[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2002027067A1 - Heat resistant material of niobium-based alloy - Google Patents

Heat resistant material of niobium-based alloy Download PDF

Info

Publication number
JPWO2002027067A1
JPWO2002027067A1 JP2002530827A JP2002530827A JPWO2002027067A1 JP WO2002027067 A1 JPWO2002027067 A1 JP WO2002027067A1 JP 2002530827 A JP2002530827 A JP 2002530827A JP 2002530827 A JP2002530827 A JP 2002530827A JP WO2002027067 A1 JPWO2002027067 A1 JP WO2002027067A1
Authority
JP
Japan
Prior art keywords
layer
alloy
film
coating
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002530827A
Other languages
Japanese (ja)
Other versions
JP5295474B2 (en
Inventor
成田 敏夫
林 重成
福本 倫久
坂本 和志
笠間 昭夫
田中 良平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Ultra High Temperature Materials Research Institute JUTEM
Original Assignee
Japan Ultra High Temperature Materials Research Institute JUTEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Ultra High Temperature Materials Research Institute JUTEM filed Critical Japan Ultra High Temperature Materials Research Institute JUTEM
Priority to JP2002530827A priority Critical patent/JP5295474B2/en
Publication of JPWO2002027067A1 publication Critical patent/JPWO2002027067A1/en
Application granted granted Critical
Publication of JP5295474B2 publication Critical patent/JP5295474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

酸素の遮断性能に優れ、かつ拡散による変質が起りにくい合金皮膜が形成されたニオブ基合金の耐熱材料である。ニオブ基合金の基材表面に、Reと少なくとも2種の他の金属元素とからなる第一層の合金皮膜と、さらにその表面にAlとSiのいずれか一方と少なくとも1種のこれら以外の金属元素とからなる第二層の合金皮膜との2層の皮膜が形成されてなるものである。第二層皮膜にAl又はSiを含むそれぞれの場合について、第一層及び第二層合金皮膜の好適な組成を明らかにした。また、基材のニオブ基合金の組成との関係において、好ましい合金皮膜の組成を明らかにした。It is a heat-resistant material of a niobium-based alloy on which an alloy film having excellent oxygen blocking performance and hardly causing deterioration by diffusion is formed. A first layer alloy film composed of Re and at least two other metal elements on the surface of the niobium-based alloy substrate, and further, one of Al and Si and at least one other metal on the surface; It is formed by forming two layers of a film and a second alloy film of an element. For each case where Al or Si is contained in the second layer coating, suitable compositions of the first layer and the second layer alloy coating were clarified. In addition, the preferred composition of the alloy film was clarified in relation to the composition of the niobium-based alloy of the base material.

Description

技術分野
本発明は、ガスタービン、ジェットエンジン等の高温燃焼装置の部材として用いられる耐熱材料に関し、とくにニオブ基合金の基材表面に高温酸化を抑制するための皮膜が形成されたニオブ基合金の耐熱材料に関する。
背景技術
近年、発電用ガスタービンの運転温度の一層の高温化が求められ、従来からタービン部材として多用されているNi基合金よりも、使用温度限界の高い新たな耐熱材料が必要となっている。このような材料の一つとして、ニオブ(Nb)系の耐熱材料、例えば固溶強化型又は析出強化型のNb合金やNb−Al系金属間化合物等(本発明では、これらの材料をニオブ基合金という)が注目されている。これらのニオブ基合金は高い高温強度を有するが、いずれも高温域例えば800℃以上の温度域ではきわめて酸化され易いため、ガスタービンのような高温の酸化性雰囲気下でそのまま使用することは困難である。そのため、ニオブ基合金の基材表面に耐酸化を目的とするコーティングを施すことについて種々の検討がなされている。
従来から、高温酸化性雰囲気下で使用する金属部材の耐熱・耐酸化被覆として、CrやAlの拡散層を形成する方法や、セラミックコーティングする方法が検討されている。とくにNi基合金においては、熱遮蔽コーティング(Thermal Barrier Coating:TBC)と呼ばれる方法が主流になっている。これは基材表面に金属結合層と、その表面にセラミックスの遮熱層を積層してなるものである。金属結合層にはMCrAlY合金(MはNi,Coなど)が、遮熱層にはZrOを主成分とするセラミックスが用いられることが多い。
ニオブ基合金の耐酸化被覆として、特開平10−140333号公報には、Irの表面被覆層が形成された、又はIrの表面被覆層とその下側にTa,Re,Wのうちの1種以上を主成分とする拡散防止層とが形成されたNb合金耐熱部材が開示されている。また、特開平10−140347号公報には、基材表面にIrを真空蒸着すると同時にAlイオン照射を行い、Ir−Al合金からなる被覆層を形成する耐酸化被覆層の製造方法が開示されている。
発明の開示
一般にセラミックスの皮膜は、それ自体の靭性や基材との密着性が不十分なため、熱応力により亀裂や剥離を生じることが多く、耐久性に問題が残されている。前述のTBCにおいても、酸素の遮断は主に金属結合層において行われている。したがって、耐酸化を目的とする皮膜は、基材との密着性の高い合金皮膜であって、上記の金属結合層と同様な酸素と窒素などの非金属成分の遮断性能を有するものであることが望ましい。
さらに、本発明の対象であるNb基合金は、Ni基合金よりもかなり高い使用温度、例えば1400℃を越えるような温度での使用を目標とするものである。かかる高温域では、皮膜と基材間の元素の拡散が避けられず、そのため比較的短時間で皮膜が変質して、その本来の機能を失うことが多い。したがって、耐酸化皮膜の耐久性を確保するには、できる限り拡散を抑制するとともに、多少の拡散があっても、皮膜の変質が軽微な被覆構造にする必要がある。
そこで本発明は、ニオブ基合金の基材表面に、酸素と窒素などの非金属成分の遮断性能に優れ、かつ拡散による変質が起りにくい合金皮膜が形成されたニオブ基合金の耐熱材料を提供することを目的とする。
上記目的を達成するための本発明は、
(1)ニオブ基合金の基材表面に、Reと少なくとも2種の他の金属元素とからなる第一層の合金皮膜が形成され、さらにその表面にAlとSiのいずれか一方と少なくとも1種のこれら以外の金属元素とからなる第二層の合金皮膜が形成されたニオブ基合金の耐熱材料である。
(2)前記第一層の合金皮膜の組成が、実質的に一般式Re1−a−b(式中、MはCr,Ni及びAlからなる群より選ばれた1種以上の元素、RはNb,Mo,W,Hf,Zr及びCからなる群より選ばれた1種以上の元素で、a,bはそれぞれM,Rの原子比である)で表わされるものであり、かつ前記第二層の合金皮膜の組成が、実質的に一般式Q1−cAl(式中、QはCrとNiのうちの1種以上の元素、cはAlの原子比である)で表わされるものである前項(1)記載のニオブ基合金の耐熱材料である。
この耐熱材料においては、原子比aが0.01以上、原子比bが0.01〜0.50、a+bが0.95以下であり、かつ原子比cが0.05〜0.95であることが好ましい。
また、この耐熱材料においては、前記ニオブ基合金が、Nbをベースとして少なくともMoとWのうちの1種以上とCrとを含有し、かつ必要に応じてSi,Hf,Zr,Cのうちの1種以上を含有する合金であり、前記第一層の合金皮膜中の元素Mが少なくともCrを含み(より好ましくは元素MがCrを主体としてこれに少量のAlとNiのうちの1種以上を含み)、前記第二層の合金皮膜中の元素QがCr又はCrとNiであることが好ましい。さらに、この耐熱材料において、前記ニオブ基合金はNbとAlを含む金属間化合物であってもよい。
(3)前記第一層の合金皮膜の組成が、実質的に一般式Re1−d−e(式中、TはCrとSiのうちの1種以上の元素、RはNb,Mo,W,Hf,Zr及びCからなる群より選ばれた1種以上の元素で、d,eはそれぞれT,Rの原子比である)で表わされるものであり、かつ前記第二層の合金皮膜の組成が、実質的に一般式X1−fSi(式中、XはMo,W及びNbからなる群より選ばれた1種以上の元素、fはSiの原子比である)で表わされるものである前項(1)記載のニオブ基合金の耐熱材料である。
この耐熱材料においては、原子比dが0.10以上、原子比eが0.01〜0.50、d+eが0.95以下であり、かつ原子比fが0.05〜0.95であることが好ましい。
また、この耐熱材料においては、前記ニオブ基合金が、Nbをベースとして少なくともMoとWのうちの1種以上とSiとを含有し、かつ必要に応じてCr,Hf,Zr,Cのうちの1種以上を含有する合金であり、前記第一層の合金皮膜中の元素TがSiであることが好ましく、さらに、この場合において、前記第二層の合金皮膜中の元素XがMoとWのうちの1種以上であることがより好ましい。
発明を実施するための最良の形態
本発明の耐熱材料の耐酸化被覆は、第1図に示すように2層の合金皮膜からなる。上側の第二層の合金皮膜3は、その表面が大気中の酸素で酸化されて、緻密な酸化物層が形成されるため、雰囲気中の酸素や窒素等の非金属元素を遮断する機能を有する。同時に、合金皮膜3は自己修復の機能を有している。すなわち、合金皮膜3は酸化物のもとになる金属元素を含有しているため、表面に生成した酸化物層が剥離した場合には、直ちにその金属元素が酸化され、表面に酸化物層が再生されて、雰囲気中の酸素や窒素等を遮断する作用を維持することができる。一方、下側の第一層の合金皮膜2は基材1と第二層の合金皮膜3との間の元素の拡散を防止することを主な目的とする。
本発明において、第二層の合金皮膜3中の酸化物のもとになる金属元素は、Al又はSiである。この両者が同時に存在すると低融点の酸化物が生成するため、合金皮膜3中には、いずれか一方のみを添加する。この酸化物のもとになる金属元素がAlである場合(以下「Al合金被覆」という)と、これがSiである場合(以下「Si合金被覆」という)では、第一層及び第二層皮膜ともに、好ましい合金皮膜の組成が相違する。
まず、Al合金被覆の場合は、第二層の合金皮膜3の組成は、実質的に一般式Q1−cAl(ここで、QはNiとCrのうちの1種以上の元素、Alはアルミニウムで、cはAlの原子比である。)で表わされるものであることが好ましい。すでに述べたように、Alは、この耐熱材料が高温の酸化性雰囲気下で酸化された際に、緻密な酸化物層を形成するために必要な元素であり、QはAlとの間に高温で安定な相(合金又は金属間化合物)を形成する元素で、第二層皮膜の耐熱性・耐久性を確保する上で不可欠な元素である。
また、Al合金被覆での第一層の合金皮膜2の組成は、実質的に一般式Re1−a−b(ここで、Reはレニウムで、MはCr,NiおよびAlからなる群より選ばれた1種又は2種以上の元素、RはNb,Mo,W,Hf,ZrおよびCからなる群より選ばれた1種又は2種以上の元素で、a,bはそれぞれM,Rの原子比である。)で表わされるものであることが好ましい。
Reは拡散防止の主要な役割をする元素である。元素Mは、主に第一層皮膜と第二層皮膜に含まれ(一部基材中に含まれてもよい)、第一層皮膜と第二層皮膜間(及び第一層皮膜と基材間)の拡散を軽減する上で有効である。また、元素Rは、主に第一層皮膜と基材に含まれ(一部第二層皮膜中に含まれてもよい)、第一層皮膜と基材間(及び第一層皮膜と第二層皮膜間)の拡散を軽減する上で有効である。
次に、Si合金被覆の場合の好ましい合金皮膜の組成について説明する。Si合金被覆の場合には、第二層の合金皮膜3は、実質的に一般式X1−fSi(式中、XはMo,W及びNbからなる群より選ばれた1種以上の元素、fはSiの原子比である)で表わされる組成を有するものであることが好ましい。この場合は、Siが緻密な酸化物層を形成する元素であり、XはSiとの間に高温で安定な相を形成する元素で、第二層皮膜の耐熱性・耐久性を確保する上で不可欠である。
また、Si合金被覆での第一層の合金皮膜2は、実質的に一般式Re1−d−e(式中、TはCrとSiのうちの1種以上の元素、RはNi,Mo,W,Hf,Zr及びCからなる群より選ばれた1種以上の元素で、d,eはそれぞれT,Rの原子比である)で表わされる組成を有するものであることが好ましい。
Al合金被覆、Si合金被覆のいずれの場合も、第一層の合金皮膜を3元系以上の組成物で構成する理由は、第二層皮膜中の元素のみならず、基材中の元素も予め第一層皮膜に含ませておき、しかも成分ごとに各相における化学ポテンシャルを等しくしておくことによって、拡散を防止するためである。これにより、耐酸化被覆の分解・変質を抑制することができ、皮膜の耐久性を大幅に向上させることができる。
また、Al合金被覆における元素MとR、及びSi合金被覆における元素TとRは、いずれもReとの間に高温で安定な相を形成する元素が好ましく、かかる元素の添加は第一層皮膜の分解・変質を抑制する上で有効である。例えば、Re−Cr−Ni系のシグマ相や、Re−(Nb,Mo,W)系のシグマ相又はカイ相等の金属間化合物相が好適である。これらの相はそれ自体が高い融点を持つことから、第一層皮膜が分解したり拡散して消失するのを防止することができ、さらに他の元素の拡散係数が小さいことから、拡散防止の機能を発揮する。
なお、Al合金被覆、Si合金被覆のいずれの場合も(以下、合金皮膜の関する記述は、とくに言及しない限りAl合金被覆とSi合金被覆との両者に共通するものである)、第一層及び第二層の合金皮膜は、実質的に上記の組成を有するものであればよく、不可避的不純物元素を含むものであってもよい。
第2図は、本発明の耐熱部材を高温大気に曝露した後の皮膜の変化を示す断面の模式図である。図に見られるように、第二層の合金皮膜3の表面に緻密な酸化物層4aが形成される。この酸化物層4aは、主にAl又はSiOからなっており、層厚が小さくても、元素の遮断能は大きい。この状態で継続して使用した時に、第一層皮膜2は、Reを含む高温できわめて安定な相であり、拡散を抑制する効果が大きい。そのため、第二層皮膜3の分解・変質を防止することができ、最表面の酸化物層4aに亀裂・剥離が生じても、第二層皮膜3表面に再び酸化物層が形成されるため、自己修復性を有する。かくして、耐酸化被覆の耐久性が確保される。
Al合金被覆の場合において、第一層の合金皮膜中の元素Mの原子比aは0.01以上であることが好ましい。これ未満では、第二層皮膜から第一層皮膜への元素Qの拡散が多くなるためである。また、元素Rの原子比bは0.01〜0.50であることが好ましい。bが0.01未満では、基材から第一層皮膜への元素Rの拡散を抑制するという目的が達せられず、bが0.50を越えると、相対的に第一層皮膜中のRe及びMの含有量が少くなって好ましくないためである。さらに、a+bは0.95以下であることが好ましい。これを越えるとReの量が少な過ぎて、拡散防止機能が不十分となるためである。また、第二層の合金皮膜中の元素Alの原子比cは、0.05〜0.95であることが好ましい。これが0.05未満では、緻密な酸化物皮膜を形成するという機能が不十分となり、これが0.95を越えると、相対的に元素Qの量が少くなって、高温で安定な相を形成することができなくなるためである。
同様にSi合金被覆の場合においては、第一層の合金皮膜中の元素Tの原子比dは0.1以上であることが好ましい。これ未満では、第二層皮膜から第一層皮膜への元素Xの拡散が多くなるためである。また、元素Rの原子比eは0.01〜0.50であることが好ましい。eが0.01未満では、基材から第一層皮膜への元素Rの拡散を抑制するという目的が達せられず、eが0.50を越えると、相対的に第一層皮膜中のRe及びTの含有量が少くなって好ましくないためである。さらに、d+eは0.95以下であることが好ましい。これを越えるとReの量が少な過ぎて、拡散防止機能が不十分となるためである。また、第二層の合金皮膜中の元素Siの原子比fは、0.05〜0.95であることが好ましい。これが0.05未満では、緻密な酸化物皮膜を形成するという機能が不十分となり、これが0.95を越えると、相対的に元素Xの量が少くなって、高温で安定な相を形成することができなくなるためである。
本発明者らは、ニオブ基合金の機械的特性について検討し、Nb−Mo又はNb−Wの2元系合金やNb−Mo−Wの3元系合金が高温強度と靭性に優れ、タービン部材として好適なことを知見した。合金元素の含有量の適正範囲は、Moが1〜30at%、Wが1〜15at%である。
本発明者らは、これらの2元系又は3元系合金の耐酸化被覆について種々検討し、基材のニオブ基合金の組成との関連において、Al合金被覆又はSi合金被覆のいずれかを選択するのが好ましいことを知見した。
まず、Al合金被覆においては、第二層皮膜をCr−Al系合金で構成するとともに、基材に少量のCrを添加することにより、きわめて優れた耐酸化性を示すことが見出された。すなわちこの耐熱材料は、基材がNb−(Mo,Wのうちの1種以上)−Cr系合金であり、第一層の合金皮膜がReとCrを含み、第二層の合金皮膜が実質的にCr−Al又はCr−Ni−Al合金からなるものである。より好ましい第一層の合金皮膜は、ReとCrを主体にして、これに少量の(Ni,Al)のうちの1種以上と、(Mo,W,Nb)のうちの1種以上を含むものである。なお基材は、必要に応じてSi,Hf,Zr,Cのうちの1種以上を含有するものであってもよい。
上記のAl合金被覆を有する耐熱材料において、第一層皮膜中のReは10〜60at%,Crは10〜60at%であることが好ましい。また第二層皮膜中のAlは15〜75at%であることが好ましい。
一方、Si合金被覆に関しては、ニオブ基合金がさらにSiを含有する場合に、第二層皮膜をMo,W,Nbのシリサイドで構成することにより、きわめて優れた耐酸化性を示すことが見出された。すなわちこの耐熱材料は、基材がNb−(Mo,Wのうちの1種以上)−Si系合金であり、第一層の合金皮膜が、実質的にReとSiと(Mo,W,Nbのうちの1種以上)とからなるものであり、かつ第二層の合金皮膜が、実質的にSiと(Mo,W,Nbのうちの1種以上)とからなるものである。その中でも、とくに第二層の合金皮膜が、実質的にSiと(Mo,Wのうちの1種以上)とからなるものであることが好ましい。なお基材は、必要に応じてCr,Hf,Zr,Cのうちの1種以上を含有していてもよい。
このSi合金被覆を有する耐熱材料においては、第一層皮膜中のReは10〜60at%,(Mo+W+Nb)は10〜60at%、Siは1〜50at%であることが好ましい。また第二層皮膜中の(Mo+W+Nb)は20〜60at%であることが好ましい。
本発明において、基材表面に合金皮膜を形成する方法は特に限定を要せず、例えばPVD法、CVD法、溶射法、電解被覆法等のいずれであってもよく、また、これらを組み合わせて用いてもよい。さらに、合金皮膜を構成する成分の一部を熱拡散法により添加してもよい。この場合、深さ方向で成分元素の濃度に勾配が生じることがあるが、本発明においては、合金皮膜にかかる濃度勾配があっても差し支えない。第一層及び第二層の合金皮膜の厚みについても特に限定を要しないが、通常は1〜100μm程度とする。皮膜厚みが過小であれば、耐酸化や拡散防止の機能が不十分になり、膜厚が過大であれば熱応力が大きくなるので、これらを勘案して適正な膜厚を選択すればよい。
(耐酸化特性の評価)
ニオブ基合金の基材表面に、本発明に基づいて2層の耐酸化皮膜を形成した試験片と、皮膜が1層の比較用試験片について、高温酸化試験を行い耐酸化特性を評価した。この試験は、Al合金被覆した試験片とSi合金被覆した試験片の両者について実施した。
(1)試験片の調製
基材のニオブ基合金として、Al合金被覆の場合はNb−5Mo−5W−5Cr(モル%)の合金(A合金)、Si合金被覆の場合はNb−5Mo−5W−5Cr−16Si(モル%)の合金(B合金)を用いた。いずれの合金も、純度99.9〜99.99%のNb,Mo,W,Cr及びSiの粉末あるいは粒状の原料を用い、所定の組成に配合した原料を、Ar雰囲気中でアーク溶解法により溶解してインゴットを作製した。この合金インゴットを1気圧のAr気流中で1700〜1800℃×24時間の均質化熱処理をし、その後30×20×2(厚さ)mmの試験片基材を切り出して、被覆処理に供した。
Al合金被覆の本発明の試験片(2層皮膜)は、まず基材のA合金の表面に塩化レニウムを含む溶融塩化物浴から、厚さ5μmの金属Reを電析させた。続いてフェロクロム粉末とともにアルミナ坩堝に埋め込み、1×10−3Paの真空中において1300℃で10hr保持することによりCr蒸気の拡散処理を行った。るつぼから取り出した試験片を、引き続いてFe−Al合金粉末とともに再びアルミナ坩堝に埋め込み、1×10−3Paの真空中において1000℃で6hr保持して、Al蒸気の拡散処理を施した。
また、Al合金被覆の比較用試験片(1層皮膜)は、上記と同様の方法で用意したA合金の基材に対して、金属Reの電析処理は行わずに、Cr蒸気拡散処理、Al蒸気拡散処理を上記と同条件で実施したものを用意した。
以上の工程による被覆処理を行った本発明及び比較用の試験片に、予備処理として、1100℃の静止大気中で9時間加熱する拡散・酸化処理を施した。その結果、本発明の試験片では、図2に示すように、基材1の表面に第一層皮膜2、第二層皮膜3が積層し、最表面に酸化物層(Al,O)4aが形成された耐熱材料が得られた。この試験片の皮膜の各層の厚さや組成を第1表に示す。

Figure 2002027067
第1表の結果から知れるように、基材表面に形成したReの電析層に、Crの蒸気拡散処理によってCrが浸透し、母材からNbが拡散したことによって、Re電析層は主にRe−Cr−Nbの3元系から成る第一層皮膜2に変化した。また、Al蒸気拡散処理によってCr−Alを主成分とする第二層皮膜3が形成され、酸化処理によって酸化物層4aが形成されている。
また、予備処理後の比較用試験片では、第3図(a)に示すように、表面から順に、厚さ約1.5μmの酸化物層(Al,O)4a、厚さ約2μmの酸化物層(Cr,O)4b、さらに厚さ約8μmの主にCrとNbから成る層の順に積層した皮膜が形成されていた。また、このCr−Nb層は、上側のCr richな層5bと下側のNb richな層5aの2層構造になっていた。この試験片における各層の厚さや組成を第2表に示す。
Figure 2002027067
一方、Si合金被覆の本発明の試験片は、B合金の基材表面に塩化レニウムを含む溶融塩化物浴から、厚さ5μmの金属Reを電析させた。続いて、Ar雰囲気中において溶融した金属Si浴に浸漬した後引き上げてSiめっきをした。このときのSi付着量は、めっき前後の重量変化から約60g/m(厚さ約25μm相当)であった。続いてアルミナ粉末とともにアルミナ坩堝に埋め込み、1×10−3Paの真空中において1400℃で6時間保持することにより拡散処理を行った。また、比較用試験片としては、同様の方法で用意したB合金の基材に対して、金属Reの電析は行わずに、Siめっき、拡散処理を上記と同条件で実施したものを用意した。
以上の工程による被覆処理を行った本発明及び比較用の試験片に、予備処理として、1100℃の静止大気中で9時間加熱する拡散・酸化処理を施した。その結果、本発明の試験片では、図2に示すように、基材1の表面に第一層皮膜2、第二層皮膜3が積層し、最表面に酸化物層(Si,O)4aが形成された耐熱材料が得られた。この試験片の皮膜の各層の厚さや組成を第3表に示す。
第3表の結果から知れるように、基材表面に形成したReの電析層に、溶融Siめっきとそれに引き続いた真空中での拡散処理によってSiが浸透し、さらに母材からNbが拡散したことによって、Re電析層は主にRe−Si−Nbの3元系から成る第一層皮膜2に変化した。さらに過剰のSiは、Re電析層を通過したNbを固溶してSi−Nb合金層となって第二層皮膜3が形成された。また、酸化処理をすることによって、Si−Nb層の表層のみが酸化されて、SiOからなる酸化物層(Si,O)4aが形成された。
Figure 2002027067
また、予備処理後の比較用試験片では、第3図(b)に示すように、表面から順に、厚さ約1.5μmの酸化物層(Si,Nb,O)4b、その内側に厚さ約45μmの主にSiとNbからなる層(Si−Nb層5)が形成されていた。この試験片における各層の厚さや組成を第4表に示す。
Figure 2002027067
(2)Al合金被覆された試験片の高温酸化試験結果
上記のように用意されたAl合金被覆の本発明及び比較用の試験片を、1100℃の静止大気中で等温連続加熱する高温酸化試験を行なって、耐酸化特性を比較した。本発明の試験片については、加熱時間を168時間とした。比較用試験片については外観変化が著しいので12時間とした。その結果を第5表と第6表に示す。
Figure 2002027067
Figure 2002027067
本発明の試験片では、高温酸化試験後も被覆構造に大きな変化はなく、図2に示すような状態を維持していた。第5表には、本発明材の、168時間の耐酸化試験前後における酸化物層4aの厚さの変化と、酸化物層4aの下にある第二層皮膜3中のAl濃度の変化を示している。168時間の酸化後も、第二層には14%のAl濃度が維持されており、このことから、第一層には、第二層のAlが内方拡散(基材側への拡散)により失われることを防ぐ、すなわち拡散防止層の作用があることがわかる。 また、酸化物層4aは、X線回折によればαアルミナであった。また、アルミナが基材表面において極端な厚さの変化なしに維持されていることは、第二層のAl濃度がCr−Al合金におけるアルミナ形成能を発現できる濃度以上であることを表わしている。
一方、比較用試験片の12時間の高温酸化試験後の皮膜の状態を、模式的に第4図(a)に示す。また、高温酸化試験前後における酸化物層の厚さの変化を第6表に示す。高温酸化試験後には、表面側の酸化物層(Cr,Nb,O)4cと下側の酸化物層(Nb,O)4dの2層になっていたが、酸化物層全体の厚さは170μmに達しており、その大部分(約150μm)はNbとOからなる層4dであって、基材のNb基合金が酸化されたことを示している。
(3)Si合金被覆された試験片の高温酸化試験結果
上記のように用意されたSi合金被覆の本発明及び比較用の試験片を、1200℃の静止大気中で等温連続加熱する高温酸化試験を行なって、耐酸化特性を比較した。本発明の試験片については、加熱時間を168時間とした。比較用試験片については外観変化が著しいので8時間とした。その結果を第7表と第8表に示す。
Figure 2002027067
本発明の試験片では、高温酸化試験後も被覆構造に大きな変化はなく、第2図に示すような状態を維持していた。第7表には、本発明の試験片の168時間の高温酸化試験の前後における酸化物層4aの厚さの変化と、酸化物層4aの下にある第二層皮膜3中のSi濃度の変化を示している。168時間の酸化後も、第二層には69%のSi濃度が維持され、このことから、第一層には、第二層中のSiの内方拡散を防止する作用があることがわかる。
Figure 2002027067
また、酸化物層4aは、X線回折によればSiOであった。また、酸化物層が部材表面において極端な厚さの変化なしに維持されていることは、第二層のSi濃度がSi−Nb合金におけるSiO形成能を発現できる濃度以上であることを表している。
一方、比較用試験片の8時間の高温酸化試験後の皮膜の状態を、模式的に第4図(b)に示す。また、高温酸化試験前後における酸化物層の厚さの変化を第8表に示す。高温酸化試験後には、表面側の酸化物層(Si,Nb,O)4bと下側の酸化物層(Nb,O)4cの2層になっていたが、酸化物層全体の厚さは120μmに達しており、その大部分(約100μm)はNbとOからなる層4cであって、基材のNb基合金が酸化されたことを示している。
産業上の利用の可能性
上記のように、本発明によりニオブ基合金の基材表面に高温酸化を抑制する効果の大きい被覆が形成された耐熱材料を提供することが可能になった。この耐酸化被覆は、第二層皮膜中のAl又はSiの酸化により酸化物が再生して、雰囲気中の酸素や窒素等の非金属元素を遮断する作用を維持する自己補修の機能を有するとともに、第一層皮膜により元素の拡散を抑制するため、1100〜1200℃以上の高温域に長時間保持してもほとんど皮膜が変質せず、きわめて耐酸化性や耐久性に優れている。
そのため、この耐熱材料はガスタービンのブレード材やジェットエンジン、ロケットエンジン等の構造用部材として好適である。また、これらの部材を無冷却で使用することも可能となるため、熱効率の向上や装置構造の簡略化に貢献することができる。
【図面の簡単な説明】
第1図は、本発明の耐熱材料の耐酸化被覆の構造を説明するための模式図であり、第2図は、本発明の耐熱材料を高温大気に曝露した後の皮膜の変化を説明するための断面の模式図である。第3図は、耐酸化特性評価における比較用試験片の高温酸化試験前の皮膜の断面を示す模式図で、第3図(a)はAl合金被覆の場合の例を、第3図(b)はSi合金被覆の場合の例を示す。第4図は、この比較用試験片の高温酸化試験後の皮膜の断面を示す模式図で、第4図(a)はAl合金被覆の場合、第4図(b)はSi合金被覆の場合の例を示す。Technical field
The present invention relates to a heat-resistant material used as a member of a high-temperature combustion device such as a gas turbine or a jet engine, and particularly to a heat-resistant material of a niobium-based alloy in which a film for suppressing high-temperature oxidation is formed on a surface of a base material of a niobium-based alloy. About.
Background art
In recent years, the operating temperature of gas turbines for power generation has been required to be further increased, and new heat-resistant materials having a higher operating temperature limit than Ni-based alloys conventionally used as turbine members have been required. One of such materials is a niobium (Nb) -based heat-resistant material, such as a solid solution strengthened or precipitation-strengthened Nb alloy or an Nb-Al-based intermetallic compound. Alloys). Although these niobium-based alloys have high high-temperature strength, they are very easily oxidized in a high-temperature region, for example, a temperature region of 800 ° C. or higher, and therefore, it is difficult to use them directly in a high-temperature oxidizing atmosphere such as a gas turbine. is there. Therefore, various studies have been made on applying a coating for the purpose of oxidation resistance to the substrate surface of a niobium-based alloy.
Conventionally, a method of forming a diffusion layer of Cr or Al or a method of ceramic coating has been studied as a heat and oxidation resistant coating of a metal member used in a high-temperature oxidizing atmosphere. Particularly for Ni-based alloys, a method called thermal barrier coating (TBC) has become mainstream. This is obtained by laminating a metal bonding layer on the surface of a base material and a heat insulating layer of ceramics on the surface. MCrAlY alloy (M is Ni, Co, etc.) for the metal bonding layer, and ZrO for the heat shielding layer. 2 In many cases, ceramics containing as a main component are used.
As an oxidation-resistant coating of a niobium-based alloy, JP-A-10-140333 discloses that an Ir surface coating layer is formed, or one of Ta, Re, and W is formed on the Ir surface coating layer and under the Ir surface coating layer. An Nb alloy heat-resistant member having a diffusion prevention layer composed mainly of the above is disclosed. Japanese Patent Application Laid-Open No. 10-140347 discloses a method for producing an oxidation resistant coating layer in which Ir is vacuum-deposited on the surface of a substrate and Al ions are simultaneously irradiated to form a coating layer made of an Ir-Al alloy. I have.
Disclosure of the invention
In general, a ceramic film often has cracks or peeling due to thermal stress due to insufficient toughness of itself and adhesion to a substrate, and there remains a problem in durability. Also in the above-mentioned TBC, the blocking of oxygen is mainly performed in the metal bonding layer. Therefore, the film for the purpose of oxidation resistance is an alloy film having high adhesion to the base material and having the same performance of blocking non-metal components such as oxygen and nitrogen as the above-mentioned metal bonding layer. Is desirable.
Furthermore, the Nb-based alloys that are the subject of the present invention are intended to be used at much higher operating temperatures than Ni-based alloys, for example at temperatures above 1400 ° C. In such a high temperature range, diffusion of elements between the film and the substrate is unavoidable, so that the film is often deteriorated in a relatively short time and loses its original function. Therefore, in order to ensure the durability of the oxidation-resistant film, it is necessary to suppress the diffusion as much as possible and to provide a coating structure in which even if there is some diffusion, the deterioration of the film is slight.
Therefore, the present invention provides a heat-resistant material of a niobium-based alloy in which an alloy film that is excellent in blocking performance of non-metal components such as oxygen and nitrogen and is hardly deteriorated by diffusion is formed on the surface of a niobium-based alloy substrate. The purpose is to:
The present invention for achieving the above object,
(1) An alloy film of a first layer comprising Re and at least two other metal elements is formed on a surface of a base material of a niobium-based alloy, and at least one of Al and Si is formed on the surface thereof. Is a heat resistant material of a niobium-based alloy on which a second layer alloy film made of a metal element other than the above is formed.
(2) The composition of the first layer alloy film is substantially the same as the general formula Re. 1-ab M a R b (Wherein, M is at least one element selected from the group consisting of Cr, Ni and Al, and R is at least one element selected from the group consisting of Nb, Mo, W, Hf, Zr and C. , A and b are the atomic ratios of M and R, respectively), and the composition of the alloy film of the second layer is substantially the same as the general formula Q 1-c Al c (Wherein Q is at least one element of Cr and Ni, and c is the atomic ratio of Al).
In this heat-resistant material, the atomic ratio a is 0.01 or more, the atomic ratio b is 0.01 to 0.50, a + b is 0.95 or less, and the atomic ratio c is 0.05 to 0.95. Is preferred.
Further, in this heat-resistant material, the niobium-based alloy contains at least one of Mo and W and Cr based on Nb, and optionally contains Si, Hf, Zr, and C. An alloy containing at least one element, wherein the element M in the alloy film of the first layer contains at least Cr (more preferably, the element M is mainly composed of Cr and at least one of Al and Ni in a small amount. ), And the element Q in the second layer alloy film is preferably Cr or Cr and Ni. Further, in this heat-resistant material, the niobium-based alloy may be an intermetallic compound containing Nb and Al.
(3) The composition of the alloy film of the first layer is substantially the same as the general formula Re. 1-de T d R e (Wherein T is one or more elements of Cr and Si, R is one or more elements selected from the group consisting of Nb, Mo, W, Hf, Zr and C, and d and e are each T, R), and the composition of the alloy film of the second layer is substantially the same as the general formula X 1-f Si f (Wherein X is at least one element selected from the group consisting of Mo, W and Nb, and f is the atomic ratio of Si). Material.
In this heat-resistant material, the atomic ratio d is 0.10 or more, the atomic ratio e is 0.01 to 0.50, d + e is 0.95 or less, and the atomic ratio f is 0.05 to 0.95. Is preferred.
Further, in this heat-resistant material, the niobium-based alloy contains at least one of Mo and W and Si based on Nb, and optionally contains Cr, Hf, Zr, and C, if necessary. It is an alloy containing at least one kind, and it is preferable that the element T in the alloy film of the first layer is Si, and in this case, the element X in the alloy film of the second layer is Mo and W More preferably, it is at least one of the above.
BEST MODE FOR CARRYING OUT THE INVENTION
The oxidation-resistant coating of the heat-resistant material of the present invention is composed of two layers of an alloy film as shown in FIG. Since the surface of the second upper alloy film 3 is oxidized by oxygen in the air to form a dense oxide layer, it has a function of blocking nonmetallic elements such as oxygen and nitrogen in the atmosphere. Have. At the same time, the alloy film 3 has a self-healing function. That is, since the alloy film 3 contains a metal element that is a source of oxide, when the oxide layer formed on the surface is separated, the metal element is immediately oxidized, and the oxide layer is formed on the surface. It can be regenerated to maintain the effect of blocking oxygen, nitrogen and the like in the atmosphere. On the other hand, the main purpose of the lower first alloy film 2 is to prevent diffusion of elements between the base material 1 and the second alloy film 3.
In the present invention, the metal element that is the source of the oxide in the second alloy film 3 is Al or Si. If both are present at the same time, an oxide having a low melting point is generated, so only one of them is added to the alloy film 3. When the metal element that forms the oxide is Al (hereinafter referred to as “Al alloy coating”) and when it is Si (hereinafter referred to as “Si alloy coating”), the first and second layer coatings are formed. In both cases, the composition of the preferred alloy film is different.
First, in the case of Al alloy coating, the composition of the second alloy film 3 is substantially the same as the general formula Q 1-c Al c (Here, Q is at least one element of Ni and Cr, Al is aluminum, and c is the atomic ratio of Al.) As described above, Al is an element necessary for forming a dense oxide layer when the heat-resistant material is oxidized in a high-temperature oxidizing atmosphere, and Q is a high-temperature element between Al and Al. And an element that forms a stable phase (alloy or intermetallic compound) and is indispensable for ensuring the heat resistance and durability of the second layer coating.
The composition of the first alloy film 2 in the Al alloy coating is substantially the same as the general formula Re. 1-ab M a R b (Where Re is rhenium, M is one or more elements selected from the group consisting of Cr, Ni and Al, and R is selected from the group consisting of Nb, Mo, W, Hf, Zr and C. A, b are the atomic ratios of M and R, respectively.)
Re is an element that plays a major role in preventing diffusion. The element M is mainly contained in the first-layer coating and the second-layer coating (may be partially contained in the base material) and between the first-layer coating and the second-layer coating (and the first-layer coating and the base). This is effective in reducing the diffusion between materials. Further, the element R is mainly contained in the first layer film and the base material (may be partially contained in the second layer film), and between the first layer film and the base material (and between the first layer film and the first film). It is effective in reducing the diffusion between the two layers.
Next, a preferred composition of the alloy film in the case of the Si alloy coating will be described. In the case of a Si alloy coating, the second layer alloy coating 3 substantially has the general formula X 1-f Si f (Wherein X is at least one element selected from the group consisting of Mo, W and Nb, and f is the atomic ratio of Si). In this case, Si is an element that forms a dense oxide layer, and X is an element that forms a high-temperature stable phase with Si, and is used to ensure the heat resistance and durability of the second layer film. Is indispensable.
The first alloy film 2 of the Si alloy coating substantially has the general formula Re. 1-de T d R e (Wherein T is one or more elements of Cr and Si, R is one or more elements selected from the group consisting of Ni, Mo, W, Hf, Zr and C, and d and e are each Is the atomic ratio of T and R).
In both cases of Al alloy coating and Si alloy coating, the reason why the alloy film of the first layer is composed of a ternary or higher composition is not only the elements in the second layer film but also the elements in the base material. This is because diffusion is prevented by previously including the first layer coating and making the chemical potential in each phase equal for each component. As a result, decomposition and deterioration of the oxidation-resistant coating can be suppressed, and the durability of the coating can be significantly improved.
The elements M and R in the Al alloy coating and the elements T and R in the Si alloy coating are each preferably an element that forms a stable phase at high temperature with Re. It is effective in suppressing the decomposition and alteration of. For example, an intermetallic compound phase such as a Re-Cr-Ni-based sigma phase, a Re- (Nb, Mo, W) -based sigma phase or a chi phase is preferable. Since these phases themselves have a high melting point, the first layer coating can be prevented from decomposing or diffusing and disappearing. Further, since the diffusion coefficients of other elements are small, diffusion prevention can be prevented. Demonstrate function.
In each case of the Al alloy coating and the Si alloy coating (hereinafter, the description about the alloy coating is common to both the Al alloy coating and the Si alloy coating unless otherwise specified), the first layer and The alloy film of the second layer only needs to have substantially the above composition, and may contain an unavoidable impurity element.
FIG. 2 is a schematic cross-sectional view showing a change in a film after exposing the heat-resistant member of the present invention to a high-temperature atmosphere. As can be seen in the figure, a dense oxide layer 4a is formed on the surface of the second alloy film 3. This oxide layer 4a is mainly made of Al 2 O 3 Or SiO 2 Even if the layer thickness is small, the blocking ability of the element is large. When used continuously in this state, the first layer coating 2 is a phase that is extremely stable at high temperatures including Re, and has a great effect of suppressing diffusion. Therefore, it is possible to prevent the second layer film 3 from being decomposed and deteriorated, and even if cracks and peeling occur in the outermost oxide layer 4a, an oxide layer is formed again on the second layer film 3 surface. Has self-healing properties. Thus, the durability of the oxidation resistant coating is ensured.
In the case of Al alloy coating, the atomic ratio a of the element M in the first alloy film is preferably 0.01 or more. If the amount is less than this, the diffusion of the element Q from the second-layer coating to the first-layer coating increases. Further, the atomic ratio b of the element R is preferably from 0.01 to 0.50. If b is less than 0.01, the purpose of suppressing the diffusion of the element R from the base material to the first layer film cannot be achieved, and if b exceeds 0.50, the Re in the first layer film relatively decreases. And the content of M is decreased, which is not preferable. Further, a + b is preferably 0.95 or less. If it exceeds this, the amount of Re is too small and the diffusion preventing function becomes insufficient. The atomic ratio c of the element Al in the alloy film of the second layer is preferably 0.05 to 0.95. If it is less than 0.05, the function of forming a dense oxide film will be insufficient, and if it exceeds 0.95, the amount of element Q will be relatively small and a stable phase will be formed at high temperatures. This is because they can no longer do it.
Similarly, in the case of Si alloy coating, the atomic ratio d of the element T in the first alloy film is preferably 0.1 or more. If the amount is less than this, the diffusion of the element X from the second layer coating to the first layer coating increases. Further, the atomic ratio e of the element R is preferably 0.01 to 0.50. When e is less than 0.01, the purpose of suppressing the diffusion of the element R from the base material to the first layer film cannot be achieved, and when e exceeds 0.50, the Re in the first layer film relatively decreases. And the content of T is decreased, which is not preferable. Further, d + e is preferably 0.95 or less. If it exceeds this, the amount of Re is too small and the diffusion preventing function becomes insufficient. Further, it is preferable that the atomic ratio f of the element Si in the alloy film of the second layer is 0.05 to 0.95. If it is less than 0.05, the function of forming a dense oxide film will be insufficient, and if it exceeds 0.95, the amount of element X will be relatively small and a stable phase will be formed at high temperatures. This is because they can no longer do it.
The present inventors have studied the mechanical properties of a niobium-based alloy, and found that a binary alloy of Nb-Mo or Nb-W or a ternary alloy of Nb-Mo-W has excellent high-temperature strength and toughness, and a turbine member. Was found to be suitable. An appropriate range of the content of the alloy element is 1 to 30 at% for Mo and 1 to 15 at% for W.
The present inventors studied various oxidation-resistant coatings of these binary or ternary alloys, and selected either an Al alloy coating or a Si alloy coating in relation to the composition of the niobium-based alloy of the base material. Has been found to be preferable.
First, in the case of Al alloy coating, it was found that the second layer coating was composed of a Cr-Al alloy and that a very small amount of Cr was added to the substrate, thereby exhibiting extremely excellent oxidation resistance. That is, in this heat-resistant material, the base material is an Nb- (at least one of Mo and W) -Cr alloy, the alloy film of the first layer contains Re and Cr, and the alloy film of the second layer is substantially It is made of Cr-Al or Cr-Ni-Al alloy. A more preferred alloy film of the first layer is mainly composed of Re and Cr, and contains a small amount of one or more of (Ni, Al) and one or more of (Mo, W, Nb). It is a thing. The substrate may contain one or more of Si, Hf, Zr, and C as necessary.
In the heat-resistant material having the Al alloy coating, it is preferable that Re in the first layer coating is 10 to 60 at% and Cr is 10 to 60 at%. Further, Al in the second layer coating is preferably 15 to 75 at%.
On the other hand, with respect to the Si alloy coating, when the niobium-based alloy further contains Si, it was found that the second layer coating was made of a silicide of Mo, W, and Nb, thereby exhibiting extremely excellent oxidation resistance. Was done. That is, in this heat-resistant material, the base material is an Nb- (at least one of Mo and W) -Si alloy, and the alloy film of the first layer is substantially composed of Re and Si and (Mo, W, Nb). And the second layer alloy film substantially consists of Si and (at least one of Mo, W and Nb). Among them, it is particularly preferable that the alloy film of the second layer is substantially composed of Si and (at least one of Mo and W). The base material may contain one or more of Cr, Hf, Zr, and C as needed.
In the heat-resistant material having the Si alloy coating, it is preferable that Re in the first layer film is 10 to 60 at%, (Mo + W + Nb) is 10 to 60 at%, and Si is 1 to 50 at%. (Mo + W + Nb) in the second layer coating is preferably 20 to 60 at%.
In the present invention, the method of forming the alloy film on the substrate surface is not particularly limited, and may be any of, for example, a PVD method, a CVD method, a thermal spraying method, an electrolytic coating method, and the like, or a combination thereof. May be used. Further, some of the components constituting the alloy film may be added by a thermal diffusion method. In this case, a gradient may occur in the concentration of the component elements in the depth direction, but in the present invention, a concentration gradient applied to the alloy film may be present. The thickness of the alloy film of the first layer and the second layer is not particularly limited, but is usually about 1 to 100 μm. If the film thickness is too small, the functions of oxidation resistance and diffusion prevention will be insufficient, and if the film thickness is too large, thermal stress will increase. Therefore, an appropriate film thickness may be selected in consideration of these factors.
(Evaluation of oxidation resistance)
A high-temperature oxidation test was performed on a test piece in which two layers of an oxidation-resistant film were formed on the surface of a base material of a niobium-based alloy according to the present invention and a comparative test piece having one layer of the film to evaluate the oxidation resistance properties. This test was performed on both the Al alloy coated test piece and the Si alloy coated test piece.
(1) Preparation of test piece
As the niobium-based alloy of the base material, Nb-5Mo-5W-5Cr (mol%) alloy (A alloy) in the case of Al alloy coating, and Nb-5Mo-5W-5Cr-16Si (mol%) in the case of Si alloy coating. ) Alloy (B alloy). In each case, powders or granular raw materials of Nb, Mo, W, Cr and Si having a purity of 99.9 to 99.99% are used, and raw materials mixed in a predetermined composition are subjected to arc melting in an Ar atmosphere. It melt | dissolved and the ingot was produced. This alloy ingot was subjected to a homogenizing heat treatment at 1700 to 1800 ° C. for 24 hours in an Ar gas stream at 1 atm. Thereafter, a 30 × 20 × 2 (thickness) mm test piece substrate was cut out and provided for coating treatment. .
In the test piece (two-layer coating) of the present invention coated with an Al alloy, first, a metal Re having a thickness of 5 μm was electrodeposited from a molten chloride bath containing rhenium chloride on the surface of the base alloy A. Subsequently, it was embedded in an alumina crucible together with ferrochrome powder, and 1 × 10 -3 The diffusion treatment of Cr vapor was performed by maintaining the temperature at 1300 ° C. for 10 hours in a vacuum of Pa. The test piece taken out of the crucible was subsequently embedded again in an alumina crucible together with the Fe-Al alloy powder, and 1 × 10 -3 It was kept at 1000 ° C. for 6 hours in a vacuum of Pa to perform a diffusion treatment of Al vapor.
In addition, a comparative test piece (one-layer coating) coated with an Al alloy was prepared by subjecting an A alloy base material prepared in the same manner as described above to a Cr vapor diffusion treatment without performing a metal Re electrodeposition treatment. An aluminum vapor diffusion treatment was performed under the same conditions as above.
As a preliminary treatment, a diffusion / oxidation treatment of heating in a still air at 1100 ° C. for 9 hours was applied to the test pieces of the present invention and the comparative test pieces subjected to the coating treatment in the above steps. As a result, in the test piece of the present invention, as shown in FIG. 2, the first layer coating 2 and the second layer coating 3 are laminated on the surface of the substrate 1, and the oxide layer (Al, O) 4a is formed on the outermost surface. A heat-resistant material on which was formed was obtained. Table 1 shows the thickness and composition of each layer of the coating of this test piece.
Figure 2002027067
As can be seen from the results in Table 1, Cr penetrated into the electrodeposited layer of Re formed on the base material surface by the vapor diffusion treatment of Cr, and Nb was diffused from the base material. Then, it was changed to the first layer coating 2 composed of a ternary system of Re-Cr-Nb. Further, the second layer coating 3 mainly composed of Cr-Al is formed by the Al vapor diffusion treatment, and the oxide layer 4a is formed by the oxidation treatment.
Further, as shown in FIG. 3 (a), in the comparative test piece after the pretreatment, an oxide layer (Al, O) 4a having a thickness of about 1.5 μm and an oxidation layer having a thickness of about 2 μm were sequentially formed from the surface. An object layer (Cr, O) 4b, and a coating having a thickness of about 8 μm and mainly composed of mainly Cr and Nb were formed in this order. The Cr-Nb layer had a two-layer structure of an upper Cr rich layer 5b and a lower Nb rich layer 5a. Table 2 shows the thickness and composition of each layer in this test piece.
Figure 2002027067
On the other hand, in the test piece of the present invention coated with a Si alloy, a metal Re of 5 μm in thickness was electrodeposited from a molten chloride bath containing rhenium chloride on the surface of the base material of the B alloy. Subsequently, after being immersed in a molten metal Si bath in an Ar atmosphere, it was pulled up and plated with Si. The amount of Si deposited at this time is about 60 g / m 2 (Equivalent to a thickness of about 25 μm). Subsequently, it was embedded in an alumina crucible with alumina powder, and 1 × 10 -3 Diffusion treatment was performed by holding at 1400 ° C. for 6 hours in a vacuum of Pa. In addition, as a comparative test piece, one prepared by performing Si plating and diffusion treatment under the same conditions as above without depositing metal Re on a B alloy base material prepared by the same method is prepared. did.
As a preliminary treatment, a diffusion / oxidation treatment of heating in a still air at 1100 ° C. for 9 hours was applied to the test pieces of the present invention and the comparative test pieces subjected to the coating treatment in the above steps. As a result, in the test piece of the present invention, as shown in FIG. 2, the first layer film 2 and the second layer film 3 are laminated on the surface of the substrate 1, and the oxide layer (Si, O) 4a is formed on the outermost surface. A heat-resistant material on which was formed was obtained. Table 3 shows the thickness and composition of each layer of the coating of this test piece.
As can be seen from the results in Table 3, Si penetrated into the electrodeposited layer of Re formed on the surface of the base material by hot-dip Si plating and the subsequent diffusion treatment in vacuum, and Nb was further diffused from the base material. As a result, the Re electrodeposited layer was changed to the first layer film 2 mainly composed of a ternary system of Re-Si-Nb. Further, excess Si dissolved Nb that passed through the Re electrodeposited layer to form a Si—Nb alloy layer, whereby the second layer film 3 was formed. In addition, by performing the oxidation treatment, only the surface layer of the Si—Nb layer is oxidized, 2 The oxide layer (Si, O) 4a made of was formed.
Figure 2002027067
Also, as shown in FIG. 3 (b), in the comparative test piece after the pretreatment, an oxide layer (Si, Nb, O) 4b having a thickness of about A layer (Si—Nb layer 5) mainly composed of Si and Nb having a thickness of about 45 μm was formed. Table 4 shows the thickness and composition of each layer in this test piece.
Figure 2002027067
(2) Result of high temperature oxidation test of test piece coated with Al alloy
The Al alloy-coated test pieces prepared as described above and the comparative test pieces were subjected to a high-temperature oxidation test in which the test pieces were isothermally continuously heated in a still air at 1100 ° C. to compare the oxidation resistance properties. The heating time of the test piece of the present invention was 168 hours. The test piece for comparison was set to 12 hours because the appearance change was remarkable. The results are shown in Tables 5 and 6.
Figure 2002027067
Figure 2002027067
In the test piece of the present invention, there was no significant change in the coating structure even after the high-temperature oxidation test, and the state as shown in FIG. 2 was maintained. Table 5 shows the change in the thickness of the oxide layer 4a before and after the oxidation resistance test of the present invention material for 168 hours, and the change in the Al concentration in the second layer film 3 under the oxide layer 4a. Is shown. After the oxidation for 168 hours, the Al concentration of 14% is maintained in the second layer, and therefore, the Al of the second layer is inwardly diffused (diffusion to the base material side) in the first layer. It can be seen that there is an effect of the diffusion preventing layer. The oxide layer 4a was α-alumina according to X-ray diffraction. In addition, the fact that alumina is maintained without an extreme change in thickness on the surface of the base material indicates that the Al concentration of the second layer is equal to or higher than the concentration capable of expressing alumina forming ability in the Cr-Al alloy. .
On the other hand, FIG. 4 (a) schematically shows the state of the film of the comparative test piece after the high-temperature oxidation test for 12 hours. Table 6 shows changes in the thickness of the oxide layer before and after the high-temperature oxidation test. After the high-temperature oxidation test, the surface oxide layer (Cr, Nb, O) 4c and the lower oxide layer (Nb, O) 4d had two layers. The thickness reached 170 μm, most of which (about 150 μm) was the layer 4d composed of Nb and O, indicating that the Nb-based alloy of the base material was oxidized.
(3) High temperature oxidation test result of test piece coated with Si alloy
The Si alloy-coated test pieces prepared as described above and the comparative test pieces were subjected to a high-temperature oxidation test of isothermal continuous heating in a still air at 1200 ° C. to compare the oxidation resistance properties. The heating time of the test piece of the present invention was 168 hours. The test specimen for comparison was set to 8 hours because the appearance change was remarkable. The results are shown in Tables 7 and 8.
Figure 2002027067
In the test piece of the present invention, there was no significant change in the coating structure even after the high-temperature oxidation test, and the state as shown in FIG. 2 was maintained. Table 7 shows the change in the thickness of the oxide layer 4a before and after the high-temperature oxidation test of the test piece of the present invention for 168 hours, and the Si concentration in the second layer coating 3 under the oxide layer 4a. The change is shown. Even after 168 hours of oxidation, the second layer maintains a Si concentration of 69%, indicating that the first layer has an effect of preventing inward diffusion of Si in the second layer. .
Figure 2002027067
According to X-ray diffraction, the oxide layer 4a is made of SiO 2 2 Met. Further, the fact that the oxide layer is maintained without an extreme change in thickness on the member surface means that the Si concentration of the second layer is higher than that of the Si—Nb alloy. 2 This indicates that the concentration is higher than the concentration capable of expressing the forming ability.
On the other hand, FIG. 4 (b) schematically shows the state of the film of the comparative test piece after the high-temperature oxidation test for 8 hours. Table 8 shows changes in the thickness of the oxide layer before and after the high-temperature oxidation test. After the high-temperature oxidation test, the surface oxide layer (Si, Nb, O) 4b and the lower oxide layer (Nb, O) 4c had two layers. It has reached 120 μm, most of which (about 100 μm) is the layer 4c composed of Nb and O, indicating that the Nb-based alloy of the base material has been oxidized.
Industrial potential
As described above, according to the present invention, it has become possible to provide a heat-resistant material in which a coating having a large effect of suppressing high-temperature oxidation is formed on the surface of a niobium-based alloy substrate. This oxidation-resistant coating has a self-repair function of regenerating an oxide by oxidation of Al or Si in the second layer coating and maintaining an action of blocking non-metallic elements such as oxygen and nitrogen in the atmosphere. In addition, since the diffusion of elements is suppressed by the first layer film, the film hardly deteriorates even when it is kept in a high temperature range of 1100 to 1200 ° C. or more for a long time, and is extremely excellent in oxidation resistance and durability.
Therefore, this heat-resistant material is suitable as a blade material of a gas turbine, a structural member for a jet engine, a rocket engine, and the like. In addition, since these members can be used without cooling, it is possible to contribute to improvement in thermal efficiency and simplification of the device structure.
[Brief description of the drawings]
FIG. 1 is a schematic view for explaining the structure of the oxidation-resistant coating of the heat-resistant material of the present invention, and FIG. 2 explains the change of the film after exposing the heat-resistant material of the present invention to a high-temperature atmosphere. FIG. FIG. 3 is a schematic view showing a cross section of a film of a comparative test piece before the high-temperature oxidation test in the evaluation of oxidation resistance. FIG. 3 (a) shows an example in the case of Al alloy coating, and FIG. ) Shows an example in the case of Si alloy coating. FIG. 4 is a schematic view showing a cross section of the film after the high-temperature oxidation test of this comparative test piece, where FIG. 4 (a) is a case of Al alloy coating, and FIG. Here is an example.

Claims (10)

ニオブ基合金の基材表面に、Reと少なくとも2種の他の金属元素とからなる第一層の合金皮膜が形成され、さらにその表面にAlとSiのいずれか一方と少なくとも1種のこれら以外の金属元素とからなる第二層の合金皮膜が形成されたニオブ基合金の耐熱材料。A first layer alloy film made of Re and at least two other metal elements is formed on the surface of the niobium-based alloy substrate, and further has at least one of Al and Si and at least one other material other than these. A heat resistant material of a niobium-based alloy having a second layer alloy film made of a metal element. 前記第一層の合金皮膜の組成が、実質的に一般式Re1−a−b(式中、MはCr,Ni及びAlからなる群より選ばれた1種以上の元素、RはNb,Mo,W,Hf,Zr及びCからなる群より選ばれた1種以上の元素で、a,bはそれぞれM,Rの原子比である)で表わされるものであり、かつ前記第二層の合金皮膜の組成が、実質的に一般式Q1−cAl(式中、QはCrとNiのうちの1種以上の元素、cはAlの原子比である)で表わされるものである請求の範囲第1項記載の耐熱材料。The composition of the alloy film of the first layer is substantially the general formula Re 1-ab M a R b (where M is at least one element selected from the group consisting of Cr, Ni and Al, R is at least one element selected from the group consisting of Nb, Mo, W, Hf, Zr and C, and a and b are each an atomic ratio of M and R), and The composition of the alloy film of the second layer is substantially represented by a general formula Q 1-c Al c (where Q is one or more elements of Cr and Ni, and c is an atomic ratio of Al). The heat-resistant material according to claim 1, wherein the heat-resistant material is used. 前記原子比aが0.01以上、前記原子比bが0.01〜0.50、a+bが0.95以下であり、かつ前記原子比cが0.05〜0.95である請求の範囲第2項記載の耐熱材料。The atomic ratio a is 0.01 or more, the atomic ratio b is 0.01 to 0.50, a + b is 0.95 or less, and the atomic ratio c is 0.05 to 0.95. 3. The heat-resistant material according to claim 2. 前記ニオブ基合金が、Nbをベースとして少なくともMoとWのうちの1種以上とCrとを含有し、かつ必要に応じてSi,Hf,Zr,Cのうちの1種以上を含有する合金であり、前記第一層の合金皮膜中の元素Mが少なくともCrを含み、かつ前記第二層の合金皮膜中の元素QがCr又はCrとNiである請求の範囲第2項又は第3項記載の耐熱材料。The niobium-based alloy is an alloy containing, based on Nb, at least one or more of Mo and W and Cr and, if necessary, one or more of Si, Hf, Zr, and C. 4. The element according to claim 2, wherein the element M in the alloy film of the first layer contains at least Cr, and the element Q in the alloy film of the second layer is Cr or Cr and Ni. Heat resistant material. 前記元素MがCrを主体としてこれに少量のAlとNiのうちの1種以上を含むものである請求の範囲第4項記載の耐熱材料。5. The heat-resistant material according to claim 4, wherein the element M is mainly composed of Cr and contains a small amount of one or more of Al and Ni. 前記ニオブ基合金はNbとAlを含む金属間化合物である請求の範囲第2項又は第3項記載の耐熱材料。4. The heat-resistant material according to claim 2, wherein said niobium-based alloy is an intermetallic compound containing Nb and Al. 前記第一層の合金皮膜の組成が、実質的に一般式Re1−d−e(式中、TはCrとSiのうちの1種以上の元素、RはNb,Mo,W,Hf,Zr及びCからなる群より選ばれた1種以上の元素で、d,eはそれぞれT,Rの原子比である)で表わされるものであり、かつ前記第二層の合金皮膜の組成が、実質的に一般式X1−fSi(式中、XはMo,W及びNbからなる群より選ばれた1種以上の元素、fはSiの原子比である)で表わされるものである請求の範囲第1項記載の耐熱材料。The composition of the alloy film of the first layer is substantially formula Re 1-d-e T d R e (1 or more elements of the formula, T is Cr and Si, R is Nb, Mo, At least one element selected from the group consisting of W, Hf, Zr and C, wherein d and e are the atomic ratios of T and R, respectively, and the alloy film of the second layer Is substantially represented by a general formula X 1-f Si f (where X is at least one element selected from the group consisting of Mo, W and Nb, and f is an atomic ratio of Si). The heat-resistant material according to claim 1, wherein the heat-resistant material is used. 前記原子比dが0.10以上、前記原子比eが0.01〜0.50、d+eが0.95以下であり、かつ前記原子比fが0.05〜0.95である請求の範囲第7項記載の耐熱材料。The atomic ratio d is 0.10 or more, the atomic ratio e is 0.01 to 0.50, d + e is 0.95 or less, and the atomic ratio f is 0.05 to 0.95. A heat-resistant material according to claim 7. 前記ニオブ基合金が、Nbをベースとして少なくともMoとWのうちの1種以上とSiとを含有し、かつ必要に応じてCr,Hf,Zr,Cのうちの1種以上を含有する合金であり、前記第一層の合金皮膜中の元素TがSiである請求の範囲第7項又は第8項記載の耐熱材料。The niobium-based alloy is an alloy containing at least one or more of Mo and W and Si based on Nb and, if necessary, one or more of Cr, Hf, Zr, and C. 9. The heat-resistant material according to claim 7, wherein the element T in the alloy film of the first layer is Si. 前記第二層の合金皮膜中の元素XがMoとWのうちの1種以上である請求の範囲第9項記載の耐熱材料。10. The heat-resistant material according to claim 9, wherein the element X in the alloy film of the second layer is at least one of Mo and W.
JP2002530827A 2000-09-28 2001-09-10 Niobium-based alloy heat-resistant material Expired - Fee Related JP5295474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002530827A JP5295474B2 (en) 2000-09-28 2001-09-10 Niobium-based alloy heat-resistant material

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2000296521 2000-09-28
JP2000296522 2000-09-28
JP2000296522 2000-09-28
JP2000296521 2000-09-28
PCT/JP2001/007828 WO2002027067A1 (en) 2000-09-28 2001-09-10 Heat-resistant material of niobium base alloy
JP2002530827A JP5295474B2 (en) 2000-09-28 2001-09-10 Niobium-based alloy heat-resistant material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012023563A Division JP2012132099A (en) 2000-09-28 2012-02-07 Niobium-based alloy heat-resistant material

Publications (2)

Publication Number Publication Date
JPWO2002027067A1 true JPWO2002027067A1 (en) 2004-02-05
JP5295474B2 JP5295474B2 (en) 2013-09-18

Family

ID=26600953

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2002530827A Expired - Fee Related JP5295474B2 (en) 2000-09-28 2001-09-10 Niobium-based alloy heat-resistant material
JP2012023563A Pending JP2012132099A (en) 2000-09-28 2012-02-07 Niobium-based alloy heat-resistant material

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012023563A Pending JP2012132099A (en) 2000-09-28 2012-02-07 Niobium-based alloy heat-resistant material

Country Status (2)

Country Link
JP (2) JP5295474B2 (en)
WO (1) WO2002027067A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1715081A1 (en) 2004-01-15 2006-10-25 Ebara Corporation Alloy coating for diffusion barrier, method for forming same, and high-temperature device member
US9267184B2 (en) 2010-02-05 2016-02-23 Ati Properties, Inc. Systems and methods for processing alloy ingots
US8230899B2 (en) 2010-02-05 2012-07-31 Ati Properties, Inc. Systems and methods for forming and processing alloy ingots
US10207312B2 (en) 2010-06-14 2019-02-19 Ati Properties Llc Lubrication processes for enhanced forgeability
US8789254B2 (en) 2011-01-17 2014-07-29 Ati Properties, Inc. Modifying hot workability of metal alloys via surface coating
JP5854497B2 (en) * 2011-07-27 2016-02-09 国立大学法人北海道大学 Nb-Si heat resistant alloy
US9027374B2 (en) 2013-03-15 2015-05-12 Ati Properties, Inc. Methods to improve hot workability of metal alloys
US9539636B2 (en) 2013-03-15 2017-01-10 Ati Properties Llc Articles, systems, and methods for forging alloys
WO2016189612A1 (en) * 2015-05-25 2016-12-01 三菱日立パワーシステムズ株式会社 Niobium silicide-based composite material, high-temperature component using same, and high-temperature heat engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904546A (en) * 1989-04-03 1990-02-27 General Electric Company Material system for high temperature jet engine operation
JP3073180B2 (en) * 1997-08-01 2000-08-07 株式会社日立製作所 Oxidation resistant surface coating on Nb alloy
US6830827B2 (en) * 2000-03-07 2004-12-14 Ebara Corporation Alloy coating, method for forming the same, and member for high temperature apparatuses

Also Published As

Publication number Publication date
JP2012132099A (en) 2012-07-12
WO2002027067A1 (en) 2002-04-04
JP5295474B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP2012132099A (en) Niobium-based alloy heat-resistant material
US7285337B2 (en) Heat-resistant nickel-alloy composite excellent in high-temperature oxidation resistance
JP2991991B2 (en) Thermal spray coating for high temperature environment and method of manufacturing the same
JP2003253472A5 (en)
CN104401089B (en) High-temperature coating comprising nickel-chromium-oxygen active diffusion barrier layer and preparation method
JP3865705B2 (en) Heat shielding coating material excellent in corrosion resistance and heat resistance, and method for producing the same
JP5737682B1 (en) Heat-resistant metal member, method for producing heat-resistant metal member, alloy film, method for producing alloy film, rocket engine, artificial satellite, and gas turbine for power generation
EP1493834B1 (en) Heat-resistant ti alloy material excellent in resistance to corrosion at high temperature and to oxidation
WO1998042887A1 (en) High-temperature spray coated member and method of production thereof
RU2264480C2 (en) Method of deposition of protective coatings on details made out of refractory alloys
JP3857690B2 (en) Re alloy film for diffusion barrier
JP3857689B2 (en) ReCrNi alloy coating for diffusion barrier
JP3910588B2 (en) ReCr alloy coating for diffusion barrier
JP2006257451A (en) Structure of oxidation-resistant coating formed on heat-resistant alloy and coating method
JP2006219740A (en) Niobium-based alloy heat resistant member having excellent oxidation resistance
JPH11264084A (en) Heat resistant member and its production
JP3810330B2 (en) Heat resistant alloy material excellent in high temperature corrosion resistance and method for producing the same
JP4492855B2 (en) Thermal barrier coating member and manufacturing method thereof
JP2022130467A (en) TiAl ALLOY MATERIAL AND METHOD FOR PRODUCING THE SAME, AND METHOD FOR FORGING TiAl ALLOY MATERIAL
JPH0693412A (en) Heat resistant ti-based alloy
JP3332847B2 (en) Heat resistant member and method of manufacturing heat resistant member
US20050074561A1 (en) Method for forming film
JP2000511236A (en) Structural component having superalloy substrate and layer structure provided thereon, and method of manufacturing the same
JP2004250788A (en) Film depositing method
US6723176B2 (en) Component covered with a layer and method of producing such a layer

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20020903

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080819

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080820

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130612

R150 Certificate of patent or registration of utility model

Ref document number: 5295474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees