[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2009104615A1 - Copper alloy material - Google Patents

Copper alloy material Download PDF

Info

Publication number
JPWO2009104615A1
JPWO2009104615A1 JP2009554332A JP2009554332A JPWO2009104615A1 JP WO2009104615 A1 JPWO2009104615 A1 JP WO2009104615A1 JP 2009554332 A JP2009554332 A JP 2009554332A JP 2009554332 A JP2009554332 A JP 2009554332A JP WO2009104615 A1 JPWO2009104615 A1 JP WO2009104615A1
Authority
JP
Japan
Prior art keywords
mass
copper alloy
alloy material
strength
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009554332A
Other languages
Japanese (ja)
Inventor
清慈 廣瀬
清慈 廣瀬
立彦 江口
立彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Publication of JPWO2009104615A1 publication Critical patent/JPWO2009104615A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

Niを1.8〜5.0mass%、Siを0.3〜1.7mass%を含み、NiとSiの含有量の比Ni/Siが3.0〜6.0であり、Sの含有量が0.005mass%未満であり、残部がCuおよび不可避不純物からなる銅合金材であって、下記(1)〜(4)式を満足する銅合金材。130×C+300≦TS≦130×C+650(1)0.001≦d≦0.020(2)W≦150(3)10≦L≦800(4)(式中、TSは銅合金材の圧延平行方向(LD)の引張強度(MPa)、Cは銅合金材のNi含有量(mass%)、dは銅合金材の平均結晶粒径(mm)、Wは無析出帯の幅(nm)、Lは結晶粒界上の化合物の平均粒子径(nm)を表す。)Ni is included in 1.8 to 5.0 mass%, Si is included in 0.3 to 1.7 mass%, Ni / Si content ratio is 3.0 to 6.0, and S content Is a copper alloy material consisting of Cu and inevitable impurities, and satisfying the following formulas (1) to (4). 130 × C + 300 ≦ TS ≦ 130 × C + 650 (1) 0.001 ≦ d ≦ 0.020 (2) W ≦ 150 (3) 10 ≦ L ≦ 800 (4) (where TS is a rolling parallel of a copper alloy material) Tensile strength (MPa) in the direction (LD), C is the Ni content (mass%) of the copper alloy material, d is the average crystal grain size (mm) of the copper alloy material, W is the width of the precipitation-free zone (nm), L represents the average particle size (nm) of the compound on the grain boundary.)

Description

本発明は、銅合金材に関する。   The present invention relates to a copper alloy material.

従来、一般的に電気・電子機器用材料としては、鉄系材料の他、電気伝導性および熱伝導性に優れるリン青銅、丹銅、黄銅等の銅系材料も広く用いられている。近年、電気・電子機器の小型化、軽量化、さらにこれに伴う高密度実装化に対する要求が高まっており、これらに適用される銅系材料にも種々の特性が求められている。主に銅系材料に求められる特性として、製品機能を達成する為には、機械的性質、導電性および曲げ加工成形性が、また、製品使用時の信頼性を得る為には、耐応力緩和特性および疲労特性が求められる。従来、疲労特性などの信頼性が要求される部材には、疲労強度の良好なチタン銅、ベリリウム銅などの高強度合金が使用されてきた。   Conventionally, as materials for electrical / electronic devices, copper-based materials such as phosphor bronze, red brass, brass, etc., which are excellent in electrical conductivity and thermal conductivity, have been widely used as materials for electric / electronic devices. In recent years, there has been an increasing demand for miniaturization and weight reduction of electric / electronic devices and the accompanying high-density mounting, and various properties are also required for copper-based materials applied thereto. The main characteristics required of copper-based materials are mechanical properties, electrical conductivity, and bending formability to achieve product functions, and stress relaxation to obtain reliability during product use. Characteristics and fatigue properties are required. Conventionally, high strength alloys such as titanium copper and beryllium copper having good fatigue strength have been used for members that require reliability such as fatigue properties.

チタン銅、ベリリウム銅などの高強度合金は、りん青銅などの銅合金と比較して高価であり、またベリリウム銅では金属ベリリウムが人体に有害である為、その製造過程および環境への配慮からその代替材料が望まれている。
近年、比較的製造コストが安価であり、強度と導電率のバランスに優れるCu−Ni−Si系合金(コルソン合金)が注目を集めコネクタ用銅合金として使用されるようになった。Cu−Ni−Si系合金は、NiとSiから構成される析出物を形成させて強化させる析出型の合金で、その強化する能力が非常に高い。
High-strength alloys such as titanium copper and beryllium copper are more expensive than copper alloys such as phosphor bronze, and in beryllium copper, metal beryllium is harmful to the human body. Alternative materials are desired.
In recent years, Cu—Ni—Si alloys (Corson alloys), which have relatively low manufacturing costs and are excellent in balance between strength and electrical conductivity, have attracted attention and have been used as copper alloys for connectors. The Cu—Ni—Si based alloy is a precipitation type alloy that forms and precipitates precipitates composed of Ni and Si, and has a very high ability to strengthen.

一般的に引張強度の向上に伴い疲労特性は向上する。しかしながら、Cu−Ni−Si系合金においては、引張強度が高くなるほど、曲げ加工性を維持することは困難である。また、引張強度を得る為に材料に高い加工率を導入した場合、耐応力緩和特性が劣化する問題がある。その為、製品機能を達成する為の強度および曲げ加工性と、製品使用時の信頼性を得る為の、良好な耐応力緩和特性および疲労特性を同時に満たすCu−Ni−Si合金の開発が求められている。   In general, the fatigue characteristics are improved as the tensile strength is improved. However, in a Cu—Ni—Si based alloy, it is difficult to maintain bending workability as the tensile strength increases. Further, when a high processing rate is introduced into the material in order to obtain a tensile strength, there is a problem that the stress relaxation resistance is deteriorated. Therefore, development of a Cu-Ni-Si alloy that simultaneously satisfies good stress relaxation properties and fatigue properties to obtain strength and bending workability to achieve product functions and reliability during product use is required. It has been.

コルソン合金において、強度と曲げ加工性および強度と疲労特性を改善した高強度銅合金が特許文献1〜2などに提案されている。しかしながら、上述したように、耐力、曲げ加工性、耐応力緩和特性、疲労特性がともにさらに向上した銅合金材が求められている。
特許第3520034号公報 特開2005−48262号公報
In the Corson alloy, Patent Documents 1-2 and the like have proposed high-strength copper alloys having improved strength, bending workability, strength, and fatigue properties. However, as described above, there is a demand for a copper alloy material having further improved proof stress, bending workability, stress relaxation resistance, and fatigue characteristics.
Japanese Patent No. 3520034 JP 2005-48262 A

上述のような問題点を鑑みて本発明の課題は、高強度を有し、曲げ加工性および耐応力緩和特性に優れ、且つ、疲労特性にも優れる電気・電子機器用の端子、コネクタ、スイッチ、リレーなどに適した銅合金材を提供することにある。   In view of the problems as described above, the object of the present invention is to provide terminals, connectors, and switches for electrical and electronic devices that have high strength, excellent bending workability and stress relaxation resistance, and excellent fatigue characteristics. It is to provide a copper alloy material suitable for a relay or the like.

本発明者らは、電気・電子部品用途に適した銅合金材について研究を行い、時効処理時に銅合金中の結晶粒界近傍に無析出帯(precipitate free zone:PFZ)が形成され、この無析出帯は粒内に比較し低強度である為、銅合金に加工や繰り返し応力を加えた場合に優先的に変形が起こり曲げ加工性および疲労特性を劣化させるが、その無析出帯の幅を狭くすれば無害化し得ることを知見した。また、粒界上に存在する化合物の粒子径や、結晶粒径を合わせて制御することで、高強度を有し、曲げ加工性および耐応力緩和特性に優れ、且つ、疲労特性にも優れる銅合金材の発明を完成するに至った。
すなわち本発明は、
<1>Niを1.8〜5.0mass%、Siを0.3〜1.7mass%を含み、NiとSiの含有量の比Ni/Siが3.0〜6.0であり、Sの含有量が0.005mass%未満であり、残部がCuおよび不可避不純物からなる銅合金材であって、下記(1)〜(4)式を満足することを特徴とする銅合金材、
130×C+300≦TS≦130×C+650・・・(1)
0.001≦d≦0.020・・・(2)
W≦150・・・(3)
10≦L≦800・・・(4)
(式中、TSは銅合金材の圧延平行方向(LD)の引張強度(MPa)、Cは銅合金材のNi含有量(mass%)、dは銅合金材の平均結晶粒径(mm)、Wは無析出帯(PFZ)の幅(nm)、Lは結晶粒界上の化合物の粒子径(nm)を表す)、
<2>さらにMgを0.01〜0.20mass%含有することを特徴とする<1>項に記載の銅合金材、
<3>さらにSnを0.05〜1.5mass%含有することを特徴とする<1>又は<2>項に記載の銅合金材、
<4>さらにZnを0.2〜1.5mass%含有することを特徴とする<1>〜<3>のいずれか1項に記載の銅合金材、および、
<5>さらに以下の(I)〜(IV)のうち1種または2種以上を合計で0.005〜2.0mass%含有することを特徴とする<1>〜<4>のいずれか1項に記載の銅合金材、
(I)Sc、Y、Ti、Zr、Hf、V、Mo、およびAgからなる群から選ばれる1種または2種以上を0.005〜0.3mass%、
(II)Mnを0.01〜0.5mass%、
(III)Coを0.05〜2.0mass%、
(IV)Crを0.005〜1.0mass%、
を提供するものである。
The present inventors have studied copper alloy materials suitable for electric / electronic component applications, and formed a precipitate-free zone (PFZ) near the crystal grain boundary in the copper alloy during aging treatment. Precipitation zone is lower in strength than in the grains, so when processing or repeated stress is applied to copper alloy, deformation occurs preferentially and deteriorates bending workability and fatigue characteristics. It was found that it can be made harmless if it is narrowed. In addition, by controlling the particle size and crystal grain size of the compound existing on the grain boundary, copper has high strength, excellent bending workability and stress relaxation resistance, and excellent fatigue properties. The invention of the alloy material has been completed.
That is, the present invention
<1> Ni is included in 1.8 to 5.0 mass%, Si is included in 0.3 to 1.7 mass%, Ni / Si content ratio Ni / Si is 3.0 to 6.0, S A copper alloy material having a content of less than 0.005 mass%, the balance being Cu and inevitable impurities, and satisfying the following formulas (1) to (4):
130 × C + 300 ≦ TS ≦ 130 × C + 650 (1)
0.001 ≦ d ≦ 0.020 (2)
W ≦ 150 (3)
10 ≦ L ≦ 800 (4)
(Where TS is the tensile strength (MPa) of the copper alloy material in the rolling parallel direction (LD), C is the Ni content (mass%) of the copper alloy material, and d is the average crystal grain size (mm) of the copper alloy material. W represents the width (nm) of the precipitation-free zone (PFZ), L represents the particle diameter (nm) of the compound on the grain boundary),
<2> The copper alloy material according to <1>, further containing Mg in an amount of 0.01 to 0.20 mass%.
<3> The copper alloy material according to <1> or <2>, further containing 0.05 to 1.5 mass% of Sn,
<4> The copper alloy material according to any one of <1> to <3>, further containing 0.2 to 1.5 mass% of Zn, and
<5> Further, any one of the following (I) to (IV) is contained in a total of 0.005 to 2.0 mass%, and any one of <1> to <4> The copper alloy material according to item,
(I) 0.005-0.3 mass% of one or more selected from the group consisting of Sc, Y, Ti, Zr, Hf, V, Mo, and Ag,
(II) Mn is 0.01 to 0.5 mass%,
(III) Co is 0.05 to 2.0 mass%,
(IV) 0.005 to 1.0 mass% of Cr,
Is to provide.

本発明のCu−Ni−Si系銅合金材は、従来と比較して、高強度を有し、曲げ加工性、耐応力緩和特性および疲労特性に共に優れた銅合金材である。   The Cu—Ni—Si based copper alloy material of the present invention is a copper alloy material having higher strength and superior bending properties, stress relaxation resistance and fatigue properties as compared with the prior art.

本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。   The above and other features and advantages of the present invention will become more apparent from the following description, with reference where appropriate to the accompanying drawings.

図1は、本発明の銅合金材の一例の無析出帯を含む結晶粒界近傍の透過型電子顕微鏡写真である。FIG. 1 is a transmission electron micrograph of the vicinity of a crystal grain boundary including a precipitation-free zone as an example of the copper alloy material of the present invention. 図2は、本発明中で規定する、無析出帯の幅Wおよび粒界上の化合物の粒子径Lの求め方の説明図である。FIG. 2 is an explanatory diagram of how to determine the width W of the precipitation-free zone and the particle diameter L of the compound on the grain boundary defined in the present invention.

符号の説明Explanation of symbols

1 結晶粒界
2 結晶粒界上の化合物
3 結晶粒内NiSi析出物
DESCRIPTION OF SYMBOLS 1 Grain boundary 2 Compound on grain boundary 3 Ni 2 Si precipitate in crystal grain

本発明の銅合金材の組成および合金組織について好ましい実施の形態を、以下に詳細に説明する。なお、本発明において銅合金材とは、圧延工程によって、例えば板材、条材、箔などの特定の形状に加工された銅合金を意味する。   Preferred embodiments of the composition and alloy structure of the copper alloy material of the present invention will be described in detail below. In the present invention, the copper alloy material means a copper alloy processed into a specific shape such as a plate material, a strip material, or a foil by a rolling process.

銅合金中のニッケル(Ni)とケイ素(Si)は時効処理を施すと、主としてNiSi相を形成して強度および導電率を向上する。Niの含有量は1.8〜5.0mass%、好ましくは2.0〜4.8mass%である。このように規定する理由は、含有量が1.8mass%よりも少ないとコネクタ用途の銅合金として十分な強度が得られず、5.0mass%より多過ぎると、鋳造時や熱間加工時に強度向上に寄与しない化合物形成が生じ、含有量に見合う強度が得られないばかりか、熱間加工性が低下し悪影響を及ぼすという問題が生じるためである。When nickel (Ni) and silicon (Si) in a copper alloy are subjected to an aging treatment, a Ni 2 Si phase is mainly formed to improve strength and conductivity. The Ni content is 1.8 to 5.0 mass%, preferably 2.0 to 4.8 mass%. The reason for specifying in this way is that if the content is less than 1.8 mass%, sufficient strength as a copper alloy for connector use cannot be obtained, and if it is more than 5.0 mass%, the strength is increased during casting or hot working. This is because the formation of a compound that does not contribute to the improvement occurs, and the strength corresponding to the content cannot be obtained, and the hot workability is deteriorated and adversely affects.

Siの含有量は0.3〜1.7mass%、好ましくは0.35〜1.6mass%である。このように規定する理由は、Si量が0.3mass%よりも少ない場合には、時効処理による強度向上が不十分で十分な強度は得られず、また、Si含有量が1.7mass%より多過ぎる場合、Ni量が多い場合と同じ問題が生じることに加え、導電率の低下をもたらす。
NiとSiは主としてNiSi相を形成する為、強度を向上する為に最適なNiとSiの比が存在する。Si量がNiSi相を形成したときのNi(mass%)とSi(mass%)の比、Ni/Siは4.2であり、その値を中心に、Ni/Siを3.0〜6.0の範囲内とすることが望ましく、3.8〜4.6の範囲内とすることがさらに好ましい。
The content of Si is 0.3 to 1.7 mass%, preferably 0.35 to 1.6 mass%. The reason for specifying in this way is that when the Si amount is less than 0.3 mass%, the strength improvement by the aging treatment is insufficient and sufficient strength cannot be obtained, and the Si content is more than 1.7 mass%. When the amount is too large, the same problem as in the case where the amount of Ni is large is caused, and the conductivity is lowered.
Since Ni and Si mainly form a Ni 2 Si phase, there is an optimum ratio of Ni and Si in order to improve the strength. The ratio of Ni (mass%) and Si (mass%) when the amount of Si formed the Ni 2 Si phase, Ni / Si is 4.2, and Ni / Si is 3.0 to It is desirable to be in the range of 6.0, and it is more preferable to be in the range of 3.8 to 4.6.

硫黄(S)は銅合金には微量含まれるものであるが、0.005mass%以上では熱間加工性を悪化させるため、その含有量は0.005mass%未満に規定する。特には0.002mass%未満が好ましい。   Although a trace amount of sulfur (S) is contained in the copper alloy, the hot workability is deteriorated at 0.005 mass% or more, so the content is specified to be less than 0.005 mass%. In particular, less than 0.002 mass% is preferable.

また、銅合金にはマグネシウム(Mg)を含有させることが好ましい。その量は0.01〜0.20mass%である。Mgは応力緩和特性を大幅に改善するが、曲げ加工性には悪影響を及ぼす。応力緩和特性の改善にはMg量は0.01mass%以上で多いほど良いが、0.20mass%を超えると曲げ加工性が要求特性を満たさなくなる。好ましくは0.05〜0.15mass%である。   The copper alloy preferably contains magnesium (Mg). The amount is 0.01-0.20 mass%. Mg greatly improves the stress relaxation properties, but adversely affects bending workability. For improvement of stress relaxation characteristics, the Mg content is preferably as large as 0.01 mass% or more, but if it exceeds 0.20 mass%, the bending workability does not satisfy the required characteristics. Preferably it is 0.05-0.15 mass%.

また、銅合金にはスズ(Sn)を含有させることが好ましい。その量は0.05〜1.5mass%である。SnはMgと相互に関係し合って、応力緩和特性をより一層向上させるが、その効果はMg程大きくはない。Snが0.05mass%未満ではその効果が充分に現れず、1.5mass%を超えると導電性が大幅に低下する。好ましくは0.1〜0.7mass%である。   The copper alloy preferably contains tin (Sn). The amount is 0.05 to 1.5 mass%. Sn interacts with Mg to improve the stress relaxation characteristics, but the effect is not as great as with Mg. If Sn is less than 0.05 mass%, the effect is not sufficiently exhibited, and if it exceeds 1.5 mass%, the conductivity is significantly lowered. Preferably it is 0.1-0.7 mass%.

また、銅合金には亜鉛(Zn)を含有させることが好ましい。その量は0.2〜1.5mass%である。Znは曲げ加工性を若干改善する。Zn量を0.2〜1.5mass%含有することにより、Mgを最大0.20mass%まで添加しても実用上問題ない水準の曲げ加工性が得られる。この他、ZnはSnメッキやハンダメッキの密着性やマイグレーション特性を改善する。Zn量が0.2mass%未満ではその効果が充分に得られず、1.5mass%を超えると導電性が低下する。好ましくは0.3〜1.0mass%である。   The copper alloy preferably contains zinc (Zn). The amount is 0.2 to 1.5 mass%. Zn slightly improves the bending workability. By containing Zn in an amount of 0.2 to 1.5 mass%, even if Mg is added up to a maximum of 0.20 mass%, bending workability at a level that does not cause a practical problem can be obtained. In addition, Zn improves the adhesion and migration characteristics of Sn plating and solder plating. If the amount of Zn is less than 0.2 mass%, the effect cannot be sufficiently obtained, and if it exceeds 1.5 mass%, the conductivity is lowered. Preferably it is 0.3-1.0 mass%.

また、銅合金にはスカンジウム(Sc)、イットリウム(Y)、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、モリブデン(Mo)、銀(Ag)いずれか1種又は2種以上を合計で0.005〜0.3mass%添加することができる。Sc、Y、Ti、Zr、Hf、V、Moは、NiまたはSiと化合物を形成し、結晶粒径の粗大化を抑制する効果がある。その添加量は強度や導電性などの特性を低下させない上記の範囲で添加することが可能である。
Agは耐熱性および強度を向上させると同時に、結晶粒の粗大化を阻止して曲げ加工性を改善する。Ag量が0.005mass%未満ではその効果が充分に得られず、0.3mass%を超えて添加しても特性上に悪影響はないもののコスト高になる。これらの観点からAgの含有量は前記の範囲が好ましい。
The copper alloy may be any one of scandium (Sc), yttrium (Y), titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), molybdenum (Mo), and silver (Ag). Two or more kinds can be added in a total amount of 0.005 to 0.3 mass%. Sc, Y, Ti, Zr, Hf, V, and Mo have an effect of forming a compound with Ni or Si and suppressing the coarsening of the crystal grain size. The addition amount can be added in the above range which does not deteriorate the properties such as strength and conductivity.
Ag improves heat resistance and strength, and at the same time, prevents coarsening of crystal grains and improves bending workability. If the Ag amount is less than 0.005 mass%, the effect cannot be sufficiently obtained, and even if added over 0.3 mass%, there is no adverse effect on the characteristics, but the cost increases. From these viewpoints, the content of Ag is preferably within the above range.

マンガン(Mn)は熱間加工性を改善する効果があり、導電性を劣化させない程度に0.01〜0.5mass%添加することは有効である。
コバルト(Co)は、Niと同様にSiと化合物を形成して強度を向上させる作用を有するので、Coを0.05〜2.0mass%含有するのが好ましい。含有量が0.05mass%未満ではその効果が充分に得られず、2.0mass%を超えると、溶体化処理後にも強度に寄与しない晶出・析出物が存在して曲げ加工性が劣化する。
クロム(Cr)は、銅中に微細に析出して強度向上に寄与するともに、SiもしくはNiとSiと化合物を形成し、前述のSc、Y、Ti、Zr、Hf、V、Moの群と同様、結晶粒径の粗大化を抑制する効果がある。添加する場合、0.005mass%未満ではその効果が充分に得られず、1.0mass%を超えると曲げ加工性が劣化する。
Manganese (Mn) has an effect of improving hot workability, and it is effective to add 0.01 to 0.5 mass% so as not to deteriorate the conductivity.
Cobalt (Co), like Ni, forms a compound with Si and has the effect of improving the strength, so it is preferable to contain 0.05 to 2.0 mass% of Co. If the content is less than 0.05 mass%, the effect cannot be sufficiently obtained. If the content exceeds 2.0 mass%, crystallization / precipitates that do not contribute to the strength exist after the solution treatment, and bending workability deteriorates. .
Chromium (Cr) precipitates finely in copper and contributes to strength improvement, and forms a compound with Si or Ni and Si, and the group of Sc, Y, Ti, Zr, Hf, V, and Mo described above. Similarly, there is an effect of suppressing the coarsening of the crystal grain size. When it is added, if less than 0.005 mass%, the effect cannot be sufficiently obtained, and if it exceeds 1.0 mass%, bending workability deteriorates.

上述のSc、Y、Ti、Zr、Hf、V、Mo、Ag、Mn、Co、Crを2種以上添加する場合には、要求特性に応じて合計で0.005〜2.0mass%の範囲内で決定される。   When adding two or more of the above-mentioned Sc, Y, Ti, Zr, Hf, V, Mo, Ag, Mn, Co, and Cr, a total range of 0.005 to 2.0 mass% depending on the required characteristics Determined within.

本発明では、前述組成の銅合金材の圧延平行方向(LD)の引張強度TSを規定する。なお、熱間圧延および冷間圧延は、共に本銅合金材の製造工程において全て同じ方向で行うため、該圧延方向は同一となる。
端子、コネクタ、リレー等の用途においては、バネ性を保つ為には銅合金材の強度が必要であるが、加工などにより強度を著しく向上させた場合に曲げ加工性が劣化する。また、Cu−Ni−Si系合金においてNiおよびSi含有量を増加させると、強度は増加するが、前述記載のNiおよびSiの含有量であっても、いたずらに増加した場合コスト高となる。その観点から、前述記載のNiおよびSiの含有量の範囲の中でも各強度域に適したNiおよびSi含有量が存在することを明らかにし、(1)式を導出するに至った。この際に、Si含有量は前述のようにNiとSiの含有量の比に最適な領域があり、代表してNi含有量Cで規定することが可能である。引張強度TSが小さすぎる場合には、強度に対してNi、Siの含有量が多いことを意味しておりコスト高となる。引張強度TSが大きすぎる場合には、加工などにより強度を著しく向上させていることを意味しており、曲げ加工性が劣化する。
130×C+300≦TS≦130×C+650・・・(1)
本発明において、TSはJIS Z 2241に準拠して求めたものとする。TSは、好ましくは(130×C+350)≦TS≦(130×C+600)である。
In the present invention, the tensile strength TS in the rolling parallel direction (LD) of the copper alloy material having the above composition is defined. Since both hot rolling and cold rolling are performed in the same direction in the production process of the copper alloy material, the rolling directions are the same.
In applications such as terminals, connectors, and relays, the strength of the copper alloy material is necessary to maintain the spring property, but the bending workability deteriorates when the strength is significantly improved by processing or the like. Further, when the Ni and Si contents are increased in the Cu—Ni—Si based alloy, the strength is increased, but even if the Ni and Si contents described above are increased, the cost increases if they are increased unnecessarily. From this point of view, it has been clarified that Ni and Si contents suitable for each strength region exist within the above-described Ni and Si content ranges, and the formula (1) has been derived. At this time, the Si content has an optimum region for the ratio of Ni and Si content as described above, and can be defined by the Ni content C as a representative. When the tensile strength TS is too small, it means that the contents of Ni and Si are large with respect to the strength, which increases the cost. When the tensile strength TS is too large, it means that the strength is remarkably improved by processing or the like, and the bending workability is deteriorated.
130 × C + 300 ≦ TS ≦ 130 × C + 650 (1)
In the present invention, TS is obtained according to JIS Z 2241. TS is preferably (130 × C + 350) ≦ TS ≦ (130 × C + 600).

本発明において、銅合金材の母材の結晶粒の平均結晶粒径d(mm)は、0.001≦d≦0.020である。平均結晶粒径dを、0.001mm以上0.020mm以下に規定する理由は、平均結晶粒径dが0.001mm未満では再結晶組織が混粒(大きさの異なる結晶粒が混在した組織)となり易く、曲げ加工性並びに応力緩和特性が低下し、また平均結晶粒径dが0.020mmを超えると曲げ加工時に粒界近傍への応力集中が促進し、後述の無析出帯(PFZ)および粒界上の化合物と相互して曲げ加工性を劣化させる為である。なお、前記結晶粒径dはJIS H 0501(切断法)に基づいて測定した値とする。前記結晶粒径dを求めるための測定数は1000個以上とする。平均結晶粒径d(mm)は、好ましくは0.001≦d≦0.015である。   In the present invention, the average crystal grain size d (mm) of the crystal grains of the base material of the copper alloy material is 0.001 ≦ d ≦ 0.020. The reason for prescribing the average crystal grain size d to be 0.001 mm or more and 0.020 mm or less is that when the average crystal grain size d is less than 0.001 mm, the recrystallized structure is mixed (a structure in which crystal grains having different sizes are mixed). When the average crystal grain size d exceeds 0.020 mm, stress concentration near the grain boundary is promoted at the time of bending, and no precipitation zone (PFZ) and This is because the bending workability deteriorates with the compound on the grain boundary. The crystal grain size d is a value measured based on JIS H 0501 (cutting method). The number of measurements for determining the crystal grain size d is 1000 or more. The average crystal grain size d (mm) is preferably 0.001 ≦ d ≦ 0.015.

無析出帯(PFZ)は時効処理の過程において結晶粒界近傍に形成し、析出物が存在しない領域である。図1は、本発明の銅合金材の1例の無析出帯を含む結晶粒界近傍の透過型電子顕微鏡写真である。無析出帯(PFZ)は、析出物が存在しない領域の為、結晶粒内よりも相対的に軟らかい。それ故に、銅合金材に変形や繰り返し応力を負荷した場合、優先的に変形が進行し、割れの起点に、また、転位の蓄積により疲労破壊の起点になる。その為、PFZ幅Wが狭いほうが銅合金組織の脆弱性が緩和される。無析出帯の幅W(nm)はW≦150(150nm以下)であれば、曲げ加工性および疲労特性の劣化には大きな影響を及ぼさないことを、詳細な検討の結果より知見した。
本発明において、PFZ幅Wは、銅合金板の粒界近傍を、ビームの入射方向を(100)面に合わせて透過電子顕微鏡写真を5万倍で2視野撮影し、1視野あたり5箇所のPFZ幅を測定し、合計10箇所の平均値とする。Wは0〜100nmであることが好ましい。
The non-precipitation zone (PFZ) is a region that is formed near the grain boundary in the course of aging treatment and no precipitate is present. FIG. 1 is a transmission electron micrograph in the vicinity of a grain boundary including a precipitation-free zone of one example of the copper alloy material of the present invention. The non-precipitation zone (PFZ) is an area where no precipitate is present, and thus is relatively softer than in the crystal grains. Therefore, when deformation or repetitive stress is applied to the copper alloy material, the deformation progresses preferentially, and becomes a starting point of cracking and a starting point of fatigue failure due to accumulation of dislocations. Therefore, the weakness of the copper alloy structure is reduced when the PFZ width W is narrow. As a result of detailed examination, it has been found that if the width W (nm) of the precipitation-free zone is W ≦ 150 (150 nm or less), the bending workability and fatigue characteristics are not greatly affected.
In the present invention, the PFZ width W is obtained by photographing a transmission electron micrograph at 50,000 magnifications in two fields around the grain boundary of a copper alloy plate with the (100) plane of the beam incident direction, and at five locations per field of view. The PFZ width is measured and set to the average value of a total of 10 locations. W is preferably 0 to 100 nm.

結晶粒界上の化合物は主として金属間化合物であり、結晶粒内および無析出帯と比較して硬い。銅合金材に変形や繰り返し応力を負荷した場合、硬い化合物とその周囲の組織において強度差が生じ、化合物付近の銅合金組織に転位が蓄積しやすく、割れの起点におよび疲労破壊の起点になる。その為、粒界上の化合物は小さいほうが銅合金組織の脆弱性が緩和される。本発明において、粒界上の化合物の平均粒子径L(nm)は10≦L≦800である。化合物の平均粒子径Lが800nm以下であれば、曲げ加工性および疲労特性の劣化には大きな影響を及ぼさない。化合物の平均粒子径Lは500nm以下であることが好ましい。ただし、結晶粒界に存在する化合物は結晶粒の移動を抑制し、結晶粒径を微細に保つ効果がある。その為粒子径Lは10nm以上であり、好ましくは30nm以上である。
本発明において、粒界上の化合物の平均粒子径Lは、銅合金材の粒界をビームの入射方向を(100)面に合わせて透過電子顕微鏡写真を5万倍で5視野撮影し、一つの化合物について長径と短径を測定して、平均をその化合物の粒子径とし、さらに20個の化合物の粒子径を平均したものとする。
The compound on the crystal grain boundary is mainly an intermetallic compound, and is harder than in the crystal grain and the non-precipitated zone. When deformation or repeated stress is applied to a copper alloy material, a difference in strength occurs between the hard compound and the surrounding structure, dislocations tend to accumulate in the copper alloy structure near the compound, and become the starting point of cracking and the starting point of fatigue failure . Therefore, the smaller the compound on the grain boundary, the less the brittleness of the copper alloy structure. In the present invention, the average particle diameter L (nm) of the compound on the grain boundary is 10 ≦ L ≦ 800. If the average particle diameter L of the compound is 800 nm or less, the bending workability and the deterioration of fatigue characteristics are not greatly affected. The average particle diameter L of the compound is preferably 500 nm or less. However, the compound existing at the crystal grain boundary has an effect of suppressing the movement of the crystal grain and keeping the crystal grain size fine. Therefore, the particle diameter L is 10 nm or more, preferably 30 nm or more.
In the present invention, the average particle diameter L of the compound on the grain boundary is obtained by taking a transmission electron micrograph at 50000 magnifications at five fields with the grain boundary of the copper alloy material aligned with the (100) plane of the beam. The major axis and minor axis of one compound are measured, the average is the particle diameter of the compound, and the particle diameters of 20 compounds are averaged.

図2は、本発明における、無析出帯の幅Wおよび粒界上の化合物の粒子径Lの求め方の概略的に示す説明図である。図中、1は結晶粒界、2は結晶粒界上の化合物、3は結晶粒内NiSi析出物を示す。図示されるように無析出帯の幅Wは、結晶粒界1から一方の結晶粒で形成される範囲の境界までの距離を測定して求められる。粒界上の化合物の平均粒子径Lは、結晶粒界上の化合物2の長径と短径を測定して、平均をその化合物の粒子径とし、さらに20個の化合物の粒子径を平均して求められる。FIG. 2 is an explanatory view schematically showing how to obtain the width W of the precipitation-free zone and the particle diameter L of the compound on the grain boundary in the present invention. In the figure, 1 is a crystal grain boundary, 2 is a compound on the crystal grain boundary, and 3 is a Ni 2 Si precipitate in the crystal grain. As shown in the figure, the width W of the precipitation-free zone is obtained by measuring the distance from the crystal grain boundary 1 to the boundary of the range formed by one crystal grain. The average particle diameter L of the compound on the grain boundary is obtained by measuring the major axis and minor axis of the compound 2 on the grain boundary, setting the average as the particle diameter of the compound, and further averaging the particle diameters of 20 compounds. Desired.

結晶粒、無析出帯、粒界化合物は、銅合金に変形や繰り返し応力を負荷した場合には相互に作用する。その為、平均結晶粒径d、無析出帯の幅W、粒界化合物の平均粒子径Lが各々前述の規定を満たすだけでは不十分であり、その全てを満たすことで銅合金組織の脆弱性を緩和することができる。   Crystal grains, precipitation-free zones, and grain boundary compounds interact when a copper alloy is subjected to deformation or repeated stress. For this reason, it is not sufficient that the average crystal grain size d, the width W of the precipitation-free zone, and the average grain size L of the grain boundary compound each satisfy the above-mentioned regulations. Can be relaxed.

次に本発明に係る銅合金材の好ましい製造方法について説明する。
鋳造は一般的な半連続鋳造法、いわゆるDC(direct chill)鋳造法などで行う。次いで鋳塊を、例えば、850〜1000℃の温度で0.5〜6時間の均質化処理を施した直後、600〜1000℃の温度で熱間圧延を行う。熱間圧延後、適時に冷間圧延を行う。熱間圧延後の冷却中に形成される析出物は粗大になり易く、最終製品の粒界上に1000nm以上の粗大な化合物が残存して曲げ加工性および疲労特性を劣化させることがある。冷却中の析出を防ぐ為に熱間圧延後は水冷することが望ましい。冷却の後、酸化膜を面削後に生地圧延を行うことが好ましい。生地圧延は次工程以降の冷間加工において所定の加工率が得られる板厚に圧延を行うことが好ましい。
Next, the preferable manufacturing method of the copper alloy material which concerns on this invention is demonstrated.
Casting is performed by a general semi-continuous casting method, such as a so-called DC (direct chill) casting method. Next, the ingot is hot-rolled at a temperature of 600 to 1000 ° C. immediately after, for example, homogenization treatment for 0.5 to 6 hours at a temperature of 850 to 1000 ° C. After hot rolling, cold rolling is performed in a timely manner. Precipitates formed during cooling after hot rolling tend to be coarse, and coarse compounds of 1000 nm or more remain on the grain boundaries of the final product, which may deteriorate bending workability and fatigue characteristics. In order to prevent precipitation during cooling, it is desirable to cool with water after hot rolling. After cooling, it is preferable to perform dough rolling after chamfering the oxide film. In the dough rolling, it is preferable to perform rolling to a plate thickness that can obtain a predetermined processing rate in the cold processing after the next step.

続く溶体化処理はNiの含有量Cに応じて温度を決定し行う。材料の実態温度Tst(℃)が(5)式を満たす範囲で行うことが好ましい。
54×C+625≦Tst≦54×C+725・・・(5)
溶体化処理の温度が高いほうが、粒界上の析出物の平均粒子径Lは小さくなり、無析出帯の幅Wが狭くなり、また、良好な固溶状態が得られ次工程以降での時効処理において高強度を得ることが可能である。しかしながら、Tstが上限式を上回る範囲では、結晶粒が粗大化して平均結晶粒径dが上記の範囲を満たさなくなり曲げ加工性を劣化させることがある。Tstが下限式を下回る場合には素圧延の冷間加工による転位組織が残存して曲げ加工性を劣化させることがある。
The subsequent solution treatment is performed by determining the temperature according to the Ni content C. It is preferable to carry out in a range where the actual temperature Tst (° C.) of the material satisfies the equation (5).
54 × C + 625 ≦ Tst ≦ 54 × C + 725 (5)
The higher the solution treatment temperature, the smaller the average particle diameter L of the precipitates on the grain boundaries, the narrower the width W of the precipitation-free zone, and the better solute state is obtained, and the aging in the subsequent steps. High strength can be obtained in the process. However, in the range where Tst exceeds the upper limit formula, the crystal grains become coarse and the average crystal grain size d does not satisfy the above range, and the bending workability may be deteriorated. When Tst is less than the lower limit formula, a dislocation structure due to cold working in the raw rolling may remain and bend workability may deteriorate.

続く時効処理は銅合金中にNiSi化合物を均一に分散析出させ、強度、導電率を向上させる。バッチ式の炉を用い、実体温度350〜600℃で0.5〜12時間保持することが好ましい。時効処理時の温度が350℃より低いと十分なNiSi析出量を得る為に長時間を要することになりコスト高になる、または、引張強度および導電率が不十分になることがある。時効処理時の温度が600℃より高いと結晶粒内では粗大化なNiSiが形成し強度を低下させ、粒界近傍では無析出帯の幅Wが拡がる為、曲げ加工性および疲労特性を劣化させることがある。時間は0.5時間未満では十分な特性は得られないことがあり、12時間よりも長時間になるとコスト高になるだけでなく、無析出帯の幅Wが広がる為曲げ加工性および疲労特性を劣化させることがある。
引張強度をより向上させる目的で、溶体化後から時効処理を行う間に冷間圧延を加えても良い。この冷間圧延により導入された転位は、NiSi化合物の析出を促す様に働き、無析出帯Wの幅を減少させる働きもある。この冷間加工率は高すぎると曲げ加工性を劣化させる為、50%以下で行うことが望ましい。
The subsequent aging treatment uniformly disperses and precipitates the Ni 2 Si compound in the copper alloy, thereby improving the strength and electrical conductivity. It is preferable to use a batch type furnace and hold at an actual temperature of 350 to 600 ° C. for 0.5 to 12 hours. If the temperature during the aging treatment is lower than 350 ° C., it takes a long time to obtain a sufficient amount of deposited Ni 2 Si, resulting in an increase in cost or insufficient tensile strength and electrical conductivity. If the temperature during the aging treatment is higher than 600 ° C., coarse Ni 2 Si is formed in the crystal grains and the strength is lowered, and the width W of the precipitation-free zone is expanded in the vicinity of the grain boundary. Therefore, bending workability and fatigue characteristics are improved. May deteriorate. If the time is less than 0.5 hours, sufficient characteristics may not be obtained. If the time is longer than 12 hours, not only the cost is increased, but also the width W of the precipitation-free zone is widened, so that bending workability and fatigue characteristics are increased. May deteriorate.
In order to further improve the tensile strength, cold rolling may be applied during the aging treatment after the solution treatment. The dislocations introduced by this cold rolling work to promote precipitation of the Ni 2 Si compound and also have the function of reducing the width of the precipitation-free zone W. If this cold work rate is too high, bending workability is deteriorated, so it is desirable to carry out at 50% or less.

また、時効処理を2回行うことも無析出帯の幅Wを減少させる働きを有する為、施行しても良い。2回の時効処理によって無析出帯の幅Wを減少させるには、上述時効処理温度を温度域1:350〜450℃と温度域2:450〜600℃に分けて、温度域1と温度域2での処理を各々1度ずつ行うことが好ましい。この際に温度域1と温度域2で処理を行う順番はどちらが先でも良い。温度域1では4〜12時間の比較的長時間、温度域2では0.5〜6時間の比較的短時間で行うことが望ましい。2回の時効処理の間に、NiSi化合物の析出を促す為に、50%以下の冷間圧延を施しても良い。In addition, the aging treatment may be performed twice because it has a function of reducing the width W of the precipitation-free zone. In order to reduce the width W of the precipitation-free zone by aging treatment twice, the above aging treatment temperature is divided into temperature range 1: 350 to 450 ° C. and temperature range 2: 450 to 600 ° C., and temperature range 1 and temperature range It is preferable to perform the process in 2 once each. At this time, the order of performing the processing in the temperature range 1 and the temperature range 2 may be either first. In the temperature range 1, it is desirable to carry out in a relatively long time of 4 to 12 hours, and in the temperature range 2 in a relatively short time of 0.5 to 6 hours. In order to promote precipitation of the Ni 2 Si compound between the two aging treatments, cold rolling of 50% or less may be performed.

時効処理に続けて、仕上げ冷間圧延を引張強度の向上を目的として行う。時効処理後の引張強度が十分な場合には、仕上げ冷間圧延を導入しなくても良い。仕上げ冷間圧延の圧延率が高すぎる場合には、曲げ加工性が劣化し、また、耐応力緩和特性を劣化させる。その為、仕上げ圧延の圧延率は50%以下であることが望ましい。   Following the aging treatment, finish cold rolling is performed for the purpose of improving the tensile strength. When the tensile strength after the aging treatment is sufficient, it is not necessary to introduce finish cold rolling. When the rolling ratio of finish cold rolling is too high, bending workability is deteriorated and stress relaxation resistance is deteriorated. Therefore, the rolling rate of finish rolling is desirably 50% or less.

仕上げ圧延に続けて行う低温焼鈍は、強度をある程度維持したまま、伸び、曲げ加工性およびバネ限界値を回復させる目的で行う。仕上げ圧延を行っていない場合には、低温焼鈍の工程も省略しても良い。実体温度300〜600℃で、5〜60秒の短時間での焼鈍を行うことが望ましい。焼鈍時の温度が300℃より低いと、伸び、曲げ加工性およびバネ限界値の回復が不十分なことがあり、焼鈍時の温度が600℃より高いと強度低下をもたらすことがある。   The low temperature annealing performed after the finish rolling is performed for the purpose of restoring the elongation, bending workability and spring limit value while maintaining the strength to some extent. When finish rolling is not performed, the low-temperature annealing step may be omitted. It is desirable to perform annealing in a short time of 5 to 60 seconds at an actual temperature of 300 to 600 ° C. When the temperature during annealing is lower than 300 ° C., the elongation, bending workability, and recovery of the spring limit value may be insufficient, and when the temperature during annealing is higher than 600 ° C., strength may be reduced.

以下に、本発明を、本発明に基づいた実施例について比較例と対比してさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
本発明の実施例および比較例の銅合金材は、表1に示す化学組成(残部はCu)の銅合金(合金No.1〜25)で形成される。これらの銅合金を高周波溶解炉にて溶解し、厚さ30mm、幅120mm、長さ150mmの鋳塊に鋳造し、次にこれら鋳塊を980℃に加熱し、この温度に1時間保持後、厚さ12mmに熱間圧延し、速やかに冷却した。
この際、合金No.19に関してはNi量が多すぎたため、合金No.20に関してはS量が多すぎたため、合金No.21に関してはSi量が多すぎたため、合金No.23に関してはCr量が多すぎたため、合金No.24および25に関しては、Zr、Ti、Hfの合計量およびV、Mo、Yの合計量が多すぎたため、熱間圧延中に割れが発生して次工程以降を中止した。
Hereinafter, the present invention will be described in more detail with respect to examples based on the present invention as compared with comparative examples. However, the present invention is not limited to these examples.
The copper alloy material of the Example of this invention and a comparative example is formed with the copper alloy (alloy No. 1-25) of the chemical composition shown in Table 1 (the remainder is Cu). These copper alloys are melted in a high-frequency melting furnace, cast into ingots having a thickness of 30 mm, a width of 120 mm, and a length of 150 mm, and then the ingots are heated to 980 ° C. and held at this temperature for 1 hour, It was hot-rolled to a thickness of 12 mm and quickly cooled.
At this time, Alloy No. Regarding No. 19, since the amount of Ni was too large, alloy no. Regarding No. 20, since the amount of S was too large, alloy no. Regarding No. 21, since the amount of Si was too large, alloy no. No. 23 had too much Cr, so alloy no. Regarding 24 and 25, since the total amount of Zr, Ti, and Hf and the total amount of V, Mo, and Y were too large, cracks occurred during hot rolling and the subsequent steps were stopped.

次いで両面を各1.5mmずつ切削して酸化皮膜を除去したのち、冷間圧延により厚さ0.16〜0.50mmに加工した。この際、合金No.22はSnが多すぎたため、冷間圧延中にコバ割れを発生し、次工程以降を中止した。この後、800〜950℃で30秒間熱処理し、直ちに15℃/秒以上の冷却速度で冷却した。   Next, both sides were cut 1.5 mm each to remove the oxide film, and then processed to a thickness of 0.16 to 0.50 mm by cold rolling. At this time, Alloy No. Since 22 had too much Sn, edge cracks occurred during cold rolling, and the subsequent steps were stopped. Then, it heat-processed for 30 seconds at 800-950 degreeC, and cooled immediately with the cooling rate of 15 degreeC / second or more.

時効処理の前に0〜50%の種々の圧延率で冷間圧延を施した後(圧延率が0%の場合は冷間圧延することなく)、不活性ガス雰囲気中にて500℃、2時間の時効処理を施した。なお圧延率0%は圧延を施さないことを意味する。また、熱処理として、前記時効処理に代えて、2回の時効処理を施した熱処理を施すか、不活性ガス雰囲気中にて400℃の熱処理を4時間行った後に500℃の2時間を行った熱処理を施すか、または、500℃の熱処理を2時間を行った後に400℃の熱処理を4時間行った熱処理を施した。この詳細は後述する。
その後、仕上げ圧延を種々の圧延率で行い、最終的な板厚を0.15mmに揃えた。仕上げ圧延の後、400〜600℃で30秒の低温焼鈍処理を施し実施例および比較例の銅合金材を作製し、以下の各種特性評価を行った。
After performing cold rolling at various rolling rates of 0 to 50% before aging treatment (without cold rolling when the rolling rate is 0%), 500 ° C in an inert gas atmosphere, 2 Time aging treatment was applied. A rolling rate of 0% means that no rolling is performed. Further, as the heat treatment, in place of the aging treatment, a heat treatment with two aging treatments was performed, or a heat treatment at 400 ° C. was performed for 4 hours in an inert gas atmosphere, and then for 2 hours at 500 ° C. Either heat treatment was performed, or heat treatment at 500 ° C. for 2 hours followed by heat treatment at 400 ° C. for 4 hours. Details of this will be described later.
Thereafter, finish rolling was performed at various rolling rates, and the final thickness was adjusted to 0.15 mm. After finish rolling, a low temperature annealing treatment was performed at 400 to 600 ° C. for 30 seconds to prepare copper alloy materials of Examples and Comparative Examples, and the following various characteristics were evaluated.

実施例および比較例で製造した各々の銅合金板について(a)平均結晶粒径、(b)無析出帯の幅、(c)粒界上の析出物の平均粒子径、(d)引張強度、(e)導電率、(f)曲げ加工性、(g)耐応力緩和特性、(h)疲労特性を調べた。   For each copper alloy plate produced in Examples and Comparative Examples, (a) average crystal grain size, (b) width of precipitation-free zone, (c) average particle size of precipitates on grain boundaries, (d) tensile strength , (E) conductivity, (f) bending workability, (g) stress relaxation resistance, and (h) fatigue characteristics were examined.

(a)の平均結晶粒径は、JISで規定する切断法(JIS H 0501)により結晶粒径を測定し、これを基に算出した。前記結晶粒径の測定断面は、最終冷間圧延方向と平行な断面にて測定した。前記銅合金板の結晶組織を走査型電子顕微鏡で1000倍に拡大して写真にとり、写真上に200mmの線分を引き、前記線分で切られる結晶粒数nを数え、〔200mm/(n×1000)〕の式から求めた。前記線分で切られる結晶粒数が20未満の場合は、500倍の写真にとり長さ200mmの線分で切られる結晶粒数nを数え、〔200mm/(n×500)〕の式から求めた。結晶粒径dは、断面A、Bで求めたそれぞれの長径と短径の4値の平均値を0.005mmの整数倍に丸めて示した。
(b)の無析出帯の幅は、銅合金板の粒界近傍を、ビームの入射方向を(100)面に合わせて透過電子顕微鏡写真を5万倍で2視野撮影し、1視野あたり5箇所のPFZ幅を測定し、合計10箇所の平均値を無析出帯の幅Wとし、10nmの整数倍に丸めて示した。
(c)の粒界上の化合物の粒子径は、銅合金板の粒界をビームの入射方向を(100)面に合わせて透過電子顕微鏡写真を5万倍で5視野撮影し、合計20個の化合物の粒子径について測定を行った。一つの化合物について長径と短径を測定して、平均をその化合物の粒子径とした。さらに20個の化合物の粒子径を平均し、その銅合金板の粒界上の化合物の平均粒子径Lとし、10nmの整数倍に丸めて示した。
The average crystal grain size of (a) was calculated based on the crystal grain size measured by the cutting method (JIS H 0501) defined by JIS. The measurement cross section of the crystal grain size was measured in a cross section parallel to the final cold rolling direction. The crystal structure of the copper alloy plate is magnified 1000 times with a scanning electron microscope to take a photograph, a 200 mm line segment is drawn on the photograph, the number n of crystal grains cut by the line segment is counted, and [200 mm / (n × 1000)]. When the number of crystal grains cut by the line segment is less than 20, the number n of crystal grains cut by the line segment having a length of 200 mm is counted in a 500 × photograph, and obtained from the formula [200 mm / (n × 500)]. It was. The crystal grain size d is shown by rounding the average of the four values of the major axis and the minor axis obtained in the cross sections A and B to an integer multiple of 0.005 mm.
The width of the precipitation-free zone in (b) was determined by taking two views of a transmission electron micrograph at a magnification of 50,000 times in the vicinity of the grain boundary of the copper alloy plate and aligning the incident direction of the beam with the (100) plane. The PFZ widths of the places were measured, and the average value of a total of 10 places was defined as the width W of the precipitation-free zone and rounded to an integer multiple of 10 nm.
The particle diameter of the compound on the grain boundary in (c) is a total of 20 grains of a copper alloy plate taken at five fields of view at 50,000 times with the incident direction of the beam aligned with the (100) plane. The particle size of the compound was measured. The major axis and minor axis of one compound were measured, and the average was taken as the particle diameter of the compound. Furthermore, the particle diameter of 20 compounds was averaged, and the average particle diameter L of the compound on the grain boundary of the copper alloy plate was rounded to an integer multiple of 10 nm.

(d)の引張強度は、JIS Z 2201記載の5号試験片を用い、JIS Z 2241に準拠して求めた。圧延方向に対して平行方向に対しての試験を行った。
(e)の導電率はJIS H 0505に準拠して求めた。
(f)曲げ加工性は、引張強度の水準を分けて評価した。引張強度が750MPa未満の銅合金については、内曲げ半径が0mmになる180°曲げを行い、曲げ部にクラックが生じないものは良好(○)、クラックが生じたものは不良(×)と判定した。引張強度が750MPa以上の銅合金については、内側曲げ半径が0.15mmとなる90゜曲げ治具を用い、曲げ半径(mm)/板厚(mm)の比率R/tが1.0となる90°W曲げ試験を行い、曲げ部にクラックが生じないものは良好(○)、クラックが生じたものは不良(×)と判定した。
(g)耐応力緩和特性は、日本伸銅協会技術標準(JBMA−T309)の片持ち式を採用し、表面最大応力が耐力の80%になるように負荷応力を設定して150℃の恒温槽に1000時間保持して応力緩和率を求めた。
(h)の疲労特性はJIS Z 2273に準拠し、両振り平面曲げの疲労試験を行い採取した。試験片は幅10mmの短冊形とし、圧延方向平行と試験片の長さ方向を一致させた。試験条件は、試験片の板厚t(mm)、試験片表面に付加する最大曲げ応力σB(MPa)、試験片に与える片振幅δ(mm)、合金のヤング率E(130GPa)、支点−応力作用点間距離l(mm)が、
l=√(3Etδ/(2σB))
の関係を満たすように試験片を設置して、最大曲げ応力σBを500(MPa)として行い、試料が破断したときの回数Nを測定した。試験、測定を4回行い前記回数Nの平均値を求め、各試験片の疲労寿命とした。
The tensile strength of (d) was determined according to JIS Z 2241 using a No. 5 test piece described in JIS Z 2201. A test was performed in a direction parallel to the rolling direction.
The electrical conductivity of (e) was determined according to JIS H 0505.
(F) Bending workability was evaluated by dividing the level of tensile strength. For copper alloys with a tensile strength of less than 750 MPa, perform 180 ° bending with an inner bending radius of 0 mm, and determine that no cracks occur in the bent part (good), and those with cracks are determined to be defective (x). did. For a copper alloy having a tensile strength of 750 MPa or more, a 90 ° bending jig with an inner bending radius of 0.15 mm is used, and the ratio R / t of bending radius (mm) / plate thickness (mm) is 1.0. A 90 ° W bending test was conducted, and a case where no crack occurred in the bent portion was judged as good (◯), and a case where a crack occurred was judged as poor (×).
(G) For the stress relaxation resistance, the Japan Copper and Brass Association Technical Standard (JBMA-T309) cantilever type is adopted, the load stress is set so that the maximum surface stress is 80% of the proof stress, and a constant temperature of 150 ° C. The stress relaxation rate was obtained by holding in a bath for 1000 hours.
The fatigue characteristics of (h) were collected in accordance with JIS Z 2273 by performing a double-bending plane bending fatigue test. The test piece was a strip with a width of 10 mm, and the parallel direction of the rolling and the length direction of the test piece were matched. The test conditions were the thickness t (mm) of the test piece, the maximum bending stress σB (MPa) applied to the surface of the test piece, the piece amplitude δ (mm) applied to the test piece, the Young's modulus E (130 GPa) of the alloy, the fulcrum − The distance l (mm) between stress points is
l = √ (3 Etδ / (2σB))
The test piece was installed so as to satisfy the above relationship, the maximum bending stress σB was set to 500 (MPa), and the number N of times when the sample broke was measured. The test and measurement were performed four times, the average value of the number N was determined, and the fatigue life of each test piece was determined.

評価結果を、表2に示す。ここで、実施例1−1〜1−6および比較例1−7〜1−10は合金No.1を、実施例2−1〜2−2は合金No.2を、上記した範囲内で異なる熱処理、圧延条件を施したものである。またNo.3〜18はそれぞれ、合金No.3〜18から作成されたものである。
以下、実施例1−1〜1−6および比較例1−7〜1−10の条件は、以下のとおりとした。なお、実施例1−2〜1−6および比較例1−7〜1−10に記載されていない条件は、実施例1−1と同様とした。
<実施例の工程>
実施例1−1:875℃で溶体化処理の後、冷間圧延を施さずに時効処理を500℃で2時間行い、5%の仕上げ圧延、低温焼鈍処理を続けて行った。
実施例1−2:実施例1−1の時効処理に代えて、400℃で4時間の処理の後に500℃で2時間の処理を行う2回の時効処理を施した。
実施例1−3:実施例1−1の時効処理に代えて、500℃で2時間の処理の後に400℃で4時間の処理を行う2回の時効処理を施した。
実施例1−4:溶体化処理を885℃で行った。
実施例1−5:溶体化処理後、時効処理前に5%の冷間圧延処理を施した。
実施例1−6:溶体化処理後、時効処理前に10%の冷間圧延処理を施した。
<比較例の工程>
比較例1−7:溶体化処理を950℃で行った。
比較例1−8:溶体化処理を800℃で行った。
比較例1−9:溶体化処理の昇温速度を小さくして処理温度800℃で行った。
比較例1−10:仕上げ圧延率を60%とした。
The evaluation results are shown in Table 2. Here, Examples 1-1 to 1-6 and Comparative Examples 1-7 to 1-10 are alloy nos. 1 and Examples 2-1 to 2-2 are alloy nos. 2 is subjected to different heat treatment and rolling conditions within the above-mentioned range. No. 3 to 18 are alloy nos. It was created from 3-18.
Hereinafter, the conditions of Examples 1-1 to 1-6 and Comparative Examples 1-7 to 1-10 were as follows. The conditions not described in Examples 1-2 to 1-6 and Comparative Examples 1-7 to 1-10 were the same as those in Example 1-1.
<Process of Example>
Example 1-1: After solution treatment at 875 ° C., aging treatment was performed at 500 ° C. for 2 hours without performing cold rolling, and 5% finish rolling and low-temperature annealing treatment were continuously performed.
Example 1-2: Instead of the aging treatment of Example 1-1, two aging treatments were performed in which treatment at 400 ° C. for 4 hours was followed by treatment at 500 ° C. for 2 hours.
Example 1-3: Instead of the aging treatment of Example 1-1, two aging treatments were performed in which treatment at 500 ° C. for 2 hours was followed by treatment at 400 ° C. for 4 hours.
Example 1-4: Solution treatment was performed at 885 ° C.
Example 1-5: After the solution treatment, 5% cold rolling treatment was performed before the aging treatment.
Example 1-6: A 10% cold rolling treatment was performed after the solution treatment and before the aging treatment.
<Process of Comparative Example>
Comparative Example 1-7: Solution treatment was performed at 950 ° C.
Comparative Example 1-8: Solution treatment was performed at 800 ° C.
Comparative Example 1-9: The solution heating treatment was performed at a treatment temperature of 800 ° C. with a lower temperature increase rate.
Comparative Example 1-10: The finish rolling rate was 60%.

実施例1−1〜1−6、2−1、2−2および3〜13は、いずれの銅合金材も高強度、良好な曲げ加工性、疲労特性に優れる。   In Examples 1-1 to 1-6, 2-1, 2-2, and 3 to 13, all of the copper alloy materials are excellent in high strength, good bending workability, and fatigue characteristics.

比較例1−7では結晶粒径dの値が大きすぎたため、曲げ加工性が劣化した。比較例1−8では無析出帯の幅Wの値が大きすぎたため、曲げ加工性および疲労特性が劣化した。比較例1−9では、粒界上の化合物の粒子径Lが大きすぎたため、曲げ加工性がおよび疲労特性が劣化した。比較例1−10では、引張強度が高すぎたため、曲げ加工性が劣化した。   In Comparative Example 1-7, since the value of the crystal grain size d was too large, bending workability was deteriorated. In Comparative Example 1-8, since the value of the width W of the precipitation-free zone was too large, bending workability and fatigue characteristics were deteriorated. In Comparative Example 1-9, since the particle diameter L of the compound on the grain boundary was too large, bending workability and fatigue characteristics deteriorated. In Comparative Example 1-10, since the tensile strength was too high, the bending workability deteriorated.

比較例14ではNi濃度およびSi濃度が低すぎたため、疲労寿命が短く、耐応力緩和特性にも劣った。比較例15ではMg濃度が高すぎたため、曲げ加工性が劣化した。比較例16および17では、MnおよびZn濃度が高すぎたため導電率が低下した。比較例18ではCo濃度が高すぎたため、曲げ加工性に劣り、疲労寿命も劣化した。   In Comparative Example 14, since the Ni concentration and the Si concentration were too low, the fatigue life was short and the stress relaxation resistance was inferior. In Comparative Example 15, since the Mg concentration was too high, bending workability deteriorated. In Comparative Examples 16 and 17, the conductivity decreased because the Mn and Zn concentrations were too high. In Comparative Example 18, since the Co concentration was too high, the bending workability was poor and the fatigue life was also deteriorated.

本発明の銅合金材は、電気・電子機器用のリードフレーム、コネクタ、端子材、リレー、スイッチなどの材料として好適に用いることができる。   The copper alloy material of the present invention can be suitably used as a material for lead frames, connectors, terminal materials, relays, switches and the like for electric and electronic devices.

本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。   While the invention has been described in conjunction with its embodiments, it is not intended that the invention be limited in any detail to the description unless otherwise specified, which is contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.

本願は、2008年2月18日に日本国で特許出願された特願2008−036694に基づく優先権を主張するものであり、ここに参照してその内容を本明細書の記載の一部として取り込む。   This application claims priority based on Japanese Patent Application No. 2008-036694 filed in Japan on February 18, 2008, the contents of which are hereby incorporated by reference. take in.

Claims (5)

Niを1.8〜5.0mass%、Siを0.3〜1.7mass%を含み、NiとSiの含有量の比Ni/Siが3.0〜6.0であり、Sの含有量が0.005mass%未満であり、残部がCuおよび不可避不純物からなる銅合金材であって、下記(1)〜(4)式を満足することを特徴とする銅合金材。
130×C+300≦TS≦130×C+650・・・(1)
0.001≦d≦0.020・・・(2)
W≦150・・・(3)
10≦L≦800・・・(4)
(式中、TSは銅合金材の圧延平行方向(LD)の引張強度(MPa)、Cは銅合金材のNi含有量(mass%)、dは銅合金材の平均結晶粒径(mm)、Wは無析出帯の幅(nm)、Lは結晶粒界上の化合物の平均粒子径(nm)を表す。)
Ni is included in 1.8 to 5.0 mass%, Si is included in 0.3 to 1.7 mass%, Ni / Si content ratio is 3.0 to 6.0, and S content Is a copper alloy material consisting of Cu and inevitable impurities, and satisfying the following formulas (1) to (4).
130 × C + 300 ≦ TS ≦ 130 × C + 650 (1)
0.001 ≦ d ≦ 0.020 (2)
W ≦ 150 (3)
10 ≦ L ≦ 800 (4)
(Where TS is the tensile strength (MPa) of the copper alloy material in the rolling parallel direction (LD), C is the Ni content (mass%) of the copper alloy material, and d is the average crystal grain size (mm) of the copper alloy material. W represents the width (nm) of the precipitation-free zone, and L represents the average particle size (nm) of the compound on the grain boundary.)
さらにMgを0.01〜0.20mass%含有することを特徴とする請求項1に記載の銅合金材。   Furthermore, Mg contains 0.01-0.20 mass%, The copper alloy material of Claim 1 characterized by the above-mentioned. さらにSnを0.05〜1.5mass%含有することを特徴とする請求項1又は2に記載の銅合金材。   Furthermore, 0.05-1.5 mass% of Sn is contained, The copper alloy material of Claim 1 or 2 characterized by the above-mentioned. さらにZnを0.2〜1.5mass%含有することを特徴とする請求項1〜3のいずれか1項に記載の銅合金材。   Furthermore, 0.2-1.5 mass% of Zn is contained, The copper alloy material of any one of Claims 1-3 characterized by the above-mentioned. さらに以下の(I)〜(IV)のうち1種または2種以上を合計で0.005〜2.0mass%含有することを特徴とする請求項1〜4のいずれか1項に記載の銅合金材。
(I)Sc、Y、Ti、Zr、Hf、V、Mo、およびAgからなる群から選ばれる1種または2種以上を0.005〜0.3mass%
(II)Mnを0.01〜0.5mass%
(III)Coを0.05〜2.0mass%
(IV)Crを0.005〜1.0mass%
The copper according to any one of claims 1 to 4, further comprising 0.005 to 2.0 mass% of one or more of the following (I) to (IV): Alloy material.
(I) 0.005-0.3 mass% of one or more selected from the group consisting of Sc, Y, Ti, Zr, Hf, V, Mo, and Ag
(II) Mn is 0.01 to 0.5 mass%.
(III) Co is 0.05 to 2.0 mass%.
(IV) 0.005 to 1.0 mass% of Cr
JP2009554332A 2008-02-18 2009-02-17 Copper alloy material Pending JPWO2009104615A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008036694 2008-02-18
JP2008036694 2008-02-18
PCT/JP2009/052718 WO2009104615A1 (en) 2008-02-18 2009-02-17 Copper alloy material

Publications (1)

Publication Number Publication Date
JPWO2009104615A1 true JPWO2009104615A1 (en) 2011-06-23

Family

ID=40985494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009554332A Pending JPWO2009104615A1 (en) 2008-02-18 2009-02-17 Copper alloy material

Country Status (5)

Country Link
US (2) US20100310413A1 (en)
EP (1) EP2256219A4 (en)
JP (1) JPWO2009104615A1 (en)
CN (1) CN101946014A (en)
WO (1) WO2009104615A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9005521B2 (en) * 2010-04-02 2015-04-14 Jx Nippon Mining & Metals Corporation Cu—Ni—Si alloy for electronic material
WO2011125264A1 (en) * 2010-04-07 2011-10-13 古河電気工業株式会社 Wrought copper alloy, copper alloy part, and process for producing wrought copper alloy
EP2592164B1 (en) * 2010-07-07 2016-07-06 Mitsubishi Shindoh Co., Ltd. Cu-ni-si copper alloy plate with excellent deep-draw characteristics and production method thereof
JP5773929B2 (en) * 2012-03-28 2015-09-02 株式会社神戸製鋼所 Copper alloy sheet for electrical and electronic parts with excellent bending workability and stress relaxation resistance
CN102703754B (en) * 2012-06-05 2014-03-26 太原理工大学 Cu-Ni-Si-based alloy and preparation method thereof
JP5874827B2 (en) * 2012-06-19 2016-03-02 株式会社村田製作所 Joining material
CN102925746B (en) * 2012-11-29 2014-09-17 宁波兴业鑫泰新型电子材料有限公司 High-performance Cu-Ni-Si system copper alloy, and preparation method and processing method thereof
KR101910702B1 (en) * 2013-03-29 2018-10-22 후루카와 덴키 고교 가부시키가이샤 Aluminum alloy wire rod, aluminum alloy twisted wire, coated electric wire, wire harness, and production method for aluminum alloy wire rod
CN103740975A (en) * 2013-12-23 2014-04-23 烟台万隆真空冶金股份有限公司 Copper-nickel-silicon alloy and preparation method thereof
CN103695704A (en) * 2013-12-26 2014-04-02 青岛友铭辰生物技术有限公司 Anti-fatigue copper alloy material for electric and electronic equipment and preparation method of anti-fatigue copper alloy
CN103757479B (en) * 2014-01-10 2016-01-20 滁州学院 A kind of Lead-free environment-friendlycopper-nickel-zinc copper-nickel-zinc alloy material and preparation method thereof
JP6210563B2 (en) * 2015-04-10 2017-10-11 古河電気工業株式会社 Copper alloy wire for spring, method for producing copper alloy wire for spring, spring, and method for producing spring
CN105695797A (en) * 2016-04-20 2016-06-22 苏州市相城区明达复合材料厂 Bronze alloy for casting parts
CN106282657A (en) * 2016-08-31 2017-01-04 裴秀琴 A kind of copper alloy new material
CN107012357B (en) * 2017-03-22 2018-11-06 合肥达户电线电缆科技有限公司 A kind of copper alloy wire and preparation method thereof
RU2691823C1 (en) * 2018-05-14 2019-06-18 Федеральное государственное бюджетное образовательное учреждение высшего образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") METHOD OF THERMAL TREATMENT OF BILLET OR ARTICLE (SPRINGS) FROM BRONZE BrNCS 2,5-0,7-0,6
JP6629401B1 (en) * 2018-08-30 2020-01-15 Jx金属株式会社 Titanium copper plate before aging treatment, pressed product and method for producing pressed product
JP2021098887A (en) * 2019-12-20 2021-07-01 Jx金属株式会社 Metal powder for lamination molding, and lamination molding made using the metal powder
JP7525322B2 (en) 2020-07-29 2024-07-30 Dowaメタルテック株式会社 Cu-Ni-Co-Si copper alloy sheet material, its manufacturing method and conductive spring member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266042A (en) * 2001-03-09 2002-09-18 Kobe Steel Ltd Copper alloy sheet having excellent bending workability
JP2006009137A (en) * 2004-05-27 2006-01-12 Furukawa Electric Co Ltd:The Copper alloy
JP2006233314A (en) * 2005-02-28 2006-09-07 Dowa Mining Co Ltd High-strength copper alloy
JP2008024999A (en) * 2006-07-24 2008-02-07 Dowa Holdings Co Ltd Cu-Ni-Si TYPE COPPER ALLOY SHEET WITH EXCELLENT PROOF STRESS AND BENDABILITY
JP2008075172A (en) * 2006-09-25 2008-04-03 Nikko Kinzoku Kk Cu-Ni-Si-BASED ALLOY

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3520034B2 (en) 2000-07-25 2004-04-19 古河電気工業株式会社 Copper alloy materials for electronic and electrical equipment parts
JP2004307905A (en) * 2003-04-03 2004-11-04 Sumitomo Metal Ind Ltd Cu ALLOY, AND ITS PRODUCTION METHOD
JP4679040B2 (en) * 2003-05-30 2011-04-27 日鉱金属株式会社 Copper alloy for electronic materials
JP4255330B2 (en) 2003-07-31 2009-04-15 日鉱金属株式会社 Cu-Ni-Si alloy member with excellent fatigue characteristics
WO2006093140A1 (en) * 2005-02-28 2006-09-08 The Furukawa Electric Co., Ltd. Copper alloy
JP2007169764A (en) * 2005-12-26 2007-07-05 Furukawa Electric Co Ltd:The Copper alloy
JP2006200042A (en) * 2006-03-23 2006-08-03 Kobe Steel Ltd Electronic component composed of copper alloy sheet having excellent bending workability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266042A (en) * 2001-03-09 2002-09-18 Kobe Steel Ltd Copper alloy sheet having excellent bending workability
JP2006009137A (en) * 2004-05-27 2006-01-12 Furukawa Electric Co Ltd:The Copper alloy
JP2006233314A (en) * 2005-02-28 2006-09-07 Dowa Mining Co Ltd High-strength copper alloy
JP2008024999A (en) * 2006-07-24 2008-02-07 Dowa Holdings Co Ltd Cu-Ni-Si TYPE COPPER ALLOY SHEET WITH EXCELLENT PROOF STRESS AND BENDABILITY
JP2008075172A (en) * 2006-09-25 2008-04-03 Nikko Kinzoku Kk Cu-Ni-Si-BASED ALLOY

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6009022565; 渡邊千尋他: 'Cu-4.0mass%Ni-0.95mass%Si-0.02mass%P合金の機械的特性の改善' 銅と銅合金 第45巻, 20060801, 第16頁-第22頁 *

Also Published As

Publication number Publication date
US20110259480A1 (en) 2011-10-27
CN101946014A (en) 2011-01-12
EP2256219A1 (en) 2010-12-01
US20100310413A1 (en) 2010-12-09
EP2256219A4 (en) 2012-06-27
WO2009104615A1 (en) 2009-08-27

Similar Documents

Publication Publication Date Title
WO2009104615A1 (en) Copper alloy material
JP4851596B2 (en) Method for producing copper alloy material
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP6052829B2 (en) Copper alloy material for electrical and electronic parts
JP4913902B2 (en) Method for producing copper alloy material for electric / electronic parts
JP5153949B1 (en) Cu-Zn-Sn-Ni-P alloy
JP5619389B2 (en) Copper alloy material
CN107208191B (en) Copper alloy material and method for producing same
JP6053959B2 (en) Copper alloy sheet, method for producing the same, and electric / electronic component comprising the copper alloy sheet
JP5261161B2 (en) Ni-Si-Co-based copper alloy and method for producing the same
KR101917416B1 (en) Copper-cobalt-silicon alloy for electrode material
JPWO2011036804A1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JPWO2010016428A1 (en) Copper alloy material for electrical and electronic parts
US20110038753A1 (en) Copper alloy sheet material
JP5468798B2 (en) Copper alloy sheet
JPWO2009116649A1 (en) Copper alloy material for electrical and electronic parts
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP4708497B1 (en) Cu-Co-Si alloy plate and method for producing the same
JP2010100890A (en) Copper alloy strip for connector
JP2015143387A (en) Copper alloy for electronic and electrical equipment, copper alloy thin film for electronic and electrical equipment, conductive part for electronic and electrical equipment and terminal
JP2011017073A (en) Copper alloy material
JP2013067848A (en) Cu-Co-Si-BASED COPPER ALLOY STRIP AND METHOD FOR PRODUCING THE SAME
JP2011046970A (en) Copper alloy material and method for producing the same
JP2007291516A (en) Copper alloy and its production method
JP5595961B2 (en) Cu-Ni-Si based copper alloy for electronic materials and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131001