技術分野
本発明は安定化された溶融加工可能な含フッ素重合体を得る製造方法に関する。さらに詳しくは、不安定末端基および/または主鎖に存在する不安定結合を、短時間で効率よく安定化する方法をより効率的に行なうための前処理を行う製造方法に関する。
背景技術
溶融加工可能な含フッ素重合体は、たとえばテトラフルオロエチレン(TFE)とヘキサフルオロプロピレン(HFP)との共重合体(FEP)やTFEとパーフルオロ(アルキルビニルエーテル)(PAVE)との共重合体(PFA)、TFEとエチレンとの共重合体(ETFE)など数多く知られている。こうした溶融加工可能な含フッ素重合体のなかには、溶融加工により製造した成形品中に気泡や空隙が生ずるものがある。これは、含フッ素重合体が有する不安定な末端基が熱により分解して生ずる揮発性物質に起因すると考えられている(米国特許第3,085,083号明細書)。
溶融加工可能な含フッ素重合体に存在する不安定末端基の種類は、重合法や重合開始剤、連鎖移動剤などの種類に依存する。たとえば、乳化重合法によく使用される過硫酸塩(過硫酸アンモニウム、過硫酸カリウムなど)を重合開始剤とする場合カルボン酸末端基が生ずる。このカルボン酸末端基は溶融条件にもよるが、溶融混練によりビニル末端基(−CF=CF2)や酸フルオライド末端基(−COF)に変化する。これらの末端基は熱的に不安定であり、揮発性物質を生じて最終製品に気泡や空隙を生ずる原因となる。
米国特許第3,085,083号明細書では、こうした不安定末端基を水と熱の存在下で処理することにより安定な−CF2H基に変換している。また、特公昭46−23245号公報記載の方法では、フッ素ガスなどのフッ素化剤と反応させて−CF3という安定な末端基に変換している。
また含フッ素重合体の主鎖中には、繰返し単位の結合の仕方によっては不安定な結合が生ずることがある。たとえばTFE−HFP系の共重合体であるFEPの場合、HFP同士の結合は不安定であり溶融混練時に加わる機械力(剪断力)により切断され、フッ素ラジカル末端となり、脱フッ素して不安定なビニル末端基を生ずるといわれている(米国特許第4,675,380号明細書)。
米国特許第4,675,380号明細書では、溶融混練時に二軸スクリュー型押出機により大きな剪断力を加えてHFP−HFP結合を切断して不安定末端基としている。しかしこの方法では、二軸スクリュー型押出機という短時間で大きな剪断力を加えることができる混練機を使用するため、主鎖の不安定結合を切断して不安定ビニル末端とするに止まっている。そして、生じた不安定末端基の処理を二軸押出機内で行なうことは予定していない。つまり、含フッ素重合体を実質的に酸素が存在しない雰囲気下で処理して、押出機内から前記ビニル末端基のまま取り出し、安定化処理を二軸押出機外で行なっている。これは、酸素が存在するとビニル末端基が酸フルオライド末端基に変化するためである。また、二軸押出機内での溶融混練時に発生する揮発性物質などを押出機外に排気するために押出機内を減圧(絶対圧力で0.1MPa未満)にしているが、それでもビニル末端基の解重合により生ずる炭素に起因する着色が生じている。
そこで本発明者らは溶融加工可能な含フッ素重合体の不安定基を短時間に効率よく安定化し、気泡や着色のない成形物を提供するべく、不安定基を有する溶融加工可能な含フッ素重合体をつぎのいずれかの条件を満たす安定化処理領域を含む混練機内で溶融混練することを特徴とする含フッ素重合体の安定化方法を提案している(WO00/26260号パンフレット)。
条件1
(1)安定化処理領域内に酸素を含むガスを存在させる、および
(2)安定化処理領域内に水を存在させる。
条件2
(a)温度77Kにおける電子スピン共鳴吸収分析による安定化処理後の含フッ素重合体の炭素ラジカルのスピン数が5×1013spin/g以下、好ましくは1×1013spin/g以下となるのに充分な量の酸素を含むガスを安定化処理領域内に存在させる、および
(b)安定化処理領域内に水を存在させる。
かかる水と酸素を積極的に安定化処理領域に存在させるという安定化方法によれば、かなり効率よく溶融加工可能な含フッ素重合体の不安定基を短時間に安定化し、気泡や着色のない成形物を提供することができる。
しかし、さらに検討を重ねたところ、安定化処理領域で不安定末端の安定化を行なう重合体温度(通常270〜450℃)では、不安定末端基は検出されないような重合体が得られたとしても、依然として低分子量物や分解ガスを含む場合があり、かかる方法で得られたペレットを用いて溶融成形したとき、低分子量物などが分解し気化して気泡の原因となることがあることが判明した。
そこで安定化処理領域の処理温度を上げることが考えられるが、そうすると高分子量物の分解が促進されて、樹脂自体の分子量を維持することが困難になってしまう。
本発明の目的は、安定化処理領域に含フッ素重合体を供給する前に低分子量物を分解および/または揮散させ、安定化処理領域を不安定末端の安定化処理に最適な条件とし、低分子量物やその分解産物を含まない安定化された含フッ素重合体を製造する方法を提供することにある。
発明の開示
すなわち本発明は、不安定基を有する溶融加工可能な含フッ素重合体を水および酸素の存在下で安定化する安定化処理領域を含む混練機内で溶融混練する含フッ素重合体の安定化方法に先立って、該安定化処理領域の前の領域として含フッ素重合体中の低分子量物を分解または揮散するのに充分な温度と時間において含フッ素重合体を溶融混練する溶融領域を配置し、該溶融領域において低分子量物を分解および/または揮散させて安定化処理領域の前で混練機外に放出することを特徴とする安定化された含フッ素重合体の製造方法に関する。
前記溶融領域での含フッ素重合体温度としては、含フッ素重合体の種類や混練方法などによっても異なるが、通常350〜420℃の範囲で設定することが好ましい。なお、本明細書における温度とは、特に断らない限り重合体自身の温度をいう。
前記混練機としては、スクリュー型押出機、特に二軸スクリュー型押出機が好ましい。
また、前記溶融領域の最終端の絶対圧力を0.1MPa未満とすることが好ましい。
本発明で安定化処理される含フッ素重合体としては、テトラフルオロエチレン(TFE)、ヘキサフルオロプロピレン(HFP)およびパーフルオロ(アルキルビニルエーテル)(PAVE)よりなる群から選ばれた少なくとも2種のモノマーからなる共重合体などがあげられる。特にパーフルオロ(メチルビニルエーテル)(PMVE)0.5〜7重量%、該PMVE以外のPAVE0.05〜3重量%およびTFE残部からなる共重合体、またはTFE75〜92重量%、HFP8〜20重量%およびPAVE0〜5重量%からなる共重合体が有効に安定化処理され得る。
発明を実施するための最良の形態
まず、本発明が対象とする不安定基を有する溶融加工可能な含フッ素重合体について説明する。
溶融加工可能な含フッ素重合体としては、前記のようにTFE、HFP、PAVEといったモノマーを2種以上共重合して得られる共重合体などが知られている。具体的な共重合体としては、たとえばTFE−HFP共重合体(FEP)、TFE−HFP−PAVE共重合体などのFEP系重合体;TFE−PAVE共重合体(PFA)、TFE−PMVE−PAVE(PMVE以外)共重合体などのPFA系重合体などがあげられる。
PAVEとしては、式:
CF2=CFO(CF2)mF
(式中、mは1〜6の整数である)で表わされるビニルエーテル(なお、mが1の場合がPMVEである)、および式:
CF2=CF(O−CF2CF(CF3))nOC3F7
(式中、nは1〜4の整数である)で表わされるビニルエーテルがあげられる。
なかでも、パーフルオロ(メチルビニルエーテル)(PMVE)0.5〜7重量%、前記PMVE以外のPAVE0.05〜3重量%およびTFE残部からなる共重合体であることが好ましい。前記PMVEが0.5重量%より少ないと、溶融流動性が悪くなり、一般的な溶融成形が困難となる傾向にある。また、7重量%をこえると、融点が低下し、熱安定性が悪くなる傾向にある。特に、PMVEは4〜6重量%であることが好ましい。また、前記PMVE以外のPAVEが0.05重量%より少ないと、溶融流動性が悪くなり、一般的な溶融形成が困難となる傾向にある。3重量%をこえると、融点が低下し、熱安定性が悪くなる傾向にある。特に、PMVE以外のPAVEは0.07〜1.5重量%であることが好ましい。
また、前記含フッ素共重合体は、TFE75〜92重量%、HFP8〜20重量%およびPAVE0〜5重量%からなる共重合体であることが好ましい。前記TFEが75重量%より少ないと、熱安定性が悪くなる傾向にある。92重量%をこえると、溶融流動性が悪くなり、一般的な溶融成形が困難となる傾向にある。特に、前記TFEは84〜89.5重量%であることが好ましい。また、前記HFPが8重量%より少ないと、耐ストレスクラック性が低下する傾向にある。20重量%をこえると、熱安定性が悪くなる傾向にある。特に、前記HFPは10〜14重量%であることが好ましい。また、前記PAVEが5重量%をこえると、熱安定性が悪くなる傾向にある。特に、前記PAVEは、0.5〜2重量%であることが好ましい。
これらの溶融加工可能な含フッ素重合体は多かれ少なかれ不安定基を有している。特に不安定基の安定化が望まれている含フッ素重合体の代表例としては、FEP系重合体、それも不安定基の原因となる過硫酸塩を開始剤として使用する乳化重合法で製造したものがあげられ、そのほか重合体の末端がフッ素原子または水素原子で飽和されない重合法で製造された含フッ素重合体なども、安定化処理が強く要請されている重合体である。なかには、使用する重合法や開始剤の種類によって、または連鎖移動剤としてメタンなどのアルカン類などを使用することによって不安定基の少ない重合体が得られ、従来は用途によっては安定化処理が不要とされているものもあるが、それらの重合体も安定化処理により、より一層安定なものとなる。
つぎに本発明の前処理後の安定化方法について説明する。安定化処理は、つぎの特定の条件下で運転される安定化処理領域を含む混練機により実施される。この安定化処理領域では、不安定基が迅速にそしてほぼ完全に安定化される。
条件1
(1)安定化処理領域内に酸素を含むガスを存在させる、および
(2)安定化処理領域内に水を存在させる。
条件2
(a)温度77Kにおける電子スピン共鳴吸収分析による安定化処理後の含フッ素重合体の炭素ラジカルのスピン数が5×1013spin/g以下、好ましくは1×1013spin/g以下となるのに充分な量の酸素を含むガスを安定化処理領域内に存在させる、および
(b)安定化処理領域内に水を存在させる。
条件3
(A)安定化処理領域内の前段部分で酸素を含むガスを積極的に導入し、
(B)ついで安定化処理領域内の中段以降で水を積極的に導入する。
安定化反応や条件についてはWO00/26260号パンフレットに詳しく記載されているとおりであり、本発明においてもそれらの条件が採用される。
安定化処理領域における処理時間すなわち滞留時間は、安定化処理領域での混練機の構造、水や空気の供給方法、処理温度、重合体組成などによって異なり、通常10分間未満で充分であるが、好ましくは0.2〜5分間である。滞留時間が長くなると剪断力が多く加えられてしまい重合体が劣化する傾向がある。
滞留時間は、運転中に供給口から着色した樹脂ペレットを投入し、樹脂出口において樹脂に着色が確認されるまでの時間とする。この着色ペレットを使用する方法により、各領域における滞留時間を測定することもできる。
以上の条件下に安定化処理領域で溶融混練することにより、不安定基は末端基と主鎖中の不安定結合を問わず、短時間でかつ効率よく安定化でき、しかも着色の原因となる炭素の発生も抑制できるのである。しかし前述したとおり、この安定化処理だけでは低分子量物も安定化処理されて揮発しにくくなり、最終製品を成形する際の再加熱によって気泡や空隙が発生しやすくなるという問題がある。
本発明の前処理はこの安定化処理に先立って行なうものであり、安定化処理に供する含フッ素重合体から低分子量物およびその分解産物、さらには揮発成分を予め混練機の外に放出しておく処理を溶融領域で行なうものである。
安定化前処理における重合体温度は、揮散成分および低分子量物を揮散または分解し得る温度以上で高分子量物を分解して重合体全体の分子量を低下させない温度であればよく、通常350〜420℃、好ましくは380〜420℃である。
この安定化前処理で除去される物質としては、350℃程度で揮発または昇華してしまう低分子量物や、含フッ素重合体の連鎖が分解することによって生ずるHFPガス、TFEガス、CF3Hガスなどがある。これらの物質は安定化処理領域において揮散してしまうと考えられていたものであるが、実際の製品ペレットに幾分かは残留しており、最終製品に悪影響を与えている。
かかる安定化前処理は安定化処理領域の前に設けられた溶融領域で含フッ素重合体を溶融混練することによって行なうことができる。溶融領域での溶融混練時間は使用する混練機の種類や能力、溶融温度や対象となる含フッ素樹脂の種類などによって異なるが、通常0.2〜3分間、好ましくは0.5〜3分間でよい。
また、この安定化前処理では酸素および水は積極的には添加しない。その理由は、酸素や水を導入すると重合体の安定化反応が生じ、揮散させるべき物質まで安定化して揮散しにくくなるからである。
本発明において安定化前処理および安定化処理に使用する混練機としては、混練機として動力係数Kが8000を下回る混練機を使用しても前記の条件を満たす限り所望の結果が得られるが、処理時間をさらに短縮するためには動力係数Kが8000以上、好ましくは10000以上という強い混練条件とするのが好ましい。
ここで混練機の動力係数Kとは、K=Pv/μ/n2[ここで、Pvは単位面積当たりの所用動力(W/m3)、μは溶融粘度(Pa・s)、nは回転数(rps)である]で定義されるファクターであり、混練機の混練の強さの指標である(WO98/09784号パンフレット参照)。
本発明に使用できる混練機としては多軸型混練機、たとえば二軸スクリュー型押出機、有効容積率が極めて小さいニーダーなどがあげられる。これらのうち滞留時間分布が狭く連続操作が可能でメルトシールにより反応部の圧力を高めることができる点から二軸スクリュー型押出機が好ましい。
溶融領域は二軸スクリュー型押出機の材料供給部に繋がるスクリュー部分に設け、安定化処理領域は溶融領域直後のスクリュー部分に設ければよい。
本発明において、安定化前処理で生じたガス状低分子量物やその分解ガス、たとえばフッ化水素、炭酸ガス、分解により発生する少量のモノマーなどを溶融領域の含フッ素重合体内部から取り出し混練機の外部に排出するためは、溶融領域の最終端部分に絶対圧力が0.1MPa以下の状態に保持された排出口を設けることが好ましい。より好ましくは、前記最終端部分の絶対圧力を0.05MPaより小さくする。なかでも、減圧にして、揮散したガスを吸引することにより、放出をスムーズにすることが好ましい。
かくして前処理された含フッ素重合体は、続いて前述の安定化処理領域にて不安定末端が安定化され、混練機から排出される。
本発明の安定化方法で得られ混練機から排出された含フッ素重合体は、通常ペレットの形をしている。前記ペレットは、低分子量物に起因する揮散成分が大幅に低減化されいるため、これを溶融成形に供しても得られる成形品に気泡や空隙は生じず、着色も生じない。
なお、要すれば、混練機から取り出した混練物(ペレット)に、フッ素ガスなどのフッ素化剤と反応させるフッ素化処理を施してもよい。
つぎに本発明を実施例に基づいて説明するが、本発明はかかる実施例のみに限定されるものではない。
なお、実施例および比較例で採用した評価方法および評価基準はつぎのとおりである。
(揮発物質指数:VI)
重合体を溶融成形したときに発生する揮発物質の量を評価する方法として、つぎに示す揮発物質指数(VI)が知られている(WO98/09784号パンフレットなど)。
重合体の試料10gを耐熱性の容器に入れ、380℃に保たれた高温ブロック中に入れて熱平衡を達成する。その後、60分間にわたり圧力変化を10分ごとに記録し、次式により揮発物質指数(VI)値を算出する。
揮発物質指数=(P40−P0)×V/10/W
(式中、P0およびP40はそれぞれ高温ブロックに挿入前(P0)および挿入40分後(P40)の圧力(mmHg)であり、Vは容器の体積(ml)、Wは試料の質量(g)である。
揮発物質指数は25以下であることが望ましく、25を超えると溶融加工時に発生する気泡や空隙が問題とされる量となる。
(重量減少率)
安定化処理して得られたペレット40gを370℃に設定された電気マッフル炉中で1時間保持し、熱処理前後の重量から重量減少率(%)を算出する。
実施例1
過硫酸アンモニウム(APS)を重合開始剤としてTFEとHFPとPMVEを87/12/1(モル比)で乳化重合して得られたビニルエーテル変性FEP(融点250℃)を用いてつぎの安定化前処理を行ない、引き続きWO00/26260号パンフレットの実施例1記載の安定化処理を行なった。
(安定化前処理)
溶融領域(溶融領域に終端のブロックに0.045MPaに減圧した排出ベントを設けている)と安定化処理領域と脱気領域をこの順で有する二軸スクリュー型押出機(軸径47mm、全長2450mm)に、炭酸カリウムを15ppm(カリウム量に換算した値であり、総不安定末端基数の4.3%に相当する)となるように添加した以外は特別な予備乾燥処理を施さなかった前記変性FEP粉末(空気を包含している)を350℃に設定された溶融領域に50kg/hrの速度(強いせん断力を与えるスクリューを使用し、スクリュー回転数を250rpmとした)で供給したところ、スクリューのせん断力により重合体温度は416℃に上昇した。溶融領域における滞留時間は約2分間であった。
(安定化処理)
安定化前処理されたFEPを溶融領域に連続して設けられている安定化処理領域に50kg/hrの速度で引き続き供給した。安定化処理領域の開始端で純水および空気(酸素濃度約20%)をそれぞれ1.5kg/hrおよび40NL/分の流量で安定化処理領域に供給した。安定化処理領域の設定温度は350℃であり、絶対圧力は2.0MPa、続く脱気領域を含む処理に要した合計時間は4分間であった(安定化処理領域での滞留時間は約2分間と推定される)。
原料FEPおよび安定化処理後のFEPについて、揮発物質指数(VI)および重量減少率を前記の方法で評価した。結果を表1に示す。
実施例2
APSを重合開始剤としてTFEとパーフルオロプロピルビニルエーテルとPMVEを70/5/25(モル比)で乳化重合して得られたTFE/パーフルオロプロピルビニルエーテル/PMVE(融点288℃)を用いて、溶融領域の設定温度を370℃とした以外は、実施例1同様に安定化前処理および安定化処理を行なった。溶融領域における重合体温度は430℃であった。
比較例1
溶融領域のスクリューを弱いせん断力を与えるタイプのスクリューに替え、設定温度を300℃にしたほかは実施例1と同様に溶融領域でFEPを混練したところ、FEPの温度は323℃に上昇した。
ついでこの混練FEPを実施例1と同様にして安定化処理を行ない、同様にしてVIおよび重量減少率を測定し評価した。結果を表1に併せて示す。
産業上の利用可能性
本発明の製造方法によれば、低分子量物を安定化処理の前に含フッ素重合体から除去することができ、得られる安定化された重合体を溶融成形する際に気泡や着色を生じさせる不純物を低減化することができる。TECHNICAL FIELD The present invention relates to a method for producing a stabilized melt-processable fluoropolymer. More specifically, the present invention relates to a production method for performing a pretreatment for more efficiently performing a method for efficiently stabilizing an unstable terminal group and / or an unstable bond existing in a main chain in a short time.
BACKGROUND ART Melt-processable fluoropolymers include, for example, copolymers (FEP) of tetrafluoroethylene (TFE) and hexafluoropropylene (HFP) and copolymers of TFE and perfluoro (alkyl vinyl ether) (PAVE). Many are known, such as coalescence (PFA) and a copolymer of TFE and ethylene (ETFE). Among such melt-processable fluoropolymers, there are those in which air bubbles and voids are generated in a molded article manufactured by melt processing. This is considered to be due to volatile substances generated by decomposition of unstable terminal groups of the fluoropolymer by heat (US Pat. No. 3,085,083).
The type of unstable terminal group present in the melt-processable fluoropolymer depends on the type of polymerization, polymerization initiator, chain transfer agent and the like. For example, when a persulfate (ammonium persulfate, potassium persulfate, etc.) frequently used in an emulsion polymerization method is used as a polymerization initiator, a carboxylic acid terminal group is generated. The carboxylic acid terminal group changes to a vinyl terminal group (—CF = CF 2 ) or an acid fluoride terminal group (—COF) by melt-kneading, depending on melting conditions. These end groups are thermally unstable, producing volatiles and causing bubbles and voids in the final product.
In U.S. Pat. No. 3,085,083, which translates these unstable end groups into stable -CF 2 H groups by treatment in the presence of water and heat. In the method described in JP-B-46-23245, it is converted into stable end groups that -CF 3 by reacting with a fluorinating agent such as fluorine gas.
In addition, an unstable bond may be formed in the main chain of the fluoropolymer depending on the way the repeating unit is bonded. For example, in the case of FEP, which is a TFE-HFP-based copolymer, the bonds between HFPs are unstable and are cut by the mechanical force (shear force) applied during melt-kneading, resulting in fluorine radical terminals, defluorination and unstable. It is said to produce vinyl end groups (U.S. Pat. No. 4,675,380).
In U.S. Pat. No. 4,675,380, an HFP-HFP bond is cleaved by applying a large shearing force by a twin-screw extruder during melt kneading to form an unstable terminal group. However, in this method, a kneader, which can apply a large shear force in a short time, such as a twin-screw extruder, is used. . It is not planned to carry out the treatment of the resulting unstable end groups in a twin-screw extruder. In other words, the fluoropolymer is treated in an atmosphere substantially free of oxygen, and the vinyl end group is taken out of the extruder as it is, and the stabilizing treatment is performed outside the twin screw extruder. This is because the presence of oxygen changes the vinyl end groups to acid fluoride end groups. Further, the inside of the extruder is depressurized (less than 0.1 MPa in absolute pressure) in order to exhaust volatile substances generated during melt-kneading in the twin-screw extruder outside the extruder. Coloring is caused by carbon generated by polymerization.
In order to stabilize the unstable groups of the melt-processable fluoropolymer efficiently and in a short time, and to provide a molded article free of bubbles and coloring, the present inventors have proposed a melt-processable fluorine-containing polymer having an unstable group. There has been proposed a method for stabilizing a fluoropolymer in which a polymer is melt-kneaded in a kneader including a stabilization treatment region satisfying any of the following conditions (WO00 / 26260).
Condition 1
(1) A gas containing oxygen is present in the stabilization processing area, and (2) Water is present in the stabilization processing area.
Condition 2
(A) The spin number of carbon radicals of the fluoropolymer after the stabilization treatment by electron spin resonance absorption analysis at a temperature of 77 K is 5 × 10 13 spin / g or less, preferably 1 × 10 13 spin / g or less. A gas containing a sufficient amount of oxygen in the stabilization zone and (b) water in the stabilization zone.
According to the stabilization method in which such water and oxygen are positively present in the stabilization treatment region, the unstable groups of the fluorine-containing polymer that can be melt-processed are stabilized with high efficiency in a short time, and there is no bubble or coloring. Moldings can be provided.
However, upon further study, it was assumed that at a polymer temperature at which unstable terminals were stabilized in the stabilization treatment region (usually 270 to 450 ° C.), a polymer was obtained in which unstable terminal groups were not detected. May still contain low molecular weight substances and decomposition gases, and when melt-molded using pellets obtained by such a method, low molecular weight substances etc. may decompose and vaporize, which may cause bubbles. found.
Therefore, it is conceivable to raise the processing temperature in the stabilization processing region. However, in this case, decomposition of a high molecular weight substance is promoted, and it becomes difficult to maintain the molecular weight of the resin itself.
An object of the present invention is to decompose and / or volatilize a low molecular weight substance before supplying a fluoropolymer to a stabilization treatment region, and to make the stabilization treatment region an optimal condition for stabilization treatment of an unstable terminal, It is an object of the present invention to provide a method for producing a stabilized fluoropolymer that does not contain a molecular weight product or a decomposition product thereof.
DISCLOSURE OF THE INVENTION That is, the present invention relates to the stabilization of a fluorine-containing polymer which is melt-kneaded in a kneader including a stabilization treatment region for stabilizing a melt-processable fluorine-containing polymer having an unstable group in the presence of water and oxygen. Prior to the stabilization method, a melting region for melting and kneading the fluoropolymer at a temperature and for a time sufficient to decompose or volatilize low-molecular-weight substances in the fluoropolymer is disposed as a region before the stabilization treatment region. The present invention also relates to a method for producing a stabilized fluoropolymer, which comprises decomposing and / or volatilizing a low-molecular-weight substance in the melting region and discharging the low-molecular-weight product out of a kneader before a stabilizing treatment region.
The temperature of the fluoropolymer in the melting region varies depending on the type of the fluoropolymer, the kneading method, and the like, but is usually preferably set in the range of 350 to 420 ° C. In addition, the temperature in this specification means the temperature of the polymer itself unless otherwise specified.
As the kneader, a screw type extruder, particularly a twin screw type extruder, is preferable.
Preferably, the absolute pressure at the final end of the melting region is less than 0.1 MPa.
Examples of the fluoropolymer stabilized by the present invention include at least two kinds of monomers selected from the group consisting of tetrafluoroethylene (TFE), hexafluoropropylene (HFP) and perfluoro (alkyl vinyl ether) (PAVE). And the like. In particular, a copolymer consisting of 0.5 to 7% by weight of perfluoro (methyl vinyl ether) (PMVE), 0.05 to 3% by weight of PAVE other than the PMVE and the balance of TFE, or 75 to 92% by weight of TFE, 8 to 20% by weight of HFP And a copolymer comprising PAVE of 0 to 5% by weight can be effectively stabilized.
BEST MODE FOR CARRYING OUT THE INVENTION First, a melt-processable fluoropolymer having an unstable group, which is the object of the present invention, will be described.
As the melt-processable fluoropolymer, a copolymer obtained by copolymerizing two or more monomers such as TFE, HFP, and PAVE as described above is known. Specific copolymers include, for example, FEP polymers such as TFE-HFP copolymer (FEP) and TFE-HFP-PAVE copolymer; TFE-PAVE copolymer (PFA), TFE-PMVE-PAVE PFA-based polymers such as copolymers (other than PMVE) are exemplified.
As PAVE, the formula:
CF 2 = CFO (CF 2 ) m F
(Where m is an integer of 1 to 6) (where m is 1 is PMVE), and a formula:
CF 2 = CF (O-CF 2 CF (CF 3)) n OC 3 F 7
(Where n is an integer of 1 to 4).
Among them, a copolymer comprising 0.5 to 7% by weight of perfluoro (methyl vinyl ether) (PMVE), 0.05 to 3% by weight of PAVE other than PMVE, and the balance of TFE is preferred. If the PMVE is less than 0.5% by weight, the melt fluidity tends to be poor, and general melt molding tends to be difficult. If it exceeds 7% by weight, the melting point tends to decrease, and the thermal stability tends to deteriorate. In particular, PMVE is preferably 4 to 6% by weight. On the other hand, if the PAVE other than PMVE is less than 0.05% by weight, the melt fluidity tends to be poor, and general melt formation tends to be difficult. If it exceeds 3% by weight, the melting point tends to decrease and the thermal stability tends to deteriorate. In particular, PAVE other than PMVE is preferably 0.07 to 1.5% by weight.
The fluorinated copolymer is preferably a copolymer composed of 75 to 92% by weight of TFE, 8 to 20% by weight of HFP, and 0 to 5% by weight of PAVE. If the TFE is less than 75% by weight, the thermal stability tends to deteriorate. If it exceeds 92% by weight, the melt fluidity tends to be poor, and general melt molding tends to be difficult. In particular, the TFE is preferably 84 to 89.5% by weight. If the HFP is less than 8% by weight, the stress crack resistance tends to decrease. If it exceeds 20% by weight, the thermal stability tends to deteriorate. In particular, the HFP is preferably 10 to 14% by weight. On the other hand, if the PAVE exceeds 5% by weight, the thermal stability tends to deteriorate. In particular, the PAVE is preferably 0.5 to 2% by weight.
These melt-processable fluoropolymers have more or less unstable groups. In particular, a typical example of a fluoropolymer in which unstable group stabilization is desired is a FEP-based polymer, which is also produced by an emulsion polymerization method using a persulfate which causes an unstable group as an initiator. In addition, a fluorine-containing polymer produced by a polymerization method in which the terminal of the polymer is not saturated with a fluorine atom or a hydrogen atom is also a polymer for which a stabilization treatment is strongly demanded. Among them, depending on the type of polymerization method and initiator used, or by using alkanes such as methane as a chain transfer agent, a polymer with few unstable groups can be obtained. However, these polymers are further stabilized by the stabilization treatment.
Next, the stabilization method after the pretreatment of the present invention will be described. The stabilization treatment is performed by a kneader including a stabilization treatment region operated under the following specific conditions. In this stabilization zone, the unstable groups are rapidly and almost completely stabilized.
Condition 1
(1) A gas containing oxygen is present in the stabilization processing area, and (2) Water is present in the stabilization processing area.
Condition 2
(A) The spin number of carbon radicals of the fluoropolymer after the stabilization treatment by electron spin resonance absorption analysis at a temperature of 77 K is 5 × 10 13 spin / g or less, preferably 1 × 10 13 spin / g or less. A gas containing a sufficient amount of oxygen in the stabilization zone and (b) water in the stabilization zone.
Condition 3
(A) Oxygen-containing gas is positively introduced into the pre-stage in the stabilization treatment area,
(B) Then, water is positively introduced in the middle and subsequent stages in the stabilization treatment area.
The stabilization reaction and conditions are as described in detail in WO00 / 26260 pamphlet, and these conditions are also employed in the present invention.
The treatment time in the stabilization treatment area, i.e., the residence time, varies depending on the structure of the kneader in the stabilization treatment area, the method of supplying water or air, the treatment temperature, the polymer composition, etc., and usually less than 10 minutes is sufficient. Preferably, it is for 0.2 to 5 minutes. When the residence time is long, a large shear force is applied, and the polymer tends to deteriorate.
The residence time is defined as a period of time during which the colored resin pellets are charged from the supply port during the operation and the resin is colored at the resin outlet. The residence time in each region can be measured by the method using the colored pellets.
By melt-kneading in the stabilization treatment area under the above conditions, unstable groups can be efficiently stabilized in a short time and efficiently, regardless of the terminal group and the unstable bond in the main chain, and cause coloration. The generation of carbon can also be suppressed. However, as described above, low-molecular-weight substances are also stabilized by this stabilization treatment alone, making it difficult to volatilize, and there is a problem that bubbles and voids are easily generated by reheating when molding a final product.
The pretreatment of the present invention is performed prior to the stabilization treatment, and a low molecular weight substance and its decomposition products from the fluoropolymer to be subjected to the stabilization treatment, and further, a volatile component are previously released to the outside of the kneading machine. Is performed in the melting region.
The polymer temperature in the pretreatment for stabilization may be a temperature at which a high molecular weight substance is decomposed at a temperature not lower than a temperature at which a volatile component and a low molecular weight substance can be volatilized or decomposed and the molecular weight of the entire polymer is not reduced, and usually 350 to 420. ° C, preferably 380-420 ° C.
Examples of substances removed by the stabilization pretreatment include low molecular weight substances that volatilize or sublime at about 350 ° C., HFP gas, TFE gas, and CF 3 H gas generated by decomposition of a chain of a fluoropolymer. and so on. Although these materials were believed to volatilize in the stabilization zone, some remained in the actual product pellets, adversely affecting the final product.
Such pre-stabilization treatment can be carried out by melt-kneading the fluoropolymer in a melting region provided before the stabilizing treatment region. The melt-kneading time in the melting region varies depending on the type and capacity of the kneader to be used, the melting temperature and the type of the target fluorine-containing resin, but is usually 0.2 to 3 minutes, preferably 0.5 to 3 minutes. Good.
In this pretreatment for stabilization, oxygen and water are not positively added. The reason for this is that when oxygen or water is introduced, a stabilization reaction of the polymer occurs, and the substance to be volatilized is stabilized and becomes difficult to volatilize.
As a kneader used for the pre-stabilization treatment and the stabilization treatment in the present invention, a desired result can be obtained as long as the kneader has a power coefficient K of less than 8000, as long as the above conditions are satisfied. In order to further reduce the processing time, it is preferable to set strong kneading conditions such that the power coefficient K is 8000 or more, preferably 10,000 or more.
Here, the power coefficient K of the kneader is K = Pv / μ / n 2 [where Pv is the required power per unit area (W / m 3 ), μ is the melt viscosity (Pa · s), n is the number of rotations (rps)], and is an index of the kneading strength of the kneader (see WO98 / 09784 pamphlet).
Examples of the kneader usable in the present invention include a multi-screw kneader such as a twin-screw extruder and a kneader having an extremely small effective volume ratio. Among them, a twin-screw extruder is preferable because the residence time distribution is narrow, continuous operation is possible, and the pressure in the reaction section can be increased by melt sealing.
The melting region may be provided in the screw portion connected to the material supply section of the twin-screw extruder, and the stabilization region may be provided in the screw portion immediately after the melting region.
In the present invention, a gaseous low molecular weight product generated by the stabilization pretreatment and its decomposition gas, for example, hydrogen fluoride, carbon dioxide gas, a small amount of monomer generated by decomposition, etc. are taken out from the inside of the fluorine-containing polymer in the melting region and kneader. In order to discharge the gas to the outside, it is preferable to provide a discharge port in which the absolute pressure is kept at 0.1 MPa or less at the final end of the melting region. More preferably, the absolute pressure at the last end portion is smaller than 0.05 MPa. Above all, it is preferable to release the gas smoothly by reducing the pressure and sucking the vaporized gas.
The pretreated fluoropolymer is subsequently stabilized at the unstable terminal in the above-mentioned stabilization treatment area and discharged from the kneader.
The fluoropolymer obtained by the stabilization method of the present invention and discharged from the kneader is usually in the form of pellets. Since the volatile components of the pellets due to the low molecular weight material are greatly reduced, even if the pellets are subjected to melt molding, no bubbles or voids are generated in the obtained molded product, and no coloring occurs.
If necessary, the kneaded product (pellet) taken out of the kneader may be subjected to a fluorination treatment for reacting with a fluorinating agent such as fluorine gas.
Next, the present invention will be described based on examples, but the present invention is not limited to only these examples.
The evaluation methods and evaluation criteria adopted in the examples and comparative examples are as follows.
(Volatile substance index: VI)
As a method of evaluating the amount of volatile substances generated when a polymer is melt-molded, the following volatile substance index (VI) is known (WO98 / 09784 pamphlet and the like).
A 10 g sample of the polymer is placed in a heat-resistant container and placed in a high-temperature block maintained at 380 ° C. to achieve thermal equilibrium. Then, the pressure change is recorded every 10 minutes for 60 minutes, and the volatile matter index (VI) value is calculated by the following equation.
Volatile substance index = (P 40 −P 0 ) × V / 10 / W
(Where P 0 and P 40 are the pressure (mmHg) before (P 0 ) and 40 minutes after insertion (P 40 ) in the high-temperature block, V is the volume of the container (ml), and W is the volume of the sample. Mass (g).
The volatile matter index is desirably 25 or less, and if it exceeds 25, the amount of bubbles and voids generated during melt processing becomes a problematic amount.
(Weight loss rate)
40 g of the pellets obtained by the stabilization treatment are kept in an electric muffle furnace set at 370 ° C. for 1 hour, and the weight loss rate (%) is calculated from the weight before and after the heat treatment.
Example 1
The following pretreatment for stabilization was carried out using vinyl ether-modified FEP (melting point 250 ° C.) obtained by emulsion polymerization of TFE, HFP and PMVE at 87/12/1 (molar ratio) using ammonium persulfate (APS) as a polymerization initiator. Then, the stabilization treatment described in Example 1 of WO00 / 26260 pamphlet was performed.
(Pre-stabilization processing)
A twin-screw extruder (having a shaft diameter of 47 mm and a total length of 2450 mm) having a melting region (a discharge vent having a reduced pressure of 0.045 MPa at the end block in the melting region), a stabilizing region and a degassing region in this order. )), Except that potassium carbonate was added so as to have a concentration of 15 ppm (converted to the amount of potassium, corresponding to 4.3% of the total number of unstable terminal groups) except that no special predrying treatment was performed. When FEP powder (containing air) was supplied to the melting region set at 350 ° C. at a rate of 50 kg / hr (using a screw that applies a strong shearing force and the screw rotation speed was set to 250 rpm), the screw was rotated. Caused the polymer temperature to rise to 416 ° C. The residence time in the melting zone was about 2 minutes.
(Stabilization process)
The FEP subjected to the pre-stabilization treatment was continuously supplied at a rate of 50 kg / hr to a stabilization treatment region provided continuously to the melting region. Pure water and air (oxygen concentration about 20%) were supplied to the stabilization processing area at the starting end of the stabilization processing area at a flow rate of 1.5 kg / hr and 40 NL / min, respectively. The set temperature of the stabilization treatment area was 350 ° C., the absolute pressure was 2.0 MPa, and the total time required for the treatment including the subsequent degassing treatment was 4 minutes (the residence time in the stabilization treatment treatment was about 2 hours). Minutes).
The volatile matter index (VI) and the weight loss rate of the raw material FEP and the FEP after the stabilization treatment were evaluated by the above-described methods. Table 1 shows the results.
Example 2
Using APS as a polymerization initiator, TFE / perfluoropropyl vinyl ether / PMVE (melting point: 288 ° C.) obtained by emulsion polymerization of TFE, perfluoropropyl vinyl ether, and PMVE in a 70/5/25 (molar ratio) was melted. A pre-stabilization treatment and a stabilization treatment were performed in the same manner as in Example 1 except that the set temperature of the region was set to 370 ° C. The polymer temperature in the melting zone was 430 ° C.
Comparative Example 1
When FEP was kneaded in the melting region in the same manner as in Example 1 except that the screw in the melting region was replaced with a screw of a type that gives a weak shearing force and the set temperature was set to 300 ° C., the temperature of the FEP increased to 323 ° C.
Then, the kneaded FEP was subjected to a stabilizing treatment in the same manner as in Example 1, and the VI and the weight loss rate were measured and evaluated in the same manner. The results are shown in Table 1.
INDUSTRIAL APPLICABILITY According to the production method of the present invention, a low-molecular weight substance can be removed from a fluoropolymer before a stabilization treatment, and the resulting stabilized polymer is melt-molded. Impurities that cause bubbles and coloring can be reduced.