[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2009028393A1 - Fluorescent color developing polyvinyl alcohol-based resin molding and method for producing the same - Google Patents

Fluorescent color developing polyvinyl alcohol-based resin molding and method for producing the same Download PDF

Info

Publication number
JPWO2009028393A1
JPWO2009028393A1 JP2009530071A JP2009530071A JPWO2009028393A1 JP WO2009028393 A1 JPWO2009028393 A1 JP WO2009028393A1 JP 2009530071 A JP2009530071 A JP 2009530071A JP 2009530071 A JP2009530071 A JP 2009530071A JP WO2009028393 A1 JPWO2009028393 A1 JP WO2009028393A1
Authority
JP
Japan
Prior art keywords
liquid
ion
pva
fine particles
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009530071A
Other languages
Japanese (ja)
Inventor
靖 森原
靖 森原
信幸 佐野
信幸 佐野
諭喜 宮津
諭喜 宮津
遠藤 了慶
了慶 遠藤
原 哲也
哲也 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Publication of JPWO2009028393A1 publication Critical patent/JPWO2009028393A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/08Processes in which the treating agent is applied in powder or granular form
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/02Chemical treatment or coating of shaped articles made of macromolecular substances with solvents, e.g. swelling agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Luminescent Compositions (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

紫外線の照射下に350〜700nm波長域の蛍光を発する平均粒径50nm以下の蛍光体微粒子を0.5質量%以上含有するPVA成形体、及び当該成形体を、(i)PVA成形体を紫外線照射下で前記波長域に蛍光を発する金属化合物(F)を形成する金属イオン(A)を含むか又は金属イオン(A)と賦活剤イオン(C)を含む液に浸漬し;次いで(ii)金属イオン(A)と反応して紫外線の照射下に前記波長域に蛍光を発する金属化合物(F)を形成するイオン(B)含む液に浸漬して、PVA成形体内に前記波長域に蛍光を発する金属化合物(F)よりなる平均粒径が50nm以下の蛍光体微粒子を生成させた後、更に(iii)当該PVA成形体を、金属イオン(A)とイオン(B)を含む液又は金属イオン(A)とイオン(B)と賦活剤イオン(C)に浸漬して熟成処理して製造する方法により、可視光下ではその存在が視認されず、紫外線照射下に強い蛍光を発するnmサイズの蛍光体微粒子を含有するPVA系樹脂成形体を製造する。A PVA molded article containing 0.5% by mass or more of phosphor fine particles having an average particle diameter of 50 nm or less that emits fluorescence in the wavelength range of 350 to 700 nm under ultraviolet irradiation, and (i) the PVA molded article under ultraviolet irradiation The metal ion (A) that forms the metal compound (F) that fluoresces in the wavelength range, or is immersed in a liquid containing the metal ion (A) and the activator ion (C); and (ii) the metal ion A metal that emits fluorescence in the wavelength range in a PVA molded body by immersing in a solution containing ions (B) that react with (A) to form a metal compound (F) that emits fluorescence in the wavelength range under ultraviolet irradiation. After producing phosphor fine particles having an average particle diameter of 50 nm or less made of the compound (F), (iii) the PVA compact is further transformed into a liquid containing metal ions (A) and ions (B) or metal ions (A ), Ions (B), and activator ions (C), so that they exist under visible light. Not certified, to produce a PVA-based resin molded article containing the fluorescent fine particles of nm size emits strong fluorescence under ultraviolet irradiation.

Description

本発明は、超微粒子状の蛍光体微粒子を成形体内に含有する蛍光発色性ポリビニルアルコール系樹脂成形体および当該成形体を円滑に製造する方法に関する。より詳細には、本発明は、可視光下においては蛍光体微粒子の存在が視認されず、紫外線照射下においては鮮明な蛍光を発すると共に高い紫外線吸収性能を有し、しかも酸素をはじめとする気体の表面吸着により蛍光発色性に変化を生じる超微粒子状の蛍光体微粒子を内部に分散含有する蛍光発色性ポリビニルアルコール系樹脂成形体およびその製造方法に関する。本発明の蛍光発色性ポリビニルアルコール系樹脂成形体は、前記した特性を活かして、紙幣、証券、機密文書、IDカード、商品タグなどにおける偽造防止、壁紙、カーペット、衣類、ガラス中間膜やガラス貼着膜用フィルムなどの紫外線遮蔽と装飾を兼ね備える材料、気体の表面吸着を利用したセンシング材料などの用途に有効に使用することができる。   The present invention relates to a fluorescent color-developing polyvinyl alcohol-based resin molded body containing ultrafine phosphor particles in a molded body and a method for smoothly producing the molded body. More specifically, the present invention does not visually recognize the presence of phosphor fine particles under visible light, emits clear fluorescence under ultraviolet irradiation, has high ultraviolet absorption performance, and is a gas such as oxygen. The present invention relates to a fluorescent color-forming polyvinyl alcohol-based resin molding in which ultrafine particles of fluorescent particles that change in fluorescence coloring property due to surface adsorption of the particles are dispersed therein and a method for producing the same. The fluorescent coloring polyvinyl alcohol-based resin molded article of the present invention makes use of the above-described properties to prevent counterfeiting in banknotes, securities, confidential documents, ID cards, product tags, etc., wallpaper, carpets, clothing, glass interlayers and glass pasting. It can be effectively used for applications such as a film that combines ultraviolet shielding and decoration, such as a film for film deposition, and a sensing material that utilizes gas surface adsorption.

紫外線の照射により蛍光を発する蛍光体は、従来から偽造防止対策や装飾材料などに用いられている。紫外線の照射により蛍光を発する蛍光体は、太陽光下や通常の照明器具を設置した室内などのような可視光線の照射下では発光は視認されないが、暗所で紫外線を照射すると蛍光を発するため、紫外線を照射して文字、図形、模様、形状などを浮き出させて視認することができる。
蛍光体を用いた装飾用または偽造防止用の合成樹脂成形体としては、紫外線の照射下において蛍光を発する蛍光体粒子を表面に付着させた合成繊維、紫外線の照射下で蛍光を発する蛍光体粒子を添加した樹脂組成物や樹脂溶液を用いて溶融紡糸、湿式紡糸、乾式紡糸などを行って製造した蛍光体含有合成繊維、当該合成繊維を用いて形成した布帛や紙などが知られている(特許文献1〜4を参照)。
Fluorescent substances that emit fluorescence when irradiated with ultraviolet rays have been used for anti-counterfeiting measures and decorative materials. Phosphors that emit fluorescence when irradiated with ultraviolet light do not emit light when exposed to visible light, such as indoors where sunlight or ordinary lighting equipment is installed, but fluoresce when irradiated with ultraviolet light in the dark. By irradiating ultraviolet rays, characters, figures, patterns, shapes, etc. can be raised and visually recognized.
Synthetic resin moldings for decoration or anti-counterfeiting using phosphors include synthetic fibers in which phosphor particles that emit fluorescence under ultraviolet irradiation are attached to the surface, phosphor particles that emit fluorescence under ultraviolet irradiation Known are phosphor-containing synthetic fibers produced by melt spinning, wet spinning, dry spinning, etc. using a resin composition or resin solution to which is added, and fabrics and papers formed using the synthetic fibers ( (See Patent Documents 1 to 4).

しかしながら、蛍光体粒子を表面に付着した繊維は、一般にミクロンオーダーの粒径の大きな蛍光体粒子が繊維表面に凹凸状に付着しているため、風合や触感が不良になり易く、しかも繊維表面に付着した蛍光体粒子が摩擦や屈曲などの外部応力によって繊維表面から簡単に脱落し易い。
また、蛍光体粒子を添加した樹脂組成物や樹脂溶液を用いて溶融紡糸、湿式紡糸、乾式紡糸などによって紡糸する場合は、蛍光体粒子が通常ミクロンオーダーの大きな粒径を有しているため、紡糸時に紡糸装置のフィルタや紡糸ノズルの目詰まり、それらに伴う紡糸工程中での断糸などが生じ易く、繊維製造時の工程通過性が不良になり易い。
However, the fibers with phosphor particles attached to the surface generally have unevenness on the fiber surface because the phosphor particles with a large particle size of micron order are attached to the fiber surface, and the fiber surface is liable to be poor. The phosphor particles adhering to the fiber easily fall off from the fiber surface due to external stress such as friction and bending.
In addition, when spinning by melt spinning, wet spinning, dry spinning, etc. using a resin composition or resin solution to which phosphor particles are added, the phosphor particles usually have a large particle size on the order of microns, During spinning, the filter and spinning nozzle of the spinning device are clogged, and the resulting yarn breakage during the spinning process is likely to occur, and the process passability during fiber production tends to be poor.

その上、前記した従来技術では、前述のようにいずれもミクロンオーダーの蛍光体粒子が用いられているため、繊維表面に付着させたり繊維中に含有させたりした蛍光体粒子によって、波長の長い可視光線の回折や散乱が生じて、可視光線下でも蛍光体粒子の存在が視認されてしまい、偽造防止などの用途には適さないものになりがちである。
繊維やその他の合成樹脂成形体中に含有させる蛍光体粒子の粒子サイズを可視光線の波長の1/10以下のサイズである50nm以下の蛍光体微粒子にすることができれば、蛍光体微粒子による可視光線の回折や散乱が著しく低減するため、成形体中に含有させた蛍光体微粒子の存在が可視光線下で視認されてしまうという問題を防止することができる。
しかしながら、蛍光体粒子を、ナノメートルオーダーの粒子サイズ、特に50nm以下の粒子サイズで、しかも紫外線を照射した際に明確に且つ容易に視認できる強い蛍光を発するような高濃度で成形体中に存在させた合成樹脂成形体およびその製造方法は従来知らていなかった。
In addition, in the above-described conventional techniques, as described above, phosphor particles of the micron order are used, and therefore, visible particles having a long wavelength are formed by the phosphor particles attached to the fiber surface or contained in the fiber. Light diffraction or scattering occurs, and the presence of phosphor particles is visually recognized even under visible light, which tends to be unsuitable for applications such as forgery prevention.
If the particle size of the phosphor particles to be contained in the fiber or other synthetic resin molding can be reduced to phosphor particles of 50 nm or less, which is 1/10 or less of the wavelength of visible light, visible light from the phosphor particles. Therefore, the problem that the presence of phosphor fine particles contained in the molded body is visually recognized under visible light can be prevented.
However, the phosphor particles are present in the compact at a nanometer order particle size, especially a particle size of 50 nm or less, and at a high concentration that emits strong fluorescence that is clearly and easily visible when irradiated with ultraviolet rays. The synthetic resin molded body made and the manufacturing method thereof have not been known so far.

特開平9−67764号公報Japanese Patent Laid-Open No. 9-67674 特開平11−93096号公報JP 11-93096 A 特開平6−128807号公報JP-A-6-128807 特開2000−290831号公報JP 2000-290831 A 「J.Am.Chem.Soc.,」1986年,Vol.8,p3358−3361“J. Am. Chem. Soc.”, 1986, Vol. 8, p3358-3361 「色材」、1958年、Vol.31、P85“Coloring Materials”, 1958, Vol. 31, P85 「Science」,2000年,Vol.290.,p314−317“Science”, 2000, Vol. 290. , P314-317

本発明の目的は、可視光下においては蛍光体微粒子の存在が視認されず、一方紫外線を照射した際に明確に且つ容易に視認できる強い蛍光を発する平均粒径が50nm以下の粒子サイズの蛍光体微粒子が、合成樹脂成形体内で分散された状態で含有されている蛍光発色性合成樹脂成形体を提供することである。
さらに、本発明は、可視光線の透過率が高くて透明性に優れ、一方紫外線の透過率が低くて紫外線の遮蔽効果に優れる、平均粒径が50nm以下の粒子サイズの蛍光体微粒子を含有する蛍光発色性合成樹脂成形体を提供することである。
そして、本発明の他の目的は、前記した蛍光発色性合成樹脂成形体を円滑に簡単に製造する方法を提供することである。
The object of the present invention is to make fluorescent particles having an average particle diameter of 50 nm or less that emits strong fluorescence that is clearly and easily visible when irradiated with ultraviolet rays, while the presence of fluorescent fine particles is not visible under visible light. An object of the present invention is to provide a fluorescent color-forming synthetic resin molded body in which body fine particles are contained in a dispersed state in a synthetic resin molded body.
Furthermore, the present invention contains phosphor fine particles having a particle size of 50 nm or less in average particle size with high visible light transmittance and excellent transparency, while having low ultraviolet light transmittance and excellent ultraviolet shielding effect. The object is to provide a fluorescent coloring synthetic resin molding.
Another object of the present invention is to provide a method for smoothly and easily producing the fluorescent color-forming synthetic resin molding described above.

本発明者らは前記した目的を達成するために鋭意検討を続けてきた。その結果、合成樹脂として特にポリビニルアルコール系樹脂を用い、ポリビニルアルコール系樹脂から予めフィルム、繊維、その他の成形体を製造しておいて、当該ポリビニルアルコール系樹脂成形体を、蛍光を発する金属化合物を形成する金属イオンを含む液に浸漬するか、または前記金属イオンと賦活剤イオンを含む液に浸漬した後、前記金属イオンと反応して紫外線の照射下において蛍光を発する金属化合物を形成するイオンを含む液に浸漬すると、ポリビニルアルコール系樹脂成形体内に、紫外線の照射下において蛍光を発する金属化合物よりなる蛍光体微粒子を平均粒径50nm以下の超微粒子状で形成させ、分散させ得ることを見出した。   The inventors of the present invention have continually studied to achieve the above-described object. As a result, a polyvinyl alcohol resin is used as a synthetic resin, and a film, fiber, or other molded body is produced in advance from the polyvinyl alcohol resin, and the polyvinyl alcohol resin molded body is converted into a fluorescent metal compound. After immersing in a liquid containing metal ions to be formed, or after immersing in a liquid containing metal ions and activator ions, ions that react with the metal ions to form a metal compound that emits fluorescence under ultraviolet irradiation. It has been found that, when immersed in a liquid containing, phosphor fine particles made of a metal compound that emits fluorescence under irradiation of ultraviolet rays can be formed and dispersed in ultrafine particles having an average particle size of 50 nm or less in a polyvinyl alcohol-based resin molded body. .

そして、平均粒径50nm以下の蛍光体微粒子が内部に形成された当該ポリビニルアルコール系樹脂成形体を、蛍光を発する金属化合物を形成する前記金属イオンとそれと反応して蛍光を発する金属化合物を形成する前記イオンを含む液に浸漬して熟成処理するか、または蛍光を発する金属化合物を形成する前記金属イオンとそれと反応して蛍光を発する金属化合物を形成する前記イオンと賦活剤イオンを含む液に浸漬して熟成処理すると、前記金属化合物よりなる平均粒径が50nm以下の蛍光体微粒子の結晶性が向上すると共に成形体内での濃度が増加して蛍光発光強度が増し、それによって強い蛍光を発する蛍光発色性ポリビニルアルコール系樹脂成形体が得られることを見出した。
さらに、本発明者らは、上記した方法による場合は、平均粒径が30nm以下、更には20nm以下の蛍光体微粒子が合成樹脂成形体内で分散された状態で含有されている蛍光発色性ポリビニルアルコール系樹脂成形体をも円滑に形成できることを見出した。
And the said polyvinyl-alcohol-type resin molding in which the fluorescent substance fine particle with an average particle diameter of 50 nm or less was formed inside reacts with the said metal ion which forms the metal compound which emits fluorescence, and forms a metal compound which emits fluorescence Immersion treatment by immersion in a liquid containing the ions, or immersion in a liquid containing the ions and activator ions that react with the metal ions to form a metal compound that emits fluorescence and forms a metal compound that emits fluorescence When the aging treatment is performed, the crystallinity of the phosphor fine particles having an average particle diameter of 50 nm or less made of the metal compound is improved, and the concentration in the molded body is increased to increase the fluorescence emission intensity, thereby the fluorescence emitting strong fluorescence. It has been found that a chromogenic polyvinyl alcohol-based resin molding can be obtained.
Furthermore, when the above-described method is used, the present inventors have prepared a fluorescent coloring polyvinyl alcohol containing phosphor fine particles having an average particle size of 30 nm or less, further 20 nm or less dispersed in a synthetic resin molded body. It has been found that a resin-based molded product can be formed smoothly.

一般に、ポリビニルアルコール系重合体は、その水酸基を介して遷移金属イオンとコンプレックスを形成することが知られている(例えば非特許文献1を参照)。本発明者らは、ポリビニルアルコール系重合体に独自なこの挙動に着目して、蛍光体微粒子をポリビニルアルコール系重合体よりなる成形体の内部に微細に分散させることを試みて、平均粒径が50nm以下の蛍光体微粒子が当該成形体内に微細に分散された状態で含有されている蛍光発色性成形体を得ることができたのである。すなわち、ポリビニルアルコール系重合体よりなる成形体を、蛍光を発する金属化合物を形成する金属イオンを含む液または当該金属イオンと賦活剤イオンを含む液に最初に浸漬して、当該成形体内に、大きさが数オングストロームである、ポリビニルアルコール系重合体分子鎖と金属イオンとからなる配位結合ブロック(錯体ブロック)を形成させるか、またはポリビニルアルコール系重合体分子鎖と金属イオンと賦活剤イオンとから配位結合ブロック(錯体ブロック)を形成させ、次にそれを前記金属イオンと反応して蛍光発色性金属化合物を形成するイオン(硫黄イオンや硫化物イオンなど)を含む液に浸漬することで、数オングストロームサイズの前記配位結合ブロック部分に、蛍光発色性金属化合物よりなる超微細な蛍光体微粒子を形成させることによって、平均粒径が50nm以下であるナノサイズの微細な蛍光体微粒子が、粒子間の凝集などを生ずることなく成形体の内部に分散したポリビニルアルコール重合体の成形体を得ることができた。そして、そのようにして得られた成形体を、更に前記金属イオンと、それと反応して蛍光発色性金属化合物を形成するイオンを含み、場合により更に賦活剤イオンを含む液に浸漬して熟成処理することにより、蛍光体微粒子が発する蛍光の強度が大きくなることを見出した。   In general, it is known that a polyvinyl alcohol-based polymer forms a complex with a transition metal ion via its hydroxyl group (see, for example, Non-Patent Document 1). The present inventors paid attention to this behavior unique to polyvinyl alcohol-based polymers, tried to finely disperse phosphor fine particles inside a molded body made of polyvinyl alcohol-based polymer, and had an average particle size of Thus, a fluorescent color-forming molded article containing phosphor fine particles of 50 nm or less in a finely dispersed state in the molded article could be obtained. That is, a molded body made of a polyvinyl alcohol-based polymer is first immersed in a liquid containing a metal ion that forms a fluorescent metal compound or a liquid containing the metal ion and an activator ion. A coordination bond block (complex block) consisting of a polyvinyl alcohol polymer molecular chain and a metal ion having a length of several angstroms is formed, or from a polyvinyl alcohol polymer molecular chain, a metal ion and an activator ion. By forming a coordination bond block (complex block), and then immersing it in a liquid containing ions (sulfur ions, sulfide ions, etc.) that react with the metal ions to form a fluorescent coloring metal compound, Ultrafine phosphor particles made of a fluorescent coloring metal compound in the coordination bond block portion of several angstrom size By forming, a molded article of polyvinyl alcohol polymer in which nano-sized fine phosphor particles having an average particle diameter of 50 nm or less are dispersed inside the molded article without causing aggregation between the particles can be obtained. did it. The molded body thus obtained is further aged by immersing it in a liquid containing the metal ions and ions that react with the metal ions to form a fluorescent color-forming metal compound, and optionally further containing activator ions. By doing so, it was found that the intensity of the fluorescence emitted by the phosphor fine particles is increased.

また、本発明者らは、当該蛍光体微粒子を形成する金属化合物としては、紫外線の照射下において350〜700nmの波長範囲に1つ以上の発光ピークを有する蛍光を発する金属化合物を用いることが、紫外線を照射したときにのみ目視などによって容易に視認できる蛍光を発する点から望ましいこと、当該金属化合物としては、周期表の12族の金属のイオンと周期表の16族の元素のイオンとの反応によって形成される金属化合物が好ましく、そのためポリビニルアルコール系樹脂成形体を浸漬するための液としては、12族の金属のイオンを含有する液または12族の金属のイオンと賦活剤イオンを含有する液と、16族の元素を含むイオンを含有する液を用いて逐次に浸漬処理してポリビニルアルコール系樹脂成形体内に平均粒径50nm以下の蛍光体微粒子を形成させ、次いでそれを12族の金属のイオンと16族の元素を含むイオンを含有する液で熟成処理するかまたは12族の金属のイオンと賦活剤イオンと16族の元素を含むイオンを含有する液で熟成処理するのが好ましいことを見出した。   In addition, the present inventors use a metal compound that emits fluorescence having one or more emission peaks in a wavelength range of 350 to 700 nm under ultraviolet irradiation as the metal compound that forms the phosphor fine particles. It is desirable from the point of emitting fluorescence that can be easily visually recognized only when irradiated with ultraviolet rays, and as the metal compound, a reaction between a group 12 metal ion of the periodic table and a group 16 element ion of the periodic table As a liquid for immersing the polyvinyl alcohol-based resin molded article, a liquid containing group 12 metal ions or a liquid containing group 12 metal ions and activator ions is preferable. And an average particle size in the polyvinyl alcohol-based resin molded body by successive immersion treatment using a liquid containing an ion containing a group 16 element. Phosphor fine particles having a thickness of 0 nm or less are formed, and then ripened with a solution containing a group 12 metal ion and an ion containing a group 16 element, or a group 12 metal ion, an activator ion, and a group 16 It has been found that it is preferable to perform aging treatment with a liquid containing ions containing these elements.

さらに、本発明者らは、前記熟成処理は温度30〜90℃で30分以上行うことが、強い蛍光を発する蛍光発色性ポリビニルアルコール系樹脂成形体を得る上で好ましいこと、または前記浸漬処理および熟成処理に用いる液中の金属イオン生成化合物、金属イオンと反応して紫外線の照射下で蛍光を発する金属化合物を形成するイオン生成化合物、および賦活剤イオン生成化合物の濃度を所定の範囲にすることが、ポリビニルアルコール系樹脂成形体内に形成される蛍光体微粒子の粒径の調整、蛍光体微粒子の濃度の調整などの点から好ましいことを見出し、それらの知見に基づいて本発明を完成した。   Furthermore, the inventors of the present invention preferably perform the aging treatment at a temperature of 30 to 90 ° C. for 30 minutes or more in order to obtain a fluorescent coloring polyvinyl alcohol resin molded product that emits strong fluorescence, or the immersion treatment and The concentration of the metal ion generating compound in the liquid used for the aging treatment, the ion generating compound that reacts with the metal ion to form a metal compound that emits fluorescence under ultraviolet irradiation, and the concentration of the activator ion generating compound is within a predetermined range. Has been found to be preferable from the viewpoints of adjusting the particle diameter of the phosphor fine particles formed in the polyvinyl alcohol-based resin molded body and adjusting the concentration of the phosphor fine particles, and the present invention has been completed based on these findings.

すなわち、本発明は、
(1) ポリビニルアルコール系樹脂成形体内に、紫外線の照射下において350〜700nmの波長域に蛍光を発する平均粒径が50nm以下の蛍光体微粒子が、ポリビニルアルコール系樹脂成形体を構成するポリビニルアルコール系重合体の質量に基づいて0.5質量%以上の割合で分散された状態で含有されていることを特徴とする蛍光発色性ポリビニルアルコール系樹脂成形体である。
さらに、
(2) 蛍光体微粒子の平均粒径が30nm以下である前記(1)の蛍光発色性ポリビニルアルコール系樹脂成形体であり;
That is, the present invention
(1) A polyvinyl alcohol resin in which a polyvinyl fine particle having a mean particle diameter of 50 nm or less that emits fluorescence in a wavelength range of 350 to 700 nm under irradiation of ultraviolet rays is formed in a polyvinyl alcohol resin molded body. It is a fluorescent color-forming polyvinyl alcohol-based resin molded article that is contained in a state of being dispersed in a proportion of 0.5% by mass or more based on the mass of the polymer.
further,
(2) The fluorescent color-forming polyvinyl alcohol-based resin molded article according to (1), wherein the average particle diameter of the phosphor fine particles is 30 nm or less;

(3) 蛍光体微粒子が、賦活剤がドープされまたはドープされていない、周期表の12族の金属に16族の元素が結合した金属化合物(F)よりなる蛍光体微粒子である前記(1)または(2)の蛍光発色性ポリビニルアルコール系樹脂成形体であり;
(4) 蛍光体微粒子が、賦活剤がドープされた、周期表の12族の金属に16族の元素が結合した金属化合物(F)よりなる蛍光体微粒子であって、賦活剤の量が、賦活剤をドープする前の前記周期表の12族の金属元素1モルに対して0.001モル以上である前記(1)〜(3)のいずれかの蛍光発色性ポリビニルアルコール系樹脂成形体であり;
(5) 蛍光体微粒子が、賦活剤がドープされまたはドープされていない硫化亜鉛を主体とする蛍光体微粒子および賦活剤がドープされまたはドープされていない硫化カドミウムを主体とする蛍光体微粒子の少なくとも1種である前記(1)〜(4)のいずれかの蛍光発色性ポリビニルアルコール系樹脂成形体であり;
(6) ポリビニルアルコール系樹脂成形体が、フィルムまたは繊維である前記(1)〜(5)のいずれかの蛍光発色性ポリビニルアルコール系樹脂成形体であり;
(7) フィルムの波長400〜760nmの可視光線の平均透過率が、50%以上である前記(1)〜(6)のいずれかの蛍光発色性ポリビニルアルコール系樹脂成形体であり;
(8) フィルムの波長300nmの紫外線の透過率が、10%以下である前記(7)に記載の蛍光発色性ポリビニルアルコール系樹脂成形体である。
(3) The phosphor fine particles are phosphor fine particles made of a metal compound (F) in which a group 16 element is bonded to a group 12 metal of the periodic table, which is doped or not doped with an activator (1) Or (2) a fluorescent color-forming polyvinyl alcohol resin molded article;
(4) The phosphor fine particles are phosphor fine particles made of a metal compound (F) in which a group 16 element is bonded to a group 12 metal of the periodic table doped with an activator, and the amount of the activator is In the fluorescent coloring polyvinyl alcohol-based resin molded article according to any one of (1) to (3), the amount is 0.001 mol or more with respect to 1 mol of the Group 12 metal element in the periodic table before doping the activator. Yes;
(5) At least one of phosphor fine particles mainly composed of zinc sulfide which is doped or not doped with an activator and phosphor fine particles mainly composed of cadmium sulfide which is not doped or doped with an activator. A fluorescent color-forming polyvinyl alcohol-based resin molded article according to any one of (1) to (4), which is a seed;
(6) The fluorescence developing polyvinyl alcohol-based resin molded body according to any one of (1) to (5), wherein the polyvinyl alcohol-based resin molded body is a film or a fiber;
(7) The fluorescent color-forming polyvinyl alcohol-based resin molded article according to any one of (1) to (6), wherein an average transmittance of visible light having a wavelength of 400 to 760 nm is 50% or more;
(8) The fluorescent color-forming polyvinyl alcohol-based resin molded product according to (7), wherein the film has a transmittance of ultraviolet rays having a wavelength of 300 nm of 10% or less.

そして、本発明は、
(9)(i) ポリビニルアルコール系重合体よりなる成形体を、紫外線の照射下において350〜700nmの波長域に蛍光を発する金属化合物(F)を形成する金属イオン(A)を含む液(Ia)に浸漬するか、または前記金属イオン(A)と賦活剤イオン(C)を含む液(Ib)に浸漬し;次いで、
(ii) 前記金属イオン(A)と反応して紫外線の照射下において350〜700nmの波長域に蛍光を発する金属化合物(F)を形成するイオン(B)含む液(II)に浸漬して、ポリビニルアルコール系重合体よりなる成形体内に、紫外線の照射下において350〜700nmの波長域に蛍光を発する金属化合物(F)よりなる平均粒径が50nm以下の蛍光体微粒子を生成させ;更に、
(iii) 前記工程(ii)で形成した蛍光体微粒子を成形体内に含有するポリビニルアルコール系重合体よりなる成形体を、前記金属イオン(A)とイオン(B)を含む液(IIIa)に浸漬するか、または前記金属イオン(A)とイオン(B)と賦活剤イオン(C)を含む液(IIIb)に浸漬して熟成処理する;
ことを特徴とする、賦活剤がドープされまたはドープされていない平均粒径が50nm以下の蛍光体微粒子が成形体内で分散された状態で含有されている蛍光発色性ポリビニルアルコール系樹脂成形体の製造方法である。
And this invention,
(9) (i) A liquid (Ia) containing a metal ion (A) that forms a metal compound (F) that emits fluorescence in a wavelength range of 350 to 700 nm under irradiation of ultraviolet rays. Or a liquid (Ib) containing the metal ion (A) and the activator ion (C);
(Ii) It is immersed in a liquid (II) containing ions (B) that react with the metal ions (A) to form a metal compound (F) that emits fluorescence in the wavelength region of 350 to 700 nm under irradiation of ultraviolet rays. Phosphor particles having an average particle diameter of 50 nm or less made of a metal compound (F) that emits fluorescence in a wavelength range of 350 to 700 nm under irradiation of ultraviolet rays are formed in a molded body made of a polyvinyl alcohol-based polymer;
(Iii) Immerse the molded body made of the polyvinyl alcohol polymer containing the phosphor fine particles formed in the step (ii) in the molded body in the liquid (IIIa) containing the metal ions (A) and ions (B). Or dipping in the liquid (IIIb) containing the metal ions (A), ions (B) and activator ions (C);
Production of a fluorescent color-forming polyvinyl alcohol-based resin molded article containing phosphor fine particles with an average particle diameter of 50 nm or less that are doped or not doped with an activator, characterized in that Is the method.

さらに、本発明は、
(10) 液(Ia)、液(Ib)、液(II)、液(IIIa)および液(IIIb)が、水、ポリビニルアルコール系重合体を膨潤する有機溶媒、または水とポリビニルアルコール系重合体を膨潤する有機溶媒の混合溶媒を溶媒とする液である前記(9)の製造方法であり;
(11) 上記の工程(iii)の熟成処理を、温度30〜90℃で30分以上行う前記(9)または(10)の製造方法であり;
(12) 液(Ia)および液(Ib)における金属イオン(A)生成化合物の含有量が0.1〜120g/Lであり、液(Ib)における賦活剤イオン(C)生成化合物の含有量が0.1〜120g/Lであり、液(II)におけるイオン(B)生成化合物の含有量が1〜120g/Lであり(ただし、液(Ia)および液(Ib)における金属イオン(A)生成化合物の含有量ならびに液(II)におけるイオン(B)生成化合物の含有量のいずれかは、5g/L以上である。)、液(IIIa)および液(IIIb)における金属イオン(A)生成化合物の含有量が0.1〜120g/Lおよびイオン(B)生成化合物の含有量が0.1〜120g/Lであり、液(IIIb)における賦活剤イオン(C)生成化合物の含有量が0.1〜120g/Lである前記(9)〜(11)のいずれか1項に記載の製造方法であり;
(13) 金属イオン(A)が周期表の12族の金属のイオンであり、イオン(B)が周期表の16族の元素のイオンである前記(9)〜(12)のいずれかの製造方法であり;
(14) 金属イオン(A)が亜鉛イオンまたはカドミウムイオンであり、イオン(B)が硫黄イオンであり、賦活剤イオン(C)がマンガンイオン、銅イオン、銀イオン、金イオンおよび希土類元素イオンの少なくとも1種である前記(9)〜(13)のずれかの製造方法である。
Furthermore, the present invention provides
(10) Liquid (Ia), Liquid (Ib), Liquid (II), Liquid (IIIa), and Liquid (IIIb) are water, an organic solvent that swells a polyvinyl alcohol polymer, or water and a polyvinyl alcohol polymer The production method of the above (9), wherein the solvent is a mixed solvent of an organic solvent that swells
(11) The production method according to (9) or (10), wherein the aging treatment in the step (iii) is performed at a temperature of 30 to 90 ° C. for 30 minutes or more;
(12) The content of the metal ion (A) generating compound in the liquid (Ia) and the liquid (Ib) is 0.1 to 120 g / L, and the content of the activator ion (C) generating compound in the liquid (Ib) Is 0.1 to 120 g / L, and the content of the ion (B) -forming compound in the liquid (II) is 1 to 120 g / L (provided that the metal ions in the liquid (Ia) and the liquid (Ib) (A Any of the content of the product compound and the content of the ion (B) product compound in the liquid (II) is 5 g / L or more.) The metal ion (A) in the liquid (IIIa) and the liquid (IIIb) Content of product compound is 0.1-120 g / L and content of ion (B) product compound is 0.1-120 g / L, and content of activator ion (C) product compound in liquid (IIIb) Is 0.1 to 120 g / L The (9) in any one of - (11) located in the manufacturing method described;
(13) The production according to any one of (9) to (12), wherein the metal ion (A) is an ion of a group 12 metal of the periodic table and the ion (B) is an ion of an element of a group 16 of the periodic table Is a method;
(14) The metal ion (A) is zinc ion or cadmium ion, the ion (B) is sulfur ion, and the activator ion (C) is manganese ion, copper ion, silver ion, gold ion or rare earth element ion. It is a manufacturing method of any one of the above (9) to (13), which is at least one kind.

本発明の蛍光発色性ポリビニルアルコール系樹脂成形体は、成形体内に、平均粒径が50nm以下の蛍光体微粒子が蛍光体微粒子間の凝集などを生ずることなく、分散された状態で含有されているため、可視光下においては視認されにくく、紫外線の照射下においては光強度の大きな蛍光を発する。
しかも、本発明の蛍光発色性ポリビニルアルコール系樹脂成形体は、可視光線の透過率が高くて透明性に優れ、紫外線の透過率が低くて紫外線遮蔽性に優れている。
そのため、本発明の蛍光発色性ポリビニルアルコール系樹脂成形体は、それらの特性を活かして、例えば、紙幣、証券用紙、機密文書、商品タグなどの偽造防止対策用材料、壁紙、カーペット、衣料、ガラス中間膜、ガラス貼付用フィルムなどの紫外線遮蔽と装飾性を兼ね備えた材料、蛍光発色性が酸素をはじめとする気体の表面吸着により変化することを利用したセンシング材料などの種々の用途に極めて有効に利用することができる。
The fluorescent color-forming polyvinyl alcohol-based resin molded article of the present invention contains phosphor fine particles having an average particle size of 50 nm or less dispersed in the molded article without causing aggregation between the phosphor fine particles. For this reason, it is difficult to see under visible light, and emits fluorescence with high light intensity under ultraviolet irradiation.
Moreover, the fluorescent color-forming polyvinyl alcohol-based resin molded article of the present invention has a high visible light transmittance and excellent transparency, and has a low ultraviolet transmittance and excellent ultraviolet shielding properties.
Therefore, the fluorescent color-forming polyvinyl alcohol-based resin molded article of the present invention takes advantage of these characteristics, for example, anti-counterfeiting materials such as banknotes, securities paper, confidential documents, product tags, wallpaper, carpets, clothing, glass Extremely effective for various applications such as materials that combine UV shielding and decorative properties, such as interlayer films and films for glass application, and sensing materials that utilize the fact that fluorescence coloring changes due to surface adsorption of gases such as oxygen Can be used.

本発明の製造方法により、前記した優れた特性を兼ね備える蛍光発色性ポリビニルアルコール系樹脂成形体を円滑に製造することができる。具体的には、蛍光を発する金属化合物を形成する金属イオンを含む液に浸漬するか、または前記金属イオンと賦活剤イオンを含む液に浸漬し、次いでそれを前記金属イオンと反応して紫外線の照射下において蛍光を発する金属化合物を形成するイオンを含む液に浸漬した後、更に蛍光を発する金属化合物を形成する前記金属イオンとそれと反応して蛍光を発する金属化合物を形成する前記イオンを含む液に浸漬して熟成処理するか、または蛍光を発する金属化合物を形成する前記金属イオンとそれと反応して蛍光を発する金属化合物を形成する前記イオンと賦活剤イオンを含む液に浸漬して熟成処理する工程を採用していることによって、ポリビニルアルコール系樹脂成形体内に、紫外線の照射下において蛍光を発する金属化合物よりなる蛍光体微粒子を平均粒径50nm以下の微粒子状で形成させ、分散させることができ、蛍光体微粒子の結晶性の向上、当該蛍光体微粒子の濃度の増加もなされるため、強い蛍光発色性を有するポリビニルアルコール系樹脂成形体を得ることができる。   By the production method of the present invention, a fluorescent color-forming polyvinyl alcohol-based resin molded article having the above-described excellent characteristics can be produced smoothly. Specifically, it is immersed in a solution containing a metal ion that forms a metal compound that emits fluorescence, or is immersed in a solution containing the metal ion and an activator ion, and then reacts with the metal ion to react with ultraviolet rays. A liquid containing the ions that form a metal compound that emits fluorescence by immersing in a liquid containing ions that form a metal compound that emits fluorescence under irradiation and then react with the metal ions that form a metal compound that emits fluorescence. Immersion treatment is performed by immersing in a solution containing the metal ions that form a fluorescent metal compound and a metal compound that reacts with the metal ions to form fluorescence and an activator ion. By adopting the process, a fluorescent material made of a metal compound that emits fluorescence under irradiation of ultraviolet rays is formed in the polyvinyl alcohol-based resin molded body. The body fine particles can be formed and dispersed in the form of fine particles having an average particle size of 50 nm or less, the crystallinity of the phosphor fine particles is improved, and the concentration of the phosphor fine particles is also increased. An alcohol-based resin molded body can be obtained.

実施例1で得られた、蛍光体微粒子を内部に含有するPVAフィルムを厚さ方向に切断した切断面を透過型電子顕微鏡(TEM)で撮影した写真である。It is the photograph which image | photographed the cut surface which cut | disconnected the PVA film which contains the fluorescent substance fine particle inside in Example 1 in the thickness direction with the transmission electron microscope (TEM). 実施例1で得られた、蛍光体微粒子を内部に含有するPVAフィルムを厚さ方向に切断した表面付近の切断面を走査型電子顕微鏡(SEM)で撮影した写真である。It is the photograph which image | photographed the cut surface of the surface vicinity which cut | disconnected the PVA film which contains the fluorescent substance fine particle inside in Example 1 in the thickness direction with the scanning electron microscope (SEM). 実施例1、比較例1および比較例2で得られた、蛍光体微粒子を内部に含有するPVAフィルムの200〜800nmの波長域(紫外線〜可視光線域)における光透過率の測定結果を示すグラフである。The graph which shows the measurement result of the light transmittance in the wavelength range (ultraviolet ray-visible light region) of 200-800 nm of the PVA film which contains the fluorescent substance microparticles | fine-particles obtained by Example 1, the comparative example 1, and the comparative example 2 inside. It is. 実施例1〜3および比較例2で得られた蛍光体微粒子を内部に含有するPVAフィルムに320nmの励起波長(紫外線)を照射した際の蛍光スペクトルを示すグラフである。It is a graph which shows the fluorescence spectrum at the time of irradiating the excitation wavelength (ultraviolet ray) of 320 nm to the PVA film which contains the fluorescent substance microparticles | fine-particles obtained in Examples 1-3 and Comparative Example 2 inside. 比較例1で得られた、蛍光体微粒子を内部に含有するPVAフィルムを厚さ方向に切断した切断面を透過型電子顕微鏡(TEM)で撮影した写真である。It is the photograph which image | photographed the cut surface which cut | disconnected the PVA film which contains the fluorescent substance fine particle inside in the thickness direction in the comparative example 1 with the transmission electron microscope (TEM).

以下に本発明について詳細に説明する。
本発明の蛍光発色性ポリビニルアルコール系樹脂成形体(以下ポリビニルアルコールを「PVA」という)は、当該成形体内に、紫外線の照射下において蛍光を発する蛍光体微粒子が分散された状態で含有されている。
本発明の蛍光発色性PVA系樹脂成形体を構成するPVA系重合体の重合度は特に限定されないが、蛍光発色性PVA系樹脂成形体の機械的特性、寸法安定性などを考慮すると、蛍光発色性PVA系樹脂成形体は、平均重合度(30℃のPVA系重合体の水溶液の粘度からJIS K6726に従って求めた粘度平均重合度)が1200〜20000のPVA系重合体から形成されていることが好ましい。蛍光発色性PVA系樹脂成形体を構成するPVA系重合体の重合体が高いほど、成形体の強度や耐湿熱性等がより優れるので好ましいが、PVA系重合体の製造コスト、成形コストなどを考慮すると、PVA系樹脂成形体は平均重合度が1500〜8000のPVA系重合体から形成されていることがより好ましい。
The present invention is described in detail below.
The fluorescent coloring polyvinyl alcohol-based resin molded product of the present invention (hereinafter, polyvinyl alcohol is referred to as “PVA”) is contained in the molded product in a state where fluorescent fine particles that emit fluorescence under ultraviolet irradiation are dispersed. .
The degree of polymerization of the PVA polymer constituting the fluorescent color-forming PVA resin molded product of the present invention is not particularly limited, but considering the mechanical properties and dimensional stability of the fluorescent colorable PVA resin molded product, The porous PVA resin molded product is formed of a PVA polymer having an average degree of polymerization (viscosity average degree of polymerization determined according to JIS K6726 from the viscosity of an aqueous solution of a PVA polymer at 30 ° C.) of 1200 to 20000. preferable. The higher the polymer of the PVA polymer constituting the fluorescent coloring PVA resin molded body, the better because the strength and heat and humidity resistance of the molded body are better, but considering the production cost, molding cost, etc. of the PVA polymer Then, it is more preferable that the PVA-based resin molded body is formed from a PVA-based polymer having an average degree of polymerization of 1500 to 8000.

本発明の蛍光発色性PVA系樹脂成形体を構成するPVA系重合体のケン化度は特に限定されないが、当該成形体の機械的特性の点から、当該ケン化度が88モル%以上であることが好ましく、90モル%以上であることがより好ましく、96〜99.9モル%であることが更に好ましい。
PVA系重合体のケン化度が低いと、成形体を製造する際の工程通過性、成形コスト、蛍光発色性PVA系樹脂成形体の機械的特性などの点で好ましくない。
The saponification degree of the PVA polymer constituting the fluorescent color-forming PVA resin molded article of the present invention is not particularly limited, but the saponification degree is 88 mol% or more from the viewpoint of mechanical properties of the molded article. It is preferable that it is 90 mol% or more, and it is still more preferable that it is 96-99.9 mol%.
If the degree of saponification of the PVA polymer is low, it is not preferable from the viewpoints of process passability during molding, molding cost, mechanical properties of the fluorescent coloring PVA resin molding, and the like.

本発明の蛍光発色性PVA系樹脂成形体を構成するPVA系重合体は、ビニルアルコール単位から主としてなるPVA系重合体であれば、酢酸ビニルなどのカルボン酸のビニルエステルの単独重合体をケン化してなる、ビニルアルコール単位のみからなるかまたはビニルアルコール単位と少量の未ケン化のカルボン酸ビニルエステル単位のみからなるPVA系重合体であってもよいし、或いは本発明の効果を損なわない限りは、ビニルアルコール単位を主体とし必要に応じて他の共重合単位を有する少量(通常12モル%以下の割合で)有するビニルアルコール共重合体であってもよい。その場合の他の共重合単位としては、例えば、エチレン、プロピレン、ブチレンなどのオレフィン類、アクリル酸、アクリル酸塩、アクリル酸メチルやその他のアクリル酸エステル類、メタクリル酸、メタクリル酸塩、メタクリル酸メチルやその他のメタクリル酸エステル類、アクリルアミド、N−メチルアクリルアミド、メタクリルアミド、N−メチロールメタクリルアミドなどの(メタ)アクリルアミド類、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミドなどのN−ビニルアミド類、ポリアルキレンオキシドを側鎖に有するアリルエーテル類、メチルビニルエーテルなどのビニルエーテル類、アクリロニトリルなどのニトリル類、塩化ビニルなどのハロゲン化ビニル類、マレイン酸、マレイン酸塩、無水マレイン酸、マレイン酸エステルなどの不飽和カルボン酸またはその誘導体などに由来する共重合単位を挙げることができる。本発明の蛍光発色性PVA系樹脂成形体を構成するPVA系重合体は前記した共重合単位の1種または2種以上を有することができる。前記した共重合単位は、PVA系重合体を製造する際に共重合によってPVA系重合体中に導入されていてもよいし、またはPVA系重合体を製造した後に後反応によってPVA系重合体に導入されていてもよい。
但し、本発明の蛍光発色性PVA系樹脂成形体を構成するPVA系重合体は、ビニルアルコール単位の含有割合が88モル%以上、特に90モル%以上のPVA系重合体であることが、成形体を製造する際の工程通過性、成形コスト、成形体の機械的特性の点から好ましい。
If the PVA polymer constituting the fluorescent color-forming PVA resin molding of the present invention is a PVA polymer mainly composed of vinyl alcohol units, a homopolymer of a vinyl ester of a carboxylic acid such as vinyl acetate is saponified. May be a PVA polymer consisting only of vinyl alcohol units or consisting only of vinyl alcohol units and a small amount of unsaponified carboxylic acid vinyl ester units, or as long as the effects of the present invention are not impaired. Further, it may be a vinyl alcohol copolymer having a small amount (usually at a ratio of 12 mol% or less) mainly composed of vinyl alcohol units and having other copolymer units as required. Other copolymer units in that case include, for example, olefins such as ethylene, propylene, and butylene, acrylic acid, acrylate, methyl acrylate and other acrylate esters, methacrylic acid, methacrylate, and methacrylic acid. (Meth) acrylamides such as methyl and other methacrylic esters, acrylamide, N-methylacrylamide, methacrylamide, N-methylolmethacrylamide, N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide, and other N- Vinyl amides, allyl ethers having polyalkylene oxide in the side chain, vinyl ethers such as methyl vinyl ether, nitriles such as acrylonitrile, vinyl halides such as vinyl chloride, maleic acid, maleate, maleic anhydride Phosphate, can be mentioned a copolymerization unit derived from such unsaturated carboxylic acid or its derivatives such as maleic acid esters. The PVA polymer constituting the fluorescent color-forming PVA resin molded product of the present invention can have one or more of the above copolymerized units. The above-mentioned copolymer unit may be introduced into the PVA polymer by copolymerization when producing the PVA polymer, or after the PVA polymer is produced, it is converted into the PVA polymer by a post reaction. It may be introduced.
However, the PVA polymer constituting the fluorescent color-forming PVA resin molded article of the present invention is a PVA polymer having a vinyl alcohol unit content of 88 mol% or more, particularly 90 mol% or more. This is preferable from the viewpoints of process passability during production of the body, molding cost, and mechanical properties of the molded body.

本発明の蛍光発色性PVA系樹脂成形体内に含まれる蛍光体微粒子は、紫外線の照射下において350〜700nmの波長域に蛍光を発する平均粒径が50nm以下の蛍光体微粒子であり、当該蛍光体微粒子はPVA系樹脂成形体内に微細に分散されている。
ここで、本発明において、蛍光体微粒子に蛍光を発生させるために照射される前記「紫外線」とは、一般に紫外線として取り扱われている1〜390nmの波長域の光をいう。
蛍光体微粒子に照射される前記紫外線は、前記紫外線波長域内の所定の単一波長の紫外線であってもよいし、前記紫外線波長域内の波長が互いに異なる所定の単一波長の紫外線の2つ以上が組み合わさったものであってもよいし、前記紫外線波長域内に1つの強度ピークを有するかまたは2つ以上の強度ピークを有する強度分布を有する紫外線であってもよいし、或いは特に強度ピークのない前記紫外線波長域内の紫外線であってもいずれでもよい。
The phosphor fine particles contained in the fluorescent color-forming PVA resin molded body of the present invention are phosphor fine particles having an average particle diameter of 50 nm or less that emits fluorescence in a wavelength range of 350 to 700 nm under irradiation of ultraviolet rays. The fine particles are finely dispersed in the PVA resin molded body.
Here, in the present invention, the “ultraviolet rays” irradiated for generating fluorescence in the phosphor fine particles refers to light having a wavelength range of 1 to 390 nm, which is generally handled as ultraviolet rays.
The ultraviolet rays irradiated to the phosphor fine particles may be ultraviolet rays having a predetermined single wavelength within the ultraviolet wavelength range, or two or more ultraviolet rays having a predetermined single wavelength having different wavelengths within the ultraviolet wavelength range. May be combined, or may be ultraviolet light having an intensity distribution having one intensity peak or two or more intensity peaks in the ultraviolet wavelength range, or particularly an intensity peak. Any of the ultraviolet rays within the ultraviolet wavelength range may be used.

また、本発明の蛍光発色性PVA系樹脂成形体内に含まれる「紫外線の照射下において350〜700nmの波長域に蛍光を発する蛍光体微粒子」は、前記した紫外線を照射したときに、350〜700nmの波長域の蛍光を発する蛍光体微粒子であればいずれでもよい。蛍光体微粒子は、例えば、前記紫外線を照射したときに、350〜700nmの波長域内にある所定の単一波長の蛍光を発する蛍光体微粒子であっても、350〜700nmの波長域内にある互いに異なる2つ以上の所定の単一波長の蛍光を発する蛍光体微粒子であってもよいし、350〜700nmの波長域内に1つまたは2つ以上の強度ピークを有する強度分布のある蛍光を発する蛍光体微粒子であってもよいし、または特に強度ピークのない350〜700nmの波長域内の蛍光を発する蛍光体微粒子などのいずれであってもよい。
そのうちでも、本発明の蛍光発色性PVA系樹脂成形体は、波長が200〜390nmの紫外線の照射下において、400〜650nmの波長範囲に1つまたは2つ以上の強度ピーク、特に1つの強度ピークを有する蛍光を発する蛍光体微粒子の1種類または2種類以上を含有していることが、蛍光発色の視認性の点から好ましい。
Further, the “fluorescent fine particles emitting fluorescence in the wavelength range of 350 to 700 nm under the irradiation of ultraviolet rays” contained in the fluorescent color-forming PVA resin molding of the present invention is 350 to 700 nm when irradiated with the ultraviolet rays. Any phosphor fine particles may be used as long as they emit fluorescence in the above wavelength range. The phosphor fine particles are different from each other in the wavelength range of 350 to 700 nm even when the phosphor fine particles emit fluorescence having a predetermined single wavelength in the wavelength range of 350 to 700 nm when irradiated with the ultraviolet rays, for example. Phosphor fine particles that emit fluorescence of two or more predetermined single wavelengths, or phosphors that emit fluorescence with intensity distribution having one or more intensity peaks in a wavelength range of 350 to 700 nm Fine particles may be used, or phosphor fine particles that emit fluorescence in a wavelength range of 350 to 700 nm with no particular intensity peak may be used.
Among them, the fluorescent color-forming PVA-based resin molded article of the present invention has one or more intensity peaks, particularly one intensity peak in the wavelength range of 400 to 650 nm under irradiation with ultraviolet rays having a wavelength of 200 to 390 nm. It is preferable from the viewpoint of the visibility of fluorescent color development that it contains one kind or two or more kinds of phosphor fine particles that emit fluorescence.

本発明の蛍光発色性PVA系樹脂成形体内に含まれる蛍光体微粒子はその平均粒径が50nm以下であり、30nm以下であることが好ましく、20nm以下であることがより好ましい。
ここで、本明細書における蛍光体微粒子の平均粒径は、蛍光体微粒子を含有する蛍光発色性PVA系樹脂成形体を透過型電子顕微鏡(TEM)にて写真撮影して得られる写真に基づいて算出される蛍光体微粒子の平均粒径をいい、その具体的な算出方法は、以下の実施例に記載するとおりである。
The fluorescent fine particles contained in the fluorescent color-forming PVA resin molded body of the present invention have an average particle size of 50 nm or less, preferably 30 nm or less, and more preferably 20 nm or less.
Here, the average particle diameter of the phosphor fine particles in this specification is based on a photograph obtained by photographing a fluorescent color-forming PVA-based resin molded article containing the phosphor fine particles with a transmission electron microscope (TEM). The average particle diameter of the phosphor fine particles calculated is a specific calculation method as described in the following examples.

光の波長よりも小さい粒子による光の散乱の大きさは、レイリー散乱式で表されるように(非特許文献2を参照)、粒径の関数であり、粒径を小さくすることが散乱を小さくする最も重要な要因となる。
本発明の蛍光発色性PVA系樹脂成形体では、成形体内に含まれる蛍光体微粒子は、可視光線(一般に波長380〜780nm)の波長より一桁小さい平均粒径が50nm以下の微粒子であるから、可視光線が照射された際の当該可視光線の回折や散乱が極めて少なくなる。その結果、本発明の蛍光発色性PVA系樹脂成形体は、可視光線の透過率(透明性)が高く、蛍光体微粒子が含まれていることが可視光下では視認されず、可視光下での蛍光体微粒子の低視認性が達成される。
それに対して、平均粒径が1μm以上(1000nm以上)の蛍光体微粒子を含有する従来の成形体は、可視光線の波長より一桁大きな平均粒径を有する蛍光体微粒子であるから、可視光線の散乱や回折が大きくなり、PVA系樹脂成形体内に蛍光体微粒子が含まれていることが可視光下で容易に視認されてしまい、低視認性が達成されず、しかもPVA系樹脂成形体の可視光線の透過率が低く、透明性に劣る。
The magnitude of light scattering by particles smaller than the wavelength of light is a function of the particle size, as represented by the Rayleigh scattering equation (see Non-Patent Document 2). The most important factor to make it smaller.
In the fluorescent color-forming PVA resin molded product of the present invention, the phosphor fine particles contained in the molded product are fine particles whose average particle size is an order of magnitude smaller than the wavelength of visible light (generally wavelength 380 to 780 nm) is 50 nm or less. When visible light is irradiated, the diffraction and scattering of the visible light are extremely reduced. As a result, the fluorescent color-forming PVA resin molded product of the present invention has a high visible light transmittance (transparency), and it is not visible under visible light that phosphor fine particles are contained, but under visible light. Low visibility of the phosphor fine particles is achieved.
On the other hand, a conventional molded article containing phosphor fine particles having an average particle size of 1 μm or more (1000 nm or more) is a phosphor fine particle having an average particle size one digit larger than the wavelength of visible light. Scattering and diffraction increase, and the presence of phosphor fine particles in the PVA-based resin molded body is easily visible under visible light, so that low visibility is not achieved, and the PVA-based resin molded body is visible. Light transmittance is low and transparency is poor.

さらに、本発明の蛍光発色性PVA系樹脂成形体では、成形体内に含まれる蛍光体微粒子の平均粒径が50nm以下であることにより、可視光下での低視認性の達成と併せて、蛍光強度の増大が達成される。
一般に、半導体の粒径をナノサイズにするとバンドギャップが増大し、ミクロンサイズ以上の大粒子の場合とは異なった量子力学挙動を示すことが知られている。この効果は量子サイズ効果と呼ばれ、特に蛍光を発する半導体微粒子では量子収率の増大に伴って蛍光強度が増大する(例えば非特許文献3を参照)。
本発明では、PVA系樹脂成形体内に含有させる蛍光体微粒子を、平均粒径が10nm以下の蛍光発色性半導体微粒子とすることもできるので、その場合には、成形体内に少量の蛍光体微粒子を含有させることで、紫外線を照射したときに強い蛍光を発する成形体を得ることができる。
Furthermore, in the fluorescent color-forming PVA resin molded product of the present invention, the average particle size of the phosphor fine particles contained in the molded product is 50 nm or less, which is combined with the achievement of low visibility under visible light. An increase in strength is achieved.
In general, it is known that when the semiconductor particle size is made nano-sized, the band gap increases, and the quantum mechanical behavior is different from that of a large particle of micron-sized or larger. This effect is called a quantum size effect. In particular, in the case of semiconductor fine particles that emit fluorescence, the fluorescence intensity increases as the quantum yield increases (for example, see Non-Patent Document 3).
In the present invention, the phosphor fine particles to be contained in the PVA-based resin molded body can be fluorescent color-forming semiconductor fine particles having an average particle size of 10 nm or less. In that case, a small amount of the phosphor fine particles are contained in the molded body. By containing, a molded body that emits strong fluorescence when irradiated with ultraviolet rays can be obtained.

本発明の蛍光発色性PVA系樹脂成形体は、成形体を構成するPVA系重合体の質量に基づいて、蛍光体微粒子を0.5質量%以上の割合で含有しており、0.5〜50質量%の割合で含有することが好ましく、0.5〜30質量%の割合で含有することがより好ましく、1〜10質量%の割合で含有することが更に好ましい。
PVA系樹脂成形体における蛍光体微粒子の含有量が少なすぎると、可視光下での視認性を低くすることはできるが、紫外線を照射したときに蛍光強度が小さくなり好ましくない。一方、PVA系樹脂成形体における蛍光体微粒子の含有量が多すぎると、可視光下での視認性が高くなってしまい、さらにPVA系樹脂成形体の力学的特性が低下したものになり易い。
The fluorescent color-forming PVA resin molded article of the present invention contains phosphor fine particles in a proportion of 0.5% by mass or more based on the mass of the PVA polymer constituting the molded article. It is preferable to contain in the ratio of 50 mass%, It is more preferable to contain in the ratio of 0.5-30 mass%, It is still more preferable to contain in the ratio of 1-10 mass%.
When the content of the phosphor fine particles in the PVA-based resin molded body is too small, the visibility under visible light can be lowered, but the fluorescence intensity is reduced when irradiated with ultraviolet rays, which is not preferable. On the other hand, when the content of the phosphor fine particles in the PVA-based resin molded body is too large, the visibility under visible light is increased, and the mechanical properties of the PVA-based resin molded body are easily deteriorated.

本発明の蛍光発色性PVA系樹脂成形体内に含有させる蛍光体微粒子としては、平均粒径が50nm以下の半導体ナノ粒子を母体とする蛍光体微粒子が好ましい。
半導体ナノ粒子を母体とする蛍光体微粒子としては、周期表の12族の金属に16族の元素が結合した金属化合物(12−16族化合物)[例えば硫化亜鉛(ZnS)、酸化亜鉛(ZnO)、セレン化亜鉛(ZnSe)、テルル化亜鉛(ZnTe)、硫化カドミウム(CdS)、カドミウムセレン(CdSe)、カドミウムテルル(CdTe)など]からなる蛍光体微粒子、周期表の14族の元素(Si等)よりなる蛍光体微粒子、周期表の13族の金属に15族の元素が結合した金属化合物(13−15族化合物)よりなる蛍光体微粒子[リン化インジウム(InP)、窒化ガリウム(GaN)など]などに大別される。
これらのうちで、周期表の12族の金属に16族の元素が結合した金属化合物(12−16族化合物)よりなる蛍光体微粒子、すなわち、上記した硫化亜鉛(ZnS)、酸化亜鉛(ZnO)、セレン化亜鉛(ZnSe)、テルル化亜鉛(ZnTe)、硫化カドミウム(CdS)、カドミウムセレン(CdSe)、カドミウムテルル(CdTe)などが、イオン結晶性が高く、光学的に直接遷移であるという点から好ましい。
そのうちでも、蛍光特性、および蛍光体微粒子を含有する本発明の蛍光発色性PVA系樹脂成形体の製造の容易性などの点から、蛍光体微粒子としては、賦活剤がドープされまたはドープされていないZnSおよび賦活剤がドープされまたはドープされていないCdSからなる蛍光体微粒子がより好ましく、特に賦活剤がドープされまたはドープされていないZnSからなる蛍光体微粒子が無色であるという点から更に好ましい。
The phosphor fine particles contained in the fluorescent color-forming PVA-based resin molded body of the present invention are preferably phosphor fine particles based on semiconductor nanoparticles having an average particle size of 50 nm or less.
Phosphor fine particles based on semiconductor nanoparticles include metal compounds in which Group 16 elements are bonded to Group 12 metals in the periodic table (Group 12-16 compounds) [for example, zinc sulfide (ZnS), zinc oxide (ZnO). , Zinc selenide (ZnSe), zinc telluride (ZnTe), cadmium sulfide (CdS), cadmium selenium (CdSe), cadmium tellurium (CdTe), etc.], Group 14 element of periodic table (Si etc.) ) Phosphor fine particles, phosphor fine particles composed of a metal compound (group 13-15 compound) in which a group 15 element is bonded to a group 13 metal in the periodic table (indium phosphide (InP), gallium nitride (GaN), etc.) ] And so on.
Among these, phosphor fine particles composed of a metal compound (group 12-16 compound) in which a group 16 element is bonded to a group 12 metal of the periodic table, that is, zinc sulfide (ZnS) and zinc oxide (ZnO) described above. Zinc selenide (ZnSe), zinc telluride (ZnTe), cadmium sulfide (CdS), cadmium selenium (CdSe), cadmium tellurium (CdTe), etc. have high ionic crystallinity and optically direct transition. To preferred.
Among them, the phosphor fine particles are not doped or doped with an activator from the viewpoint of the fluorescence characteristics and the ease of production of the fluorescent color-forming PVA resin molded product of the present invention containing the phosphor fine particles. Phosphor fine particles composed of ZnS and CdS doped or not doped with an activator are more preferable, and phosphor fine particles composed of ZnS doped or not doped with an activator are more preferable in that they are colorless.

本発明の蛍光発色性PVA系樹脂成形体内に含まれる蛍光体微粒子は、前記したように賦活剤がドープされた蛍光体微粒子であってもまたは賦活剤がドープされていない蛍光体微粒子であってもいずれでもよいが、硫化亜鉛(ZnS)をはじめとする12−16族化合物よりなる蛍光体微粒子は、賦活剤がドープされることで、固有の蛍光を発色させることができる。
賦活剤は、要求される蛍光の波長(発光色)に応じて使用することができ、賦活剤の例としては、銅(Cu)、マンガン(Mn)、銀(Ag)、金(Au)などの金属のイオン、ユーロピウム(Eu)やイッテルビウム(Yb)をはじめとする希土類元素の金属イオンなどを挙げることができ、これらの金属イオンを単独でまたは2種以上組み合わせて賦活剤として用いることができる。
また、必要に応じて、塩素(Cl)、臭素(Br)、ヨウ素(I)、アルミニウム(Al)などの共賦活剤をドープしてもよい。
そして、これら固有の発色が得られる賦活剤の種類を適宜選択することで、所望の蛍光が発色する蛍光発色性PVA系樹脂成形体が得られるようになる。
PVA系樹脂成形体内に含有させる蛍光体微粒子が、賦活剤がドープされた蛍光体微粒子、特に賦活剤がドープされた12−16族化合物よりなる蛍光体微粒子である場合は、賦活剤の量は、賦活剤をドープする前の前記金属化合物1モルに対して0.001モル以上、特に0.005〜0.05モルであることが、賦活剤による賦活効果、均一性などの点から好ましい。
The phosphor fine particles contained in the fluorescent color-forming PVA resin molded body of the present invention are phosphor fine particles doped with an activator as described above, or phosphor fine particles not doped with an activator. However, phosphor fine particles made of a 12-16 group compound such as zinc sulfide (ZnS) can develop intrinsic fluorescence by being doped with an activator.
The activator can be used according to the required fluorescence wavelength (emission color). Examples of the activator include copper (Cu), manganese (Mn), silver (Ag), and gold (Au). Metal ions of rare earth elements including europium (Eu) and ytterbium (Yb), and the like, and these metal ions can be used alone or in combination of two or more as activators. .
If necessary, a coactivator such as chlorine (Cl), bromine (Br), iodine (I), or aluminum (Al) may be doped.
Then, by appropriately selecting the type of the activator that can provide these unique colors, a fluorescent color-forming PVA-based resin molded product that produces desired fluorescence can be obtained.
When the phosphor fine particles to be contained in the PVA-based resin molded body are phosphor fine particles doped with an activator, particularly phosphor fine particles composed of a 12-16 group compound doped with an activator, the amount of the activator is From the viewpoint of the activation effect and uniformity of the activator, it is preferably 0.001 mol or more, particularly 0.005 to 0.05 mol, relative to 1 mol of the metal compound before doping the activator.

本発明の蛍光発色性PVA系樹脂成形体の種類、形状および構造は特に制限されず、PVA系重合体を用いて製造できる成形体であればいずれでもよく、例えば、フィルム、シート、プレート、パイプ、チューブ、棒状体、粒状体、各種異形成形体、繊維、織布、編布、不織布、紙などを挙げることができる。
本発明の蛍光発色性PVA系樹脂成形体では、蛍光体微粒子は、成形体内に実質的に均一に分散された状態で含有されていることが望ましいが、場合によっては、成形体内の一部の箇所に偏在して分散された状態で含有されていてもよい。
そして、実質的に均一に分散されていることは、PVA系樹脂成形体の切断面を透過型電子気顕微鏡(TEM)、又は走査型電子気顕微鏡(SEM)で観察した場合に、蛍光体微粒子の凝集物や偏在が実質的に観察されない状態になっていることで判断する。
The type, shape, and structure of the fluorescent color-forming PVA-based resin molded body of the present invention are not particularly limited and may be any molded body that can be manufactured using a PVA-based polymer. For example, a film, a sheet, a plate, a pipe , Tubes, rod-like bodies, granular bodies, various irregularly shaped bodies, fibers, woven fabrics, knitted fabrics, non-woven fabrics, papers and the like.
In the fluorescent color-forming PVA-based resin molded body of the present invention, it is desirable that the phosphor fine particles are contained in a substantially uniformly dispersed state in the molded body. It may be contained in a state where it is unevenly distributed in the place.
And it is disperse | distributing substantially uniformly, when the cut surface of a PVA-type resin molding is observed with a transmission electron gas microscope (TEM) or a scanning electron gas microscope (SEM), it is fluorescent microparticles | fine-particles. It is judged that the agglomerates and uneven distribution are not substantially observed.

本発明の蛍光発色性PVA系樹脂成形体は、PVA系重合体から予め成形体を製造しておき、当該成形体に工程(i)および工程(ii)の浸漬処理を逐次に施し、次いで工程(iii)の熟成処理を行う本発明の製造方法によって円滑に製造されることから、成形体の厚みやサイズが小さい場合には、蛍光体微粒子がPVA系樹脂成形体の内部に実質的に均一に分散されたPVA系樹脂成形体を得ることができる。一方、成形体が厚い場合は、蛍光体微粒子がPVA系樹脂成形体の表面に近い成形体の内部に多く分散されたPVA系樹脂成形体を得ることができる。
さらに、本発明の蛍光発色性PVA系樹脂成形体の可視光線の平均透過率は、高い方が好ましく、特に、フィルムの場合は、可視光線の平均透過率は50%以上、好ましくは、60%以上、さらに好ましくは70%以上、最も好ましくは80%以上である。
また、紫外線の透過率は、低い方が紫外線遮蔽機能の観点において好ましく、特に、フィルムの場合は、波長300nmの透過率は10%以下、好ましくは1%以下、さらに好ましくは0.5%以下、最も好ましくは0.1%以下である。
The fluorescent color-forming PVA-based resin molded body of the present invention is prepared in advance from a PVA-based polymer, and the molded body is sequentially subjected to the immersion treatments of step (i) and step (ii), and then the step. Since it is smoothly manufactured by the manufacturing method of the present invention in which the aging treatment of (iii) is performed, when the thickness and size of the molded body are small, the phosphor fine particles are substantially uniform inside the PVA resin molded body. A PVA-based resin molded product dispersed in the resin can be obtained. On the other hand, when the molded body is thick, it is possible to obtain a PVA-based resin molded body in which many phosphor fine particles are dispersed in the molded body close to the surface of the PVA-based resin molded body.
Furthermore, the average visible light transmittance of the fluorescent color-forming PVA-based resin molded article of the present invention is preferably higher. Particularly, in the case of a film, the average visible light transmittance is 50% or more, preferably 60%. More preferably, it is 70% or more, and most preferably 80% or more.
The lower the transmittance of ultraviolet rays, the better from the viewpoint of the ultraviolet shielding function. Particularly, in the case of a film, the transmittance at a wavelength of 300 nm is 10% or less, preferably 1% or less, more preferably 0.5% or less. Most preferably, it is 0.1% or less.

本発明の蛍光発色性PVA系樹脂成形体がフィルム、シート、プレートなどの成形体である場合は、可視光下においては無色透明で蛍光体微粒子の存在が視認されず、紫外線を照射すると蛍光体微粒子が蛍光を発することから、偽造防止対策用材料、装飾材料、センシング材料などとして例えば対象物に貼り付けることで、対象物の視覚情報を損なうことなく蛍光発色特性を付与することができる。   When the fluorescent color-forming PVA resin molded product of the present invention is a molded product such as a film, a sheet, or a plate, it is colorless and transparent under visible light, and the presence of fluorescent fine particles is not visually recognized. Since the fine particles emit fluorescence, the fluorescent coloring property can be imparted without impairing the visual information of the target object, for example, by attaching it to the target object as an anti-counterfeiting countermeasure material, a decoration material, a sensing material, or the like.

また、本発明の蛍光発色性PVA系樹脂成形体が繊維である場合は、可視光下においてはPVA系繊維の本来の色調がそのまま視認され、紫外線の照射下では蛍光を発する蛍光発色性繊維であることから、偽造防止対策用材料、装飾材料、センシング材料などとして、例えば、布製品に当該蛍光発色性PVA系繊維を縫み込んだり、当該蛍光発色性PVA系繊維を用いて織布、編布、不織布を製造したり、当該蛍光発色性PVA系繊維を抄き込んで紙を製造したり、当該蛍光発色性PVA系繊維を重合体中に練り込んで成形品を製造することで、対象物の視覚情報を損なうことなく、蛍光発色特性を付与することができる。   When the fluorescent color-forming PVA resin molded product of the present invention is a fiber, the original color tone of the PVA fiber is visible as it is under visible light, and the fluorescent color-producing fiber emits fluorescence under ultraviolet irradiation. Therefore, as a material for preventing counterfeiting, a decoration material, a sensing material, and the like, for example, the fluorescent coloring PVA fiber is sewn into a cloth product, or a woven or knitted fabric using the fluorescent coloring PVA fiber. By manufacturing cloth, non-woven fabric, making paper by embedding the fluorescent coloring PVA fiber, and kneading the fluorescent coloring PVA fiber into a polymer, Fluorescence coloring property can be imparted without impairing the visual information of the object.

本発明の蛍光発色性PVA系樹脂成形体は、本発明の効果を損なわない範囲であれば、蛍光体微粒子と共に、必要に応じて、酸化防止剤、凍結防止剤、pH調整剤、隠蔽剤、着色剤、油剤、難燃剤、特殊機能剤などを含有していてもよい。   The fluorescent color-forming PVA resin molded product of the present invention is within the range not impairing the effects of the present invention, together with phosphor fine particles, if necessary, an antioxidant, an antifreezing agent, a pH adjuster, a concealing agent, It may contain a coloring agent, an oil agent, a flame retardant, a special functional agent, and the like.

本発明の蛍光発色性PVA系樹脂成形体は、(i)PVA系重合体を用いて予め製造した成形体を、紫外線の照射下において350〜700nmの波長域に蛍光を発する金属化合物(F)を形成する金属イオン(A)を含む液(Ia)に浸漬するか、または前記金属イオン(A)と賦活剤イオン(C)を含む液(Ib)に浸漬し、次いで(ii)前記金属イオン(A)と反応して紫外線の照射下において350〜700nmの波長域に蛍光を発する金属化合物(F)を形成するイオン(B)含む液(II)に浸漬して、PVA系重合体よりなる成形体内に、紫外線の照射下において350〜700nmの波長域に蛍光を発する金属化合物(F)よりなる平均粒径が50nm以下の蛍光体微粒子を生成させ、更に(iii)前記工程(ii)で形成した蛍光体微粒子を成形体内に含有するPVA系重合体よりなる成形体を、前記金属イオン(A)とイオン(B)を含む液(IIIa)に浸漬するか、または前記金属イオン(A)とイオン(B)と賦活剤イオン(C)を含む液(IIIb)に浸漬して熟成処理する本発明の製造方法によって円滑に製造される。   The fluorescent color-forming PVA-based resin molded article of the present invention comprises: (i) a metal compound (F) that emits fluorescence in a wavelength range of 350 to 700 nm under irradiation of ultraviolet rays from a molded article prepared in advance using a PVA-based polymer. Soaked in the liquid (Ia) containing the metal ion (A) forming the metal or the liquid (Ib) containing the metal ion (A) and the activator ion (C), and then (ii) the metal ion It is immersed in a liquid (II) containing ions (B) that form a metal compound (F) that reacts with (A) and emits fluorescence in the wavelength range of 350 to 700 nm under irradiation of ultraviolet rays, and is made of a PVA polymer. In the molded body, fluorescent fine particles having an average particle diameter of 50 nm or less made of a metal compound (F) that emits fluorescence in a wavelength range of 350 to 700 nm under irradiation of ultraviolet rays are generated, and (iii) in the step (ii) Fluorescence formed A molded body made of a PVA polymer containing fine particles in the molded body is immersed in the liquid (IIIa) containing the metal ions (A) and ions (B), or the metal ions (A) and ions (B ) And activator ion (C) in the liquid (IIIb), and is smoothly produced by the production method of the present invention in which aging treatment is performed.

本発明の製造方法で用いる前記工程(i)を施す前のPVA系重合体よりなる成形体[以下、工程(i)〜(iii)の処理を施す前のPVA系重合体よりなる成形体を単に「PVA成形体」ということがある]の製造方法は特に制限されず、PVA成形体の種類やPVA成形体を形成するPVA系重合体の種類などに応じて適当な方法で製造すればよく、例えば乾式製膜、湿式製膜、湿乾式製膜、溶融下での押出成形、ブロー成形、インフレーション成形、共押出成形、射出成形、トランスファー成形、ラミネーション成形、乾式紡糸、乾湿式紡糸、湿式紡糸、溶融紡糸などにより製造することができる。   Molded product made of PVA polymer before performing step (i) used in the production method of the present invention [hereinafter, molded product made of PVA polymer before the treatment of steps (i) to (iii). The production method of “sometimes simply referred to as“ PVA molded body ”] is not particularly limited, and may be produced by an appropriate method according to the type of PVA molded body or the type of PVA polymer forming the PVA molded body. For example, dry film formation, wet film formation, wet dry film formation, extrusion molding under blow, blow molding, inflation molding, coextrusion molding, injection molding, transfer molding, lamination molding, dry spinning, dry wet spinning, wet spinning It can be produced by melt spinning or the like.

工程(i)の処理を施す前のPVA成形体がフィルムである場合は、PVAフィルムとして、PVA系重合体を水、有機溶媒または水と有機溶媒の混合溶媒に溶解した原液を金属ローラやベルトなどに流延し、乾燥して得られるPVAフィルムなどが好適に用いられる。その際に、PVA系重合体の原液中に界面活性剤を添加しておくと、製膜性が向上して厚さ斑の発生が抑制されると共に、製膜に使用する金属ローラやベルトからのフィルムの剥離を容易に行うことができる。界面活性剤の種類は特に限定されないが、金属ローラやベルトなどの剥離性の観点から、アニオン性界面活性剤またはノニオン性界面活性剤が好ましく用いられ、ノニオン性界面活性剤がより好ましく用いられる。その際に、アニオン性界面活性剤としては、例えば、ラウリン酸カリウムなどのカルボン酸型、オクチルサルフェートなどの硫酸エステル型、ドデシルベンゼンスルホネートなどのスルホン酸型のアニオン性界面活性剤が好適である。また、ノニオン性界面活性剤としては、例えば、ポリオキシエチレンオレイルエーテルなどのアルキルエーテル型、ポリオキシエチレンオクチルフェニルエーテルなどのアルキルフェニルエーエル型、ポリオキシエチレンラウレートなどのアルキルエステル型、ポリオキシエチレンラウリルアミノエーテルなどのアルキルアミン型、ポリオキシエチレンラウリン酸アミドなどのアルキルアミド型、ポリオキシエチレンポリオキシプロピレンエーテルなどのポリプロピレングリコールエーテル型、オレイン酸ジエタノールアミドなどのアルカノールアミド型、ポリオキシアルキレンアリルフェニルエーテルなどのアリルフェニルエーテル型のノニオン性界面活性剤が好適である。これらの界面活性剤は単独でまたは2種以上を組み合わせて使用することができる。   When the PVA molded body before the treatment of step (i) is a film, as a PVA film, a stock solution prepared by dissolving a PVA polymer in water, an organic solvent or a mixed solvent of water and an organic solvent is used as a metal roller or belt. PVA films obtained by casting and drying are preferably used. At that time, if a surfactant is added to the stock solution of the PVA polymer, the film-forming property is improved and the occurrence of thickness unevenness is suppressed, and from the metal roller or belt used for film formation. The film can be easily peeled off. The type of the surfactant is not particularly limited, but an anionic surfactant or a nonionic surfactant is preferably used, and a nonionic surfactant is more preferably used from the viewpoint of releasability such as a metal roller or a belt. In that case, as the anionic surfactant, for example, a carboxylic acid type such as potassium laurate, a sulfate type such as octyl sulfate, and a sulfonic acid type anionic surfactant such as dodecylbenzenesulfonate are suitable. Nonionic surfactants include, for example, alkyl ether types such as polyoxyethylene oleyl ether, alkylphenyl ether types such as polyoxyethylene octylphenyl ether, alkyl ester types such as polyoxyethylene laurate, polyoxyethylene, and the like. Alkylamine type such as laurylamino ether, alkylamide type such as polyoxyethylene lauric acid amide, polypropylene glycol ether type such as polyoxyethylene polyoxypropylene ether, alkanolamide type such as oleic acid diethanolamide, polyoxyalkylene allylphenyl An allyl phenyl ether type nonionic surfactant such as ether is preferred. These surfactants can be used alone or in combination of two or more.

工程(i)の処理を施す前のPVA成形体が繊維である場合は、PVA繊維として、PVA系重合体を水、有機溶媒または水と有機溶媒の混合溶媒に溶解した原液を、乾式紡糸、乾湿式紡糸、湿式紡糸などによって紡糸した繊維が好ましく用いられる。原液の調製に用いられる溶媒としては、例えば、水、ジメチルスルホキシド(以下「DMSO」と略記する)、ジメチルアセトアミド(以下「DMAc」と略記する)、ジメチルホルムアミド(以下「DMF」と略記する)、N−メチルピロリドン(以下「NMP」と略記する)などの極性溶媒、グリセリン、エチレングリコールなどの多価アルコール類などを挙げることができ、これらの溶媒は単独でまたは2種以上を混合して用いることができる。また、原液は、ロダン塩、塩化リチウム、塩化カルシウム、塩化亜鉛などの膨潤性金属塩の1種または2種以上を含有していてもよい。そのうちでも、原液の調製に好適な溶媒は、水、DMSO、水とDMSOの混合溶媒、水とグリセリンの混合溶媒などであり、これらの溶媒は、環境への負荷が小さく、回収が容易である。
PVAを溶解した紡糸原液を紡糸ノズルから吐出した後、乾燥するかまたは貧溶媒中に通すことによって、PVA系重合体よりなる繊維を得ることができる。
When the PVA molded body before the treatment of the step (i) is a fiber, as a PVA fiber, a dry solution obtained by dissolving a PVA polymer in water, an organic solvent or a mixed solvent of water and an organic solvent, Fibers spun by dry and wet spinning, wet spinning, etc. are preferably used. Examples of the solvent used for preparing the stock solution include water, dimethyl sulfoxide (hereinafter abbreviated as “DMSO”), dimethylacetamide (hereinafter abbreviated as “DMAc”), dimethylformamide (hereinafter abbreviated as “DMF”), Examples thereof include polar solvents such as N-methylpyrrolidone (hereinafter abbreviated as “NMP”), polyhydric alcohols such as glycerin and ethylene glycol, and these solvents are used alone or in admixture of two or more. be able to. The stock solution may contain one or more swellable metal salts such as rhodan salts, lithium chloride, calcium chloride, and zinc chloride. Among them, suitable solvents for the preparation of the stock solution are water, DMSO, a mixed solvent of water and DMSO, a mixed solvent of water and glycerin, etc., and these solvents have a low environmental load and are easy to recover. .
A fiber made of a PVA polymer can be obtained by discharging a spinning stock solution in which PVA is dissolved from a spinning nozzle and then drying or passing it through a poor solvent.

本発明の製造方法では、工程(i)において、予め製造したPVA成形体を、紫外線の照射下において350〜700nmの波長域に蛍光を発する金属化合物(以下これを単に「蛍光発色性金属化合物」ということがある)(F)を形成する金属イオン(A)を含む液(Ia)に浸漬するか、または前記金属イオン(A)と賦活剤イオン(C)を含む液(Ib)に浸漬する。   In the production method of the present invention, in the step (i), the PVA molded body produced in advance is converted into a metal compound that emits fluorescence in the wavelength range of 350 to 700 nm under ultraviolet irradiation (hereinafter simply referred to as “fluorescent coloring metal compound”). It may be immersed in a liquid (Ia) containing the metal ion (A) forming (F) or in a liquid (Ib) containing the metal ion (A) and the activator ion (C). .

工程(i)で用いる液(Ia)および液(Ib)は、工程(i)の浸漬処理時に、PVA成形体内への金属イオン(A)の浸入、またはPVA成形体内への金属イオン(A)と賦活剤イオン(C)の浸入が円滑に行われるように、PVA成形体の膨潤作用を有する溶媒を用いて調製するのがよい。かかる点から、液(Ia)および液(Ib)は、水単独、PVA系重合体を膨潤する有機溶媒、水とPVA系重合体を膨潤する有機溶媒の混合溶媒、塩類などの膨潤促進剤を添加した前記した溶媒を用いて調製することが好ましい。その場合のPVA系重合体を膨潤する有機溶媒としてはメタノール、エタノールなどのアルコール類、DMSO、DMAc、DMF、NMPなどを挙げることができる。   The liquid (Ia) and liquid (Ib) used in the step (i) are the metal ions (A) entering the PVA molded body or the metal ions (A) entering the PVA molded body during the immersion treatment in the step (i). It is good to prepare using the solvent which has the swelling effect | action of a PVA molded object so that permeation of an activator ion (C) may be performed smoothly. From this point, the liquid (Ia) and the liquid (Ib) are water alone, an organic solvent that swells the PVA polymer, a mixed solvent of water and an organic solvent that swells the PVA polymer, and a swelling accelerator such as salts. It is preferable to prepare using the added solvent. In this case, examples of the organic solvent that swells the PVA polymer include alcohols such as methanol and ethanol, DMSO, DMAc, DMF, and NMP.

工程(i)の処理を行う際の液(Ia)または液(Ib)は、PVA成形体を形成するPVA系重合体に対する膨潤率が、20〜300質量%であることが好ましく、30〜250質量%であることがより好ましい。膨潤率が低すぎると、PVA成形体への金属イオン(A)、または金属イオン(A)と賦活剤イオン(C)の浸入が円滑に行われなくなって、PVA系樹脂成形体内に蛍光発色性金属化合物(F)よりなる蛍光体微粒子が形成されにくくなる。一方膨潤率が高すぎると、PVA成形体が液(Ia)または液(Ib)に溶解するなどして工程通過性が不良になり、はなはだしい場合には、PVA成形体が液(Ia)または液(Ib)中に完全に溶解してしまい、蛍光発色性PVA系樹脂成形体が得られなくなる。
ここで、液(溶媒)[工程(i)で用いる(Ia)または液(Ib)、以下で説明する工程(ii)および工程(iii)で用いる液(II)、液(IIIa)または液(IIIb)]によるPVA系重合体の膨潤率とは、以下の方法で求められる膨潤率をいう。
The liquid (Ia) or liquid (Ib) used in the treatment of the step (i) preferably has a swelling ratio of 20 to 300% by mass with respect to the PVA polymer forming the PVA molded body, and is preferably 30 to 250%. More preferably, it is mass%. If the swelling rate is too low, the metal ions (A) or the metal ions (A) and the activator ions (C) are not smoothly infiltrated into the PVA molded body, and the fluorescent color developing property in the PVA resin molded body The phosphor fine particles made of the metal compound (F) are hardly formed. On the other hand, if the swelling rate is too high, the PVA molded product is dissolved in the liquid (Ia) or the liquid (Ib), resulting in poor process passability. In extreme cases, the PVA molded product is in the liquid (Ia) or liquid It completely dissolves in (Ib), and a fluorescent coloring PVA resin molded product cannot be obtained.
Here, liquid (solvent) [(Ia) or liquid (Ib) used in step (i), liquid (II), liquid (IIIa) or liquid (II) used in step (ii) and step (iii) described below The swelling ratio of the PVA polymer according to IIIb)] refers to the swelling ratio obtained by the following method.

[液(溶媒)によるPVA系重合体の膨潤率]
PVA成形体の製造に用いられるPVA系重合体(平均粒径0.5mmの粉末)W1(g)を、100gの液(溶媒)に入れて、温度25℃で24時間放置した後、5A(分析用)の濾紙を用いて濾過し、濾過して得られたPVA系重合体粉末を上下2枚のティッシュペーパーの間に挟んで軽く押圧することで粉末の表面に付着していた液を取り除いた後にその質量(W2)(g)を測定して、下記の数式から液(溶媒)によるPVA系重合体の膨潤率を求める。

膨潤率(質量%)={(W2−W1)/W1}×100 (1)
[Swelling ratio of PVA polymer by liquid (solvent)]
A PVA polymer (powder having an average particle size of 0.5 mm) W 1 (g) used for the production of a PVA molded body was placed in 100 g of a liquid (solvent) and allowed to stand at a temperature of 25 ° C. for 24 hours. Filter using the filter paper (for analysis), sandwich the PVA polymer powder obtained by filtration between the upper and lower tissue papers, and press lightly to remove the liquid adhering to the surface of the powder. After removing, the mass (W 2 ) (g) is measured, and the swelling ratio of the PVA polymer by the liquid (solvent) is determined from the following formula.

Swelling ratio (% by mass) = {(W 2 −W 1 ) / W 1 } × 100 (1)

液(Ia)および液(Ib)における金属イオン(A)生成化合物の含有量、すなわち液(Ia)および液(Ib)中に金属イオン(A)を形成させるために液に添加される化合物の含有量は、液(Ia)または液(Ib)の1L(当該化合物などを添加した後の液1L)に対して、0.1〜120gであることが好ましく、1〜100gであることがより好ましく、1〜95gであることが更に好ましい。
金属イオン(A)生成化合物の含有量ではなくて、金属イオン(A)自体の含有量でいうと、液(Ia)および液(Ib)の1Lに対して、金属イオン(A)を0.05〜50gの割合で含有することが好ましく、0.5〜45gの割合で含有することがより好ましく、1〜40gの割合で含有することが更に好ましい。
液(Ia)および液(Ib)における金属イオン(A)[金属イオン(A)生成化合物]の含有量が少なすぎると、所望の蛍光発色強度を有するPVA系樹脂成形体が得られにくくなり、一方金属イオン(A)[金属イオン(A)生成化合物]の含有量が多すぎると、工程(i)の浸漬処理時にPVA成形体を液(Ia)または液(Ib)中に浸漬させるための装置や、浸漬させながら移送する装置などへの金属イオン(A)生成化合物の付着などが生じて工程性不良などを生じ易くなる。
Content of the metal ion (A) -forming compound in the liquid (Ia) and the liquid (Ib), that is, the amount of the compound added to the liquid to form the metal ion (A) in the liquid (Ia) and the liquid (Ib). The content is preferably 0.1 to 120 g, more preferably 1 to 100 g, with respect to 1 L of liquid (Ia) or liquid (Ib) (1 L of liquid after addition of the compound or the like). Preferably, it is 1-95g.
In terms of the content of the metal ion (A) itself, not the content of the metal ion (A) -forming compound, the metal ion (A) is reduced to 0. 1 L with respect to 1 L of the liquid (Ia) and the liquid (Ib). It is preferable to contain in the ratio of 05-50g, It is more preferable to contain in the ratio of 0.5-45g, It is still more preferable to contain in the ratio of 1-40g.
If the content of the metal ion (A) [metal ion (A) generating compound] in the liquid (Ia) and the liquid (Ib) is too small, it becomes difficult to obtain a PVA-based resin molded article having a desired fluorescence coloring intensity, On the other hand, if the content of the metal ion (A) [metal ion (A) generating compound] is too large, the PVA molded product is immersed in the liquid (Ia) or the liquid (Ib) during the immersion treatment in the step (i). The adhesion of the metal ion (A) -generating compound to the apparatus or the apparatus to be transferred while being immersed is likely to cause poor processability.

液(Ia)および液(Ib)中に添加含有させる金属イオン(A)生成化合物としては、次の工程(ii)においてイオン(B)と反応して350〜700nmの波長域に蛍光を発する金属化合物(F)を形成する金属イオン(A)部分を含む化合物であればいずれでもよく、特に周期表の12族の金属の塩、特に亜鉛の有機酸塩、亜鉛の無機酸塩、カドミウムの有機酸塩、カドミウムの無機酸塩が好ましく用いられる。より具体的には、酢酸亜鉛、ギ酸亜鉛、クエン酸亜鉛、安息香酸亜鉛、硫酸亜鉛、硝酸亜鉛、塩化亜鉛、臭化亜鉛などの亜鉛塩、酢酸カドミウム、ギ酸カドミウム、クエン酸カドミウム、安息香酸カドミウム、硫酸カドミウム、硝酸カドミウム、塩化カドミウム、臭化カドミウムなどのカドミウム塩を挙げることができる。
液(Ia)および液(Ib)には、前記した金属イオン(A)生成化合物の1種類のみを添加してもよいし、または2種類以上を添加してもよい。
そのうちでも、液(Ia)および液(Ib)中への溶解度が高い点から、亜鉛またはカドミウムの酢酸塩、硝酸塩、硫酸塩、塩化物が好ましく用いられ、酢酸亜鉛、硝酸亜鉛、硫酸亜鉛および/または塩化亜鉛がより好ましく用いられる。
The metal ion (A) generating compound added and contained in the liquid (Ia) and the liquid (Ib) is a metal that reacts with the ion (B) in the next step (ii) and emits fluorescence in the wavelength range of 350 to 700 nm. Any compound containing a metal ion (A) moiety that forms the compound (F) may be used, in particular, a salt of a group 12 metal in the periodic table, particularly an organic acid salt of zinc, an inorganic acid salt of zinc, an organic acid of cadmium. Acid salts and inorganic acid salts of cadmium are preferably used. More specifically, zinc acetate, zinc formate, zinc citrate, zinc benzoate, zinc sulfate, zinc nitrate, zinc chloride, zinc bromide and other zinc salts, cadmium acetate, cadmium formate, cadmium citrate, cadmium benzoate And cadmium salts such as cadmium sulfate, cadmium nitrate, cadmium chloride, and cadmium bromide.
In the liquid (Ia) and the liquid (Ib), only one kind of the above-described metal ion (A) generating compound may be added, or two or more kinds may be added.
Among these, zinc or cadmium acetate, nitrate, sulfate, and chloride are preferably used because of their high solubility in the liquid (Ia) and liquid (Ib), and zinc acetate, zinc nitrate, zinc sulfate, and / or Alternatively, zinc chloride is more preferably used.

また、液(Ib)における賦活剤イオン(C)生成化合物の含有量、すなわち液(Ib)に添加して液中に賦活剤イオン(C)を形成させるのに用いられる化合物の含有量は、液(Ib)の1L(当該化合物などを添加した後の液1L)に対して、0.1〜120gであることが好ましく、1〜100gであることがより好ましく、1〜95gであることが更に好ましい。
賦活剤イオン(C)生成化合物の含有量ではなくて、賦活剤イオン(C)自体の含有量でいうと、液(Ib)の1Lに対して、賦活剤イオン(C)を0.05〜50gの割合で含有することが好ましく、0.5〜45gの割合で含有することがより好ましく、1〜40gの割合で含有することが更に好ましい。
液(Ib)における賦活剤イオン(C)[賦活剤イオン(C)生成化合物]の含有量が少なすぎると、賦活剤イオン(C)による賦活作用が得られにくくなり、一方賦活剤イオン(C)[賦活剤イオン(C)生成化合物]の含有量が多すぎると、工程(i)の浸漬処理時にPVA成形体を液(Ib)中に浸漬させるための装置や、浸漬させながら移送する装置などへの賦活剤イオン(C)生成化合物の付着などが生じて工程性不良などを生じ易くなる。
Further, the content of the activator ion (C) -producing compound in the liquid (Ib), that is, the content of the compound used to form the activator ion (C) in the liquid by adding to the liquid (Ib) is: It is preferably 0.1 to 120 g, more preferably 1 to 100 g, and more preferably 1 to 95 g based on 1 L of liquid (Ib) (1 L of liquid after addition of the compound or the like). Further preferred.
In terms of the content of the activator ion (C) itself, not the content of the activator ion (C) generating compound, the activator ion (C) is 0.05 to 1 L per 1 L of the liquid (Ib). It is preferable to contain in the ratio of 50g, It is more preferable to contain in the ratio of 0.5-45g, It is still more preferable to contain in the ratio of 1-40g.
If the content of the activator ion (C) [activator ion (C) generating compound] in the liquid (Ib) is too small, the activator ion (C) is less likely to provide an activator, while the activator ion (C ) When the content of the [activator ion (C) generating compound] is too large, a device for immersing the PVA molded body in the liquid (Ib) during the immersion treatment in the step (i), or a device for transferring while immersed. The activator ion (C) -generating compound adheres to the surface of the substrate and the like, and poor processability is likely to occur.

液(Ib)中に添加・含有させる賦活剤イオン(C)生成化合物としては、350〜700nmの波長域に蛍光を発する金属化合物(F)に対する賦活作用を有するイオンを液(Ib)中に生成する化合物であればいずれでもよく、例えば、銅(Cu)、マンガン(Mn)、銀(Ag)、金(Au)などの金属の有機酸塩や無機酸塩、ユーロピウム(Eu)やイッテルビウム(Yb)をはじめとする希土類元素(金属)の有機酸塩、無機酸塩、酸化物などを挙げることができる。より具体的には、例えば、酢酸銅、ギ酸銅、塩化第一銅、塩化第二銅、硝酸銅、硫酸銅などの銅の有機酸塩または無機酸塩、酢酸マンガン、塩化マンガン、硝酸マンガン、硫酸マンガン、過酸化マンガンなどのマンガン化合物、塩化第一銀、塩化第二銀、硝酸銀、硫酸銀などの銀化合物(銀塩)、塩化金、塩化金酸などの金化合物、ユーロピウム化合物、イッテルビウム化合物などを挙げることができる。
液(Ib)中には、前記した賦活剤イオン(C)生成化合物の1種のみを添加してもよいし、または2種以上を添加してもよい。
As an activator ion (C) generating compound to be added and contained in the liquid (Ib), an ion having an activating effect on the metal compound (F) emitting fluorescence in the wavelength range of 350 to 700 nm is generated in the liquid (Ib). Any compound may be used, for example, organic acid salts and inorganic acid salts of metals such as copper (Cu), manganese (Mn), silver (Ag), and gold (Au), europium (Eu), ytterbium (Yb ) And other organic acid salts, inorganic acid salts and oxides of rare earth elements (metals). More specifically, for example, copper organic acid salt or inorganic acid salt such as copper acetate, copper formate, cuprous chloride, cupric chloride, copper nitrate, copper sulfate, manganese acetate, manganese chloride, manganese nitrate, Manganese compounds such as manganese sulfate and manganese peroxide, silver compounds such as silver chloride, silver chloride, silver nitrate and silver sulfate (silver salts), gold compounds such as gold chloride and chloroauric acid, europium compounds and ytterbium compounds And so on.
In liquid (Ib), only 1 type of an activator ion (C) production | generation compound mentioned above may be added, or 2 or more types may be added.

PVA成形体を液(Ia)または液(Ib)に浸漬する工程(i)の処理は、バッチ式で行ってもよいし、またはPVA成形体を液(Ia)および液(Ib)中に浸漬しながら連続的に通過させる連続式で行ってもよい。
また、PVA成形体の全体を液(Ia)または液(Ib)中に完全に浸漬させて、PVA成形体の全周囲からPVA成形体内に金属イオン(A)、または金属イオン(A)と賦活剤イオン(C)を浸入させる方法が好ましく採用されるが、場合によってはPVA成形体の一部のみを液(Ia)または液(Ib)中に浸漬させて、浸漬したPVA成形体部分の内部にのみ金属イオン(A)、または金属イオン(A)と賦活剤イオン(C)を浸入させてもよい。後者の方法を採用した場合には、PVA成形体の一部の内部のみに蛍光体微粒子が存在する蛍光発色性PVA系樹脂成形体が形成される。
The treatment of the step (i) in which the PVA molded body is immersed in the liquid (Ia) or the liquid (Ib) may be performed in a batch manner, or the PVA molded body is immersed in the liquid (Ia) and the liquid (Ib). However, you may carry out by the continuous type which lets it pass continuously.
Further, the entire PVA molded body is completely immersed in the liquid (Ia) or liquid (Ib), and activated with metal ions (A) or metal ions (A) from the entire periphery of the PVA molded body into the PVA molded body. The method of infiltrating the agent ion (C) is preferably employed, but in some cases, only a part of the PVA molded body is immersed in the liquid (Ia) or the liquid (Ib), and the inside of the immersed PVA molded body part Only the metal ion (A) or the metal ion (A) and the activator ion (C) may be allowed to enter. When the latter method is employed, a fluorescent color-forming PVA-based resin molded body in which phosphor fine particles are present only in a part of the PVA molded body is formed.

工程(i)の浸漬処理を行う際の液(Ia)および液(Ib)の温度は、一般的に10〜70℃、特に20〜50℃であることが、PVA成形体への金属イオン(A)の浸入効率、金属イオン(A)と賦活剤イオン(C)の浸入効率、PVA成形体の工程通過性などの点から好ましい。
浸漬温度が低すぎると、PVA成形体内への金属イオン(A)の浸漬、または金属イオン(A)と賦活剤イオン(C)の浸漬が低減したり、浸漬に時間がかかるようになったり、塩が析出し易くなる。一方、浸漬温度が高すぎると、PVA成形体が部分的に溶解することがある。
また、PVA成形体を液(Ia)または液(Ib)へのPVA成形体の浸漬時間は、PVA成形体の種類、サイズ、厚さ、形状、液の温度などに応じて調整し得るが、一般的には10秒以上、更には60秒以上、特に300〜900秒であることが好ましい。
The temperature of the liquid (Ia) and the liquid (Ib) at the time of the immersion treatment in the step (i) is generally 10 to 70 ° C., particularly 20 to 50 ° C. It is preferable from the viewpoints of the penetration efficiency of A), the penetration efficiency of metal ions (A) and activator ions (C), the process passability of the PVA molded article, and the like.
If the immersion temperature is too low, the immersion of the metal ions (A) in the PVA molded body, or the immersion of the metal ions (A) and the activator ions (C) is reduced, or the immersion takes time. Salt tends to precipitate. On the other hand, when the immersion temperature is too high, the PVA molded body may be partially dissolved.
Further, the immersion time of the PVA molded body in the liquid (Ia) or liquid (Ib) can be adjusted according to the type, size, thickness, shape, temperature of the liquid, etc. of the PVA molded body, Generally, it is preferably 10 seconds or longer, more preferably 60 seconds or longer, and particularly preferably 300 to 900 seconds.

次いで、工程(i)の浸漬処理を行ったPVA成形体を、工程(ii)において、金属イオン(A)と反応して紫外線の照射下において350〜700nmの波長域に蛍光を発する金属化合物(F)を形成するイオン(B)含む液(II)に浸漬して、PVA成形体内に、紫外線の照射下において350〜700nmの波長域に蛍光を発する金属化合物(F)よりなる平均粒径が50nm以下の蛍光体微粒子を生成させる。
工程(ii)の浸漬処理は、工程(i)の浸漬処理を行ったPVA成形体を、水、アルコールなどを用いて洗浄してから行ってもよいし、または洗浄せずにその間々直接行ってもよく、そのうちでも洗浄せずに直接行う方がPVA成形体内に蛍光体微粒子を円滑に形成させ得る点から好ましい。
Next, the PVA molded body subjected to the immersion treatment in the step (i) is reacted with the metal ion (A) in the step (ii) and emits fluorescence in a wavelength range of 350 to 700 nm under irradiation of ultraviolet rays ( The average particle size of the metal compound (F) that immerses in the liquid (II) containing the ions (B) forming F) and emits fluorescence in the wavelength region of 350 to 700 nm under irradiation of ultraviolet rays in the PVA molded body. Phosphor fine particles having a size of 50 nm or less are generated.
The immersion treatment in the step (ii) may be performed after the PVA molded body subjected to the immersion treatment in the step (i) is washed with water, alcohol or the like, or directly during the washing without washing. Of these, it is preferable to perform directly without washing, since phosphor fine particles can be smoothly formed in the PVA molded body.

工程(ii)で用いる液(II)は、工程(ii)の浸漬処理時に、PVA成形体内へのイオン(B)の浸入が円滑に行われるように、PVA成形体の膨潤作用を有する溶媒を用いて調製するのがよい。かかる点から、液(II)は、工程(i)で用いる液(Ia)または液(Ib)と同様に、水単独、PVA系重合体を膨潤する有機溶媒、水とPVA系重合体を膨潤する有機溶媒の混合溶媒、塩類などの膨潤促進剤を添加した前記した溶媒を用いて調製することが好ましく、PVA系重合体を膨潤する有機溶媒としてはメタノール、エタノールなどのアルコール類、DMSO、DMAc、DMF、NMPなどを挙げることができる。
工程(ii)で用いる液(II)は、工程(i)で用いる液(Ia)または(Ib)と同様に、PVA成形体を形成するPVA系重合体に対する膨潤率が20〜300質量%であることが好ましく、30〜250質量%であることがより好ましい。膨潤率が低すぎると、PVA成形体へのイオン(B)の浸入が円滑に行われなくなって、PVA系樹脂成形体内に蛍光発色性金属化合物(F)よりなる蛍光体微粒子が形成されにくくなる。一方膨潤率が高すぎると、PVA成形体が液(II)に溶解するなどして工程通過性が不良になり、はなはだしい場合には、PVA成形体が液(II)に完全に溶解してしまい、蛍光発色性PVA系樹脂成形体が得られなくなる。
The liquid (II) used in the step (ii) is a solvent having a swelling action of the PVA molded body so that the ions (B) are smoothly infiltrated into the PVA molded body during the immersion treatment in the step (ii). It is good to prepare using. From this point, the liquid (II) swells water alone, an organic solvent that swells the PVA polymer, water and the PVA polymer, like the liquid (Ia) or liquid (Ib) used in the step (i). It is preferable to prepare a mixed solvent of organic solvents to be used and the above-mentioned solvent to which a swelling accelerator such as salts is added. Examples of the organic solvent to swell the PVA polymer include alcohols such as methanol and ethanol, DMSO, and DMAc. , DMF, NMP and the like.
Like the liquid (Ia) or (Ib) used in the step (i), the liquid (II) used in the step (ii) has a swelling ratio of 20 to 300% by mass with respect to the PVA polymer forming the PVA molded body. It is preferable that it is 30 to 250% by mass. If the swelling rate is too low, the infiltration of ions (B) into the PVA molded article will not be carried out smoothly, and it will be difficult to form phosphor fine particles composed of the fluorescent coloring metal compound (F) in the PVA resin molded article. . On the other hand, if the swelling rate is too high, the PVA molded product will be dissolved in the liquid (II) and the process passability will be poor, and in extreme cases, the PVA molded product will be completely dissolved in the liquid (II). As a result, a fluorescent coloring PVA resin molded article cannot be obtained.

液(II)におけるイオン(B)生成化合物の含有量、すなわち液(II)中にイオン(B)を形成させるために液に添加される化合物の含有量は、液(II)の1L(当該化合物などを添加した後の液1L)に対して、1〜120gであることが好ましく、1〜100gであることがより好ましく、1〜95gであることが更に好ましい。
イオン(B)生成化合物の含有量ではなくて、イオン(B)自体の含有量でいうと、液(II)の1Lに対して、イオン(B)を0.5〜50gの割合で含有することが好ましく、1〜45gの割合で含有することがより好ましく、2〜40gの割合で含有することが更に好ましい。
液(II)におけるイオン(B)[イオン(B)生成化合物]の含有量が少なすぎると、所望の蛍光発色強度を有するPVA系樹脂成形体が得られにくくなり、一方イオン(B)[イオン(B)生成化合物]の含有量が多すぎると、工程(ii)の浸漬処理時にPVA成形体を液(II)中に浸漬させるための装置や、浸漬させながら移送する装置などへのイオン(B)生成化合物の付着などが生じて工程性不良などを生じ易くなり、更に回収系への負担が大きくなったり、臭気の発生が強くなり易い。
The content of the ion (B) -forming compound in the liquid (II), that is, the content of the compound added to the liquid to form the ion (B) in the liquid (II) is 1 L of the liquid (II) The amount is preferably 1 to 120 g, more preferably 1 to 100 g, and still more preferably 1 to 95 g based on 1 L of the liquid after the addition of the compound.
In terms of the content of the ion (B) rather than the content of the ion (B) -forming compound, the ion (B) is contained at a ratio of 0.5 to 50 g with respect to 1 L of the liquid (II). Preferably, it is contained in a proportion of 1 to 45 g, more preferably 2 to 40 g.
If the content of the ion (B) [ion (B) generating compound] in the liquid (II) is too small, it becomes difficult to obtain a PVA-based resin molded product having the desired fluorescence intensity, while the ion (B) [ion If the content of (B) product compound] is too high, ions (such as a device for immersing the PVA molded body in the liquid (II) during the immersion treatment in step (ii) or a device for transferring while immersed ( B) The product compound is likely to adhere, resulting in poor processability. Further, the burden on the recovery system is increased, and the generation of odor is likely to increase.

また、液(Ia)および液(Ib)における金属イオン(A)生成化合物の含有量ならびに液(II)におけるイオン(B)生成化合物の含有量が共に少ないと、所望の蛍光発色強度を有するPVA系樹脂成形体が得られにくくなるので、液(Ia)および液(Ib)における金属イオン(A)生成化合物の含有量ならびに液(II)におけるイオン(B)生成化合物の含有量のいずれかは、5g/L以上であることが好ましく、7g/L以上であることがより好ましく、10g/L以上であることが更に好ましい。   Further, when both the content of the metal ion (A) generating compound in the liquid (Ia) and the liquid (Ib) and the content of the ion (B) generating compound in the liquid (II) are small, PVA having a desired fluorescence coloring intensity Since it is difficult to obtain a resin-based resin molded body, either the content of the metal ion (A) generating compound in the liquid (Ia) and the liquid (Ib) or the content of the ion (B) generating compound in the liquid (II) It is preferably 5 g / L or more, more preferably 7 g / L or more, and still more preferably 10 g / L or more.

液(II)中に添加・含有させるイオン(B)生成化合物としては、工程(i)の浸漬処理によってPVA成形体内に既に浸入(含浸)している金属イオン(A)と反応して、350〜700nmの波長域に蛍光を発する金属化合物(F)よりなる蛍光体微粒子をPVA成形体内に形成するイオン(B)部分を含む化合物であればいずれでもよく、特に周期表の16族の元素を含む化合物が好ましく用いられ、特に硫黄を含む化合物、すなわち硫黄イオンまたは硫化物イオンを液(II)中に生成する硫黄含有化合物が好ましく用いられる。イオン(B)生成化合物として好ましく用いられる硫黄含有化合物の具体例としては、硫化ナトリウム、第二チオン酸ナトリウム、チオ硫酸ナトリウム、亜硫酸水素ナトリウム、ピロ硫酸ナトリウム、硫化水素、チオ尿素、チオアセトアミドなどを挙げることができ、これらの化合物は単独で使用しても、または2種以上を併用してもよい。そのうちでも、コスト、入手のし易さ、低腐食性などの点から、硫化ナトリウムがより好ましく用いられる。   As an ion (B) generating compound to be added / contained in the liquid (II), it reacts with the metal ion (A) already infiltrated (impregnated) into the PVA molded body by the immersion treatment in the step (i), and 350 Any compound may be used as long as it is a compound containing an ion (B) portion that forms phosphor fine particles made of a metal compound (F) that emits fluorescence in a wavelength range of ˜700 nm in a PVA molded body, and particularly, a group 16 element in the periodic table is selected. A compound containing sulfur is preferably used, and in particular, a compound containing sulfur, that is, a sulfur-containing compound that generates sulfur ions or sulfide ions in the liquid (II) is preferably used. Specific examples of the sulfur-containing compound preferably used as the ion (B) -generating compound include sodium sulfide, sodium dithionate, sodium thiosulfate, sodium hydrogen sulfite, sodium pyrosulfate, hydrogen sulfide, thiourea, thioacetamide, and the like. These compounds may be used alone or in combination of two or more. Among these, sodium sulfide is more preferably used from the viewpoints of cost, availability, and low corrosivity.

PVA成形体を液(II)に浸漬する工程(ii)の処理は、バッチ式で行ってもよいし、または工程(i)の処理を終えたPVA成形体を液(II)中に浸漬させた状態で連続的に通過させる連続式で行ってもよい。
また、PVA成形体の全体を液(II)中に完全に浸漬させて、PVA成形体の全周囲からPVA成形体内にイオン(B)を浸入させることが望ましいが、場合によっては、特に工程(i)をPVA成形体の一部のみを液(Ia)または液(Ib)中に浸漬させ処理した場合は、工程(i)で浸漬した箇所のみを液(II)中に浸漬して、浸漬したPVA成形体部分の内部にのみ蛍光発色性金属化合物(F)よりなる蛍光体微粒子を形成させてもよい。
The treatment in the step (ii) of immersing the PVA molded body in the liquid (II) may be performed in a batch manner, or the PVA molded body that has been processed in the step (i) is immersed in the liquid (II). You may carry out by the continuous type which passes continuously in the state.
In addition, it is desirable to completely immerse the entire PVA molded body in the liquid (II) and allow the ions (B) to enter the PVA molded body from the entire periphery of the PVA molded body. When i) is processed by immersing only a part of the PVA molded body in the liquid (Ia) or liquid (Ib), only the part immersed in the step (i) is immersed in the liquid (II) The phosphor fine particles made of the fluorescent coloring metal compound (F) may be formed only inside the PVA molded body portion.

工程(i)でPVA成形体内に含浸された金属イオン(A)とイオン(B)(特に硫黄イオン)との反応は、一般的には非常に速やかに行われるため、工程(ii)の浸漬時間に特に制限はないが、PVA成形体の内部にイオン(B)を十分に浸入させるためには、工程(ii)における液(II)中への浸漬時間は5秒以上であることが好ましく、30秒以上であることがより好ましく、150〜600秒であることが更に好ましい。
また、工程(ii)の浸漬処理を行う際の液(II)の温度は、一般的に10〜70℃、特に20〜50℃であることが、PVA成形体へのイオン(B)の浸入効率、PVA成形体の工程通過性などの点から好ましい。
Since the reaction between the metal ions (A) impregnated in the PVA molded body in step (i) and the ions (B) (especially sulfur ions) is generally performed very quickly, the immersion in step (ii) Although there is no particular limitation on the time, in order to sufficiently infiltrate the ions (B) into the PVA molded body, the immersion time in the liquid (II) in the step (ii) is preferably 5 seconds or more. , More preferably 30 seconds or more, and still more preferably 150 to 600 seconds.
Further, the temperature of the liquid (II) at the time of the immersion treatment in the step (ii) is generally 10 to 70 ° C., particularly 20 to 50 ° C., so that the ions (B) enter the PVA molded body. It is preferable from the viewpoints of efficiency and process passability of the PVA compact.

本発明においては、工程(i)の浸漬処理を1回だけ行った後に工程(ii)の浸漬処理を1回だけ行って次の工程(iii)(熟成処理)を行ってもよいし、または工程(i)の浸漬処理と工程(ii)の浸漬処理を交互に複数回(例えば2回、3回、4回、5回、それ以上)にわたって繰り返して行った後に次の工程(iii)(熟成処理)を行ってもよい。
工程(i)と工程(ii)を交互に複数回にわたって繰り返すことで、PVA成形体内における蛍光体微粒子の含有量を高くすることができる。
また、本発明では、工程(i)の浸漬処理および工程(ii)の浸漬処理のいずれか一方または両方を、超音波をかけないで行ってもよいし、または超音波をかけながら行ってもよく、超音波をかけながら行うとPVA成形体表面への蛍光体微粒子の付着が減り、外観の良好な蛍光発色性PVA系樹脂成形体を得ることができる。
In the present invention, after the immersion treatment in step (i) is performed only once, the immersion treatment in step (ii) may be performed only once to perform the next step (iii) (aging treatment), or After the immersion treatment in step (i) and the immersion treatment in step (ii) are alternately repeated a plurality of times (for example, 2, 3, 4, 5 or more times), the next step (iii) ( Aging treatment) may be performed.
By repeating step (i) and step (ii) alternately a plurality of times, the content of the phosphor fine particles in the PVA molded body can be increased.
In the present invention, either or both of the immersion treatment in step (i) and the immersion treatment in step (ii) may be performed without applying ultrasonic waves, or may be performed while applying ultrasonic waves. When it is carried out while applying ultrasonic waves, the adhesion of phosphor fine particles to the surface of the PVA molded body is reduced, and a fluorescent color-forming PVA resin molded body having a good appearance can be obtained.

上記した工程(i)および工程(ii)の浸漬処理を行うことで、PVA成形体の内部に、平均粒径が50nm以下の蛍光体微粒子が分散された状態で含有されている蛍光発色性PVA成形体が形成される。
さらに、本発明では、次の工程(iii)において、前記工程(ii)で得られた蛍光体微粒子を成形体内に含有するPVA成形体を、前記金属イオン(A)とイオン(B)を含む液(IIIa)に浸漬して熟成するか、または金属イオン(A)とイオン(B)と賦活剤イオン(C)を含む液(IIIb)に浸漬して熟成する。
工程(iii)の熟成処理は、工程(ii)で得られたPVA成形体を洗浄してPVA成形体の表面に付着している蛍光体微粒子などを除去した後に行ってもよいし、または工程(ii)で得られたPVA成形体に対して洗浄を行うことなく、工程(iii)の熟成処理をそのまま施してもよい。そのうちでも、洗浄を行わずに熟成処理を施すのが製造コストの点から好ましい。
Fluorescent coloring PVA containing phosphor fine particles having an average particle size of 50 nm or less dispersed in the PVA molded body by performing the immersion treatment in the above-described steps (i) and (ii) A molded body is formed.
Furthermore, in the present invention, in the next step (iii), the PVA molded body containing the phosphor fine particles obtained in the step (ii) in the molded body contains the metal ions (A) and ions (B). It is immersed in liquid (IIIa) and aged, or is immersed in liquid (IIIb) containing metal ions (A), ions (B) and activator ions (C).
The aging treatment in the step (iii) may be performed after washing the PVA molded body obtained in the step (ii) to remove the phosphor fine particles adhering to the surface of the PVA molded body, or the process The aging treatment in step (iii) may be performed as it is without washing the PVA molded body obtained in (ii). Among them, it is preferable from the viewpoint of production cost to perform the aging treatment without washing.

工程(iii)で用いる液(IIIa)または液(IIIb)は、金属イオン(A)として工程(i)で用いる液(Ia)または液(Ib)に含まれているのと同じ金属イオン(A)を含有し、イオン(B)として工程(ii)で用いる液(II)に含まれているのと同じイオン(B)を含有していることが望ましい。また、工程(iii)で用いる液(IIIb)は、賦活剤イオン(C)として、工程(i)で用いる液(Ib)に含まれているのと同じ賦活剤イオン(C)を含有していることが望ましい。そのようにすることによって、PVA成形体内に含まれる蛍光体微粒子が熟成され、それによる蛍光体微粒子の結晶性が向上して、蛍光体微粒子がより強い蛍光を発するようになる。   The liquid (IIIa) or liquid (IIIb) used in the step (iii) is the same metal ion (A) contained in the liquid (Ia) or liquid (Ib) used in the step (i) as the metal ion (A). It is desirable that the same ion (B) as that contained in the liquid (II) used in the step (ii) is contained as the ion (B). Further, the liquid (IIIb) used in the step (iii) contains the same activator ion (C) as that contained in the liquid (Ib) used in the step (i) as the activator ion (C). It is desirable. By doing so, the phosphor fine particles contained in the PVA molded body are aged, thereby improving the crystallinity of the phosphor fine particles, and the phosphor fine particles emit stronger fluorescence.

工程(iii)で用いる液(IIIa)および液(IIIb)は、工程(iii)の熟成処理に、PVA成形体内への金属イオン(A)、イオン(B)、賦活剤イオン(C)の浸入が円滑に行われるように、PVA成形体の膨潤作用を有する溶媒を用いて調製するのがよく、かかる点から、液(IIIa)および液(IIIb)は、水単独、PVA系重合体を膨潤する有機溶媒、水とPVA系重合体を膨潤する有機溶媒の混合溶媒、塩類などの膨潤促進剤を添加した前記した溶媒を用いて調製することが好ましく、PVA系重合体を膨潤する有機溶媒としてはメタノール、エタノールなどのアルコール類、DMSO、DMAc、DMF、NMPなどを挙げることができる。   The liquid (IIIa) and liquid (IIIb) used in the step (iii) are the ingress of metal ions (A), ions (B), and activator ions (C) into the PVA molded body in the aging treatment of the step (iii). Therefore, it is preferable to prepare a PVA molded body using a solvent having a swelling action so that the liquid (IIIa) and the liquid (IIIb) swell the water alone and the PVA polymer. It is preferable to prepare an organic solvent, a mixed solvent of water and an organic solvent that swells the PVA polymer, the above-described solvent to which a swelling accelerator such as salts is added, and an organic solvent that swells the PVA polymer. Can include alcohols such as methanol and ethanol, DMSO, DMAc, DMF, NMP and the like.

工程(iii)の処理を行う際の液(IIIa)または液(IIIb)は、工程(i)および工程(ii)と同様に、PVA成形体を形成するPVA系重合体に対する膨潤率が、20〜300質量%であることが好ましく、30〜250質量%であることがより好ましい。膨潤率が低すぎると、PVA成形体への金属イオン(A)、イオン(B)、賦活剤イオン(C)の浸入が円滑に行われなくなって、PVA系樹脂成形体内に含まれる蛍光発色性金属化合物(F)よりなる蛍光体微粒子の熟成処理、それに伴う結晶性の向上が不十分になり、蛍光体微粒子の蛍光発光強度が高くなりにくい。一方膨潤率が高すぎると、PVA成形体が液(IIIa)または液(IIIb)に溶解するなどして工程通過性が不良になり、はなはだしい場合には、PVA成形体が液(IIIa)または液(IIIb)中に溶解してしまい、蛍光発色性PVA系樹脂成形体が得られなくなる。   The liquid (IIIa) or the liquid (IIIb) at the time of performing the treatment of the step (iii) has a swelling ratio of 20 with respect to the PVA polymer forming the PVA molded body, as in the steps (i) and (ii). It is preferable that it is -300 mass%, and it is more preferable that it is 30-250 mass%. If the swelling rate is too low, the metal ions (A), ions (B), and activator ions (C) are not smoothly infiltrated into the PVA molded body, and the fluorescence coloring property contained in the PVA resin molded body The aging treatment of the phosphor fine particles made of the metal compound (F) and the accompanying improvement in crystallinity are insufficient, and the fluorescent emission intensity of the phosphor fine particles is difficult to increase. On the other hand, if the swelling rate is too high, the PVA molded product will be dissolved in the liquid (IIIa) or the liquid (IIIb), resulting in poor process passability. It dissolves in (IIIb), and a fluorescent coloring PVA resin molded article cannot be obtained.

液(IIIa)および液(IIIb)における金属イオン(A)生成化合物の含有量は、液(IIIa)または液(IIIb)の1L(当該化合物などを添加した後の液1L)に対して、0.1〜120gであることが好ましく、1〜100gであることがより好ましく、1〜95gであることが更に好ましい。
金属イオン(A)生成化合物の含有量ではなくて、金属イオン(A)自体の含有量でいうと、液(IIIa)および液(IIIb)の1Lに対して、金属イオン(A)を0.05〜50gの割合で含有することが好ましく、0.5〜45gの割合で含有することがより好ましく、1〜40gの割合で含有することが更に好ましい。
液(IIIa)および液(IIIb)における金属イオン(A)[金属イオン(A)生成化合物]の含有量が少なすぎると、PVA成形体内に含まれる蛍光体微粒子の熟成が不十分になり蛍光体微粒子が発する蛍光の強度が十分に高くならず、一方金属イオン(A)[金属イオン(A)生成化合物]の含有量が多すぎると、工程(iii)の熟成処理時にPVA成形体を液(IIIa)および液(IIIb)中に浸漬させるための装置や、浸漬させながら移送する装置などへの金属イオン(A)生成化合物の付着などが生じて工程性不良などを生じ易くなる。
The content of the metal ion (A) -forming compound in the liquid (IIIa) and the liquid (IIIb) is 0 with respect to 1 L of the liquid (IIIa) or the liquid (IIIb) (1 L of the liquid after the compound or the like is added). 0.1 to 120 g is preferable, 1 to 100 g is more preferable, and 1 to 95 g is still more preferable.
In terms of the content of the metal ion (A) itself, not the content of the metal ion (A) -forming compound, the metal ion (A) is reduced to 0.1% with respect to 1 L of the liquid (IIIa) and the liquid (IIIb). It is preferable to contain in the ratio of 05-50g, It is more preferable to contain in the ratio of 0.5-45g, It is still more preferable to contain in the ratio of 1-40g.
If the content of the metal ion (A) [metal ion (A) forming compound] in the liquid (IIIa) and the liquid (IIIb) is too small, the phosphor fine particles contained in the PVA molded body are not sufficiently aged, and the phosphor If the intensity of the fluorescence emitted by the fine particles is not sufficiently high while the content of the metal ion (A) [metal ion (A) -forming compound] is too large, the PVA molded body is removed during the aging treatment in step (iii) ( Adhesion of the metal ion (A) generating compound to an apparatus for immersing in IIIa) and liquid (IIIb), an apparatus for transferring while immersing, and the like are likely to cause poor processability.

液(IIIa)および液(IIIb)中に添加含有させる金属イオン(A)生成化合物としては、工程(i)に係る説明箇所に記載したのと同様に周期表の12族の金属の塩が用いられ、そのうちでも特に亜鉛の有機酸塩、亜鉛の無機酸塩、カドミウムの有機酸塩、カドミウムの無機酸塩が好ましく用いられる。それに該当する具体的な化合物の種類は、工程(i)の説明箇所に具体例として挙げた各種亜鉛塩およびカドミウム塩と同じである。
そのうちでも、液(IIIa)および液(IIIb)中への溶解度が高い点から、亜鉛またはカドミウムの酢酸塩、硝酸塩、硫酸塩、塩化物が好ましく用いられ、酢酸亜鉛、硝酸亜鉛、硫酸亜鉛および/または塩化亜鉛がより好ましく用いられる。
As the metal ion (A) -forming compound to be added and contained in the liquid (IIIa) and the liquid (IIIb), the group 12 metal salts in the periodic table are used in the same manner as described in the explanation of the step (i). Among them, in particular, an organic acid salt of zinc, an inorganic acid salt of zinc, an organic acid salt of cadmium, and an inorganic acid salt of cadmium are preferably used. The kind of the specific compound corresponding to it is the same as the various zinc salts and cadmium salts given as specific examples in the explanation of step (i).
Among these, zinc or cadmium acetate, nitrate, sulfate, and chloride are preferably used because of their high solubility in the liquid (IIIa) and liquid (IIIb), and zinc acetate, zinc nitrate, zinc sulfate and / or Alternatively, zinc chloride is more preferably used.

液(IIIa)および液(IIIb)におけるイオン(B)生成化合物の含有量は、液(IIIa)または液(IIIb)の1L(当該化合物などを添加した後の液1L)に対して、0.1〜120gであることが好ましく、1〜100gであることがより好ましく、1〜95gであることが更に好ましい。
イオン(B)生成化合物の含有量ではなくて、イオン(B)自体の含有量でいうと、液(IIIa)および液(IIIb)の1Lに対して、イオン(B)を0.05〜50gの割合で含有することが好ましく、0.5〜45gの割合で含有することがより好ましく、1〜40gの割合で含有することが更に好ましい。
液(IIIa)および液(IIIb)におけるイオン(B)[イオン(B)生成化合物]の含有量が少なすぎると、PVA成形体内に含まれる蛍光体微粒子の熟成が不十分になり蛍光体微粒子が発する蛍光の強度が十分に高くならず、一方イオン(B)[イオン(B)生成化合物]の含有量が多すぎると、工程(iii)の熟成処理時にPVA成形体を液(IIIa)および液(IIIb)中に浸漬させるための装置や、浸漬させながら移送する装置などへのイオン(B)生成化合物の付着などが生じて工程性不良などを生じ易くなる。
The content of the ion (B) -forming compound in the liquid (IIIa) and the liquid (IIIb) is 0. 1 L with respect to 1 L of the liquid (IIIa) or the liquid (IIIb) (1 L of the liquid after the addition of the compound or the like). It is preferably 1 to 120 g, more preferably 1 to 100 g, and still more preferably 1 to 95 g.
In terms of the content of the ion (B) rather than the content of the ion (B) -forming compound, 0.05 to 50 g of the ion (B) with respect to 1 L of the liquid (IIIa) and the liquid (IIIb). It is preferable to contain in the ratio of 0.5-45g, It is more preferable to contain in the ratio of 0.5-45g, It is still more preferable to contain in the ratio of 1-40g.
If the content of the ions (B) [ion (B) generating compound] in the liquid (IIIa) and the liquid (IIIb) is too small, the phosphor fine particles contained in the PVA molded body are insufficiently matured, If the intensity of the emitted fluorescence is not sufficiently high while the content of the ions (B) [ion (B) generating compound] is too large, the PVA molded product is removed from the liquid (IIIa) and the liquid during the aging treatment in step (iii). Adhesion of the ion (B) -generating compound to an apparatus for immersing in (IIIb) or an apparatus for transferring while immersing is likely to cause poor processability.

液(IIIa)および液(IIIb)中に添加・含有させるイオン(B)生成化合物としては、工程(ii)で用いる液(II)中に含有させるのと同様のイオン(B)部分を含む化合物が用いられ、好適には周期表の16族の元素を含む化合物、特に工程(ii)に係る上記説明箇所に記載したのと同じ硫黄含有化合物が用いられ、その具体例は工程(ii)に係る説明箇所に記載したとおりである。   The ion (B) generating compound to be added / contained in the liquid (IIIa) and liquid (IIIb) is a compound containing the same ion (B) part as that contained in the liquid (II) used in the step (ii). Preferably, a compound containing a group 16 element of the periodic table, particularly the same sulfur-containing compound as described in the above-mentioned explanation relating to step (ii) is used, and a specific example thereof is used in step (ii). This is as described in the explanation section.

また、液(IIIb)における賦活剤イオン(C)生成化合物の含有量は、液(IIIb)の1L(当該化合物などを添加した後の液1L)に対して、0.1〜120gであることが好ましく、1〜100gであることがより好ましく、1〜95gであることが更に好ましい。
賦活剤イオン(C)生成化合物の含有量ではなくて、賦活剤イオン(C)自体の含有量でいうと、液(IIIb)の1Lに対して、賦活剤イオン(C)を0.05〜50gの割合で含有することが好ましく、0.5〜45gの割合で含有することがより好ましく、1〜40gの割合で含有することが更に好ましい。
液(IIIb)における賦活剤イオン(C)[賦活剤イオン(C)生成化合物]の含有量が少なすぎると、賦活剤イオン(C)による賦活作用が得られにくくなり、一方賦活剤イオン(C)[賦活剤イオン(C)生成化合物]の含有量が多すぎると、工程(iii)の浸漬処理時にPVA成形体を液(IIIb)中に浸漬させるための装置や、浸漬させながら移送する装置などへの賦活剤イオン(C)生成化合物の付着などが生じて工程性不良などを生じ易くなる。
Further, the content of the activator ion (C) -generating compound in the liquid (IIIb) is 0.1 to 120 g with respect to 1 L of the liquid (IIIb) (1 L of the liquid after adding the compound). Is more preferable, 1 to 100 g is more preferable, and 1 to 95 g is still more preferable.
In terms of the content of the activator ion (C) itself, not the content of the activator ion (C) generating compound, the activator ion (C) is 0.05 to 1 L per 1 L of the liquid (IIIb). It is preferable to contain in the ratio of 50g, It is more preferable to contain in the ratio of 0.5-45g, It is still more preferable to contain in the ratio of 1-40g.
If the content of the activator ion (C) [activator ion (C) generating compound] in the liquid (IIIb) is too small, the activator ion (C) is less likely to provide an activator, while the activator ion (C ) When the content of [activator ion (C) generating compound] is too large, an apparatus for immersing the PVA molded article in the liquid (IIIb) during the immersion treatment in the step (iii), or an apparatus for transferring while immersed. The activator ion (C) -generating compound adheres to the surface of the substrate and the like, and poor processability is likely to occur.

液(IIIb)中に添加含有させる賦活剤イオン(C)生成化合物としては、工程(i)で用いる液(Ib)についての説明箇所で上記したのと同じ化合物、例えば、銅(Cu)、マンガン(Mn)、銀(Ag)、金(Au)などの金属の有機酸塩や無機酸塩、ユーロピウム(Eu)やイッテルビウム(Yb)をはじめとする希土類元素(金属)の有機酸塩、無機酸塩、酸化物などを用いることができ、具体例としては工程(i)で用いる液(Ib)についての説明箇所に挙げたとおりである。   The activator ion (C) generating compound to be added and contained in the liquid (IIIb) is the same compound as described above in the explanation of the liquid (Ib) used in the step (i), for example, copper (Cu), manganese Organic salts and inorganic acid salts of metals such as (Mn), silver (Ag) and gold (Au), organic acid salts and inorganic acids of rare earth elements (metals) including europium (Eu) and ytterbium (Yb) A salt, an oxide, or the like can be used, and specific examples are as described in the description of the liquid (Ib) used in the step (i).

PVA成形体を液(IIIa)または液(IIIb)に浸漬することからなる工程(iii)の熟成処理は、バッチ式で行ってもよいし、工程(ii)の処理を行ったPVA成形体を液(IIIa)および液(IIIb)中に浸漬させながら連続的に通過させる連続式で行ってもよい。
工程(iii)の熟成処理は、PVA成形体の全体を液(IIIa)または液(IIIb)中に浸漬して行うことが望ましいが、場合によっては、工程(i)および工程(ii)をPVA成形体の一部のみを液(Ia)または液(Ib)に浸漬し、更に液(II)中に浸漬して行った場合は、工程(i)および工程(ii)で浸漬した箇所のみを液(IIIa)または液(IIIb)中に浸漬して、熟成処理を行ってもよい。
The aging treatment of the step (iii) comprising immersing the PVA molded body in the liquid (IIIa) or the liquid (IIIb) may be performed in a batch manner, or the PVA molded body that has been subjected to the process of the step (ii). You may carry out by the continuous type which passes continuously, making it immerse in liquid (IIIa) and liquid (IIIb).
The aging treatment in the step (iii) is preferably performed by immersing the entire PVA molded body in the liquid (IIIa) or the liquid (IIIb). However, in some cases, the step (i) and the step (ii) are performed in the PVA. When only a part of the molded body is immersed in the liquid (Ia) or liquid (Ib) and further immersed in the liquid (II), only the part immersed in the step (i) and the step (ii) An aging treatment may be performed by dipping in the liquid (IIIa) or the liquid (IIIb).

工程(iii)の熟成処理時の液(IIIa)および液(IIIb)の温度は、温度が高いほど、PVA成形体内に含まれる蛍光体微粒子の溶解析出反応速度が大きくなり、それに伴って蛍光体微粒子の一次粒子の異方成長速度が上昇して結晶性が高くなるので好ましいが、液温が高くなり過ぎると、PVA成形体が液(IIIa)および液(IIIb)に溶解するという問題が生ずるので、一般的に30〜90℃が好ましく、40〜80℃がより好ましい。
特に液(IIIa)および液(IIIb)が水溶液である場合は、前記の温度を採用することが好ましい。
また、熟成処理時の液(IIIa)または液(IIIb)へのPVA成形体の浸漬時間は、長い方が好ましいが、一般に30分〜20時間が好ましく、1〜5時間がより好ましい。熟成時間を長くすると、蛍光体微粒子の溶解析出反応に伴う一次粒子の異方成長が促進されて、粒子の結晶性が向上し、蛍光発光強度が向上する。
As the temperature of the liquid (IIIa) and the liquid (IIIb) during the aging treatment in the step (iii) is higher, the dissolution and precipitation reaction rate of the phosphor fine particles contained in the PVA molded body is increased. Although it is preferable because the anisotropic growth rate of the primary particles of the fine particles is increased and the crystallinity is increased, if the liquid temperature is too high, there arises a problem that the PVA molded product is dissolved in the liquid (IIIa) and the liquid (IIIb). Therefore, generally 30-90 degreeC is preferable and 40-80 degreeC is more preferable.
In particular, when the liquid (IIIa) and the liquid (IIIb) are aqueous solutions, it is preferable to employ the above temperature.
The immersion time of the PVA molded body in the liquid (IIIa) or liquid (IIIb) during the aging treatment is preferably longer, but is generally preferably 30 minutes to 20 hours, and more preferably 1 to 5 hours. Increasing the aging time promotes anisotropic growth of the primary particles accompanying the dissolution and precipitation reaction of the phosphor fine particles, improving the crystallinity of the particles and improving the fluorescence emission intensity.

工程(iii)の熟成処理を終えた蛍光体微粒子を内部に有する蛍光発色性PVA系樹脂成形体は、乾燥や熱処理を施すことによって力学的特性を向上させることができる。蛍光発色性PVA系樹脂成形体の乾燥処理または熱処理は、一般に70〜250℃の温度で行うことが好ましく、100〜200℃の温度で行うことがより好ましい。温度が前記範囲よりも低いと、乾燥が不十分となり、しかもPVA系樹脂成形体の物性向上効果が得られにくくなり、一方温度が前記範囲よりも高いと、蛍光発色性PVA系樹脂成形体の表面の部分的な融解や熱分解が生じて物性の低下が生じ易くなる。   The fluorescent color-forming PVA-based resin molded body having the phosphor fine particles that have undergone the aging treatment in the step (iii) inside can be improved in mechanical properties by drying or heat treatment. In general, the drying treatment or heat treatment of the fluorescent color-forming PVA-based resin molded body is preferably performed at a temperature of 70 to 250 ° C, more preferably at a temperature of 100 to 200 ° C. When the temperature is lower than the above range, drying becomes insufficient, and it is difficult to obtain the effect of improving the physical properties of the PVA resin molded product. On the other hand, when the temperature is higher than the above range, the fluorescent coloring PVA resin molded product is not obtained. The surface is partially melted and thermally decomposed, and the physical properties are likely to be lowered.

上記により、紫外線の照射下において350〜700nmの波長域に蛍光を発する平均粒径が50nm以下の蛍光体微粒子が成形体内で分散された状態で含有されている本発明の蛍光発色性PVA系樹脂成形体が得られる。
本発明の蛍光発色性PVA系樹脂成形体は、成形体内に含まれる蛍光体微粒子の平均粒径が50nm以下で、極めて微細であり、分散されているため、可視光下においては視認されにくく、一方紫外線の照射下においては光強度の大きな蛍光を発し、しかも可視光線の透過率が高くて透明性に優れているため、それらの特性を活かして、例えば、紙幣、証券用紙、機密文書、商品タグなどの偽造防止対策用材料、壁紙、カーペット、衣料、ガラス中間膜、ガラス貼付用フィルムなどの紫外線遮蔽と装飾性を兼ね備えた材料、蛍光発色性が酸素をはじめとする気体の表面吸着により変化することを利用したセンシング材料などの種々の用途に極めて有効に利用することができる。
As described above, the fluorescent color-forming PVA resin of the present invention containing phosphor fine particles having an average particle diameter of 50 nm or less that emits fluorescence in a wavelength range of 350 to 700 nm under ultraviolet irradiation. A molded body is obtained.
The fluorescent color-forming PVA-based resin molded product of the present invention has an average particle size of phosphor fine particles contained in the molded product of 50 nm or less and is extremely fine and dispersed, so that it is difficult to visually recognize under visible light, On the other hand, it emits fluorescent light with high light intensity under ultraviolet irradiation, and also has high transmittance of visible light and excellent transparency. Taking advantage of these properties, for example, banknotes, securities paper, confidential documents, merchandise Anti-counterfeiting materials such as tags, wallpaper, carpets, clothing, glass interlayers, materials that combine UV shielding and decorative properties, such as film for glass application, and fluorescence coloring changes due to surface adsorption of gases such as oxygen It can be used extremely effectively for various applications such as sensing materials.

以下に実施例などにより本発明について具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
以下の実施例などにおいて、PVA系樹脂成形体中の蛍光体微粒子の含有量、賦活剤の導入量、蛍光体微粒子の平均粒径、フィルムの可視光線の透過率、およびPVA系樹脂成形体の蛍光発光波長は次のようにして求めた。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.
In the following examples and the like, the content of phosphor fine particles in the PVA resin molded product, the amount of activator introduced, the average particle size of the phosphor fine particles, the visible light transmittance of the film, and the PVA resin molded product The fluorescence emission wavelength was determined as follows.

(1)PVA系樹脂成形体中の蛍光体微粒子の含有量:
PVA系樹脂成形体内に含まれる蛍光体微粒子(賦活剤がドープされまたはドープされていない硫化亜鉛粒子)の含有量を、ジャーレルアッシュ社製のICP発光分析装置「IRIS−AP」を使用して測定した。なお、硫化亜鉛粒子(蛍光体微粒子)が、賦活剤がドープされたものである場合は、賦活剤をも含めた硫化亜鉛粒子全体の含有量をもって蛍光体微粒子の含有量とした。
(1) Content of phosphor fine particles in the PVA-based resin molded body:
The content of phosphor fine particles (zinc sulfide particles doped with or without an activator) contained in the PVA-based resin molded body was measured using an ICP emission analyzer “IRIS-AP” manufactured by Jarrel Ash. It was measured. When the zinc sulfide particles (phosphor fine particles) are doped with an activator, the content of the phosphor fine particles is defined as the content of the entire zinc sulfide particles including the activator.

(2)PVA系樹脂成形体内に含まれる蛍光体微粒子における賦活剤の含有量:
上記(1)のICP発光分析の結果に基づいて、蛍光体微粒子(硫化亜鉛)の亜鉛元素に対する賦活剤元素のモル%を求めて、賦活剤の含有量とした。
(2) Content of activator in phosphor fine particles contained in PVA resin molded body:
Based on the result of the ICP emission analysis of (1) above, the mol% of the activator element with respect to the zinc element of the phosphor fine particles (zinc sulfide) was determined and used as the activator content.

(3)PVA系樹脂成形体内に含まれる蛍光体微粒子の平均粒径:
PVA系樹脂成形体の断面(成形体がフィルムである場合はフィルムを厚さ方向に切断した切断面、成形体が繊維である場合は長さ方向に直角に切断した切断面)を、透過型電子顕微鏡(TEM)(日立社製「H−800NA」)を使用して写真撮影し(倍率=10万倍)、当該写真の対角線の交点を中心とする所定の正方形部分に含まれるすべての粒子についてその最大径をそれぞれ測定し、その平均値を採って蛍光体微粒子の平均粒径とした。なお、その際に、前記「所定の正方形部分」の面積は、当該正方形部分にほぼ100個の粒子が含まれる面積とした。
(3) Average particle diameter of phosphor fine particles contained in the PVA-based resin molded body:
A cross section of a PVA-based resin molded body (a cut surface obtained by cutting the film in the thickness direction when the molded body is a film, and a cut surface obtained by cutting the film perpendicularly to the length direction when the molded body is a fiber) Photographed using an electron microscope (TEM) (“H-800NA” manufactured by Hitachi, Ltd.) (magnification = 100,000 times), and all particles contained in a predetermined square portion centered on the intersection of diagonal lines of the photograph The maximum diameter of each was measured, and the average value was taken as the average particle diameter of the phosphor fine particles. At that time, the area of the “predetermined square portion” was an area in which almost 100 particles were included in the square portion.

(4)PVA系樹脂成形体(フィルム)の可視光線の透過率および紫外線の透過率:
PVA系樹脂成形体(フィルム)について、自己分光光度計(島津製作所製「UV−2500PC」)を使用して、PVA系樹脂成形体(フィルム)について、200〜800nmの波長域(紫外線〜可視光線域)で1.0nmごとの光透過率を測定し、400〜760nmの波長域(可視光域)の平均透過率を求めた。ここで平均透過率は、1nmごとの光透過率の和を測定した光透過率の数で除して求めた。
また、波長300nmの紫外線の透過率を求めて、紫外線遮蔽率の指標とした。
(4) Visible light transmittance and ultraviolet light transmittance of the PVA-based resin molded body (film):
About PVA-type resin molding (film), using a self-spectrophotometer ("UV-2500PC" manufactured by Shimadzu Corporation), the PVA-based resin molding (film) has a wavelength range of 200 to 800 nm (ultraviolet to visible light). Area) was measured for light transmittance every 1.0 nm, and the average transmittance in the wavelength region (visible light region) of 400 to 760 nm was determined. Here, the average transmittance was obtained by dividing the sum of the light transmittances every 1 nm by the number of light transmittances measured.
Moreover, the transmittance | permeability of the ultraviolet-ray with a wavelength of 300 nm was calculated | required, and it was set as the parameter | index of an ultraviolet-ray shielding factor.

(5)PVA系樹脂成形体の蛍光発光波長:
蛍光分光光度計(島津製作所製「RF−5300PC」)を使用して、PVA系樹脂成形体に320nmの励起波長(紫外線)を照射したときに発せられた蛍光の極大吸収波長(ピーク波長)を蛍光発光波長とした。
(5) Fluorescence emission wavelength of PVA resin molded product:
Using a fluorescence spectrophotometer (“RF-5300PC” manufactured by Shimadzu Corporation), the maximum absorption wavelength (peak wavelength) of the fluorescence emitted when the PVA resin molded product was irradiated with an excitation wavelength (ultraviolet light) of 320 nm. The fluorescence emission wavelength was used.

なお、以下の実施例および比較例で用いた、酢酸亜鉛、酢酸カドミウム、酢酸マンガン、酢酸銅および硫化ナトリウムは、いずれも和光純薬株式会社製である。   Note that zinc acetate, cadmium acetate, manganese acetate, copper acetate and sodium sulfide used in the following Examples and Comparative Examples are all manufactured by Wako Pure Chemical Industries, Ltd.

《実施例1》
(1) PVA(粘度平均重合度=1700、ケン化度=99.9モル%)を水に溶解してPVA濃度13質量%の水溶液とし、このPVA水溶液を60℃の金属上に流延し、50℃で3時間乾燥して厚さが75μmのPVAフィルムを製造した。
(2) 上記(1)で得られたPVAフィルムを、酢酸亜鉛の濃度が500mM(91.8g/L)の酢酸亜鉛水溶液からなる温度25℃の水浴中に滞留時間が600秒となるように浸漬した後、引き続いて、硫化ナトリウムの濃度が250mM(19.5g/L)の硫化ナトリウム水溶液からなる温度25℃の水浴中に滞留時間が300秒になるように超音波照射下で浸漬した。
(3) 次いで、PVAフィルムを硫化ナトリウム水溶液からなる水浴から取り出して、取り出したPVAフィルムを、酢酸亜鉛の濃度が500mM(91.8g/L)の酢酸亜鉛水溶液と硫化ナトリウムの濃度が250mM(19.5g/L)の硫化ナトリウム水溶液を1:1の体積比で混合した混合液(酢酸亜鉛の濃度は45.9g/L、硫化ナトリウムの濃度は9.75g/L)(熟成処理用液)(温度70℃)中に浸漬して、70℃で1時間保持した。その後、PVAフィルムを前記混合液から取り出して、水、メタノールの順で洗浄し、50℃の熱風で乾燥して、硫化亜鉛微粒子を含有するPVAフィルムを製造した。
Example 1
(1) PVA (viscosity average polymerization degree = 1700, saponification degree = 99.9 mol%) was dissolved in water to form an aqueous solution having a PVA concentration of 13% by mass, and this PVA aqueous solution was cast on a metal at 60 ° C. And dried at 50 ° C. for 3 hours to produce a PVA film having a thickness of 75 μm.
(2) The residence time of the PVA film obtained in the above (1) is 600 seconds in a water bath at a temperature of 25 ° C. composed of a zinc acetate aqueous solution with a zinc acetate concentration of 500 mM (91.8 g / L). After the immersion, the substrate was immersed in a water bath composed of a sodium sulfide aqueous solution having a sodium sulfide concentration of 250 mM (19.5 g / L) at a temperature of 25 ° C. under ultrasonic irradiation so that the residence time was 300 seconds.
(3) Next, the PVA film was taken out from a water bath made of an aqueous sodium sulfide solution, and the taken out PVA film was dissolved in a zinc acetate aqueous solution having a zinc acetate concentration of 500 mM (91.8 g / L) and a sodium sulfide concentration of 250 mM (19 (5 g / L) sodium sulfide aqueous solution mixed at a volume ratio of 1: 1 (zinc acetate concentration is 45.9 g / L, sodium sulfide concentration is 9.75 g / L) (aging solution) It was immersed in (temperature 70 ° C.) and held at 70 ° C. for 1 hour. Thereafter, the PVA film was taken out of the mixed solution, washed with water and methanol in this order, and dried with hot air at 50 ° C. to produce a PVA film containing zinc sulfide fine particles.

(4) 上記(3)で得られたPVAフィルムの外観は平滑で良好であった。
上記(3)で得られたPVAフィルムを厚さ方向に切断してその切断面を透過型電子顕微鏡(TEM)にて写真撮影したところ、図1にみるように、得られたPVAフィルムでは蛍光体微粒子(硫化亜鉛微粒子)が凝集することなくフィルムの内部に実質的に均一に分散していた。
また、PVAフィルムを厚さ方向に切断してその切断面を走査型電子顕微鏡(SEM)にて写真撮影したところ、図2にみるように、PVAフィルムの表面付近(表面から150nm程度の深さ)では、内部より多くの蛍光体微粒子が存在しているが、蛍光体微粒子の凝集はみられず、またフィルムの表面への付着は殆どなかった。
そして、図1のTEM写真に基づいて、PVAフィルム内に含まれる蛍光体微粒子(硫化亜鉛微粒子)の平均粒径を上記した方法で求めたところ、8nmであった。
(5) また、上記(3)で得られたPVAフィルムに含まれる蛍光体微粒子の含有量を上記した方法で求めたところ、3.49質量%であった。
(4) The appearance of the PVA film obtained in the above (3) was smooth and good.
When the PVA film obtained in the above (3) was cut in the thickness direction and the cut surface was photographed with a transmission electron microscope (TEM), as shown in FIG. The body fine particles (zinc sulfide fine particles) were substantially uniformly dispersed inside the film without agglomeration.
Further, when the PVA film was cut in the thickness direction and the cut surface was photographed with a scanning electron microscope (SEM), as shown in FIG. 2, near the surface of the PVA film (a depth of about 150 nm from the surface). ), There were more phosphor particles than inside, but no aggregation of the phosphor particles was observed, and there was almost no adhesion to the surface of the film.
And based on the TEM photograph of FIG. 1, when the average particle diameter of the phosphor fine particles (zinc sulfide fine particles) contained in the PVA film was determined by the method described above, it was 8 nm.
(5) Further, the content of the phosphor fine particles contained in the PVA film obtained in the above (3) was determined by the above-described method and found to be 3.49% by mass.

(6) さらに、上記(3)で得られたPVAフィルムについて、200〜800nmの波長域(紫外線〜可視光線域)における光透過率を上記した方法で測定したところ、図3に示すとおりであった。当該図3から、400〜760nmの波長域(可視光域)の平均透過率および波長300nmの紫外線の透過率を上記した方法で求めたところ、可視光線の平均透過率は95%であって、可視光線の透過率が高く透明性に優れており、一方波長300nmの紫外線の透過率は0.1%と低く、紫外線遮蔽性に優れていた。
(7) また、上記(3)で得られたPVAフィルムに320nmの励起波長(紫外線)を照射してその蛍光スペクトルを測定したところ、図4に示すとおりであり、430nm付近に青色蛍光発光に帰属される極大吸収が観察された。
(6) Furthermore, when the light transmittance in the wavelength range of 200 to 800 nm (ultraviolet ray to visible light region) was measured for the PVA film obtained in (3) above, it was as shown in FIG. It was. From FIG. 3, when the average transmittance in the wavelength range of 400 to 760 nm (visible light range) and the transmittance of ultraviolet light having a wavelength of 300 nm were determined by the above-described method, the average transmittance of visible light was 95%, The transmittance of visible light was high and the transparency was excellent. On the other hand, the transmittance of ultraviolet rays having a wavelength of 300 nm was as low as 0.1%, and the ultraviolet shielding properties were excellent.
(7) Further, when the PVA film obtained in (3) above was irradiated with an excitation wavelength (ultraviolet light) of 320 nm and measured for its fluorescence spectrum, it was as shown in FIG. The assigned maximum absorption was observed.

《実施例2》
(1) PVA(粘度平均重合度=1700、ケン化度=99.9モル%)を水に溶解してPVA濃度13質量%の水溶液とし、このPVA水溶液を60℃の金属上に流延し、乾燥して厚さが75μmのPVAフィルムを製造した。
(2) 上記(1)で得られたPVAフィルムを、酢酸亜鉛の濃度が133mM(24.4g/L)の酢酸亜鉛水溶液150mLと酢酸マンガン(賦活剤)の濃度が8mM(1.4g/L)の酢酸マンガン水溶液25mLを混合した混合液(酢酸亜鉛の濃度は20.9g/L、酢酸マンガンの濃度は0.2g/L)よりなる温度25℃の水浴中に滞留時間が600秒となるように浸漬した後、引き続いて、硫化ナトリウムの濃度が400mM(31.2g/L)の硫化ナトリウム水溶液からなる温度25℃の水浴中に滞留時間が600秒になるように超音波照射下で浸漬した。
(3) 次いで、PVAフィルムを硫化ナトリウム水溶液からなる水浴から取り出して、取り出したPVAフィルムを、酢酸マンガンを1モル%の量で添加した酢酸亜鉛水溶液(酢酸亜鉛の濃度が150mM(27.5g/L)、酸化マンガンの濃度が0.26g/L)の酢酸亜鉛水溶液と硫化ナトリウムの濃度が150mM(11.7g/L)の硫化ナトリウム水溶液を1:1の体積比で混合した混合液(酢酸亜鉛の濃度は13.75g/L、酢酸マンガンの濃度は0.13g/L、硫化ナトリウムの濃度は5.85g/L)(熟成処理用液)(温度70℃)中に浸漬して、70℃で1時間保持した。その後、PVAフィルムを前記混合液から取り出して、水、メタノールの順で洗浄し、50℃の熱風で乾燥して、マンガンをドープした硫化亜鉛微粒子を含有するPVAフィルムを製造した。
Example 2
(1) PVA (viscosity average polymerization degree = 1700, saponification degree = 99.9 mol%) was dissolved in water to form an aqueous solution having a PVA concentration of 13% by mass, and this PVA aqueous solution was cast on a metal at 60 ° C. The PVA film having a thickness of 75 μm was dried.
(2) The PVA film obtained in (1) above has a zinc acetate concentration of 133 mL (24.4 g / L) and a zinc acetate aqueous solution of 150 mL and a manganese acetate (activator) concentration of 8 mM (1.4 g / L). ) In a water bath at a temperature of 25 ° C. consisting of a mixed solution (concentration of zinc acetate is 20.9 g / L, concentration of manganese acetate is 0.2 g / L) mixed with 25 mL of an aqueous solution of manganese acetate. And soaking in an ultrasonic bath so that the residence time is 600 seconds in a 25 ° C. water bath composed of an aqueous sodium sulfide solution having a sodium sulfide concentration of 400 mM (31.2 g / L). did.
(3) Next, the PVA film was taken out from a water bath made of an aqueous sodium sulfide solution, and the taken out PVA film was added to an aqueous solution of zinc acetate to which manganese acetate was added in an amount of 1 mol% (the concentration of zinc acetate was 150 mM (27.5 g / L), a mixed solution (acetic acid) in which a zinc acetate aqueous solution having a manganese oxide concentration of 0.26 g / L) and a sodium sulfide aqueous solution having a sodium sulfide concentration of 150 mM (11.7 g / L) are mixed at a volume ratio of 1: 1. The zinc concentration was 13.75 g / L, the manganese acetate concentration was 0.13 g / L, and the sodium sulfide concentration was 5.85 g / L) (aging solution) (temperature 70 ° C.). Hold for 1 hour at ° C. Thereafter, the PVA film was taken out of the mixed solution, washed with water and methanol in this order, and dried with hot air at 50 ° C. to produce a PVA film containing zinc sulfide fine particles doped with manganese.

(4) 上記(3)で得られたPVAフィルムの外観は平滑で良好であった。
上記(3)で得られたPVAフィルムを厚さ方向に切断してその切断面を透過型電子顕微鏡(TEM)にて写真撮影したところ、図1と同様に、蛍光体微粒子はPVAフィルムの内部に実質的に均一に分散しており、走査型電子顕微鏡(SEM)にて写真撮影したところ、図2と同様に、フィルム表面には付着していなかった。そして、当該TEM写真に基づいてPVAフィルム内に含まれる蛍光体微粒子(硫化亜鉛微粒子)の平均粒径を上記した方法で求めたところ、8nmであった。
(5) また、上記(3)で得られたPVAフィルムに含まれる蛍光体微粒子および賦活剤(マンガン)の含有量を上記した方法で求めたところ、蛍光体微粒子(マンガンも含む)の含有量は1.39質量%であり、賦活剤であるマンガンのドープ率は亜鉛元素に対して0.63モル%であった。
(4) The appearance of the PVA film obtained in the above (3) was smooth and good.
When the PVA film obtained in the above (3) was cut in the thickness direction and the cut surface was photographed with a transmission electron microscope (TEM), the phosphor fine particles were inside the PVA film as in FIG. As shown in FIG. 2, it was not adhered to the film surface when photographed with a scanning electron microscope (SEM). And when the average particle diameter of the phosphor fine particles (zinc sulfide fine particles) contained in the PVA film was determined by the above-described method based on the TEM photograph, it was 8 nm.
(5) Moreover, when the content of the phosphor fine particles and the activator (manganese) contained in the PVA film obtained in the above (3) was determined by the method described above, the content of the phosphor fine particles (including manganese) Was 1.39% by mass, and the doping rate of manganese as an activator was 0.63 mol% with respect to zinc element.

(6) さらに、上記(3)で得られたPVAフィルムについて、200〜800nmの波長域(紫外線〜可視光線域)における光透過率を上記した方法で測定したところ、400〜760nmの波長域(可視光域)の平均透過率は96%であって、可視光線の透過率が高く透明性に優れており、一方波長300nmの紫外線の透過率は0.1%と低く、紫外線遮蔽性に優れていた。
(7) また、上記(3)で得られたPVAフィルムに320nmの励起波長(紫外線)を照射してその蛍光スペクトルを測定したところ、図4に示すように、580nm付近に橙色蛍光発光に帰属される極大吸収が観察された。
(6) Furthermore, when the light transmittance in the wavelength region of 200 to 800 nm (ultraviolet ray to visible light region) was measured for the PVA film obtained in (3) above, the wavelength region of 400 to 760 nm ( The average transmittance in the visible light region) is 96%, and the transmittance of visible light is high and the transparency is excellent. On the other hand, the transmittance of ultraviolet light having a wavelength of 300 nm is as low as 0.1% and the UV shielding property is excellent. It was.
(7) Further, when the PVA film obtained in (3) above was irradiated with an excitation wavelength (ultraviolet light) of 320 nm and its fluorescence spectrum was measured, as shown in FIG. Maximum absorption was observed.

《実施例3》
(1) 実施例2の(2)において、賦活剤として酢酸マンガンの濃度8mM(1.38g/L)の酢酸マンガン水溶液の代わりに酢酸銅の濃度8mM(0.98g/L)の酢酸銅水溶液を用い、(3)において、酢酸マンガンを1モル%の量で添加した酢酸亜鉛水溶液の代わりに酢酸銅を1.5モル%の量で添加した酢酸亜鉛水溶液(酢酸銅の濃度は0.28g/Lとなる。)を用いた以外は、実施例2の(1)〜(3)と同じ操作を行って、銅がドープされた硫化亜鉛微粒子を含有するPVAフィルムを製造した。
(2) 上記(1)で得られたPVAフィルムの外観は平滑で良好であった。
上記(1)で得られたPVAフィルムを厚さ方向に切断してその切断面を透過型電子顕微鏡(TEM)にて写真撮影したところ、図1と同様に、蛍光体微粒子はPVAフィルムの内部に実質的に均一に分散しており、走査型電子顕微鏡(SEM)にて写真撮影したところ、図2と同様に、フィルム表面には付着していなかった。そして、当該TEM写真に基づいてPVAフィルム内に含まれる蛍光体微粒子(硫化亜鉛微粒子)の平均粒径を上記した方法で求めたところ11nmであった。
(3) また、上記(1)で得られたPVAフィルムに含まれる蛍光体微粒子および賦活剤(銅)の含有量を上記した方法で求めたところ、蛍光体微粒子(銅も含む)の含有量は1.10質量%であり、賦活剤である銅のドープ率は亜鉛元素に対して1.36モル%であった。
Example 3
(1) In Example 2 (2), as an activator, an aqueous solution of copper acetate having a concentration of 8 mM (0.98 g / L) of copper acetate instead of an aqueous solution of manganese acetate having a concentration of 8 mM (1.38 g / L) of manganese acetate In (3), instead of the zinc acetate aqueous solution added with 1 mol% of manganese acetate, the zinc acetate aqueous solution added with 1.5 mol% of copper acetate (concentration of copper acetate is 0.28 g). Except for using / L.), The same operation as (1) to (3) of Example 2 was performed to manufacture a PVA film containing zinc sulfide fine particles doped with copper.
(2) The appearance of the PVA film obtained in (1) was smooth and good.
When the PVA film obtained in the above (1) was cut in the thickness direction and the cut surface was photographed with a transmission electron microscope (TEM), the phosphor fine particles were inside the PVA film as in FIG. As shown in FIG. 2, it was not adhered to the film surface when photographed with a scanning electron microscope (SEM). The average particle diameter of the phosphor fine particles (zinc sulfide fine particles) contained in the PVA film based on the TEM photograph was found to be 11 nm.
(3) Moreover, when the content of the phosphor fine particles and the activator (copper) contained in the PVA film obtained in the above (1) was determined by the method described above, the content of the phosphor fine particles (including copper) Was 1.10 mass%, and the doping ratio of copper as an activator was 1.36 mol% with respect to zinc element.

(4) さらに、上記(3)で得られたPVAフィルムについて、200〜800nmの波長域(紫外線〜可視光線域)における光透過率を上記した方法で測定したところ、400〜760nmの波長域(可視光域)の可視光線の平均透過率は92%であって、可視光線の透過率が高く透明性に優れており、一方波長300nmの紫外線の透過率は0.1%と低く、紫外線遮蔽性に優れていた。
(5) また、上記(3)で得られたPVAフィルムに320nmの励起波長(紫外線)を照射してその蛍光スペクトルを測定したところ、図4に示すように、450nm付近に緑色蛍光発光に帰属される極大吸収が観察された。
(4) Furthermore, when the light transmittance in the wavelength region of 200 to 800 nm (ultraviolet ray to visible light region) was measured for the PVA film obtained in (3) above, the wavelength region of 400 to 760 nm ( The average transmittance of visible light in the visible light region) is 92%, and the transmittance of visible light is high and the transparency is excellent. On the other hand, the transmittance of ultraviolet light having a wavelength of 300 nm is as low as 0.1%, and the ultraviolet light shielding. It was excellent in nature.
(5) When the PVA film obtained in (3) above was irradiated with an excitation wavelength (ultraviolet light) of 320 nm and its fluorescence spectrum was measured, as shown in FIG. Maximum absorption was observed.

《実施例4》
(1) 実施例1の(1)と同じ方法を採用して製造したPVAフィルムを、酢酸カドミウムの濃度が150mM(34.6g/L)の酢酸カドミウム水溶液からなる温度25℃の水浴中に滞留時間が600秒となるように浸漬した後、引き続いて、硫化ナトリウムの濃度が150mM(11.7g/L)の硫化ナトリウム水溶液からなる温度25℃の水浴中に滞留時間が600秒になるように超音波照射下で浸漬した。
(2) 次いで、PVAフィルムを硫化ナトリウム水溶液から水浴から取り出して、取り出したPVAフィルムを、酢酸カドミウムの濃度が150mM(34.6g/L)の酢酸カドミウム水溶液と硫化ナトリウムの濃度が150mM(11.7g/L)の硫化ナトリウム水溶液を1:1の体積比で混合した混合液(酢酸カドミウムの濃度は17.3g/L、硫化ナトリウムの濃度は5.85g/L)(熟成処理用液)(温度70℃)中に浸漬して、70℃で1時間保持した。その後、PVAフィルムを前記混合液から取り出して、水、メタノールの順で洗浄し、50℃の熱風で乾燥して、硫化カドミウム微粒子を含有するPVAフィルムを製造した。
Example 4
(1) A PVA film produced by adopting the same method as (1) of Example 1 is retained in a water bath at a temperature of 25 ° C. composed of an aqueous cadmium acetate solution having a cadmium acetate concentration of 150 mM (34.6 g / L). After dipping for 600 seconds, the residence time is 600 seconds in a 25 ° C. water bath composed of an aqueous sodium sulfide solution having a sodium sulfide concentration of 150 mM (11.7 g / L). Immersion under ultrasonic irradiation.
(2) Next, the PVA film was taken out of the water bath from the aqueous sodium sulfide solution, and the taken out PVA film was dissolved in a cadmium acetate aqueous solution having a cadmium acetate concentration of 150 mM (34.6 g / L) and a sodium sulfide concentration of 150 mM (11. 7 g / L) sodium sulfide aqueous solution mixed at a volume ratio of 1: 1 (cadmium acetate concentration is 17.3 g / L, sodium sulfide concentration is 5.85 g / L) (aging solution) ( Temperature) and kept at 70 ° C. for 1 hour. Thereafter, the PVA film was taken out of the mixed solution, washed with water and methanol in this order, and dried with hot air at 50 ° C. to produce a PVA film containing cadmium sulfide fine particles.

(3) 上記(2)で得られたPVAフィルムの外観は平滑で良好であった。
上記(2)で得られたPVAフィルムを厚さ方向に切断してその切断面を透過型電子顕微鏡(TEM)にて写真撮影したところ、図1と同様に、蛍光体微粒子はPVAフィルムの内部に実質的に均一に分散しており、走査型電子顕微鏡(SEM)にて写真撮影したところ、図2と同様に、フィルムの表面への付着が殆どなかった。そして、当該TEM写真に基づいて、PVAフィルム内に含まれる蛍光体微粒子(硫化カドミウム微粒子)の平均粒径を上記した方法で求めたところ10nmであった。
(4) また、上記(2)で得られたPVAフィルムに含まれる蛍光体微粒子の含有量を上記した方法で求めたところ、1.50質量%であった。
(3) The appearance of the PVA film obtained in (2) was smooth and good.
When the PVA film obtained in the above (2) was cut in the thickness direction and the cut surface was photographed with a transmission electron microscope (TEM), the phosphor fine particles were inside the PVA film as in FIG. As shown in FIG. 2, there was almost no adhesion to the surface of the film as photographed with a scanning electron microscope (SEM). And based on the said TEM photograph, it was 10 nm when the average particle diameter of the fluorescent substance fine particle (cadmium sulfide fine particle) contained in a PVA film was calculated | required by the above-mentioned method.
(4) Further, the content of the phosphor fine particles contained in the PVA film obtained in the above (2) was determined by the above-described method and found to be 1.50% by mass.

(5) さらに、上記(2)で得られたPVAフィルムについて、200〜800nmの波長域(紫外線〜可視光線域)における光透過率を上記した方法で測定したところ、400〜760nmの波長域(可視光域)の平均透過率は61%であって、黄色に着色しているものの透明性に優れており、一方波長300nmの紫外線の透過率は0.1%と低く、紫外線遮蔽性に優れていた。
(6) また、上記(2)で得られたPVAフィルムに320nmの励起波長(紫外線)を照射してその蛍光スペクトルを測定したところ、550nm付近に黄色蛍光発光に帰属される極大吸収が観察された。
(5) Furthermore, when the light transmittance in the wavelength region of 200 to 800 nm (ultraviolet ray to visible light region) was measured for the PVA film obtained in (2) above, the wavelength region of 400 to 760 nm ( The average transmittance in the visible light region) is 61%, and although it is colored yellow, it is excellent in transparency, while the transmittance of ultraviolet light having a wavelength of 300 nm is as low as 0.1% and excellent in ultraviolet shielding properties. It was.
(6) When the PVA film obtained in (2) above was irradiated with an excitation wavelength (ultraviolet light) of 320 nm and its fluorescence spectrum was measured, a maximum absorption attributed to yellow fluorescence was observed near 550 nm. It was.

《実施例5》
(1) 実施例1の(1)と同じ方法を採用して製造したPVAフィルムを、酢酸亜鉛の濃度が500mM(91.8g/L)の酢酸亜鉛水溶液からなる温度25℃の水浴中に滞留時間が600秒となるように浸漬し、引き続いて硫化ナトリウムの濃度が250mM(19.5g/L)の硫化ナトリウム水溶液からなる温度25℃の水浴中に滞留時間が300秒になるように超音波照射下で浸漬した後、硫化ナトリウム水溶液から取り出してPVAフィルムを水洗した。
(2) 上記(1)の、[酢酸亜鉛水溶液からなる水浴中への浸漬−硫化ナトリウム水溶液からなる水浴中への浸漬−水洗]からなる一連の工程を更に4回繰り返した(合計5回)。
(3) 次いで、上記(2)で水洗したPVAフィルムを、酢酸亜鉛の濃度が500mM(91.8g/L)の酢酸亜鉛水溶液と硫化ナトリウムの濃度が250mM(19.5g/L)の硫化ナトリウム水溶液を1:1の体積比で混合した混合液(酢酸亜鉛の濃度は45.9g/L、硫化ナトリウムの濃度は9.75g/L)(熟成処理用液)(温度70℃)中に浸漬して、70℃で1時間保持した後、PVAフィルムを前記混合液から取り出して、水、メタノールの順で洗浄し、50℃の熱風で乾燥して、硫化亜鉛微粒子を含有するPVAフィルムを製造した。
Example 5
(1) A PVA film produced by adopting the same method as (1) of Example 1 is retained in a water bath at a temperature of 25 ° C. composed of a zinc acetate aqueous solution having a zinc acetate concentration of 500 mM (91.8 g / L). Immerse so that the time is 600 seconds, and then ultrasonically adjust the residence time to 300 seconds in a 25 ° C. water bath composed of an aqueous sodium sulfide solution with a sodium sulfide concentration of 250 mM (19.5 g / L). After being immersed under irradiation, the PVA film was taken out from the aqueous sodium sulfide solution and washed with water.
(2) The above-mentioned series of steps (1) consisting of [immersion in a water bath composed of an aqueous zinc acetate solution-immersion in a water bath composed of an aqueous sodium sulfide solution-washing] was repeated four more times (total 5 times). .
(3) Next, the PVA film washed with water in the above (2) was subjected to a zinc acetate aqueous solution with a zinc acetate concentration of 500 mM (91.8 g / L) and sodium sulfide with a sodium sulfide concentration of 250 mM (19.5 g / L). Immersion in a mixed solution (concentration of zinc acetate is 45.9 g / L, concentration of sodium sulfide is 9.75 g / L) (aging solution) (temperature 70 ° C.) in which aqueous solution is mixed at a volume ratio of 1: 1 Then, after maintaining at 70 ° C. for 1 hour, the PVA film is taken out from the mixed solution, washed with water and methanol in this order, and dried with hot air at 50 ° C. to produce a PVA film containing zinc sulfide fine particles. did.

(4) 上記(3)で得られたPVAフィルムの外観は平滑で良好であった。
上記(3)で得られたPVAフィルムを厚さ方向に切断してその切断面を透過型電子顕微鏡(TEM)にて写真撮影したところ、図1と同様に、蛍光体微粒子はPVAフィルムの内部に実質的に均一に分散しており、走査型電子顕微鏡(SEM)にて写真撮影したところ、図2と同様に、フィルムの表面への付着が殆どなかった。そして、当該TEM写真に基づいて、PVAフィルム内に含まれる蛍光体微粒子(硫化亜鉛微粒子)の平均粒径を上記した方法で求めたところ、14nmであった。
(5) また、上記(3)で得られたPVAフィルムに含まれる蛍光体微粒子の含有量を上記した方法で求めたところ、15.2質量%であった。
(4) The appearance of the PVA film obtained in the above (3) was smooth and good.
When the PVA film obtained in the above (3) was cut in the thickness direction and the cut surface was photographed with a transmission electron microscope (TEM), the phosphor fine particles were inside the PVA film as in FIG. As shown in FIG. 2, there was almost no adhesion to the surface of the film as photographed with a scanning electron microscope (SEM). And based on the said TEM photograph, it was 14 nm when the average particle diameter of the fluorescent substance fine particle (zinc sulfide fine particle) contained in a PVA film was calculated | required by the above-mentioned method.
(5) Further, the content of the phosphor fine particles contained in the PVA film obtained in the above (3) was determined by the above-described method and found to be 15.2% by mass.

(6) さらに、上記(3)で得られたPVAフィルムについて、200〜800nmの波長域(紫外線〜可視光線域)における光透過率を上記した方法で測定したところ、400〜760nmの波長域(可視光域)の平均透過率は85%であって、蛍光体微粒子の含有量が実施例1〜4で得られたPVAフィルムの約5〜10倍であるにも拘わらず、可視光線の透過率が高く透明性に優れており、一方波長300nmの紫外線の透過率は0.1%と低く、紫外線遮蔽性に優れていた。
(7) また、上記(3)で得られたPVAフィルムに320nmの励起波長(紫外線)を照射してその蛍光スペクトルを測定したところ、430nm付近に青色蛍光発光に帰属される極大吸収が観察された。
(6) Furthermore, when the light transmittance in the wavelength region of 200 to 800 nm (ultraviolet ray to visible light region) was measured for the PVA film obtained in (3) above, the wavelength region of 400 to 760 nm ( The average transmittance in the visible light region) is 85%, and the visible light transmission is despite the phosphor fine particle content being about 5 to 10 times that of the PVA films obtained in Examples 1-4. The transmittance was high and the transparency was excellent. On the other hand, the transmittance of ultraviolet rays having a wavelength of 300 nm was as low as 0.1%, and the ultraviolet shielding properties were excellent.
(7) Further, when the fluorescence spectrum was measured by irradiating the PVA film obtained in (3) above with an excitation wavelength (ultraviolet rays) of 320 nm, a maximum absorption attributed to blue fluorescence was observed at around 430 nm. It was.

《実施例6》
(1) PVA(粘度平均重合度=1700、ケン化度=99.8モル%)を90℃で窒素雰囲気下で水に溶解してPVA濃度が16質量%の紡糸原液を調製した。この紡糸原液を孔径0.16mm、ホール数108のノズルを通して飽和芒硝水溶液からなる凝固浴中に湿式紡糸し、これにより得られた繊維を水中で50℃で5倍に湿式延伸してPVA繊維(単繊維繊度30dtex)を製造した。
(2) 上記(1)で得られたPVA繊維を、酢酸亜鉛の濃度が133mM(24.4g/L)の酢酸亜鉛水溶液150mLと酢酸マンガン(賦活剤)の濃度が8mM(1.4g/L)の酢酸マンガン水溶液25mLを混合した混合液(酢酸亜鉛の濃度は20.9g/L、酢酸マンガンの濃度は0.2g/L)よりなる温度25℃の水浴中に滞留時間が600秒となるように浸漬した後、引き続いて、硫化ナトリウムの濃度が400mM(31.2g/L)の硫化ナトリウム水溶液からなる温度25℃の水浴中に滞留時間が600秒になるように超音波照射下で浸漬した。
(3) 上記(2)の[酢酸亜鉛と酢酸マンガン(賦活剤)を含む水溶液からなる水浴中への浸漬−硫化ナトリウム水溶液からなる水浴中への浸漬−水洗]からなる一連の工程を更に4回繰り返した(合計5回)。
(4) 次いで、PVA繊維を硫化ナトリウム水溶液からなる水浴から取り出して、酢酸マンガンを1モル%の量で添加した酢酸亜鉛の濃度が150mM(27.5g/L)の酢酸亜鉛水溶液と硫化ナトリウムの濃度が150mM(11.7g/L)の硫化ナトリウム水溶液を1:1の体積比で混合した混合液(酢酸亜鉛の濃度は13.75g/L、酢酸マンガンの濃度は0.13g/L、硫化ナトリウムの濃度は5.85g/L)(熟成処理用液)(温度70℃)中に浸漬して、70℃で1時間保持した後、PVA繊維を前記混合液から取り出して、水、メタノールの順で洗浄し、50℃の熱風で乾燥して、マンガンでドープした硫化亜鉛微粒子を含有するPVA繊維を製造した。
Example 6
(1) PVA (viscosity average polymerization degree = 1700, saponification degree = 99.8 mol%) was dissolved in water at 90 ° C. in a nitrogen atmosphere to prepare a spinning dope having a PVA concentration of 16% by mass. This spinning dope is wet-spun into a coagulation bath made of a saturated sodium sulfate aqueous solution through a nozzle having a hole diameter of 0.16 mm and a hole number of 108, and the resulting fiber is wet-drawn 5 times at 50 ° C. in water to obtain a PVA fiber ( A single fiber fineness of 30 dtex) was produced.
(2) The PVA fiber obtained in (1) above was prepared by using 150 mL of a zinc acetate aqueous solution with a zinc acetate concentration of 133 mM (24.4 g / L) and a manganese acetate (activator) concentration of 8 mM (1.4 g / L). ) In a water bath at a temperature of 25 ° C. consisting of a mixed solution (concentration of zinc acetate is 20.9 g / L, concentration of manganese acetate is 0.2 g / L) mixed with 25 mL of an aqueous solution of manganese acetate. And soaking in an ultrasonic bath so that the residence time is 600 seconds in a 25 ° C. water bath composed of an aqueous sodium sulfide solution having a sodium sulfide concentration of 400 mM (31.2 g / L). did.
(3) The series of steps (4) consisting of [immersion in a water bath comprising an aqueous solution containing zinc acetate and manganese acetate (activator) -immersion in a water bath comprising a sodium sulfide aqueous solution-washing with water] is further performed. Repeated 5 times (total 5 times).
(4) Next, the PVA fiber was taken out from the water bath made of an aqueous sodium sulfide solution, and the zinc acetate aqueous solution having a concentration of 150 mM (27.5 g / L) of zinc acetate to which manganese acetate was added in an amount of 1 mol% and sodium sulfide were added. A mixed solution in which a sodium sulfide aqueous solution having a concentration of 150 mM (11.7 g / L) is mixed at a volume ratio of 1: 1 (the concentration of zinc acetate is 13.75 g / L, the concentration of manganese acetate is 0.13 g / L, sulfide) The concentration of sodium was 5.85 g / L) (aging solution) (temperature 70 ° C.) and held at 70 ° C. for 1 hour. Then, the PVA fiber was taken out of the mixed solution and mixed with water and methanol. The PVA fiber containing zinc sulfide fine particles doped with manganese was manufactured by washing in order and drying with hot air at 50 ° C.

(5) 上記(4)で得られたPVA繊維の外観は平滑で良好であった。
上記(4)で得られたPVA繊維を長さ方向に直角に切断してその切断面を透過型電子顕微鏡(TEM)にて写真撮影したところ、蛍光体微粒子はPVA繊維の内部に実質的に均一に分散しており、走査型電子顕微鏡(SEM)にて写真撮影したところ、蛍光体微粒子はPVA繊維の内部にのみ存在しており繊維表面には付着していなかった。そして、当該TEM写真に基づいてPVA繊維内に含まれる蛍光体微粒子(硫化亜鉛微粒子)の平均粒径を上記した方法で求めたところ、18nmであった。
(6) また、上記(4)で得られたPVA繊維に含まれる蛍光体微粒子および賦活剤(マンガン)の含有量を上記した方法で求めたところ、蛍光体微粒子(マンガンも含む)の含有量は21.1質量%であり、賦活剤であるマンガンのドープ率は亜鉛元素に対して0.78モル%であった。
(7) 更に、上記(4)で得られたPVA繊維に320nmの励起波長(紫外線)を照射してその蛍光スペクトルを測定したところ、580nm付近に橙色蛍光発光に帰属される極大吸収が観察された。
(5) The appearance of the PVA fiber obtained in the above (4) was smooth and good.
When the PVA fiber obtained in the above (4) was cut at right angles to the length direction and the cut surface was photographed with a transmission electron microscope (TEM), the phosphor fine particles were substantially contained inside the PVA fiber. It was uniformly dispersed, and when photographed with a scanning electron microscope (SEM), the phosphor fine particles were present only inside the PVA fibers and did not adhere to the fiber surface. And when the average particle diameter of the phosphor fine particles (zinc sulfide fine particles) contained in the PVA fiber was determined by the above-described method based on the TEM photograph, it was 18 nm.
(6) Moreover, when the content of the phosphor fine particles and the activator (manganese) contained in the PVA fiber obtained in the above (4) was determined by the method described above, the content of the phosphor fine particles (including manganese) Was 21.1% by mass, and the doping rate of manganese as an activator was 0.78 mol% with respect to zinc element.
(7) Further, when the fluorescence spectrum was measured by irradiating the PVA fiber obtained in (4) with an excitation wavelength (ultraviolet light) of 320 nm, a maximum absorption attributed to orange fluorescence was observed at around 580 nm. It was.

《実施例7》
(1) 実施例2の(3)の熟成処理を行わなかった以外は、実施例2の(1)および(2)と同じ操作を行って、マンガンでドープした硫化亜鉛微粒子を含有するPVAフィルムを製造した。
(2) 上記(1)で得られたPVAフィルムの外観は平滑で良好であった。
上記(1)で得られたPVAフィルムを厚さ方向に切断してその切断面を透過型電子顕微鏡(TEM)にて写真撮影したところ、図1と同様に、蛍光体微粒子はPVAフィルムの内部に実質的に均一に分散しており、走査型電子顕微鏡(SEM)にて写真撮影したところ、図2と同様に、フィルム表面には付着していなかった。そして、当該TEM写真に基づいてPVAフィルム内に含まれる蛍光体微粒子(硫化亜鉛微粒子)の平均粒径を上記した方法で求めたところ、9nmであった。
(3) また、上記(1)で得られたPVAフィルムに含まれる蛍光体微粒子および賦活剤(マンガン)の含有量を上記した方法で求めたところ、蛍光体微粒子(マンガンも含む)の含有量は1.20質量%であり、賦活剤であるマンガンのドープ率は亜鉛元素に対して0.32モル%であり、熟成処理を行わなかったことにより、蛍光体微粒子の含有量が実施例2に比べて少なく、また賦活剤であるマンガンのドープ率は実施例2の半分程度であった。
Example 7
(1) A PVA film containing zinc sulfide fine particles doped with manganese by performing the same operation as (1) and (2) of Example 2 except that the aging treatment of (3) of Example 2 was not performed. Manufactured.
(2) The appearance of the PVA film obtained in (1) was smooth and good.
When the PVA film obtained in the above (1) was cut in the thickness direction and the cut surface was photographed with a transmission electron microscope (TEM), the phosphor fine particles were inside the PVA film as in FIG. As shown in FIG. 2, it was not adhered to the film surface when photographed with a scanning electron microscope (SEM). And when the average particle diameter of the phosphor fine particles (zinc sulfide fine particles) contained in the PVA film was determined by the above method based on the TEM photograph, it was 9 nm.
(3) Moreover, when the content of the phosphor fine particles and the activator (manganese) contained in the PVA film obtained in the above (1) was determined by the method described above, the content of the phosphor fine particles (including manganese) Is 1.20 mass%, the doping rate of manganese as an activator is 0.32 mol% with respect to zinc element, and the content of the phosphor fine particles is found in Example 2 because no aging treatment was performed. The doping ratio of manganese as an activator was about half that of Example 2.

(4) さらに、上記(1)で得られたPVAフィルムについて、200〜800nmの波長域(紫外線〜可視光線域)における光透過率を上記した方法で測定したところ、400〜760nmの波長域(可視光域)の平均透過率は98%であって、可視光線の透過率が高く透明であった。
(5) また、上記(1)で得られたPVAフィルムに320nmの励起波長(紫外線)を照射してその蛍光スペクトルを測定したところ、熟成処理を行なった実施例2の蛍光強度よりは低いものの、580nm付近に橙色蛍光発光に帰属される極大吸収が観察された。
(4) Further, when the light transmittance in the wavelength range of 200 to 800 nm (ultraviolet ray to visible light range) was measured for the PVA film obtained in (1) above, the wavelength range of 400 to 760 nm ( The average transmittance in the visible light region) was 98%, and the visible light transmittance was high and transparent.
(5) Moreover, when the fluorescence spectrum was measured by irradiating the PVA film obtained in the above (1) with an excitation wavelength (ultraviolet light) of 320 nm, it was lower than the fluorescence intensity of Example 2 where the aging treatment was performed. A maximum absorption attributed to orange fluorescence was observed at around 580 nm.

《比較例1》
(1) 酢酸亜鉛の濃度が500mM(91.8g/L)の酢酸亜鉛水溶液と硫化ナトリウムの濃度が250mM(19.5g/L)の硫化ナトリウム水溶液を1:1の体積比で混合して、硫化亜鉛微粒子を含有するコロイド溶液を調製した。
(2) PVA(粘度平均重合度=1700、ケン化度=99.9モル%)を90℃で水に溶解してPVA濃度10質量%の水溶液を調製し、このPVA水溶液97質量部に対して上記(1)で調製した硫化亜鉛粒子を含有するコロイド溶液0.3質量部を混合して混合液とし、この混合液を60℃の金属上に流延し、50℃で3時間乾燥して厚さが75μmのPVAフィルムを製造した。
<< Comparative Example 1 >>
(1) A zinc acetate aqueous solution having a zinc acetate concentration of 500 mM (91.8 g / L) and a sodium sulfide aqueous solution having a sodium sulfide concentration of 250 mM (19.5 g / L) were mixed at a volume ratio of 1: 1, A colloidal solution containing zinc sulfide fine particles was prepared.
(2) PVA (viscosity average polymerization degree = 1700, saponification degree = 99.9 mol%) was dissolved in water at 90 ° C. to prepare an aqueous solution having a PVA concentration of 10% by mass. Then, 0.3 parts by mass of the colloidal solution containing zinc sulfide particles prepared in the above (1) is mixed to prepare a mixed solution, which is cast on a metal at 60 ° C. and dried at 50 ° C. for 3 hours. A PVA film having a thickness of 75 μm was manufactured.

(3) 上記(2)で得られたPVAフィルムの外観は、目視で白濁しており可視光下において蛍光体微粒子(硫化亜鉛粒子)の存在が視認された。
上記(2)で得られたPVAフィルムを厚さ方向に切断してその切断面を透過型電子顕微鏡(TEM)にて写真撮影した(図5)。図5にみるように、得られたPVAフィルムでは蛍光体微粒子(硫化亜鉛微粒子)は数ナノメートルオーダーで分散しておらず凝集していた。
図5の写真に基づいて、PVAフィルム内に含まれる蛍光体微粒子(硫化亜鉛微粒子)の平均粒径を上記した方法で求めたところ、280nmであった。
(4) また、上記(2)で得られたPVAフィルムに含まれる蛍光体微粒子の含有量を上記した方法で求めたところ、2.70質量%であった。
(3) The appearance of the PVA film obtained in the above (2) was clouded visually, and the presence of phosphor fine particles (zinc sulfide particles) was visually recognized under visible light.
The PVA film obtained in (2) above was cut in the thickness direction, and the cut surface was photographed with a transmission electron microscope (TEM) (FIG. 5). As shown in FIG. 5, in the obtained PVA film, the phosphor fine particles (zinc sulfide fine particles) were not dispersed on the order of several nanometers but were aggregated.
Based on the photograph of FIG. 5, when the average particle diameter of the phosphor fine particles (zinc sulfide fine particles) contained in the PVA film was determined by the method described above, it was 280 nm.
(4) Further, the content of the phosphor fine particles contained in the PVA film obtained in the above (2) was determined by the method described above, and was 2.70% by mass.

(5) さらに、上記(2)で得られたPVAフィルムについて、200〜800nmの波長域(紫外線〜可視光線域)における光透過率を上記した方法で測定したところ、図3に示すとおりであった。当該図3から、400〜760nmの波長域(可視光域)の平均透過率および波長300nmの紫外線の透過率を上記した方法で求めたところ、波長300nmの紫外線の透過率は0.1%で紫外線遮蔽性には優れていたが、可視光線の平均透過率は21%であって、可視光線の透過率が低く、透明性に劣っていた。
(6) また、上記(2)で得られたPVAフィルムに320nmの励起波長(紫外線)を照射してその蛍光スペクトルを測定したところ、430nm付近に青色蛍光発光に帰属される極大吸収が観察されたが、可視光線の透過性(透明性)に優れるものではなかった。
(5) Furthermore, when the light transmittance in the wavelength range of 200 to 800 nm (ultraviolet ray to visible light region) was measured for the PVA film obtained in (2) above, it was as shown in FIG. It was. From FIG. 3, when the average transmittance in the wavelength range of 400 to 760 nm (visible light range) and the transmittance of ultraviolet light having a wavelength of 300 nm were determined by the method described above, the transmittance of ultraviolet light having a wavelength of 300 nm was 0.1%. Although it was excellent in ultraviolet shielding property, the average visible light transmittance was 21%, the visible light transmittance was low, and the transparency was poor.
(6) When the PVA film obtained in (2) above was irradiated with an excitation wavelength (ultraviolet light) of 320 nm and its fluorescence spectrum was measured, a maximum absorption attributed to blue fluorescence was observed at around 430 nm. However, the visible light transmittance (transparency) was not excellent.

《比較例2》
(1) 実施例1の(1)と同じ方法を採用して製造したPVAフィルムを、酢酸亜鉛の濃度が20mM(3.7g/L)の酢酸亜鉛水溶液からなる温度25℃の水浴中に滞留時間が600秒となるように浸漬した後、引き続いて、硫化ナトリウムの濃度が10mM(0.8g/L)の硫化ナトリウム水溶液からなる温度25℃の水浴中に滞留時間が300秒になるように超音波照射下で浸漬した。
(2) 次いで、PVAフィルムを硫化ナトリウム水溶液から水浴から取り出して、酢酸亜鉛の濃度が20mM(3.7g/L)の酢酸亜鉛水溶液と硫化ナトリウムの濃度が10mM(0.8g/L)の硫化ナトリウム水溶液を1:1の体積比で混合した混合液(酢酸亜鉛の濃度は1.85g/L、硫化ナトリウムの濃度は0.4g/L)(熟成処理用液)(温度70℃)中に浸漬して、70℃で1時間保持した後、PVAフィルムを前記混合液から取り出して、水、メタノールの順で洗浄し、50℃の熱風で乾燥して、硫化亜鉛微粒子を含有するPVAフィルムを製造した。
<< Comparative Example 2 >>
(1) A PVA film produced by adopting the same method as (1) of Example 1 is retained in a water bath at a temperature of 25 ° C. composed of a zinc acetate aqueous solution having a zinc acetate concentration of 20 mM (3.7 g / L). After dipping so that the time is 600 seconds, subsequently, the residence time is set to 300 seconds in a 25 ° C. water bath composed of an aqueous sodium sulfide solution having a sodium sulfide concentration of 10 mM (0.8 g / L). Immersion under ultrasonic irradiation.
(2) Next, the PVA film is taken out of the aqueous sodium sulfide solution from the water bath, and the aqueous zinc acetate concentration of 20 mM (3.7 g / L) and the sulfide concentration of 10 mM (0.8 g / L) of sodium sulfide are sulfided. In a mixed solution (concentration of zinc acetate: 1.85 g / L, concentration of sodium sulfide: 0.4 g / L) (maturation treatment solution) (temperature: 70 ° C.) in which sodium aqueous solution was mixed at a volume ratio of 1: 1 After dipping and holding at 70 ° C. for 1 hour, the PVA film is taken out of the mixed solution, washed with water and methanol in this order, and dried with hot air at 50 ° C. to obtain a PVA film containing zinc sulfide fine particles. Manufactured.

(3) 上記(2)で得られたPVAフィルムの外観は平滑で良好であった。
上記(2)で得られたPVAフィルムを厚さ方向に切断してその切断面を透過型電子顕微鏡(TEM)にて写真撮影し、当該写真に基づいて、PVAフィルム内に含まれる蛍光体微粒子(硫化亜鉛微粒子)の平均粒径を上記した方法で求めたところ8nmであった。
(4) また、上記(2)で得られたPVAフィルムに含まれる蛍光体微粒子の含有量を上記した方法で求めたところ、0.31質量%であった。
(5) さらに、上記(2)で得られたPVAフィルムについて、200〜800nmの波長域(紫外線〜可視光線域)における光透過率を上記した方法で測定したところ、図3に示すように、400〜760nmの波長域(可視光域)の平均透過率は99%であって、可視光線の透過率が高く透明性に優れていたが、波長300nmの紫外線の透過率は29.4%と高く、紫外線遮蔽性に劣っていた。
(6) また、上記(2)で得られたPVAフィルムに320nmの励起波長(紫外線)を照射してその蛍光スペクトルを測定したところ、図4に示すとおりであり、蛍光の発光強度が小さくて、目視では蛍光の発光を確認することができなかった。
430nm付近に青色蛍光発光に帰属される極大吸収が観察された。
(3) The appearance of the PVA film obtained in (2) was smooth and good.
The PVA film obtained in the above (2) is cut in the thickness direction, and the cut surface is photographed with a transmission electron microscope (TEM). Based on the photograph, the phosphor fine particles contained in the PVA film It was 8 nm when the average particle diameter of (zinc sulfide fine particles) was determined by the above-described method.
(4) Further, the content of the phosphor fine particles contained in the PVA film obtained in the above (2) was determined by the method described above, and it was 0.31% by mass.
(5) Further, for the PVA film obtained in (2) above, when the light transmittance in the wavelength range of 200 to 800 nm (ultraviolet light to visible light region) was measured by the method described above, as shown in FIG. The average transmittance in the wavelength region of 400 to 760 nm (visible light region) was 99%, and the transmittance of visible light was high and excellent in transparency, but the transmittance of ultraviolet light at a wavelength of 300 nm was 29.4%. It was high and inferior in ultraviolet shielding properties.
(6) When the PVA film obtained in (2) above was irradiated with an excitation wavelength (ultraviolet light) of 320 nm and its fluorescence spectrum was measured, it was as shown in FIG. Fluorescence emission could not be confirmed visually.
A maximum absorption attributed to blue fluorescence was observed at around 430 nm.

《比較例3》
(1) 市販のナイロン繊維(ナイロン6繊維、単繊維繊度2dtex)を、酢酸亜鉛の濃度が133mM(24.4g/L)の酢酸亜鉛水溶液150mLと酢酸マンガン(賦活剤)の濃度が8mM(1.4g/L)の酢酸マンガン水溶液25mLを混合した混合液(酢酸亜鉛の濃度は20.9g/L、酢酸マンガンの濃度は0.2g/L)よりなる温度25℃の水浴中に滞留時間が600秒となるように浸漬した後、引き続いて、硫化ナトリウの濃度が400mM(31.2g/L)の硫化ナトリウム水溶液からなる温度25℃の水浴中に滞留時間が600秒になるように超音波照射下で浸漬した。
(2) 次いで、ナイロン繊維を硫化ナトリウム水溶液からなる水浴から取り出して、酢酸マンガンを1モル%の量で添加してなる酢酸亜鉛の濃度が150mM(27.5g/L)の酢酸亜鉛水溶液と硫化ナトリウムの濃度が150mM(11.7g/L)の硫化ナトリウム水溶液を1:1の体積比で混合した混合液(酢酸亜鉛の濃度は13.75g/L、酢酸マンガンの濃度は0.13g/L、硫化ナトリウムの濃度は5.85g/L)(熟成処理用液)(温度70℃)中に浸漬して、70℃で1時間保持した後、ナイロン繊維を前記混合液から取り出して、水、メタノールの順で洗浄し、50℃の熱風で乾燥した。
<< Comparative Example 3 >>
(1) A commercially available nylon fiber (nylon 6 fiber, single fiber fineness 2 dtex) is prepared by adding 150 mL of a zinc acetate aqueous solution having a concentration of 133 mM (24.4 g / L) and a concentration of manganese acetate (activator) of 8 mM (1 4 g / L) of a mixed solution of 25 mL of an aqueous solution of manganese acetate (zinc acetate concentration is 20.9 g / L, manganese acetate concentration is 0.2 g / L). After dipping for 600 seconds, ultrasonic waves were applied so that the residence time was 600 seconds in a 25 ° C. water bath composed of a sodium sulfide aqueous solution having a concentration of sodium sulfide of 400 mM (31.2 g / L). Soaked under irradiation.
(2) Next, the nylon fiber is taken out from a water bath made of a sodium sulfide aqueous solution, and a zinc acetate aqueous solution having a concentration of 150 mM (27.5 g / L) of zinc acetate to which manganese acetate is added in an amount of 1 mol% is sulfided. A mixed solution in which a sodium sulfide aqueous solution having a sodium concentration of 150 mM (11.7 g / L) is mixed at a volume ratio of 1: 1 (the concentration of zinc acetate is 13.75 g / L, the concentration of manganese acetate is 0.13 g / L) The concentration of sodium sulfide is 5.85 g / L) (aging solution) (temperature 70 ° C.) and held at 70 ° C. for 1 hour, after which the nylon fiber is taken out of the mixed solution, They were washed with methanol in this order and dried with hot air at 50 ° C.

(3) 上記(2)で得られたナイロン繊維に含まれる蛍光体微粒子および賦活剤(マンン)の含有量を上記した方法で求めたところ、蛍光体微粒子(マンガンも含む)の含有
量は0.02質量%であり、賦活剤であるマンガンのドープ率は亜鉛元素に対して0.13モル%であった。
また、上記(2)で得られたナイロン繊維を長さ方向に直角に切断してその切断面を透過型電子顕微鏡(TEM)にて写真撮影したところ、ナイロン繊維の内部での蛍光体微粒子の存在は観察されなかった。
この比較例3の結果から、ナイロンなどのような分子中に水酸基を持たない重合体の成形体に対して本発明におけるような浸漬による製造方法を適用しても、成形体内に蛍光体微粒子が分散する成形体が得られないことがわかる。
(3) When the contents of the phosphor fine particles and the activator (mann) contained in the nylon fiber obtained in (2) above are determined by the above-described method, the content of the phosphor fine particles (including manganese) is 0. 0.02 mass%, and the doping rate of manganese as an activator was 0.13 mol% with respect to zinc element.
Further, when the nylon fiber obtained in (2) was cut at right angles to the length direction and the cut surface was photographed with a transmission electron microscope (TEM), the phosphor fine particles inside the nylon fiber were photographed. The presence was not observed.
From the result of Comparative Example 3, even if the production method by dipping as in the present invention is applied to a polymer molded body having no hydroxyl group in the molecule such as nylon, phosphor fine particles are not formed in the molded body. It turns out that the molded object to disperse | distribute cannot be obtained.

上記した実施例1〜7および比較例1〜3の結果をまとめると、以下の表1に示すとおりである。   The results of Examples 1 to 7 and Comparative Examples 1 to 3 are summarized as shown in Table 1 below.

Figure 2009028393
Figure 2009028393

本発明の蛍光発色性PVA系樹脂成形体は、可視光下においては蛍光体微粒子の存在が視認されず、紫外線照射下においては鮮明で強い蛍光を発する平均粒径50nm以下の蛍光体微粒子を有し、しかもその蛍光体微粒子が分散されていることから、可視光線の透過率が高くて透明性に優れ、紫外線の透過率が低くて紫外線遮蔽性に優れ、その上酸素をはじめとする気体の表面吸着により蛍光発色性に変化を生ずるため、紙幣、証券、機密文書、IDカード、商品タグなどにおける偽造防止、壁紙、カーペット、衣類、ガラス中間膜やガラス貼着膜用フィルムなどの紫外線遮蔽と装飾を兼ね備える材料、気体の表面吸着を利用したセンシング材料などの用途に有効に使用することができる。
そして、本発明の製造方法によって前記した蛍光発色性PVA系樹脂成形体を円滑に製造することができる。
The fluorescent color-forming PVA resin molded article of the present invention has phosphor fine particles having an average particle diameter of 50 nm or less that emits clear and strong fluorescence under ultraviolet irradiation without the presence of the fine phosphor particles visible under visible light. In addition, since the phosphor fine particles are dispersed, the visible light transmittance is high and the transparency is excellent, the ultraviolet transmittance is low and the ultraviolet shielding property is excellent, and oxygen and other gases are also included. Fluorescence coloring changes due to surface adsorption, preventing counterfeiting of banknotes, securities, confidential documents, ID cards, product tags, etc., and UV shielding such as wallpaper, carpets, clothing, glass interlayer films, and glass adhesive films It can be effectively used for applications such as a material having decoration and a sensing material using gas surface adsorption.
And the above-mentioned fluorescence coloring PVA-type resin molding can be smoothly manufactured with the manufacturing method of this invention.

Claims (14)

ポリビニルアルコール系樹脂成形体内に、紫外線の照射下において350〜700nmの波長域に蛍光を発する平均粒径が50nm以下の蛍光体微粒子が、ポリビニルアルコール系樹脂成形体を構成するポリビニルアルコール系重合体の質量に基づいて0.5質量%以上の割合で分散された状態で含有されていることを特徴とする蛍光発色性ポリビニルアルコール系樹脂成形体。   In the polyvinyl alcohol-based resin molded body, fluorescent fine particles having an average particle diameter of 50 nm or less that emit fluorescence in the wavelength range of 350 to 700 nm under irradiation of ultraviolet rays are formed of the polyvinyl alcohol-based polymer constituting the polyvinyl alcohol-based resin molded body. A fluorescent color-forming polyvinyl alcohol-based resin molded article which is contained in a state of being dispersed at a ratio of 0.5% by mass or more based on mass. 蛍光体微粒子の平均粒径が30nm以下である請求項1に記載の蛍光発色性ポリビニルアルコール系樹脂成形体。   The fluorescent color-forming polyvinyl alcohol-based resin molded article according to claim 1, wherein the average particle diameter of the phosphor fine particles is 30 nm or less. 蛍光体微粒子が、賦活剤がドープされまたはドープされていない、周期表の12族の金属に16族の元素が結合した金属化合物(F)よりなる蛍光体微粒子である請求項1または2に記載の蛍光発色性ポリビニルアルコール系樹脂成形体。   The phosphor fine particles are phosphor fine particles made of a metal compound (F) in which a group 16 element is bonded to a group 12 metal of the periodic table, which is doped or not doped with an activator. Fluorescent coloring polyvinyl alcohol resin molded product. 蛍光体微粒子が、賦活剤がドープされた、周期表の12族の金属に16族の元素が結合した金属化合物(F)よりなる蛍光体微粒子であって、賦活剤の量が、賦活剤をドープする前の前記周期表の12族の金属元素1モルに対して0.001モル以上である請求項1〜3のいずれか1項に記載の蛍光発色性ポリビニルアルコール系樹脂成形体。   The phosphor fine particles are phosphor fine particles made of a metal compound (F) in which a group 16 element is bonded to a group 12 metal of the periodic table doped with an activator, and the amount of the activator The fluorescent coloring polyvinyl alcohol-based resin molded article according to any one of claims 1 to 3, wherein the amount is 0.001 mol or more with respect to 1 mol of the metal element of Group 12 of the periodic table before doping. 蛍光体微粒子が、賦活剤がドープされまたはドープされていない硫化亜鉛を主体とする蛍光体微粒子および賦活剤がドープされまたはドープされていない硫化カドミウムを主体とする蛍光体微粒子の少なくとも1種である請求項1〜4のいずれか1項に記載の蛍光発色性ポリビニルアルコール系樹脂成形体。   The phosphor fine particles are at least one kind of phosphor fine particles mainly composed of zinc sulfide doped or not doped with an activator and phosphor fine particles mainly composed of cadmium sulfide doped or not doped with an activator. The fluorescence coloring polyvinyl alcohol-type resin molding of any one of Claims 1-4. ポリビニルアルコール系樹脂成形体が、フィルムまたは繊維である請求項1〜5のいずれか1項に記載の蛍光発色性ポリビニルアルコール系樹脂成形体。   The fluorescent color-forming polyvinyl alcohol-based resin molded body according to any one of claims 1 to 5, wherein the polyvinyl alcohol-based resin molded body is a film or a fiber. フィルムの波長400〜760nmの可視光線の平均透過率が、50%以上である請求項1〜6のいずれか1項に記載の蛍光発色性ポリビニルアルコール系樹脂成形体。   The fluorescent color-forming polyvinyl alcohol-based resin molded article according to any one of claims 1 to 6, wherein the film has an average transmittance of visible light having a wavelength of 400 to 760 nm of 50% or more. フィルムの波長300nmの紫外線の透過率が、10%以下である請求項7に記載の蛍光発色性ポリビニルアルコール系樹脂成形体。   The fluorescent coloring polyvinyl alcohol-based resin molded article according to claim 7, wherein the film has a transmittance of ultraviolet rays having a wavelength of 300 nm of 10% or less. (i) ポリビニルアルコール系重合体よりなる成形体を、紫外線の照射下において350〜700nmの波長域に蛍光を発する金属化合物(F)を形成する金属イオン(A)を含む液(Ia)に浸漬するか、または前記金属イオン(A)と賦活剤イオン(C)を含む液(Ib)に浸漬し;次いで、
(ii) 前記金属イオン(A)と反応して紫外線の照射下において350〜700nmの波長域に蛍光を発する金属化合物(F)を形成するイオン(B)含む液(II)に浸漬して、ポリビニルアルコール系重合体よりなる成形体内に、紫外線の照射下において350〜700nmの波長域に蛍光を発する金属化合物(F)よりなる平均粒径が50nm以下の蛍光体微粒子を生成させ;更に、
(iii) 前記工程(ii)で形成した蛍光体微粒子を成形体内に含有するポリビニルアルコール系重合体よりなる成形体を、前記金属イオン(A)とイオン(B)を含む液(IIIa)に浸漬するか、または前記金属イオン(A)とイオン(B)と賦活剤イオン(C)を含む液(IIIb)に浸漬して熟成処理する;
ことを特徴とする、賦活剤がドープされまたはドープされていない平均粒径が50nm以下の蛍光体微粒子が成形体内で分散された状態で含有されている蛍光発色性ポリビニルアルコール系樹脂成形体の製造方法。
(I) A molded body made of a polyvinyl alcohol polymer is immersed in a liquid (Ia) containing a metal ion (A) that forms a metal compound (F) that emits fluorescence in a wavelength range of 350 to 700 nm under irradiation of ultraviolet rays. Or dipping in the liquid (Ib) containing the metal ion (A) and the activator ion (C);
(Ii) It is immersed in a liquid (II) containing ions (B) that react with the metal ions (A) to form a metal compound (F) that emits fluorescence in the wavelength region of 350 to 700 nm under irradiation of ultraviolet rays. Phosphor particles having an average particle diameter of 50 nm or less made of a metal compound (F) that emits fluorescence in a wavelength range of 350 to 700 nm under irradiation of ultraviolet rays are formed in a molded body made of a polyvinyl alcohol-based polymer;
(Iii) Immerse the molded body made of the polyvinyl alcohol polymer containing the phosphor fine particles formed in the step (ii) in the molded body in the liquid (IIIa) containing the metal ions (A) and ions (B). Or dipping in the liquid (IIIb) containing the metal ions (A), ions (B) and activator ions (C);
Production of a fluorescent color-forming polyvinyl alcohol-based resin molded article containing phosphor fine particles with an average particle diameter of 50 nm or less that are doped or not doped with an activator, characterized in that Method.
液(Ia)、液(Ib)、液(II)、液(IIIa)および液(IIIb)が、水、ポリビニルアルコール系重合体を膨潤する有機溶媒、または水とポリビニルアルコール系重合体を膨潤する有機溶媒の混合溶媒を溶媒とする液である請求項9に記載の製造方法。   Liquid (Ia), liquid (Ib), liquid (II), liquid (IIIa), and liquid (IIIb) swell water, an organic solvent that swells the polyvinyl alcohol polymer, or water and the polyvinyl alcohol polymer. The production method according to claim 9, which is a liquid using a mixed solvent of organic solvents as a solvent. 上記の工程(iii)の熟成処理を、温度30〜90℃で30分以上行う請求項9または10に記載の製造方法。 The production method according to claim 9 or 10, wherein the aging treatment in the step (iii) is performed at a temperature of 30 to 90 ° C for 30 minutes or more. 液(Ia)および液(Ib)における金属イオン(A)生成化合物の含有量が0.1〜120g/Lであり、液(Ib)における賦活剤イオン(C)生成化合物の含有量が0.1〜120g/Lであり、液(II)におけるイオン(B)生成化合物の含有量が1〜120g/Lであり(ただし、液(Ia)および液(Ib)における金属イオン(A)生成化合物の含有量ならびに液(II)におけるイオン(B)生成化合物の含有量のいずれかは、5g/L以上である。)、液(IIIa)および液(IIIb)における金属イオン(A)生成化合物の含有量が0.1〜120g/Lおよびイオン(B)生成化合物の含有量が0.1〜120g/Lであり、液(IIIb)における賦活剤イオン(C)生成化合物の含有量が0.1〜120g/Lである請求項9〜11のいずれか1項に記載の製造方法。   The content of the metal ion (A) generating compound in the liquid (Ia) and the liquid (Ib) is 0.1 to 120 g / L, and the content of the activator ion (C) generating compound in the liquid (Ib) is 0.1. 1 to 120 g / L, and the content of the ion (B) generating compound in the liquid (II) is 1 to 120 g / L (provided that the metal ion (A) generating compound in the liquid (Ia) and the liquid (Ib) And the content of the ion (B) generating compound in the liquid (II) is 5 g / L or more.), The metal ion (A) generating compound in the liquid (IIIa) and the liquid (IIIb) The content is 0.1 to 120 g / L and the content of the ion (B) generating compound is 0.1 to 120 g / L, and the content of the activator ion (C) generating compound in the liquid (IIIb) is 0.1. It is 1-120 g / L. The manufacturing method of any one of -11. 金属イオン(A)が周期表の12族の金属のイオンであり、イオン(B)が周期表の16族の元素のイオンである請求項9〜12のいずれか1項に記載の製造方法。   The manufacturing method according to any one of claims 9 to 12, wherein the metal ion (A) is an ion of a group 12 metal of the periodic table, and the ion (B) is an ion of an element of a group 16 of the periodic table. 金属イオン(A)が亜鉛イオンまたはカドミウムイオンであり、イオン(B)が硫黄イオンであり、賦活剤イオン(C)がマンガンイオン、銅イオン、銀イオン、金イオンおよび希土類元素イオンの少なくとも1種である請求項9〜13のいずれか1項に記載の製造方法。   The metal ion (A) is zinc ion or cadmium ion, the ion (B) is sulfur ion, and the activator ion (C) is at least one of manganese ion, copper ion, silver ion, gold ion and rare earth element ion The manufacturing method according to any one of claims 9 to 13.
JP2009530071A 2007-08-27 2008-08-21 Fluorescent color developing polyvinyl alcohol-based resin molding and method for producing the same Pending JPWO2009028393A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007219542 2007-08-27
JP2007219542 2007-08-27
PCT/JP2008/064900 WO2009028393A1 (en) 2007-08-27 2008-08-21 Fluorescent polyvinyl alcohol resin moldings and process for production thereof

Publications (1)

Publication Number Publication Date
JPWO2009028393A1 true JPWO2009028393A1 (en) 2010-12-02

Family

ID=40387115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009530071A Pending JPWO2009028393A1 (en) 2007-08-27 2008-08-21 Fluorescent color developing polyvinyl alcohol-based resin molding and method for producing the same

Country Status (3)

Country Link
JP (1) JPWO2009028393A1 (en)
TW (1) TW200918582A (en)
WO (1) WO2009028393A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112067644B (en) * 2020-08-18 2023-06-23 铜陵有色金属集团股份有限公司 Method for detecting liquid sample by adopting X-ray fluorescence spectrometry and sample processing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143306A (en) * 1985-12-11 1987-06-26 山本 隆一 Metal sulfide
JPH02173622A (en) * 1988-12-27 1990-07-05 Mitsui Toatsu Chem Inc Production of superfine particle/polymer composite composition
JPH0482026B2 (en) * 1985-03-22 1992-12-25 Ryuichi Yamamoto
JPH1193096A (en) * 1997-09-18 1999-04-06 Tokushu Paper Mfg Co Ltd Fluorescent fibrous material, paper for preventing forgery by using the same and printed matter for preventing forgery
JP2000290831A (en) * 1999-04-07 2000-10-17 Kuraray Co Ltd Fluorescent poly(vinyl alcohol) fiber
JP2008007661A (en) * 2006-06-30 2008-01-17 Kuraray Co Ltd Method for producing functional polymer molded product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482026B2 (en) * 1985-03-22 1992-12-25 Ryuichi Yamamoto
JPS62143306A (en) * 1985-12-11 1987-06-26 山本 隆一 Metal sulfide
JPH02173622A (en) * 1988-12-27 1990-07-05 Mitsui Toatsu Chem Inc Production of superfine particle/polymer composite composition
JPH1193096A (en) * 1997-09-18 1999-04-06 Tokushu Paper Mfg Co Ltd Fluorescent fibrous material, paper for preventing forgery by using the same and printed matter for preventing forgery
JP2000290831A (en) * 1999-04-07 2000-10-17 Kuraray Co Ltd Fluorescent poly(vinyl alcohol) fiber
JP2008007661A (en) * 2006-06-30 2008-01-17 Kuraray Co Ltd Method for producing functional polymer molded product

Also Published As

Publication number Publication date
TW200918582A (en) 2009-05-01
WO2009028393A1 (en) 2009-03-05

Similar Documents

Publication Publication Date Title
Abou-Melha Preparation of photoluminescent nanocomposite ink toward dual-mode secure anti-counterfeiting stamps
Khattab et al. Development of illuminant glow-in-the-dark cotton fabric coated by luminescent composite with antimicrobial activity and ultraviolet protection
JP5172853B2 (en) Light emitting device
Alenazi Development of color-tunable photoluminescent polycarbonate smart window immobilized with silica-coated lanthanide-activated strontium aluminum oxide nanoparticles
CN105525343B (en) Preparation method and application of carbon dot photonic crystal with opal structure or inverse opal structure
TWI297047B (en) Conductive polyvinyl alcohol fiber
JP6058126B2 (en) Quantum yield enhancement using highly reflective agents
Bao et al. Upconversion polymeric nanofibers containing lanthanide-doped nanoparticles via electrospinning
JP2020122147A (en) Modified phosphors and compositions thereof
JP5252621B2 (en) Flexible fluorescent film based on clay
CN1620527A (en) Security articles comprising multi-responsive physical colorants
JP2000507309A (en) Improved colored articles and compositions and methods of making them
Hu et al. In situ fabrication of superfine perovskite composite nanofibers with ultrahigh stability by one-step electrospinning toward white light-emitting diode
Badawi et al. Tailoring the photoluminescent and electrical properties of tin-doped ZnS@ PVP polymeric composite films for LEDs applications
Woelfle et al. Transparent and flexible quantum dot–polymer composites using an ionic liquid as compatible polymerization medium
Meng et al. Ultralong room-temperature phosphorescence from polycyclic aromatic hydrocarbons by accelerating intersystem crossing within a rigid polymer network
Shi et al. Preparation and characterization of persistent luminescence of regenerated cellulose fiber
Hong et al. Fabrication of wafer-scale free-standing quantum dot/polymer nanohybrid films for white-light-emitting diodes using an electrospray method
JPWO2009028393A1 (en) Fluorescent color developing polyvinyl alcohol-based resin molding and method for producing the same
CN110055619B (en) Preparation method and application of nano composite fluorescent fiber
Liu et al. Cross-linked polymer modified layered double hydroxide nanosheet stabilized CsPbBr3 perovskite quantum dots for white light-emitting diode
Yu et al. Fluctuation of photon-releasing with ligand coordination in polyacrylonitrile-based electrospun nanofibers
JP4604246B2 (en) Phosphor in which semiconductor nanoparticles are dispersed at high concentration and method for producing the same
KR20140081152A (en) Fabricating method and film for amplifying luminescence
Mogharbel et al. Preparation of dual mode encoding photochromic electrospun glass nanofibers for anticounterfeiting applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140617