化状態評価方法 |
JP2001323811A (ja) * | 2000-03-10 | 2001-11-22 | Honda Motor Co Ltd | 排気ガス浄化触媒の状態検出装置 |
US6594985B2 (en) * | 2001-06-19 | 2003-07-22 | Ford Global Technologies, Inc. | Exhaust gas aftertreatment device efficiency estimation |
JP3782341B2 (ja) * | 2001-12-06 | 2006-06-07 | 本田技研工業株式会社 | 湿度センサの故障検知方法 |
-
2002
- 2002-08-23 JP JP2003527247A patent/JPWO2003023202A1/ja active Pending
- 2002-08-23 US US10/484,561 patent/US6978598B2/en not_active Expired - Fee Related
- 2002-08-23 DE DE60235633T patent/DE60235633D1/de not_active Expired - Lifetime
- 2002-08-23 WO PCT/JP2002/008527 patent/WO2003023202A1/ja active Application Filing
- 2002-08-23 EP EP02762843A patent/EP1424471B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US20040168509A1 (en) | 2004-09-02 |
EP1424471B1 (en) | 2010-03-10 |
US6978598B2 (en) | 2005-12-27 |
WO2003023202A1 (fr) | 2003-03-20 |
EP1424471A1 (en) | 2004-06-02 |
DE60235633D1 (de) | 2010-04-22 |
EP1424471A4 (en) | 2008-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4506874B2 (ja) | 内燃機関の排気浄化装置 | |
JP3782341B2 (ja) | 湿度センサの故障検知方法 | |
JP6123822B2 (ja) | 排気浄化装置の劣化診断装置 | |
US9416716B2 (en) | Control apparatus for an internal combustion engine | |
JP6278039B2 (ja) | 選択還元型触媒の劣化診断装置 | |
JP6278005B2 (ja) | 排気浄化装置の劣化診断装置 | |
JP3947055B2 (ja) | 炭化水素吸着材の劣化状態評価方法 | |
JPH07305644A (ja) | 内燃エンジンの空燃比制御装置 | |
JP3926694B2 (ja) | 排気ガス浄化装置の状態判定装置 | |
JP6102908B2 (ja) | 排気浄化装置の劣化診断装置 | |
JP2003193901A (ja) | 湿度センサの温度制御装置 | |
JPWO2003023202A1 (ja) | 排ガス浄化装置の劣化状態評価装置 | |
JP6248978B2 (ja) | 内燃機関の制御装置 | |
JP2000034946A (ja) | 内燃機関の排ガス浄化装置 | |
US6769417B1 (en) | Apparatus for evaluating deteriorated state of hydrocarbon adsorbent | |
US6601383B2 (en) | Emission control apparatus for engine and method for reducing emissions of engine | |
JP3863003B2 (ja) | 吸着材の状態判定装置 | |
JP4636273B2 (ja) | 内燃機関の排気浄化装置 | |
JP4221297B2 (ja) | 炭化水素吸着材の状態監視装置 | |
JP4102302B2 (ja) | 排ガス浄化装置の劣化状態評価装置 | |
JP2009150367A (ja) | 内燃機関の触媒劣化診断装置 | |
JP2002364428A (ja) | 触媒劣化判定装置 | |
JP2008144656A (ja) | 内燃機関の排ガス浄化装置 | |
JP3500968B2 (ja) | 内燃機関の排気浄化装置 | |
JP4089507B2 (ja) | 内燃機関の触媒劣化検出装置 |