JPWO2005123873A1 - ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE - Google Patents
ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE Download PDFInfo
- Publication number
- JPWO2005123873A1 JPWO2005123873A1 JP2006514709A JP2006514709A JPWO2005123873A1 JP WO2005123873 A1 JPWO2005123873 A1 JP WO2005123873A1 JP 2006514709 A JP2006514709 A JP 2006514709A JP 2006514709 A JP2006514709 A JP 2006514709A JP WO2005123873 A1 JPWO2005123873 A1 JP WO2005123873A1
- Authority
- JP
- Japan
- Prior art keywords
- general formula
- organic
- group
- tautomer
- organic electroluminescence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 138
- 150000004696 coordination complex Chemical class 0.000 claims abstract description 52
- 238000005401 electroluminescence Methods 0.000 claims abstract description 50
- 229910052751 metal Inorganic materials 0.000 claims abstract description 47
- 239000002184 metal Substances 0.000 claims abstract description 47
- 125000001424 substituent group Chemical group 0.000 claims abstract description 40
- 125000006615 aromatic heterocyclic group Chemical group 0.000 claims abstract description 28
- 230000000737 periodic effect Effects 0.000 claims abstract description 28
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 17
- 230000000903 blocking effect Effects 0.000 claims description 75
- 229910052757 nitrogen Inorganic materials 0.000 claims description 52
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 42
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 35
- 229910052799 carbon Inorganic materials 0.000 claims description 24
- 150000004945 aromatic hydrocarbons Chemical group 0.000 claims description 22
- 125000004432 carbon atom Chemical group C* 0.000 claims description 18
- 150000002430 hydrocarbons Chemical group 0.000 claims description 18
- 229910052741 iridium Inorganic materials 0.000 claims description 16
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 16
- 239000000470 constituent Substances 0.000 claims description 15
- 229910052697 platinum Inorganic materials 0.000 claims description 15
- 229910052717 sulfur Inorganic materials 0.000 claims description 8
- 125000004434 sulfur atom Chemical group 0.000 claims description 8
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 150000002894 organic compounds Chemical class 0.000 claims description 4
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 3
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 265
- 238000000034 method Methods 0.000 description 63
- 230000032258 transport Effects 0.000 description 60
- 239000010408 film Substances 0.000 description 48
- 239000002019 doping agent Substances 0.000 description 40
- 239000000758 substrate Substances 0.000 description 38
- 238000004519 manufacturing process Methods 0.000 description 37
- 150000001875 compounds Chemical class 0.000 description 36
- 238000002347 injection Methods 0.000 description 36
- 239000007924 injection Substances 0.000 description 36
- -1 hydroxyethyl group Chemical group 0.000 description 31
- 238000010438 heat treatment Methods 0.000 description 29
- 230000005525 hole transport Effects 0.000 description 27
- 238000000151 deposition Methods 0.000 description 26
- 239000000872 buffer Substances 0.000 description 24
- 230000008021 deposition Effects 0.000 description 24
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 22
- 238000007740 vapor deposition Methods 0.000 description 19
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 17
- 238000000605 extraction Methods 0.000 description 17
- 229910052782 aluminium Inorganic materials 0.000 description 16
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 16
- 150000001721 carbon Chemical group 0.000 description 16
- 0 CC(**)C(C)C1CC(C)(CCCC2CC2)CCC1 Chemical compound CC(**)C(C)C1CC(C)(CCCC2CC2)CCC1 0.000 description 15
- 239000011159 matrix material Substances 0.000 description 15
- 239000000203 mixture Substances 0.000 description 15
- 238000007789 sealing Methods 0.000 description 15
- 238000002360 preparation method Methods 0.000 description 14
- 239000000975 dye Substances 0.000 description 13
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 12
- 238000010586 diagram Methods 0.000 description 12
- 239000011521 glass Substances 0.000 description 12
- 230000003287 optical effect Effects 0.000 description 10
- 229910052749 magnesium Inorganic materials 0.000 description 9
- 239000011777 magnesium Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 8
- 229910001873 dinitrogen Inorganic materials 0.000 description 8
- 239000007772 electrode material Substances 0.000 description 8
- 230000006872 improvement Effects 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 8
- 238000000059 patterning Methods 0.000 description 8
- 229910052715 tantalum Inorganic materials 0.000 description 8
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 8
- 239000010409 thin film Substances 0.000 description 8
- 238000001771 vacuum deposition Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- MZSAMHOCTRNOIZ-UHFFFAOYSA-N 3-[4-(aminomethyl)-6-(trifluoromethyl)pyridin-2-yl]oxy-N-phenylaniline Chemical compound NCC1=CC(=NC(=C1)C(F)(F)F)OC=1C=C(NC2=CC=CC=C2)C=CC=1 MZSAMHOCTRNOIZ-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000003086 colorant Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical group C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 6
- 239000002356 single layer Substances 0.000 description 6
- 238000004528 spin coating Methods 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 5
- 238000005266 casting Methods 0.000 description 5
- 239000003446 ligand Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- VQGHOUODWALEFC-UHFFFAOYSA-N 2-phenylpyridine Chemical compound C1=CC=CC=C1C1=CC=CC=N1 VQGHOUODWALEFC-UHFFFAOYSA-N 0.000 description 4
- BZHCVCNZIJZMRN-UHFFFAOYSA-N 9h-pyridazino[3,4-b]indole Chemical class N1=CC=C2C3=CC=CC=C3NC2=N1 BZHCVCNZIJZMRN-UHFFFAOYSA-N 0.000 description 4
- 229940126062 Compound A Drugs 0.000 description 4
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- 229960004592 isopropanol Drugs 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 238000007738 vacuum evaporation Methods 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 125000006575 electron-withdrawing group Chemical group 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 150000004866 oxadiazoles Chemical class 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 3
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- OGGKVJMNFFSDEV-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 OGGKVJMNFFSDEV-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- POVSNKCGVFCMGV-UHFFFAOYSA-N c1cncc(c2cnccc22)c1[n]2-c(cc1)ccc1-c(cc1)ccc1-[n]1c(ccnc2)c2c2c1ccnc2 Chemical compound c1cncc(c2cnccc22)c1[n]2-c(cc1)ccc1-c(cc1)ccc1-[n]1c(ccnc2)c2c2c1ccnc2 POVSNKCGVFCMGV-UHFFFAOYSA-N 0.000 description 2
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 2
- 125000004623 carbolinyl group Chemical group 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- JVZRCNQLWOELDU-UHFFFAOYSA-N gamma-Phenylpyridine Natural products C1=CC=CC=C1C1=CC=NC=C1 JVZRCNQLWOELDU-UHFFFAOYSA-N 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 150000002503 iridium Chemical class 0.000 description 2
- 150000002504 iridium compounds Chemical class 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical group C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 2
- 150000007978 oxazole derivatives Chemical class 0.000 description 2
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 2
- SIOXPEMLGUPBBT-UHFFFAOYSA-N picolinic acid Chemical compound OC(=O)C1=CC=CC=N1 SIOXPEMLGUPBBT-UHFFFAOYSA-N 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 2
- 125000003373 pyrazinyl group Chemical group 0.000 description 2
- 125000003226 pyrazolyl group Chemical group 0.000 description 2
- 125000005581 pyrene group Chemical group 0.000 description 2
- 125000000714 pyrimidinyl group Chemical group 0.000 description 2
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 235000021286 stilbenes Nutrition 0.000 description 2
- 125000005504 styryl group Chemical group 0.000 description 2
- 125000001935 tetracenyl group Chemical group C1(=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C12)* 0.000 description 2
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 2
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical compound [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 description 1
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical class N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- OIAQMFOKAXHPNH-UHFFFAOYSA-N 1,2-diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC=C1C1=CC=CC=C1 OIAQMFOKAXHPNH-UHFFFAOYSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- 125000000355 1,3-benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- XJKSTNDFUHDPQJ-UHFFFAOYSA-N 1,4-diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=C(C=2C=CC=CC=2)C=C1 XJKSTNDFUHDPQJ-UHFFFAOYSA-N 0.000 description 1
- VERMWGQSKPXSPZ-BUHFOSPRSA-N 1-[(e)-2-phenylethenyl]anthracene Chemical class C=1C=CC2=CC3=CC=CC=C3C=C2C=1\C=C\C1=CC=CC=C1 VERMWGQSKPXSPZ-BUHFOSPRSA-N 0.000 description 1
- SULWTXOWAFVWOY-PHEQNACWSA-N 2,3-bis[(E)-2-phenylethenyl]pyrazine Chemical class C=1C=CC=CC=1/C=C/C1=NC=CN=C1\C=C\C1=CC=CC=C1 SULWTXOWAFVWOY-PHEQNACWSA-N 0.000 description 1
- MVWPVABZQQJTPL-UHFFFAOYSA-N 2,3-diphenylcyclohexa-2,5-diene-1,4-dione Chemical class O=C1C=CC(=O)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 MVWPVABZQQJTPL-UHFFFAOYSA-N 0.000 description 1
- HONWGFNQCPRRFM-UHFFFAOYSA-N 2-n-(3-methylphenyl)-1-n,1-n,2-n-triphenylbenzene-1,2-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C(=CC=CC=2)N(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 HONWGFNQCPRRFM-UHFFFAOYSA-N 0.000 description 1
- MGADZUXDNSDTHW-UHFFFAOYSA-N 2H-pyran Chemical compound C1OC=CC=C1 MGADZUXDNSDTHW-UHFFFAOYSA-N 0.000 description 1
- ZJSMHFNBMMAKRI-UHFFFAOYSA-N 4-[4-(4-methoxyanilino)phenyl]aniline Chemical group COC1=CC=C(C=C1)NC1=CC=C(C=C1)C1=CC=C(C=C1)N ZJSMHFNBMMAKRI-UHFFFAOYSA-N 0.000 description 1
- AHDTYXOIJHCGKH-UHFFFAOYSA-N 4-[[4-(dimethylamino)-2-methylphenyl]-phenylmethyl]-n,n,3-trimethylaniline Chemical compound CC1=CC(N(C)C)=CC=C1C(C=1C(=CC(=CC=1)N(C)C)C)C1=CC=CC=C1 AHDTYXOIJHCGKH-UHFFFAOYSA-N 0.000 description 1
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 description 1
- DUSWRTUHJVJVRY-UHFFFAOYSA-N 4-methyl-n-[4-[2-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]propan-2-yl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C(C)(C)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 DUSWRTUHJVJVRY-UHFFFAOYSA-N 0.000 description 1
- MVIXNQZIMMIGEL-UHFFFAOYSA-N 4-methyl-n-[4-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]phenyl]-n-(4-methylphenyl)aniline Chemical group C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 MVIXNQZIMMIGEL-UHFFFAOYSA-N 0.000 description 1
- XIQGFRHAIQHZBD-UHFFFAOYSA-N 4-methyl-n-[4-[[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]-phenylmethyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C(C=1C=CC=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 XIQGFRHAIQHZBD-UHFFFAOYSA-N 0.000 description 1
- 125000002373 5 membered heterocyclic group Chemical group 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- ZYASLTYCYTYKFC-UHFFFAOYSA-N 9-methylidenefluorene Chemical class C1=CC=C2C(=C)C3=CC=CC=C3C2=C1 ZYASLTYCYTYKFC-UHFFFAOYSA-N 0.000 description 1
- VIJYEGDOKCKUOL-UHFFFAOYSA-N 9-phenylcarbazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2C2=CC=CC=C21 VIJYEGDOKCKUOL-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- LJLGNWMFHBSWLS-UHFFFAOYSA-N C(c(cc1)ccc1-c(cc1)ccc1-[n]1c2ccncc2c2c1ccnc2)c(cc1)ccc1-c(cc1)ccc1-[n]1c(ccnc2)c2c2c1ccnc2 Chemical compound C(c(cc1)ccc1-c(cc1)ccc1-[n]1c2ccncc2c2c1ccnc2)c(cc1)ccc1-c(cc1)ccc1-[n]1c(ccnc2)c2c2c1ccnc2 LJLGNWMFHBSWLS-UHFFFAOYSA-N 0.000 description 1
- MSDMPJCOOXURQD-UHFFFAOYSA-N C545T Chemical compound C1=CC=C2SC(C3=CC=4C=C5C6=C(C=4OC3=O)C(C)(C)CCN6CCC5(C)C)=NC2=C1 MSDMPJCOOXURQD-UHFFFAOYSA-N 0.000 description 1
- RWIZIAQGPOCPAW-UHFFFAOYSA-N CC(C(C=C1)c(cc2)ccc2-[n](c2ccccc22)c3c2nccc3)C=C1[n](c1ccccc11)c2c1nccc2 Chemical compound CC(C(C=C1)c(cc2)ccc2-[n](c2ccccc22)c3c2nccc3)C=C1[n](c1ccccc11)c2c1nccc2 RWIZIAQGPOCPAW-UHFFFAOYSA-N 0.000 description 1
- KUWZERFWESXZRD-UHFFFAOYSA-N CC(CC=C1)c2c1c1ccncc1[n]2-c1ccc(Cc(cc2)ccc2-[n]2c(cncc3)c3c(cc3)c2cc3-c(cc2)cc3c2c(cncc2)c2[n]3-c2ccc(C3C=CC([n]4c(ccnc5)c5c5ccccc45)=CC3C)cc2)cc1 Chemical compound CC(CC=C1)c2c1c1ccncc1[n]2-c1ccc(Cc(cc2)ccc2-[n]2c(cncc3)c3c(cc3)c2cc3-c(cc2)cc3c2c(cncc2)c2[n]3-c2ccc(C3C=CC([n]4c(ccnc5)c5c5ccccc45)=CC3C)cc2)cc1 KUWZERFWESXZRD-UHFFFAOYSA-N 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 241000284156 Clerodendrum quadriloculare Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical group C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910000799 K alloy Inorganic materials 0.000 description 1
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N N-phenyl amine Natural products NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical group C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- YLYLXUBEHRALPT-UHFFFAOYSA-N [Ir].C1=CN=C2C3=CC=CC=C3C=CC2=C1.C1=CN=C2C3=CC=CC=C3C=CC2=C1.C1=CN=C2C3=CC=CC=C3C=CC2=C1 Chemical compound [Ir].C1=CN=C2C3=CC=CC=C3C=CC2=C1.C1=CN=C2C3=CC=CC=C3C=CC2=C1.C1=CN=C2C3=CC=CC=C3C=CC2=C1 YLYLXUBEHRALPT-UHFFFAOYSA-N 0.000 description 1
- DEGMMTKFCIBVIE-UHFFFAOYSA-N [Ir].Cc1ccc(cc1)-c1ccccn1.Cc1ccc(cc1)-c1ccccn1.Cc1ccc(cc1)-c1ccccn1 Chemical compound [Ir].Cc1ccc(cc1)-c1ccccn1.Cc1ccc(cc1)-c1ccccn1.Cc1ccc(cc1)-c1ccccn1 DEGMMTKFCIBVIE-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 125000004062 acenaphthenyl group Chemical group C1(CC2=CC=CC3=CC=CC1=C23)* 0.000 description 1
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 125000005577 anthracene group Chemical group 0.000 description 1
- 150000008425 anthrones Chemical class 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 125000003828 azulenyl group Chemical group 0.000 description 1
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical group C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- QAQSJAAMBNRRPV-UHFFFAOYSA-N c(cc1)cc(c2cccnc22)c1[n]2-c(cc1)ccc1-c(cc1)ccc1-[n]1c(nccc2)c2c2ccccc12 Chemical compound c(cc1)cc(c2cccnc22)c1[n]2-c(cc1)ccc1-c(cc1)ccc1-[n]1c(nccc2)c2c2ccccc12 QAQSJAAMBNRRPV-UHFFFAOYSA-N 0.000 description 1
- 150000001716 carbazoles Chemical class 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- HKQOBOMRSSHSTC-UHFFFAOYSA-N cellulose acetate Chemical compound OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(O)C(O)C1O.CC(=O)OCC1OC(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)O1.CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 HKQOBOMRSSHSTC-UHFFFAOYSA-N 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 125000005578 chrysene group Chemical group 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 125000005583 coronene group Chemical group 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229920000775 emeraldine polymer Polymers 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthene Chemical group C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 150000008376 fluorenones Chemical class 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 150000002240 furans Chemical class 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 229940083761 high-ceiling diuretics pyrazolone derivative Drugs 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- UEEXRMUCXBPYOV-UHFFFAOYSA-N iridium;2-phenylpyridine Chemical compound [Ir].C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1 UEEXRMUCXBPYOV-UHFFFAOYSA-N 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- AODWRBPUCXIRKB-UHFFFAOYSA-N naphthalene perylene Chemical group C1=CC=CC2=CC=CC=C21.C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 AODWRBPUCXIRKB-UHFFFAOYSA-N 0.000 description 1
- 125000005186 naphthyloxy group Chemical group C1(=CC=CC2=CC=CC=C12)O* 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 150000002908 osmium compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000003854 p-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Cl 0.000 description 1
- GPRIERYVMZVKTC-UHFFFAOYSA-N p-quaterphenyl Chemical group C1=CC=CC=C1C1=CC=C(C=2C=CC(=CC=2)C=2C=CC=CC=2)C=C1 GPRIERYVMZVKTC-UHFFFAOYSA-N 0.000 description 1
- 125000005582 pentacene group Chemical group 0.000 description 1
- JQQSUOJIMKJQHS-UHFFFAOYSA-N pentaphene Chemical group C1=CC=C2C=C3C4=CC5=CC=CC=C5C=C4C=CC3=CC2=C1 JQQSUOJIMKJQHS-UHFFFAOYSA-N 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical group C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- LFSXCDWNBUNEEM-UHFFFAOYSA-N phthalazine Chemical group C1=NN=CC2=CC=CC=C21 LFSXCDWNBUNEEM-UHFFFAOYSA-N 0.000 description 1
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 1
- 125000001388 picenyl group Chemical group C1(=CC=CC2=CC=C3C4=CC=C5C=CC=CC5=C4C=CC3=C21)* 0.000 description 1
- 229940081066 picolinic acid Drugs 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- LNKHTYQPVMAJSF-UHFFFAOYSA-N pyranthrene Chemical group C1=C2C3=CC=CC=C3C=C(C=C3)C2=C2C3=CC3=C(C=CC=C4)C4=CC4=CC=C1C2=C34 LNKHTYQPVMAJSF-UHFFFAOYSA-N 0.000 description 1
- VEPOUCHBIJXQFI-UHFFFAOYSA-N pyrazabole Chemical compound [B-]1N2C=CC=[N+]2[B-][N+]2=CC=CN12 VEPOUCHBIJXQFI-UHFFFAOYSA-N 0.000 description 1
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical class O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical group C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- WVIICGIFSIBFOG-UHFFFAOYSA-N pyrylium Chemical compound C1=CC=[O+]C=C1 WVIICGIFSIBFOG-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical class C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- DLJHXMRDIWMMGO-UHFFFAOYSA-N quinolin-8-ol;zinc Chemical compound [Zn].C1=CN=C2C(O)=CC=CC2=C1.C1=CN=C2C(O)=CC=CC2=C1 DLJHXMRDIWMMGO-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000001022 rhodamine dye Substances 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 150000001629 stilbenes Chemical class 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 150000007979 thiazole derivatives Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- IBBLKSWSCDAPIF-UHFFFAOYSA-N thiopyran Chemical compound S1C=CC=C=C1 IBBLKSWSCDAPIF-UHFFFAOYSA-N 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 125000005259 triarylamine group Chemical group 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- 150000003852 triazoles Chemical group 0.000 description 1
- 125000006617 triphenylamine group Chemical group 0.000 description 1
- 125000005580 triphenylene group Chemical group 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 125000005023 xylyl group Chemical group 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/342—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/346—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/321—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
- H10K85/322—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/321—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
- H10K85/324—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/348—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising osmium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/361—Polynuclear complexes, i.e. complexes comprising two or more metal centers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/633—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
下記一般式(1)または、該一般式(1)の互変異性体を部分構造として有する金属錯体であることを特徴とする有機エレクトロルミネッセンス素子材料。【化1】〔式中、Z11は、芳香族炭化水素環または芳香族複素環を形成するのに必要な原子群を表す。R11、R12、R13は、各々水素原子または置換基を表す。M11は、元素周期表における8族〜10族の金属を表す。〕An organic electroluminescence device material, which is a metal complex having the following general formula (1) or a tautomer of the general formula (1) as a partial structure. [In the formula, Z11 represents an atomic group necessary for forming an aromatic hydrocarbon ring or an aromatic heterocyclic ring. R11, R12 and R13 each represents a hydrogen atom or a substituent. M11 represents a group 8 to group 10 metal in the periodic table. ]
Description
本発明は、有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置に関する。 The present invention relates to an organic electroluminescence element material, an organic electroluminescence element, a display device, and a lighting device.
従来、発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(以下、ELDという)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子や有機エレクトロルミネッセンス素子(以下、有機EL素子という)が挙げられる。無機エレクトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。有機EL素子は、発光する化合物を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・燐光)を利用して発光する素子であり、数V〜数十V程度の電圧で発光が可能であり、さらに、自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。 Conventionally, as a light-emitting electronic display device, there is an electroluminescence display (hereinafter referred to as ELD). Examples of constituent elements of ELD include inorganic electroluminescent elements and organic electroluminescent elements (hereinafter referred to as organic EL elements). Inorganic electroluminescent elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements. An organic EL device has a structure in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode, and injects electrons and holes into the light emitting layer and recombines them to generate excitons. An element that emits light by using light emission (fluorescence / phosphorescence) when this exciton is deactivated, and can emit light at a voltage of several V to several tens V, and is self-luminous. Therefore, it has a wide viewing angle, high visibility, and since it is a thin-film type complete solid-state device, it has attracted attention from the viewpoints of space saving and portability.
しかしながら、今後の実用化に向けた有機EL素子においては、さらに低消費電力で効率よく高輝度に発光する有機EL素子の開発が望まれている。 However, in organic EL elements for practical use in the future, development of organic EL elements that emit light efficiently and with high luminance with lower power consumption is desired.
特許第3093796号明細書では、スチルベン誘導体、ジスチリルアリーレン誘導体またはトリススチリルアリーレン誘導体に、微量の蛍光体をドープし、発光輝度の向上、素子の長寿命化を達成している。 In Japanese Patent No. 3093796, a small amount of phosphor is doped into a stilbene derivative, a distyrylarylene derivative or a tristyrylarylene derivative to achieve an improvement in light emission luminance and a longer device lifetime.
また、8−ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これに微量の蛍光体をドープした有機発光層を有する素子(例えば、特開昭63−264692号公報)、8−ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これにキナクリドン系色素をドープした有機発光層を有する素子(例えば、特開平3−255190号公報)等が知られている。 Further, an element having an organic light-emitting layer in which an 8-hydroxyquinoline aluminum complex is used as a host compound and a small amount of phosphor is doped thereto (for example, JP-A 63-264692), and an 8-hydroxyquinoline aluminum complex is used as a host compound. For example, an element having an organic light emitting layer doped with a quinacridone dye (for example, JP-A-3-255190) is known.
以上のように、励起一重項からの発光を用いる場合、一重項励起子と三重項励起子の生成比が1:3であるため発光性励起種の生成確率が25%であり、光の取り出し効率が約20%であるため、外部取り出し量子効率(ηext)の限界は5%とされている。 As described above, when light emission from excited singlet is used, the generation ratio of singlet excitons and triplet excitons is 1: 3, and thus the generation probability of luminescent excited species is 25%. Since the efficiency is about 20%, the limit of the external extraction quantum efficiency (ηext) is set to 5%.
ところが、プリンストン大より励起三重項からの燐光発光を用いる有機EL素子の報告(M.A.Baldo et al.,nature、395巻、151−154ページ(1998年))がされて以来、室温で燐光を示す材料の研究が活発になってきている。 However, since Princeton University reported on organic EL devices using phosphorescence emission from excited triplets (MA Baldo et al., Nature, 395, 151-154 (1998)), at room temperature. Research on materials that exhibit phosphorescence has become active.
例えばM.A.Baldo et al.,nature、403巻、17号、750−753ページ(2000年)、また米国特許第6,097,147号明細書等にも開示されている。 For example, M.M. A. Baldo et al. , Nature, 403, 17, 750-753 (2000), US Pat. No. 6,097,147, and the like.
励起三重項を使用すると、内部量子効率の上限が100%となるため、励起一重項の場合に比べて原理的に発光効率が4倍となり、冷陰極管とほぼ同等の性能が得られる可能性があることから照明用途としても注目されている。 When excited triplets are used, the upper limit of internal quantum efficiency is 100%, so that in principle the luminous efficiency is four times that of excited singlets, and there is a possibility that almost the same performance as cold cathode tubes can be obtained. Therefore, it is attracting attention as a lighting application.
例えば、S.Lamansky et al.,J.Am.Chem.Soc.,123巻,4304ページ(2001年)等においては、多くの化合物がイリジウム錯体系等重金属錯体を中心に合成検討されている。 For example, S.M. Lamansky et al. , J .; Am. Chem. Soc. , 123, 4304 (2001), etc., many compounds have been studied for synthesis centering on heavy metal complexes such as iridium complexes.
また、前述のM.A.Baldo et al.,nature,403巻,17号,750−753ページ(2000年)においては、ドーパントとして、トリス(2−フェニルピリジン)イリジウムを用いた検討がされている。 In addition, the aforementioned M.I. A. Baldo et al. , Nature, Vol. 403, No. 17, pages 750-753 (2000), studies have been made using tris (2-phenylpyridine) iridium as a dopant.
その他、M.E.Tompson等は、The 10th International Workshop on Inorganic and Organic Electroluminescence(EL’00、浜松)において、ドーパントとしてL2Ir(acac)、例えば、(ppy)2Ir(acac)を、また、Moon−Jae
Youn.0g、Tetsuo Tsutsui等は、やはり、The 10th International Workshop on Inorganic and Organic Electroluminescence(EL’00、浜松)において、ドーパントとして、トリス(2−(p−トリル)ピリジン)イリジウム(Ir(ptpy)3),トリス(ベンゾ[h]キノリン)イリジウム(Ir(bzq)3)等を用いた検討を行っている(なおこれらの金属錯体は一般にオルトメタル化イリジウム錯体と呼ばれている。)。In addition, M.M. E. Thompson et al., In The 10th International Works on Inorganic and Organic Electroluminescence (EL'00, Hamamatsu), used L 2 Ir (acac), for example, (ppy) 2 Ir (acac) as a dopant, J
Youn. 0 g, Tetsuo Tsutsui, etc., again, The 10th International Workshop on Inorganic and Organic Electroluminescence (EL'00, Hamamatsu) in, as a dopant tris (2-(p-tolyl) pyridine) iridium (Ir (ptpy) 3), Studies using tris (benzo [h] quinoline) iridium (Ir (bzq) 3 ) and the like are being conducted (note that these metal complexes are generally called orthometalated iridium complexes).
また、前記、S.Lamansky et al.,J.Am.Chem.Soc.,123巻,4304ページ(2001年)等においても、各種イリジウム錯体を用いて素子化する試みがされている。 In addition, S. Lamansky et al. , J .; Am. Chem. Soc. , 123, 4304 (2001), etc., attempts have been made to form devices using various iridium complexes.
また、高い発光効率を得るために、The 10th International Workshop on Inorganic and Organic Electroluminescence(EL’00、浜松)では、Ikai等はホール輸送性の化合物を燐光性化合物のホストとして用いている。また、M.E.Tompson等は、各種電子輸送性材料を燐光性化合物のホストとして、これらに新規なイリジウム錯体をドープして用いている。 In order to obtain high luminous efficiency, in the 10th International Works on Inorganic and Organic Electroluminescence (EL'00, Hamamatsu), Ikai et al. Uses a hole transporting compound as a host of a phosphorescent compound. In addition, M.M. E. Thompson et al. Use various electron transporting materials as a host of a phosphorescent compound, doped with a novel iridium complex.
中心金属をイリジウムの代わりに白金としたオルトメタル化錯体も注目されている。この種の錯体に関しては、配位子に特徴を持たせた例が多数知られている(例えば、特許文献1〜5及び非特許文献1参照。)。 Orthometalated complexes in which the central metal is platinum instead of iridium are also attracting attention. With regard to this type of complex, there are many known examples in which a ligand is characterized (see, for example, Patent Documents 1 to 5 and Non-Patent Document 1).
何れの場合も発光素子とした場合の発光輝度や発光効率は、その発光する光が燐光に由来することから、従来の素子に比べ大幅に改良されるものであるが、素子の発光寿命については従来の素子よりも低いという問題点があった。このように、りん光性の高効率の発光材料は、発光波長の短波化と素子の発光寿命の改善が難しく実用に耐えうる性能を十分に達成できていないのが現状である。 In any case, the light emission luminance and light emission efficiency of the light emitting device are greatly improved compared to conventional devices because the emitted light is derived from phosphorescence. There was a problem that it was lower than the conventional element. As described above, phosphorescent high-efficiency light-emitting materials are not capable of sufficiently achieving practical performance because it is difficult to shorten the emission wavelength and improve the light emission lifetime of the device.
また、波長の短波化に関しては、これまでフェニルピリジンにフッ素原子、トリフルオロメチル基、シアノ基等の電子吸引基を置換基として導入すること、配位子としてピコリン酸やピラザボール系の配位子を導入することが知られている(例えば、特許文献6〜13及び非特許文献1〜4参照。)が、これらの配位子では発光材料の発光波長が短波化して青色を達成し、高効率の素子を達成できる一方、素子の発光寿命は劣化する傾向もみられ、そのトレードオフの改善が求められていた。
本発明の目的は、発光波長が制御され、高い発光効率を示し、且つ、発光寿命の長い有機EL素子、照明装置及び表示装置を提供することである。 An object of the present invention is to provide an organic EL element, an illuminating device, and a display device in which the emission wavelength is controlled, the emission efficiency is high, and the emission lifetime is long.
上記目的を達成するための、本発明の態様の一つは、下記一般式(1)または、該一般式(1)の互変異性体を部分構造として有する金属錯体であることを特徴とする有機エレクトロルミネッセンス素子材料にある。
One aspect of the present invention for achieving the above object is a metal complex having the following general formula (1) or a tautomer of the general formula (1) as a partial structure. It is in the organic electroluminescence element material.
〔式中、Z11は、芳香族炭化水素環または芳香族複素環を形成するのに必要な原子群を表す。R11、R12、R13は、各々水素原子または置換基を表す。M11は、元素周期表における8族〜10族の金属を表す。〕[Wherein, Z11 represents an atomic group necessary for forming an aromatic hydrocarbon ring or an aromatic heterocyclic ring. R 11 , R 12 and R 13 each represent a hydrogen atom or a substituent. M 11 represents a group 8 to
本発明の上記課題は、下記の構成1〜28により達成された。
(1) 下記一般式(1)または、該一般式(1)の互変異性体を部分構造として有する金属錯体、下記一般式(2)または、該一般式(2)の互変異性体を部分構造として有する金属錯体、下記一般式(3)または、該一般式(3)の互変異性体を部分構造として有する金属錯体、下記一般式(4)または、該一般式(4)の互変異性体を部分構造として有する金属錯体、下記一般式(5)または、該一般式(5)の互変異性体を部分構造として有する金属錯体、または、下記一般式(6)または、該一般式(6)の互変異性体を部分構造として有する金属錯体であることを特徴とする有機エレクトロルミネッセンス素子材料。The above object of the present invention has been achieved by the following configurations 1 to 28.
(1) The following general formula (1) or a metal complex having the tautomer of the general formula (1) as a partial structure, the following general formula (2) or the tautomer of the general formula (2) A metal complex having a partial structure, a metal complex having the following general formula (3) or a tautomer of the general formula (3) as a partial structure, a following general formula (4) or a tautomer of the general formula (4) A metal complex having a mutant as a partial structure, the following general formula (5) or a metal complex having a tautomer of the general formula (5) as a partial structure, or the following general formula (6) or the general An organic electroluminescent element material, which is a metal complex having a tautomer of formula (6) as a partial structure.
〔式中、Z11は、芳香族炭化水素環または芳香族複素環を形成するのに必要な原子群を表す。R11、R12、R13は、各々水素原子または置換基を表す。M11は、元素周期表における8族〜10族の金属を表す。〕[Wherein, Z11 represents an atomic group necessary for forming an aromatic hydrocarbon ring or an aromatic heterocyclic ring. R 11 , R 12 and R 13 each represent a hydrogen atom or a substituent. M 11 represents a group 8 to
〔式中、Z21は芳香族炭化水素環または芳香族複素環を形成するのに必要な原子群を表す。R21、R22、R23は、各々水素原子または置換基を表す。M21は、元素周期表における8族〜10族の金属を表す。〕[In formula, Z21 represents an atomic group required in order to form an aromatic-hydrocarbon ring or an aromatic heterocyclic ring. R 21 , R 22 and R 23 each represents a hydrogen atom or a substituent. M 21 represents a group 8 to
〔式中、Z31は、芳香族炭化水素環または芳香族複素環を形成するのに必要な原子群を表す。X31、X32、X33は、各々置換基を有してもよい炭素原子または窒素原子を表すが、少なくとも2つは、窒素原子または−N(R3)−(ここで、R3は、水素原子または置換基を表す。)を表す。C31は炭素原子を表す。M31は、元素周期表における8族〜10族の金属を表す。C31とNとの間の結合、NとX33との間の結合、X32とX33との間の結合、X31とX32との間の結合、C31とX31との間の結合は、各々単結合または二重結合を表す。〕[In formula, Z31 represents an atomic group required in order to form an aromatic-hydrocarbon ring or an aromatic heterocyclic ring. X 31 , X 32 and X 33 each represent a carbon atom or a nitrogen atom which may have a substituent, and at least two are a nitrogen atom or —N (R 3 ) — (where R 3 is Represents a hydrogen atom or a substituent. C 31 represents a carbon atom. M 31 represents a group 8 to
〔式中、Z41は、芳香族複素環を形成するのに必要な原子群を表す。X41、X42は置換基を有してもよい炭素原子または窒素原子を表すが、その少なくとも1つは、窒素原子または−N(R4)−(ここで、R4は、水素原子または置換基を表す。)を表す。M41は、元素周期表における8族〜10族の金属を表す。C41、C42、C43は、各々炭素原子を表す。M41は、元素周期表における8族〜10族の金属を表す。C41とC42との間の結合、C41とX42との間の結合、X41とX42との間の結合、X41とC43との間の結合、C42とC43との間の結合は、単結合または二重結合を表す。〕[In formula, Z41 represents an atomic group required in order to form an aromatic heterocyclic ring. X 41 and X 42 each represent an optionally substituted carbon atom or nitrogen atom, at least one of which is a nitrogen atom or —N (R 4 ) — (where R 4 represents a hydrogen atom or Represents a substituent). M 41 represents a group 8 to
〔式中、Z51は、芳香族炭化水素環または芳香族複素環を形成するのに必要な原子群を表す。X51は、酸素原子または硫黄原子を表す。R51、R52は、水素原子または置換基を表す。M51は、元素周期表における8族〜10族の金属を表す。〕[In the formula, Z51 represents an atomic group necessary for forming an aromatic hydrocarbon ring or an aromatic heterocyclic ring. X 51 represents an oxygen atom or a sulfur atom. R 51 and R 52 represent a hydrogen atom or a substituent. M 51 represents a group 8 to
〔式中、Z61は、芳香族炭化水素環または芳香族複素環を形成するのに必要な原子群を表す。X61、X62、X63は、各々置換基を有してもよい炭素原子または窒素原子を表すが、少なくとも1つは窒素原子を表す。M61は、元素周期表における8族〜10族の金属を表す。〕
(2) 上記一般式(1)または、該一般式(1)の互変異性体を部分構造として有する金属錯体であることを特徴とする前記(1)に記載の有機エレクトロルミネッセンス素子材料。
(3) 上記一般式(1)または、該一般式(1)の互変異性体を部分構造として有する金属錯体においてZ11が芳香族複素環を形成するのに必要な原子群を表すことを特徴とする前記(2)に記載の有機エレクトロルミネッセンス素子材料。
(4) 上記一般式(2)または、該一般式(2)の互変異性体を部分構造として有する金属錯体であることを特徴とする前記(1)に記載の有機エレクトロルミネッセンス素子材料。
(5) 上記一般式(3)または、該一般式(3)の互変異性体を部分構造として有する金属錯体であることを特徴とする前記(1)に記載の有機エレクトロルミネッセンス素子材料。
(6) 上記一般式(3)または、該一般式(3)の互変異性体を部分構造として有する金属錯体において、X31は置換基を有してもよい炭素原子を表し、X32、X33は窒素原子又は−N(R3)−(ここで、R3は、水素原子または置換基を表す。)を表すことを特徴とする前記(5)に記載の有機エレクトロルミネッセンス素子材料。
(7) 上記一般式(4)または、該一般式(4)の互変異性体を部分構造として有する金属錯体であることを特徴とする前記(1)に記載の有機エレクトロルミネッセンス素子材料。
(8) 上記一般式(5)または、該一般式(5)の互変異性体を部分構造として有する金属錯体であることを特徴とする前記(1)に記載の有機エレクトロルミネッセンス素子材料。
(9) 上記一般式(5)または、該一般式(5)の互変異性体を部分構造として有する金属錯体においてX51が、硫黄原子を表すことを特徴とする前記(8)に記載の有機エレクトロルミネッセンス素子材料。
(10) 上記一般式(6)または、該一般式(6)の互変異性体を部分構造として有する金属錯体であることを特徴とする前記(1)に記載の有機エレクトロルミネッセンス素子材料。
(11) 上記一般式(6)または、該一般式(6)の互変異性体を部分構造として有する金属錯体において、X61、X63の少なくとも1つは窒素原子を表すことを特徴とする前記(10)に記載の有機エレクトロルミネッセンス素子材料。
(12) 前記一般式(1)において、M11が、イリジウムまたは白金であることを特徴とする前記(2)に記載の有機エレクトロルミネッセンス素子材料。
(13) 上記一般式(1)においてZ11が芳香族複素環を形成するのに必要な原子群を表すことを特徴とする前記(12)に記載の有機エレクトロルミネッセンス素子材料。
(14) 前記一般式(2)において、M21が、イリジウムまたは白金であることを特徴とする前記(4)に記載の有機エレクトロルミネッセンス素子材料。
(15) 前記一般式(3)において、M31が、イリジウムまたは白金であることを特徴とする前記(5)に記載の有機エレクトロルミネッセンス素子材料。
(16) 上記一般式(3)において、X31は置換基を有してもよい炭素原子を表し、X32、X33は窒素原子又は−N(R3)−(ここで、R3は、水素原子または置換基を表す。)を表すことを特徴とする前記(15)に記載の有機エレクトロルミネッセンス素子材料。
(17) 前記一般式(4)において、M41が、イリジウムまたは白金であることを特徴とする前記(7)に記載の有機エレクトロルミネッセンス素子材料。
(18) 前記一般式(5)において、M51が、イリジウムまたは白金であることを特徴とする前記(8)に記載の有機エレクトロルミネッセンス素子材料。
(19) 上記一般式(5)においてX51が、硫黄原子を表すことを特徴とする前記(18)に記載の有機エレクトロルミネッセンス素子材料。
(20) 前記一般式(6)において、M61が、イリジウムまたは白金であることを特徴とする前記(10)に記載の有機エレクトロルミネッセンス素子材料。
(21) 上記一般式(6)において、X61、X63の少なくとも1つは窒素原子を表すことを特徴とする前記(20)に記載の有機エレクトロルミネッセンス素子材料。
(22) 前記(1)〜(21)のいずれか1項に記載の有機エレクトロルミネッセンス素子材料を含有することを特徴とする有機エレクトロルミネッセンス素子。
(23) 構成層として発光層を有し、該発光層が前記(1)〜(21)のいずれか1項に記載の有機エレクトロルミネッセンス素子材料を含有することを特徴とする前記(22)に記載の有機エレクトロルミネッセンス素子。
(24) 構成層として正孔阻止層を有し、該正孔阻止層が前記(1)〜(21)のいずれか1項に記載の有機エレクトロルミネッセンス素子材料を含有することを特徴とする前記(22)または(23)に記載の有機エレクトロルミネッセンス素子。
(25) 構成層として発光層を有し、該発光層が、カルボリン誘導体または該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する誘導体を含有することを特徴とする前記(22)〜(24)の何れか1項に記載の有機エレクトロルミネッセンス素子。
(26) 構成層として正孔阻止層を有し、該正孔阻止層が、カルボリン誘導体または該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する誘導体を含有することを特徴とする前記(22)〜(25)の何れか1項に記載の有機エレクトロルミネッセンス素子。
(27) 前記(22)〜(26)の何れか1項に記載の有機エレクトロルミネッセンス素子を有することを特徴とする表示装置。
(28) 前記(22)〜(26)の何れか1項に記載の有機エレクトロルミネッセンス素子を有することを特徴とする照明装置。[Wherein, Z61 represents an atomic group necessary for forming an aromatic hydrocarbon ring or an aromatic heterocyclic ring. X 61 , X 62 and X 63 each represents a carbon atom or a nitrogen atom which may have a substituent, and at least one represents a nitrogen atom. M 61 represents a group 8 to
(2) The organic electroluminescent element material according to (1), which is a metal complex having the partial structure of the above general formula (1) or a tautomer of the general formula (1).
(3) In the metal complex having the above general formula (1) or a tautomer of the general formula (1) as a partial structure, Z11 represents an atomic group necessary for forming an aromatic heterocyclic ring The organic electroluminescence element material according to (2) above.
(4) The organic electroluminescent element material according to (1), which is a metal complex having the partial structure of the tautomer of the general formula (2) or the general formula (2).
(5) The organic electroluminescent element material according to (1) above, which is a metal complex having the above general formula (3) or a tautomer of the general formula (3) as a partial structure.
(6) In the metal complex having the above general formula (3) or a tautomer of the general formula (3) as a partial structure, X 31 represents a carbon atom which may have a substituent, X 32 , X 33 is a nitrogen atom or -N (R 3) - (wherein, R 3 represents a hydrogen atom or a substituent.) the organic electroluminescence device material according to (5), characterized in that representing the.
(7) The organic electroluminescent element material according to (1) above, which is a metal complex having the partial structure of the general formula (4) or a tautomer of the general formula (4).
(8) The organic electroluminescent element material according to (1) above, which is a metal complex having the above general formula (5) or a tautomer of the general formula (5) as a partial structure.
(9) In the metal complex having the above general formula (5) or a tautomer of the general formula (5) as a partial structure, X 51 represents a sulfur atom. Organic electroluminescence element material.
(10) The organic electroluminescent element material as described in (1) above, which is a metal complex having the general formula (6) or a tautomer of the general formula (6) as a partial structure.
(11) In the metal complex having the above general formula (6) or a tautomer of the general formula (6) as a partial structure, at least one of X 61 and X 63 represents a nitrogen atom, The organic electroluminescent element material according to (10) above.
(12) In the general formula (1), an organic electroluminescence device material according to (2), wherein the M 11 is iridium or platinum.
(13) The organic electroluminescent element material as described in (12) above, wherein in the general formula (1), Z11 represents an atomic group necessary for forming an aromatic heterocyclic ring.
(14) In the general formula (2), an organic electroluminescence device material according to (4), wherein the M 21 is iridium or platinum.
(15) In the general formula (3), an organic electroluminescence device material according to (5), characterized in that M 31 is iridium or platinum.
(16) In the general formula (3), X 31 represents a carbon atom which may have a substituent, and X 32 and X 33 are nitrogen atoms or —N (R 3 ) — (where R 3 is And represents a hydrogen atom or a substituent.) The organic electroluminescent element material according to (15), wherein
(17) In the general formula (4), M 41 is iridium or platinum, The organic electroluminescence element material according to the above (7),
(18) The organic electroluminescent element material as described in (8) above, wherein, in the general formula (5), M 51 is iridium or platinum.
(19) The organic electroluminescent element material as described in (18) above, wherein in the general formula (5), X 51 represents a sulfur atom.
(20) The organic electroluminescent element material as described in (10) above, wherein in the general formula (6), M 61 is iridium or platinum.
(21) In the above general formula (6), at least one of X 61 and X 63 represents a nitrogen atom, The organic electroluminescence element material according to the above (20),
(22) An organic electroluminescent element comprising the organic electroluminescent element material according to any one of (1) to (21).
(23) The light emitting layer as a constituent layer, wherein the light emitting layer contains the organic electroluminescent element material according to any one of (1) to (21). The organic electroluminescent element of description.
(24) It has a hole blocking layer as a constituent layer, and the hole blocking layer contains the organic electroluminescence element material according to any one of (1) to (21). (22) Or the organic electroluminescent element as described in (23).
(25) A light emitting layer is included as a constituent layer, and the light emitting layer has a ring structure in which at least one of carbon atoms of a carboline derivative or a hydrocarbon ring constituting a carboline ring of the carboline derivative is substituted with a nitrogen atom. The organic electroluminescence device according to any one of (22) to (24), wherein the organic electroluminescence device comprises a derivative.
(26) It has a hole blocking layer as a constituent layer, and at least one of the carbon atoms of the carboline derivative or the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom in the hole blocking layer. The organic electroluminescence device according to any one of (22) to (25), wherein the organic electroluminescence device comprises a derivative having a ring structure.
(27) A display device comprising the organic electroluminescence element according to any one of (22) to (26).
(28) An illumination device comprising the organic electroluminescence element according to any one of (22) to (26).
本発明の有機EL素子材料においては、前記(1)〜(21)のいずれか1項に規定される構成により、有機EL素子用に有用な有機EL素子材料を分子設計することに成功した。また、該有機EL素子材料を用いることにより、高い発光効率を示し、且つ、発光寿命の長い有機EL素子、照明装置及び表示装置を提供することができた。 In the organic EL element material of the present invention, the organic EL element material useful for the organic EL element has been successfully molecularly designed by the configuration defined in any one of the above (1) to (21). In addition, by using the organic EL element material, it was possible to provide an organic EL element, an illuminating device, and a display device that exhibit high luminous efficiency and have a long light emission lifetime.
本発明者等は、上記の問題点について鋭意検討を行った結果、金属錯体の配位子として一般的に使用されているフェニルピリジン(6員環と6員環が炭素−炭素結合で結ばれているもの)の母核を、前記一般式(1)〜(6)で各々表されるような「芳香族炭化水素環、または、芳香族複素環(好ましくは6員環)」と「芳香族複素環(好ましくは5員環)」、が炭素−炭素結合、または、炭素−窒素結合で結ばれたような、特定の部分構造を有する金属錯体を有機EL素子材料として含む有機EL素子により、従来の青色用の金属錯体、特に電子吸引基によってのみ発光波長を短波側に制御してきた有機EL素子材料を用いて作製された有機EL素子の問題点であった発光寿命が大幅に改善されることを見出した。 As a result of intensive studies on the above problems, the present inventors have found that phenylpyridine (a 6-membered ring and a 6-membered ring are connected by a carbon-carbon bond) that is generally used as a ligand of a metal complex. Of the “aromatic hydrocarbon ring or aromatic heterocycle (preferably 6-membered ring)” and “aromatic” as represented by the general formulas (1) to (6), respectively. An organic EL device comprising a metal complex having a specific partial structure, such as a group heterocycle (preferably a 5-membered ring) ”connected by a carbon-carbon bond or a carbon-nitrogen bond as an organic EL device material. The emission lifetime, which has been a problem of organic EL devices manufactured using conventional blue metal complexes, especially organic EL device materials whose emission wavelength has been controlled to the short wavelength side only by electron-withdrawing groups, has been greatly improved. I found out.
また、置換基自身の発光波長が長波なものを置換基として導入することにより、金属錯体の発光波長を長波な領域に制御する機能を付与する為の分子設計は、本発明に係る、一般式(1)〜(6)または、該一般式(1)〜(6)の各々の互変異性体の基本骨格を出発点にすることにより適切な部分構造を選択することが可能である。 Further, the molecular design for imparting the function of controlling the emission wavelength of the metal complex to a long wave region by introducing a substituent having a long wave emission wavelength as a substituent is a general formula according to the present invention. An appropriate partial structure can be selected by starting from the basic skeleton of each of the tautomers of (1) to (6) or the general formulas (1) to (6).
以下、本発明に係る各構成要素の詳細について、順次説明する。 Hereinafter, details of each component according to the present invention will be sequentially described.
《金属錯体》
本発明の有機EL素子材料に係る金属錯体について説明する。《Metal complex》
The metal complex which concerns on the organic EL element material of this invention is demonstrated.
本発明に係る、一般式(1)〜(6)または該一般式(1)〜(6)の各々の互変異性体を部分構造として有する金属錯体の含有層としては、発光層及び/または正孔阻止層が好ましく、また、発光層に含有する場合は、発光層中の発光ドーパントとして用いることにより、本発明の有機EL素子の外部取り出し量子効率の効率アップ(高輝度化)や発光寿命の長寿命化を達成することができる。 The metal complex-containing layer having the partial structure of each of the tautomers of the general formulas (1) to (6) or the general formulas (1) to (6) according to the present invention includes a light emitting layer and / or A hole blocking layer is preferred, and when it is contained in the light emitting layer, it can be used as a light emitting dopant in the light emitting layer to increase the efficiency of external extraction quantum efficiency of the organic EL device of the present invention (higher brightness) and light emission lifetime. Longer service life can be achieved.
《一般式(1)または該一般式(1)の互変異性体》
一般式(1)または該一般式(1)の互変異性体において、Z11で表される芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o−テルフェニル環、m−テルフェニル環、p−テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。<< General Formula (1) or Tautomer of General Formula (1) >>
In the general formula (1) or a tautomer of the general formula (1), the aromatic hydrocarbon ring represented by Z11 includes a benzene ring, a biphenyl ring, a naphthalene ring, an azulene ring, an anthracene ring, a phenanthrene ring, Pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, Examples include perylene ring, pentaphen ring, picene ring, pyrene ring, pyranthrene ring, anthraanthrene ring.
中でも好ましく用いられるのは、ベンゼン環である。更に、前記芳香族炭化水素環は、後述する、前記一般式(1)においてR11、R12、R13で各々表される置換基を有してもよい。Of these, a benzene ring is preferably used. Furthermore, the aromatic hydrocarbon ring may have a substituent represented by R 11 , R 12 , or R 13 in the general formula (1) described later.
一般式(1)または該一般式(1)の互変異性体において、Z11で表される芳香族複素環としては、フラン環、チオフェン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、カルバゾール環、カルボリン環、カルボリン環を構成する炭化水素環の炭素原子の少なくともひとつが更に窒素原子で置換されている環等が挙げられる。 In the general formula (1) or a tautomer of the general formula (1), the aromatic heterocycle represented by Z11 includes a furan ring, a thiophene ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, and a triazine. Ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, carbazole ring, Examples thereof include a carboline ring and a ring in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring is further substituted with a nitrogen atom.
中でも好ましいのは、ピリジン環である。更に、前記芳香族複素環は、後述する、前記一般式(1)においてR11、R12、R13で各々表される置換基を有してもよい。Of these, a pyridine ring is preferred. Furthermore, the aromatic heterocyclic ring may have a substituent represented by R 11 , R 12 , or R 13 in the general formula (1) described later.
一般式(1)または該一般式(1)の互変異性体において、R11で表される環は芳香族複素環であることが好ましい。本発明の一般式(1)の部分構造として含まれているような5員の複素環が、分子内に含有されている場合、それに連結する芳香族環(本発明ではZ11に相当する)は、芳香族複素環である方が、分子の安定性が向上し、発光波長がより短波長となる。 In the general formula (1) or the tautomer of the general formula (1), the ring represented by R11 is preferably an aromatic heterocyclic ring. When a 5-membered heterocyclic ring as contained as a partial structure of the general formula (1) of the present invention is contained in the molecule, an aromatic ring (corresponding to Z11 in the present invention) linked to it is In the case of an aromatic heterocyclic ring, the stability of the molecule is improved and the emission wavelength is shorter.
一般式(1)または該一般式(1)の互変異性体においてR11、R12、R13で各々表される置換基としては、例えば、アルキル基(例えば、メチル基、エチル基、イソプロピル基、ヒドロキシエチル基、メトキシメチル基、トリフルオロメチル基、t−ブチル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アラルキル基(例えば、ベンジル基、2−フェネチル基等)、芳香族炭化水素基(例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ビフェニリル基、ナフチル基、アントリル基、フェナントリル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(ジアザカルバゾリル基とは、該カルボリニル基のカルボリン環を構成する炭素原子の任意にひとつが窒素原子で置換されたものを示す。)、フタラジニル基等)、アルコキシル基(例えば、エトキシ基、イソプロポキシ基、ブトキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、シアノ基、水酸基、アルケニル基(例えば、ビニル基等)、スチリル基、ハロゲン原子(例えば、塩素原子、臭素原子、沃素原子、フッ素原子等)等が挙げられる。これらの基は、更に置換されていてもよい。In the general formula (1) or a tautomer of the general formula (1), examples of the substituent represented by R 11 , R 12 , and R 13 include an alkyl group (for example, methyl group, ethyl group, isopropyl Group, hydroxyethyl group, methoxymethyl group, trifluoromethyl group, t-butyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), aralkyl group (eg, benzyl group, 2-phenethyl group, etc.) , Aromatic hydrocarbon groups (for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, biphenylyl group, naphthyl group, anthryl group, phenanthryl group, etc.), aromatic heterocyclic groups (for example, furyl group) , Thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, imidazolyl group, pyrazolyl Group, thiazolyl group, quinazolinyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (diazacarbazolyl group is any one of the carbon atoms constituting the carboline ring of the carbolinyl group replaced by a nitrogen atom) ), Phthalazinyl group etc.), alkoxyl group (eg ethoxy group, isopropoxy group, butoxy group etc.), aryloxy group (eg phenoxy group, naphthyloxy group etc.), cyano group, hydroxyl group, Examples include alkenyl groups (for example, vinyl group), styryl groups, halogen atoms (for example, chlorine atom, bromine atom, iodine atom, fluorine atom). These groups may be further substituted.
中でも、本発明では、上記R11、R12、R13で表される基の少なくともひとつは、上記の芳香族炭化水素基または芳香族複素環基であることが好ましい。Among these, in the present invention, at least one of the groups represented by R 11 , R 12 and R 13 is preferably the aromatic hydrocarbon group or the aromatic heterocyclic group.
一般式(1)または該一般式(1)の互変異性体において、M11は、元素周期表における8族〜10族の金属(金属原子でも、イオンでもよい)を表すが、中でも好ましく用いられるのは、白金(Pt)とイリジウム(Ir)である。また、一般式(1)または該一般式(1)の互辺異性体を部分構造として有する金属錯体において、M11は、金属でもよく、イオンでもよい。In the general formula (1) or the tautomer of the general formula (1), M 11 represents a group 8 to
本発明では、上記一般式(1)または該一般式(1)の互変異性体とM11で表される中心金属(金属でもイオンでもよい)との間で配位結合が形成(錯形成ともいう)されて金属錯体が形成される。In the present invention, a coordinate bond is formed between the above general formula (1) or a tautomer of the general formula (1) and a central metal (metal or ion) represented by M 11 (complex formation). A metal complex is formed.
《一般式(2)または該一般式(2)の互変異性体》
一般式(2)または該一般式(2)の互変異性体において、Z21で表される芳香族炭化水素環は、一般式(1)または該一般式(1)の互変異性体において、Z11で表される芳香族炭化水素環と同義である。<< General Formula (2) or Tautomer of General Formula (2) >>
In the tautomer of the general formula (2) or the general formula (2), the aromatic hydrocarbon ring represented by Z21 is the general formula (1) or the tautomer of the general formula (1). It is synonymous with the aromatic hydrocarbon ring represented by Z11.
一般式(2)または該一般式(2)の互変異性体において、Z21で表される芳香族複素環は、一般式(1)または該一般式(1)の互変異性体において、Z11で表される芳香族複素環と同義である。 In the tautomer of the general formula (2) or the general formula (2), the aromatic heterocycle represented by Z21 is represented by Z11 in the tautomer of the general formula (1) or the general formula (1). It is synonymous with the aromatic heterocyclic ring represented by these.
一般式(2)または該一般式(2)の互変異性体において、R21、R22、R23で、各々表される置換基は、一般式(1)または該一般式(1)の互変異性体においてR11、R12、R13で各々表される置換基と同義である。In the tautomer of the general formula (2) or the general formula (2), each of the substituents represented by R 21 , R 22 and R 23 is represented by the general formula (1) or the general formula (1). In the tautomer, it is synonymous with the substituent represented by each of R 11 , R 12 and R 13 .
一般式(2)または該一般式(2)の互変異性体において、M21で表される、元素周期表における8族〜10族の金属(イオンでもよい)は、一般式(1)または該一般式(1)の互変異性体において、M11で表される、元素周期表における8族〜10族の金属と同義である。In the tautomer of the general formula (2) or the general formula (2), the metal of group 8 to group 10 (which may be an ion) in the periodic table represented by M 21 is represented by the general formula (1) or in tautomers general formula (1), represented by M 11, it is synonymous with the metal of group 8-10 of the periodic table.
《一般式(3)または該一般式(3)の互変異性体》
一般式(3)または該一般式(3)の互変異性体において、Z31で表される芳香族炭化水素環は、一般式(1)または該一般式(1)の互変異性体において、Z11で表される芳香族炭化水素環と同義である。<< General Formula (3) or Tautomer of General Formula (3) >>
In the tautomer of the general formula (3) or the general formula (3), the aromatic hydrocarbon ring represented by Z31 is the tautomer of the general formula (1) or the general formula (1). It is synonymous with the aromatic hydrocarbon ring represented by Z11.
一般式(3)または該一般式(3)の互変異性体において、Z31で表される芳香族複素環は、一般式(1)または該一般式(1)の互変異性体において、Z11で表される芳香族複素環と同義である。 In the tautomer of the general formula (3) or the general formula (3), the aromatic heterocycle represented by Z31 is represented by Z11 in the tautomer of the general formula (1) or the general formula (1). It is synonymous with the aromatic heterocyclic ring represented by these.
一般式(3)または該一般式(3)の互変異性体において、X31、X32、X33で各々表される−N(R3)−のR3で表される置換基は、一般式(1)または該一般式(1)の互変異性体においてR11、R12、R13で各々表される置換基と同義である。In the general formula (3) or a tautomer of the general formula (3), a substituent represented by R 3 of —N (R 3 ) — represented by X 31 , X 32 , or X 33 , respectively, In the general formula (1) or the tautomer of the general formula (1), it is synonymous with the substituents represented by R 11 , R 12 and R 13 .
一般式(3)または該一般式(3)の互変異性体において、M31で表される、元素周期表における8族〜10族の金属(イオンでもよい)は、一般式(1)または該一般式(1)の互変異性体において、M11で表される、元素周期表における8族〜10族の金属と同義である。In the tautomer of the general formula (3) or the general formula (3), the metal of group 8 to group 10 (which may be an ion) in the periodic table of elements represented by M 31 is represented by the general formula (1) or in tautomers general formula (1), represented by M 11, it is synonymous with the metal of group 8-10 of the periodic table.
一般式(3)または該一般式(3)の互変異性体において、X31は置換基を有してもよい炭素原子であり、X32、X33は窒素原子又は−N(R3)−(ここで、R3は、水素原子または置換基を表す。)であることが好ましい。これにより、発光波長がより短波長となり、また、合成の容易性が向上する。In the general formula (3) or a tautomer of the general formula (3), X 31 is a carbon atom which may have a substituent, and X 32 and X 33 are a nitrogen atom or —N (R 3 ). -(Wherein R 3 represents a hydrogen atom or a substituent). Thereby, the emission wavelength becomes shorter and the ease of synthesis is improved.
《一般式(4)または該一般式(4)の互変異性体》
一般式(4)または該一般式(4)の互変異性体において、Z41で表される芳香族複素環は、一般式(1)または該一般式(1)の互変異性体において、Z11で表される芳香族複素環と同義である。<< General Formula (4) or Tautomer of General Formula (4) >>
In the tautomer of the general formula (4) or the general formula (4), the aromatic heterocycle represented by Z41 is represented by Z11 in the tautomer of the general formula (1) or the general formula (1). It is synonymous with the aromatic heterocyclic ring represented by these.
一般式(4)または該一般式(4)の互変異性体において、X41,X42で各々表される−N(R4)−のR4で表される置換基は、一般式(1)または該一般式(1)の互変異性体においてR11、R12、R13で各々表される置換基と同義である。In the general formula (4) or a tautomer of the general formula (4), a substituent represented by R 4 of —N (R 4 ) — represented by each of X 41 and X 42 has the general formula ( In the tautomer of 1) or the general formula (1), it is synonymous with the substituents represented by R 11 , R 12 and R 13 .
一般式(4)または該一般式(4)の互変異性体において、M41で表される、元素周期表における8族〜10族の金属(イオンでもよい)は、一般式(1)または該一般式(1)の互変異性体において、M11で表される、元素周期表における8族〜10族の金属と同義である。In the general formula (4) or a tautomer of the general formula (4), a metal of group 8 to group 10 (which may be an ion) represented by M 41 in the periodic table of elements is represented by the formula (1) or in tautomers general formula (1), represented by M 11, it is synonymous with the metal of group 8-10 of the periodic table.
《一般式(5)または該一般式(5)の互変異性体》
一般式(5)または該一般式(5)の互変異性体において、Z51で表される芳香族炭化水素環は、一般式(1)または該一般式(1)の互変異性体において、Z11で表される芳香族炭化水素環と同義である。<< General Formula (5) or Tautomer of General Formula (5) >>
In the tautomer of the general formula (5) or the general formula (5), the aromatic hydrocarbon ring represented by Z51 is the tautomer of the general formula (1) or the general formula (1). It is synonymous with the aromatic hydrocarbon ring represented by Z11.
一般式(5)または該一般式(5)の互変異性体において、Z51で表される芳香族複素環は、一般式(1)または該一般式(1)の互変異性体において、Z11で表される芳香族複素環と同義である。 In the tautomer of the general formula (5) or the general formula (5), the aromatic heterocycle represented by Z51 is Z11 in the tautomer of the general formula (1) or the general formula (1). It is synonymous with the aromatic heterocyclic ring represented by these.
一般式(5)または該一般式(5)の互変異性体において、R51、R52で各々表される置換基は、一般式(1)または該一般式(1)の互変異性体においてR11、R12、R13で各々表される置換基と同義である。In the general formula (5) or the tautomer of the general formula (5), the substituents represented by R 51 and R 52 are the general formula (1) or the tautomer of the general formula (1). Are the same as the substituents represented by R 11 , R 12 and R 13 .
一般式(5)または該一般式(5)の互変異性体において、M51で表される、元素周期表における8族〜10族の金属(イオンでもよい)は、一般式(1)または該一般式(1)の互変異性体において、M11で表される、元素周期表における8族〜10族の金属と同義である。In the general formula (5) or a tautomer of the general formula (5), a metal of group 8 to group 10 (which may be an ion) in the periodic table represented by M 51 is represented by the formula (1) or in tautomers general formula (1), represented by M 11, it is synonymous with the metal of group 8-10 of the periodic table.
一般式(5)または該一般式(5)の互変異性体において、X51は硫黄原子であることが好ましい。一般に、オキサゾール誘導体は、分子内開環を起こしやすく不安定であることが知られている。本発明の一般式(5)では、それが大きく改善されてはいるものの、チアゾール誘導体である方が分子はより安定である。In the general formula (5) or a tautomer of the general formula (5), X 51 is preferably a sulfur atom. In general, it is known that oxazole derivatives are susceptible to intramolecular ring opening and are unstable. In the general formula (5) of the present invention, although it is greatly improved, the molecule is more stable when it is a thiazole derivative.
《一般式(6)または該一般式(6)の互変異性体》
一般式(6)または該一般式(6)の互変異性体において、Z61で表される芳香族炭化水素環は、一般式(1)または該一般式(1)の互変異性体において、Z11で表される芳香族炭化水素環と同義である。<< General Formula (6) or Tautomer of General Formula (6) >>
In the tautomer of the general formula (6) or the general formula (6), the aromatic hydrocarbon ring represented by Z61 is the general formula (1) or the tautomer of the general formula (1). It is synonymous with the aromatic hydrocarbon ring represented by Z11.
一般式(6)または該一般式(6)の互変異性体において、Z61で表される芳香族複素環は、一般式(1)または該一般式(1)の互変異性体において、Z11で表される芳香族複素環と同義である。 In the general formula (6) or the tautomer of the general formula (6), the aromatic heterocycle represented by Z61 is the same as that of the general formula (1) or the tautomer of the general formula (1). It is synonymous with the aromatic heterocyclic ring represented by these.
一般式(6)または該一般式(6)の互変異性体において、M61で表される、元素周期表における8族〜10族の金属(イオンでもよい)は、一般式(1)または該一般式(1)の互変異性体において、M11で表される、元素周期表における8族〜10族の金属と同義である。In the general formula (6) or a tautomer of the general formula (6), a metal of group 8 to group 10 (which may be an ion) in the periodic table of elements represented by M 61 is represented by the formula (1) or in tautomers general formula (1), represented by M 11, it is synonymous with the metal of group 8-10 of the periodic table.
一般式(6)または該一般式(6)の互変異性体において、X61、X63の少なくとも1つが窒素原子であることが好ましい。これにより、発光波長がより短波長となり、また、合成の容易性が向上する。In the general formula (6) or the tautomer of the general formula (6), it is preferable that at least one of X 61 and X 63 is a nitrogen atom. Thereby, the emission wavelength becomes shorter and the ease of synthesis is improved.
以下、本発明に係る、前記一般式(1)〜(6)または該一般式(1)〜(6)の各々の互変異性体を部分構造として有する金属錯体の具体例を示すが、本発明はこれらに限定されない。 Hereinafter, specific examples of the metal complex according to the present invention having the partial structures of the tautomers of the general formulas (1) to (6) or the general formulas (1) to (6) will be described. The invention is not limited to these.
1−27
1-27
本発明の有機EL素子材料に係る金属錯体は、例えばOrganic Letter誌、vol3、No.16、p2579〜2581(2001)、Inorganic Chemistry,第30巻、第8号、1685〜1687ページ(1991年)、J.Am.Chem.Soc.,123巻、4304ページ(2001年)、Inorganic Chemistry,第40巻、第7号、1704〜1711ページ(2001年)、Inorganic Chemistry,第41巻、第12号、3055〜3066ページ(2002年)、New Journal of Chemistry.,第26巻、1171ページ(2002年)、更に、これらの文献中に記載の参考文献等の方法を適用することにより合成できる。 The metal complex according to the organic EL device material of the present invention is described in, for example, Organic Letter, vol. 16, p 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, 1685-1687 (1991), J. MoI. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, pages 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, pages 3055-3066 (2002) , New Journal of Chemistry. 26, page 1171 (2002), and further by applying a method such as a reference described in these documents.
《金属錯体を含む有機EL素子材料の有機EL素子への適用》
本発明の有機EL素子材料を用いて、有機EL素子を作製する場合、有機EL素子の構成層(詳細は後述する)の中で、発光層または正孔阻止層に用いることが好ましい。また、発光層中では、発光ドーパントとして好ましく用いられる。<< Application of organic EL element material containing metal complex to organic EL element >>
When producing an organic EL element using the organic EL element material of the present invention, it is preferably used for a light emitting layer or a hole blocking layer in the constituent layers (details will be described later) of the organic EL element. Moreover, in a light emitting layer, it is preferably used as a light emitting dopant.
(発光ホストと発光ドーパント)
発光層中の主成分であるホスト化合物である発光ホストに対する発光ドーパントとの混合比は好ましくは質量で0.1質量%〜30質量%未満の範囲に調整することである。(Light emitting host and light emitting dopant)
The mixing ratio of the light-emitting dopant to the light-emitting host, which is the host compound as the main component in the light-emitting layer, is preferably adjusted to a range of 0.1% by mass to less than 30% by mass.
ただし、発光ドーパントは複数種の化合物を混合して用いても良く、混合する相手は構造を異にする、その他の金属錯体やその他の構造を有するリン光性ドーパントや蛍光性ドーパントでもよい。 However, the light-emitting dopant may be a mixture of a plurality of types of compounds, and the partner to be mixed may be another metal complex having a different structure, or a phosphorescent dopant or a fluorescent dopant having another structure.
ここで、発光ドーパントとして用いられる金属錯体と併用しても良いドーパント(リン光性ドーパント、蛍光性ドーパント等)について述べる。 Here, the dopant (phosphorescent dopant, fluorescent dopant, etc.) that may be used in combination with the metal complex used as the luminescent dopant will be described.
発光ドーパントは、大きくわけて、蛍光を発光する蛍光性ドーパントとリン光を発光するリン光性ドーパントの2種類がある。 The light-emitting dopant is roughly classified into two types: a fluorescent dopant that emits fluorescence and a phosphorescent dopant that emits phosphorescence.
前者(蛍光性ドーパント)の代表例としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等が挙げられる。 Representative examples of the former (fluorescent dopant) include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, Examples include perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
後者(リン光性ドーパント)の代表例としては、好ましくは元素の周期表で8属、9属、10属の金属を含有する錯体系化合物であり、更に好ましくは、イリジウム化合物、オスミウム化合物であり、中でも最も好ましいのはイリジウム化合物である。
Typical examples of the latter (phosphorescent dopant) are preferably complex compounds containing metals of
具体的には以下の特許公報に記載されている化合物である。 Specifically, it is a compound described in the following patent publications.
国際公開第00/70655号パンフレット、特開2002−280178号公報、特開2001−181616号公報、特開2002−280179号公報、特開2001−181617号公報、特開2002−280180号公報、特開2001−247859号公報、特開2002−299060号公報、特開2001−313178号公報、特開2002−302671号公報、特開2001−345183号公報、特開2002−324679号公報、国際公開第02/15645号パンフレット、特開2002−332291号公報、特開2002−50484号公報、特開2002−332292号公報、特開2002−83684号公報、特表2002−540572号公報、特開2002−117978号公報、特開2002−338588号公報、特開2002−170684号公報、特開2002−352960号公報、国際公開第01/93642号パンフレット、特開2002−50483号公報、特開2002−100476号公報、特開2002−173674号公報、特開2002−359082号公報、特開2002−175884号公報、特開2002−363552号公報、特開2002−184582号公報、特開2003−7469号公報、特表2002−525808号公報、特開2003−7471号公報、特表2002−525833号公報、特開2003−31366号公報、特開2002−226495号公報、特開2002−234894号公報、特開2002−235076号公報、特開2002−241751号公報、特開2001−319779号公報、特開2001−319780号公報、特開2002−62824号公報、特開2002−100474号公報、特開2002−203679号公報、特開2002−343572号公報、特開2002−203678号公報等。 WO 00/70655 pamphlet, JP 2002-280178, JP 2001-181616, JP 2002-280179, JP 2001-181617, JP 2002-280180, JP 2001-247859, JP 2002-299060, JP 2001-313178, JP 2002-302671, JP 2001-345183, JP 2002-324679, International Publication No. 02/15645 pamphlet, JP 2002-332291 A, JP 2002-50484 A, JP 2002-332292 A, JP 2002-83684 A, JP 2002-540572 A, JP 2002-2002 A. No. 117978, JP 20 JP-A-2-338588, JP-A-2002-170684, JP-A-2002-352960, WO01 / 93642, JP-A-2002-50483, JP-A-2002-1000047, JP-A-2002. No. -173744, JP-A No. 2002-359082, JP-A No. 2002-17584, JP-A No. 2002-363552, JP-A No. 2002-184582, JP-A No. 2003-7469, JP-T-2002-525808. Gazette, JP2003-7471, JP2002-525833, JP2003-31366, JP2002-226495, JP2002-234894, JP2002-2335076 JP 2002-241751 A JP 2001-319779, JP 2001-319780, JP 2002-62824, JP 2002-1000047, JP 2002-203679, JP 2002-343572, JP 2002-203678 gazette etc.
その具体例の一部を下記に示す。 Some examples are shown below.
(発光ホスト)
発光ホスト(単にホストともいう)とは、2種以上の化合物で構成される発光層中にて混合比(質量)の最も多い化合物のことを意味し、それ以外の化合物については「ドーパント化合物(単に、ドーパントともいう)」という。例えば、発光層を化合物A、化合物Bという2種で構成し、その混合比がA:B=10:90であれば化合物Aがドーパント化合物であり、化合物Bがホスト化合物である。更に、発光層を化合物A、化合物B、化合物Cの3種から構成し、その混合比がA:B:C=5:10:85であれば、化合物A、化合物Bがドーパント化合物であり、化合物Cがホスト化合物である。(Light emitting host)
A light-emitting host (also simply referred to as a host) means a compound having the largest mixing ratio (mass) in a light-emitting layer composed of two or more compounds. For other compounds, “dopant compound ( Simply referred to as a dopant). " For example, if the light emitting layer is composed of two types of compound A and compound B and the mixing ratio is A: B = 10: 90, compound A is a dopant compound and compound B is a host compound. Furthermore, if a light emitting layer is comprised from 3 types of compound A, compound B, and compound C, and the mixing ratio is A: B: C = 5: 10: 85, compound A and compound B are dopant compounds, Compound C is a host compound.
本発明に用いられる発光ホストとしては、構造的には特に制限はないが、代表的にはカルバゾール誘導体、トリアリールアミン誘導体、芳香族ボラン誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するもの、または、カルボリン誘導体やジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも一つの炭素原子が窒素原子で置換されているものを表す。)等が挙げられる。 The light-emitting host used in the present invention is not particularly limited in terms of structure, but is typically a carbazole derivative, a triarylamine derivative, an aromatic borane derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, a furan derivative, an oligo Those having a basic skeleton such as an arylene compound, or a carboline derivative or diazacarbazole derivative (herein, a diazacarbazole derivative is a nitrogen atom in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is a nitrogen atom) And the like.) And the like.
中でもカルボリン誘導体、ジアザカルバゾール誘導体等が好ましく用いられる。 Of these, carboline derivatives, diazacarbazole derivatives and the like are preferably used.
以下に、カルボリン誘導体、ジアザカルバゾール誘導体等の具体例を挙げるが、本発明はこれらに限定されない。これらの化合物は正孔阻止材料として用いられてもよい。 Specific examples of carboline derivatives, diazacarbazole derivatives and the like are given below, but the present invention is not limited thereto. These compounds may be used as hole blocking materials.
また、本発明に用いられる発光ホストは低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもいい。 The light emitting host used in the present invention may be a low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). .
発光ホストとしては、正孔輸送能、電子輸送能を有しつつ、且つ、発光の長波長化を防ぎ、高Tg(ガラス転移温度)である化合物が好ましい。 As the light-emitting host, a compound having a hole transporting ability and an electron transporting ability and preventing a long wavelength of light emission and having a high Tg (glass transition temperature) is preferable.
発光ホストの具体例としては、以下の文献に記載されている化合物が好適である。例えば、特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等。 As specific examples of the light-emitting host, compounds described in the following documents are suitable. For example, Japanese Patent Application Laid-Open Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860 Gazette, 2002-334787 gazette, 2002-15871 gazette, 2002-334788 gazette, 2002-43056 gazette, 2002-334789 gazette, 2002-75645 gazette, 2002-338579 gazette. No. 2002-105445, No. 2002-343568, No. 2002-141173, No. 2002-352957, No. 2002-203683, No. 2002-363227, No. 2002-231453. No. 2003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-286061, No. 2002-280183, No. 2002-299060. 2002-302516, 2002-305083, 2002-305084, 2002-308837, and the like.
次に、代表的な有機EL素子の構成について述べる。 Next, a configuration of a typical organic EL element will be described.
《有機EL素子の構成層》
本発明の有機EL素子の構成層について説明する。<< Constituent layers of organic EL elements >>
The constituent layers of the organic EL element of the present invention will be described.
本発明の有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。(i)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極(ii)陽極/電子阻止層/発光層/正孔阻止層/電子輸送層/陰極(iii)陽極/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/陰極(iv)陽極/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/陰極(v)陽極/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極(vi)陽極/陽極バッファー層/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極(vii)陽極/陽極バッファー層/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
《阻止層(電子阻止層、正孔阻止層)》
本発明に係る阻止層(例えば、電子阻止層、正孔阻止層)について説明する。Although the preferable specific example of the layer structure of the organic EL element of this invention is shown below, this invention is not limited to these. (I) Anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode (ii) Anode / electron blocking layer / light emitting layer / hole blocking layer / electron transport layer / cathode (iii) anode / Hole transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron transport layer / cathode (iv) anode / hole transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron transport layer / cathode ( v) Anode / hole transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode (vi) anode / anode buffer layer / hole transport layer / electron blocking layer / light emitting layer / Hole blocking layer / electron transport layer / cathode buffer layer / cathode (vii) anode / anode buffer layer / hole transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode 《Blocking layer (electron blocking layer, hole blocking layer)》
The blocking layer (for example, electron blocking layer, hole blocking layer) according to the present invention will be described.
本発明においては、正孔阻止層、電子阻止層等に、本発明の有機EL素子材料をを用いることが好ましく、特に好ましくは正孔阻止層に用いることである。 In the present invention, it is preferable to use the organic EL element material of the present invention for the hole blocking layer, the electron blocking layer, etc., and particularly preferably for the hole blocking layer.
本発明の有機EL素子材料を正孔阻止層、電子阻止層に含有させる場合、請求項1〜17のいずれか1項に記載されている、本発明に係る金属錯体を正孔阻止層や電子阻止層等の層構成成分として100質量%の状態で含有させてもよいし、他の有機化合物(例えば、本発明の有機EL素子の構成層に用いられる化合物等)等と混合してもよい。 When the organic EL element material of the present invention is contained in a hole blocking layer or an electron blocking layer, the metal complex according to any one of claims 1 to 17 is converted into a hole blocking layer or an electron. It may be contained in a state of 100% by mass as a layer constituent component such as a blocking layer, or may be mixed with other organic compounds (for example, a compound used for a constituent layer of the organic EL device of the present invention). .
本発明に係る阻止層の膜厚としては好ましくは3nm〜100nmであり、更に好ましくは5nm〜30nmである。 The thickness of the blocking layer according to the present invention is preferably 3 nm to 100 nm, and more preferably 5 nm to 30 nm.
《正孔阻止層》
正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。《Hole blocking layer》
The hole blocking layer has the function of an electron transport layer in a broad sense, and is made of a material that has a function of transporting electrons but has a very small ability to transport holes, and blocks holes while transporting electrons. Thus, the probability of recombination of electrons and holes can be improved.
正孔阻止層としては、例えば特開平11−204258号公報、同11−204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日 エヌ・ティー・エス社発行)」の237頁等に記載の正孔阻止(ホールブロック)層等を本発明に係る正孔阻止層として適用可能である。また、後述する電子輸送層の構成を必要に応じて、本発明に係る正孔阻止層として用いることが出来る。 Examples of the hole blocking layer include those disclosed in JP-A-11-204258, JP-A-11-204359, and “Organic EL device and its forefront of industrialization (issued by NTS, Inc. on November 30, 1998)”. The hole blocking (hole block) layer described in page 237 and the like can be applied as the hole blocking layer according to the present invention. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed.
《電子阻止層》
一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることが出来る。《Electron blocking layer》
On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
また、本発明においては、発光層に隣接する隣接層、即ち、正孔阻止層、電子阻止層に、上記の本発明の有機EL素子材料を用いることが好ましく、特に正孔阻止層に用いることが好ましい。 In the present invention, the organic EL element material of the present invention is preferably used for the adjacent layer adjacent to the light emitting layer, that is, the hole blocking layer and the electron blocking layer, and particularly used for the hole blocking layer. Is preferred.
《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する材料を含み、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層もしくは複数層設けることができる。《Hole transport layer》
The hole transport layer includes a material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
正孔輸送材料としては、特に制限はなく、従来、光導伝材料において、正孔の電荷注入輸送材料として慣用されているものやEL素子の正孔注入層、正孔輸送層に使用される公知のものの中から任意のものを選択して用いることができる。 The hole transport material is not particularly limited, and is conventionally used as a hole charge injection / transport material in an optical transmission material or a well-known material used for a hole injection layer or a hole transport layer of an EL element. Any one can be selected and used.
正孔輸送材料は、正孔の注入もしくは輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えばトリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また、導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。 The hole transport material has one of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbenes Derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, particularly thiophene oligomers, and the like can be given.
正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物、特に芳香族第三級アミン化合物を用いることが好ましい。 As the hole transport material, those described above can be used, and it is preferable to use a porphyrin compound, an aromatic tertiary amine compound, and a styrylamine compound, particularly an aromatic tertiary amine compound.
芳香族第三級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N’,N’−テトラフェニル−4,4’−ジアミノフェニル;N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−〔1,1’−ビフェニル〕−4,4’−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N’,N’−テトラ−p−トリル−4,4’−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N’−ジフェニル−N,N’−ジ(4−メトキシフェニル)−4,4’−ジアミノビフェニル;N,N,N’,N’−テトラフェニル−4,4’−ジアミノジフェニルエーテル;4,4’−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4’−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4’−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、さらには、米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば4,4’−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4’,4’’−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N′-diphenyl-N, N ′ − (4-methoxyphenyl) -4,4′-diaminobiphenyl; N, N, N ′, N′-tetraphenyl-4,4′-diaminodiphenyl ether; 4,4′-bis (diphenylamino) quadriphenyl; N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 ′-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino- (2-diphenylvinyl) benzene; 3-methoxy-4′-N, N-diphenylaminostilbenzene; N-phenylcarbazole, and two more described in US Pat. No. 5,061,569 Having a condensed aromatic ring of, for example, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-308 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type (MTDATA).
さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。また、正孔輸送材料は、高Tgであることが好ましい。 In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material. The hole transport material preferably has a high Tg.
この正孔輸送層は、上記正孔輸送材料を、例えば真空蒸着法、スピンコート法、キャスト法、インクジェット法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5000nm程度である。この正孔輸送層は、上記材料の一種または二種以上からなる一層構造であってもよい。 The hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. Although there is no restriction | limiting in particular about the film thickness of a positive hole transport layer, Usually, it is about 5 nm-5000 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials.
《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は、単層もしくは複数層を設けることができる。《Electron transport layer》
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided with a single layer or multiple layers.
従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、下記の材料が知られている。 Conventionally, in the case of a single-layer electron transport layer and a plurality of layers, the following materials are used as the electron transport material (also serving as a hole blocking material) used for the electron transport layer adjacent to the cathode side with respect to the light emitting layer. Are known.
さらに、電子輸送層は、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができる。 Further, the electron transport layer only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer, and any material can be selected from conventionally known compounds. .
この電子輸送層に用いられる材料(以下、電子輸送材料という)の例としては、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレンなどの複素環テトラカルボン酸無水物、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体などが挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。 Examples of materials used for this electron transport layer (hereinafter referred to as electron transport materials) include heterocyclic tetracarboxylic acid anhydrides such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, carbodiimides, Examples include fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, and oxadiazole derivatives. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
また、8−キノリノール誘導体の金属錯体、例えばトリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)など、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基などで置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様に、n型−Si、n型−SiCなどの無機半導体も電子輸送材料として用いることができる。 In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum, Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and the central metals of these metal complexes are In, Mg, Cu Metal complexes replaced with Ca, Sn, Ga, or Pb can also be used as electron transport materials. In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transport material. In addition, the distyrylpyrazine derivative exemplified as the material of the light emitting layer can also be used as an electron transport material, and similarly to the hole injection layer and the hole transport layer, inorganic such as n-type-Si and n-type-SiC. A semiconductor can also be used as an electron transport material.
この電子輸送層は、上記電子輸送材料を、例えば真空蒸着法、スピンコート法、キャスト法、インクジェット法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5〜5000nm程度である。この電子輸送層は、上記材料の一種または二種以上からなる一層構造であってもよい。 The electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. Although there is no restriction | limiting in particular about the film thickness of an electron carrying layer, Usually, it is about 5-5000 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials.
次に、本発明の有機EL素子の構成層として用いられる、注入層について説明する。 Next, an injection layer used as a constituent layer of the organic EL element of the present invention will be described.
《注入層》:電子注入層、正孔注入層
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記のごとく陽極と発光層または正孔輸送層の間、及び、陰極と発光層または電子輸送層との間に存在させてもよい。<< Injection layer >>: Electron injection layer, hole injection layer The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, between the anode and the light emitting layer or the hole transport layer, and You may exist between a cathode, a light emitting layer, or an electron carrying layer.
注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日 エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。 An injection layer is a layer provided between an electrode and an organic layer in order to lower drive voltage or improve light emission luminance. “Organic EL element and its forefront of industrialization (issued on November 30, 1998 by NTS Corporation) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
陽極バッファー層(正孔注入層)は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。 The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. As a specific example, copper phthalocyanine is used. Examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
陰極バッファー層(電子注入層)は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的には、ストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。 The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium or aluminum Metal buffer layer represented by lithium fluoride, alkali metal compound buffer layer represented by lithium fluoride, alkaline earth metal compound buffer layer represented by magnesium fluoride, oxide buffer layer represented by aluminum oxide, etc. It is done.
上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるが、その膜厚は0.1nm〜100nmの範囲が好ましい。 The buffer layer (injection layer) is preferably a very thin film, and although it depends on the material, the film thickness is preferably in the range of 0.1 nm to 100 nm.
この注入層は、上記材料を、例えば真空蒸着法、スピンコート法、キャスト法、インクジェット法、LB法等の公知の方法により、薄膜化することにより形成することができる。注入層の膜厚については特に制限はないが、通常は5〜5000nm程度である。この注入層は、上記材料の一種または二種以上からなる一層構造であってもよい。 This injection layer can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. Although there is no restriction | limiting in particular about the film thickness of an injection | pouring layer, Usually, it is about 5-5000 nm. This injection layer may have a single layer structure composed of one or more of the above materials.
《陽極》
本発明の有機EL素子に係る陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In2O3−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極は、これらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また、陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10nm〜1000nm、好ましくは10nm〜200nmの範囲で選ばれる。"anode"
As the anode according to the organic EL device of the present invention, an electrode having a work function (4 eV or more) metal, alloy, electrically conductive compound and a mixture thereof as an electrode material is preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used. For the anode, a thin film may be formed by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not required (100 μm or more) Degree), a pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. When light emission is extracted from the anode, it is desirable that the transmittance is greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 nm to 1000 nm, preferably 10 nm to 200 nm.
《陰極》
一方、本発明に係る陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えばマグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極は、これらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜1000nm、好ましくは50nm〜200nmの範囲で選ばれる。なお、発光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。"cathode"
On the other hand, as the cathode according to the present invention, a cathode having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this, such as a magnesium / silver mixture, magnesium, from the viewpoint of electron injectability and durability against oxidation, etc. / Aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 1000 nm, preferably 50 nm to 200 nm. In order to transmit light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the light emission luminance is improved, which is convenient.
《基体(基板、基材、支持体等ともいう)》
本発明の有機EL素子に係る基体としては、ガラス、プラスチック等の種類には特に限定はなく、また、透明のものであれば特に制限はないが、好ましく用いられる基板としては例えばガラス、石英、光透過性樹脂フィルムを挙げることができる。特に好ましい基体は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。<< Substrate (also referred to as substrate, substrate, support, etc.) >>
The substrate of the organic EL device of the present invention is not particularly limited to the type of glass, plastic, etc., and is not particularly limited as long as it is transparent. Examples of substrates that are preferably used include glass, quartz, A light transmissive resin film can be mentioned. A particularly preferable substrate is a resin film that can give flexibility to the organic EL element.
樹脂フィルムとしては、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート(PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP)等からなるフィルム等が挙げられる。 Examples of the resin film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate (PC), and cellulose triacetate. Examples thereof include films made of (TAC), cellulose acetate propionate (CAP) and the like.
樹脂フィルムの表面には、無機物もしくは有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、水蒸気透過率が0.01g/m2・day・atm以下の高バリア性フィルムであることが好ましい。An inorganic or organic film or a hybrid film of both may be formed on the surface of the resin film, and the film should be a high barrier film having a water vapor transmission rate of 0.01 g / m 2 · day · atm or less. preferable.
本発明の有機エレクトロルミネッセンス素子の発光の室温における外部取り出し効率は1%以上であることが好ましく、より好ましくは2%以上である。ここに、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。 The external extraction efficiency at room temperature for light emission of the organic electroluminescence device of the present invention is preferably 1% or more, more preferably 2% or more. Here, the external extraction quantum efficiency (%) = the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element × 100.
また、カラーフィルター等の色相改良フィルター等を併用してもよい。 Further, a hue improving filter such as a color filter may be used in combination.
照明用途で用いる場合には、発光ムラを低減させるために粗面加工したフィルム(アンチグレアフィルム等)を併用することもできる。 When used in lighting applications, a film (such as an antiglare film) that has been roughened to reduce unevenness in light emission can be used in combination.
多色表示装置として用いる場合は少なくとも2種類の異なる発光極大波長を有する有機EL素子からなるが、有機EL素子を作製する好適な例を説明する。 When used as a multicolor display device, it is composed of organic EL elements having at least two different light emission maximum wavelengths. A suitable example for producing an organic EL element will be described.
《有機EL素子の作製方法》
本発明の有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極からなる有機EL素子の作製法について説明する。<< Method for producing organic EL element >>
As an example of the method for producing the organic EL device of the present invention, a method for producing an organic EL device comprising an anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode. Will be described.
まず適当な基体上に、所望の電極物質、例えば陽極用物質からなる薄膜を、1μm以下、好ましくは10nm〜200nmの膜厚になるように、蒸着やスパッタリング等の方法により形成させ、陽極を作製する。次に、この上に素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層等の有機化合物を含有する薄膜を形成させる。 First, a thin film made of a desired electrode material, for example, an anode material is formed on a suitable substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably 10 nm to 200 nm, thereby producing an anode. To do. Next, a thin film containing an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, or an electron transport layer, which is an element material, is formed thereon.
この有機化合物を含有する薄膜の薄膜化の方法としては、前記の如くスピンコート法、キャスト法、インクジェット法、蒸着法、印刷法等があるが、均質な膜が得られやすく、かつピンホールが生成しにくい等の点から、真空蒸着法またはスピンコート法が特に好ましい。さらに層ごとに異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は、使用する化合物の種類等により異なるが、一般にボート加熱温度50℃〜450℃、真空度10-6Pa〜10-2Pa、蒸着速度0.01nm〜50nm/秒、基板温度−50℃〜300℃、膜厚0.1nm〜5μmの範囲で適宜選ぶことが望ましい。As described above, there are spin coating method, casting method, ink jet method, vapor deposition method, printing method and the like as a method for thinning the thin film containing the organic compound, but it is easy to obtain a uniform film and has pinholes. From the viewpoint of difficulty in formation, vacuum deposition or spin coating is particularly preferable. Further, different film forming methods may be applied for each layer. When a vapor deposition method is employed for film formation, the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 ° C. to 450 ° C., a vacuum degree of 10 −6 Pa to 10 −2 Pa, and a vapor deposition rate of 0 It is desirable to select appropriately within a range of 0.01 nm to 50 nm / second, a substrate temperature of −50 to 300 ° C., and a film thickness of 0.1 nm to 5 μm.
これらの層の形成後、その上に陰極用物質からなる薄膜を、1μm以下好ましくは50nm〜200nmの範囲の膜厚になるように、例えば蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより、所望の有機EL素子が得られる。この有機EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施してもかまわない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。 After forming these layers, a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably in the range of 50 nm to 200 nm, and a cathode is provided. Thus, a desired organic EL element can be obtained. The organic EL element is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
《表示装置》
本発明の表示装置について説明する。<Display device>
The display device of the present invention will be described.
本発明の表示装置は単色でも多色でもよいが、ここでは、多色表示装置について説明する。多色表示装置の場合は、発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。 The display device of the present invention may be single color or multicolor, but here, the multicolor display device will be described. In the case of a multicolor display device, a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by a vapor deposition method, a casting method, a spin coating method, an ink jet method, a printing method, or the like.
発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、印刷法である。蒸着法を用いる場合においてはシャドーマスクを用いたパターニングが好ましい。 When patterning is performed only on the light-emitting layer, the method is not limited, but a vapor deposition method, an inkjet method, and a printing method are preferable. In the case of using a vapor deposition method, patterning using a shadow mask is preferable.
また作製順序を逆にして、陰極、電子輸送層、正孔阻止層、発光層、正孔輸送層、陽極の順に作製することも可能である。 Moreover, it is also possible to reverse the production order to produce the cathode, the electron transport layer, the hole blocking layer, the light emitting layer, the hole transport layer, and the anode in this order.
このようにして得られた多色表示装置に、直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧2〜40V程度を印加すると、発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。さらに、交流電圧を印加する場合には、陽極が+、陰極が−の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。 When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state. The alternating current waveform to be applied may be arbitrary.
多色表示装置は、表示デバイス、ディスプレー、各種発光光源として用いることができる。表示デバイス、ディスプレーにおいて、青、赤、緑発光の3種の有機EL素子を用いることにより、フルカラーの表示が可能となる。 The multicolor display device can be used as a display device, a display, or various light emission sources. In a display device or a display, full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
表示デバイス、ディスプレーとしてはテレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリックス(パッシブマトリックス)方式でもアクティブマトリックス方式でもどちらでもよい。 Examples of the display device and display include a television, a personal computer, a mobile device, an AV device, a character broadcast display, and an information display in an automobile. In particular, it may be used as a display device for reproducing still images and moving images, and the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではない。 Light emitting sources include household lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc. For example, but not limited to.
《照明装置》
本発明の照明装置について説明する。《Lighting device》
The lighting device of the present invention will be described.
本発明の有機EL素子に共振器構造を持たせた有機EL素子として用いてもよく、このような共振器構造を有した有機EL素子の使用目的としては光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより、上記用途に使用してもよい。 The organic EL element of the present invention may be used as an organic EL element having a resonator structure. The use of the organic EL element having such a resonator structure is as a light source for an optical storage medium, an electrophotographic copying machine, and the like. Light sources, optical communication processor light sources, optical sensor light sources, and the like. Moreover, you may use for the said use by making a laser oscillation.
また、本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用しても良いし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用しても良い。動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでも良い。または、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。 Further, the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a type for directly viewing a still image or a moving image. It may be used as a display device (display). When used as a display device for reproducing moving images, the driving method may be either a simple matrix (passive matrix) method or an active matrix method. Alternatively, a full-color display device can be manufactured by using two or more organic EL elements of the present invention having different emission colors.
以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。 Hereinafter, an example of a display device having the organic EL element of the present invention will be described with reference to the drawings.
図1は、有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。 FIG. 1 is a schematic diagram illustrating an example of a display device including organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
ディスプレイ1は、複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。 The display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
制御部Bは、表示部Aと電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。 The control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of the plurality of pixels based on image information from the outside. The pixels for each scanning line are converted into image data signals by the scanning signal. In response to this, light is sequentially emitted and image scanning is performed to display image information on the display unit A.
図2は、表示部Aの模式図である。 FIG. 2 is a schematic diagram of the display unit A.
表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部と、複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。
The display unit A includes a wiring unit including a plurality of
図においては、画素3の発光した光が、白矢印方向(下方向)へ取り出される場合を示している。
In the figure, the light emitted from the
配線部の走査線5及び複数のデータ線6は、それぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。
The
画素3は、走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。発光の色が赤領域の画素、緑領域の画素、青領域の画素を、適宜、同一基板上に並置することによって、フルカラー表示が可能となる。
When a scanning signal is applied from the
次に、画素の発光プロセスを説明する。 Next, the light emission process of the pixel will be described.
図3は、画素の模式図である。 FIG. 3 is a schematic diagram of a pixel.
画素は、有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサ13等を備えている。複数の画素に有機EL素子10として、赤色、緑色、青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。
The pixel includes an
図3において、制御部Bからデータ線6を介してスイッチングトランジスタ11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスタ11のゲートに走査信号が印加されると、スイッチングトランジスタ11の駆動がオンし、ドレインに印加された画像データ信号がコンデンサ13と駆動トランジスタ12のゲートに伝達される。
In FIG. 3, an image data signal is applied from the control unit B to the drain of the switching transistor 11 through the
画像データ信号の伝達により、コンデンサ13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ12の駆動がオンする。駆動トランジスタ12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。
By transmitting the image data signal, the
制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスタ11の駆動がオフする。しかし、スイッチングトランジスタ11の駆動がオフしてもコンデンサ13は充電された画像データ信号の電位を保持するので、駆動トランジスタ12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ12が駆動して有機EL素子10が発光する。
When the scanning signal is moved to the
すなわち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。
That is, the
ここで、有機EL素子10の発光は、複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。
Here, the light emission of the
また、コンデンサ13の電位の保持は、次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
The potential of the
本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。 In the present invention, not only the active matrix method described above, but also a passive matrix light emission drive in which the organic EL element emits light according to the data signal only when the scanning signal is scanned.
図4は、パッシブマトリクス方式による表示装置の模式図である。図4において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。
FIG. 4 is a schematic view of a passive matrix display device. In FIG. 4, a plurality of
順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。パッシブマトリクス方式では画素3にアクティブ素子が無く、製造コストの低減が計れる。
When the scanning signal of the
本発明に係わる有機EL材料は、また、照明装置として、実質白色の発光を生じる有機EL素子に適用できる。複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、青色の3原色の3つの発光極大波長を含有させたものでも良いし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有したものでも良い。 The organic EL material according to the present invention can also be applied to an organic EL element that emits substantially white light as a lighting device. A plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by color mixing. The combination of a plurality of emission colors may include three emission maximum wavelengths of three primary colors of blue, green, and blue, or two using a complementary color relationship such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光または蛍光を発光する材料(発光ドーパント)を、複数組み合わせたもの、蛍光またはリン光を発光する発光材料と、該発光材料からの光を励起光として発光する色素材料とを組み合わせたもののいずれでも良いが、本発明に係わる白色有機エレクトロルミネッセンス素子においては、発光ドーパントを複数組み合わせる方式が好ましい。 In addition, a combination of light emitting materials for obtaining a plurality of emission colors includes a combination of a plurality of phosphorescent or fluorescent materials (light emitting dopants), a light emitting material that emits fluorescent or phosphorescent light, and the light emission. Any combination of a dye material that emits light from the material as excitation light may be used, but in the white organic electroluminescence device according to the present invention, a method of combining a plurality of light-emitting dopants is preferable.
複数の発光色を得るための有機エレクトロルミネッセンス素子の層構成としては、複数の発光ドーパントを、一つの発光層中に複数存在させる方法、複数の発光層を有し、各発光層中に発光波長の異なるドーパントをそれぞれ存在させる方法、異なる波長に発光する微小画素をマトリックス状に形成する方法等が挙げられる。 As a layer structure of an organic electroluminescence device for obtaining a plurality of emission colors, a method of having a plurality of emission dopants in one emission layer, a plurality of emission layers, and an emission wavelength in each emission layer And a method of forming minute pixels emitting light having different wavelengths in a matrix.
本発明に係わる白色有機エレクトロルミネッセンス素子においては、必要に応じ製膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもいいし、電極と発光層をパターニングしてもいいし、素子全層をパターニングしてもいい。 In the white organic electroluminescence device according to the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like at the time of film formation, if necessary. When patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire element layer may be patterned.
発光層に用いる発光材料としては特に制限はなく、例えば液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係わる白金錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すれば良い。 The light emitting material used for the light emitting layer is not particularly limited. For example, in the case of a backlight in a liquid crystal display element, the platinum complex according to the present invention is known so as to be suitable for the wavelength range corresponding to the CF (color filter) characteristics. Any one of the light emitting materials may be selected and combined to be whitened.
このように、本発明の白色発光有機EL素子は、前記表示デバイス、ディスプレーに加えて、各種発光光源、照明装置として、家庭用照明、車内照明、また、露光光源のような一種のランプとして、液晶表示装置のバックライト等、表示装置にも有用に用いられる。 Thus, in addition to the display device and display, the white light-emitting organic EL element of the present invention can be used as various light sources, lighting devices, household lighting, interior lighting, and a kind of lamp such as an exposure light source. It is also useful for display devices such as backlights for liquid crystal display devices.
その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等、更には表示装置を必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。 Others such as backlights for watches, signboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc. There are a wide range of uses such as household appliances.
以下、実施例により本発明を説明するが、本発明はこれらに限定されない。また、実施例に用いる化合物を下記に示す。 EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these. Moreover, the compound used for an Example is shown below.
実施例1
《有機EL素子OLED1−1の作製》
陽極としてガラス上にITOを150nm成膜した基板(NHテクノグラス社製:NA−45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をiso−プロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。この透明支持基板を、市販の真空蒸着装置の基板ホルダーに固定し、一方、5つのタンタル製抵抗加熱ボートに、α−NPD、CBP、Ir−12、BCP、Alq3をそれぞれ入れ、真空蒸着装置(第1真空槽)に取付けた。Example 1
<< Production of Organic EL Element OLED1-1 >>
After patterning on a substrate (made by NH Techno Glass Co., Ltd .: NA-45) having a 150 nm ITO film formed on glass as an anode, the transparent support substrate provided with this ITO transparent electrode was ultrasonically cleaned with iso-propyl alcohol. Then, it was dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes. The transparent support substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, while α-NPD, CBP, Ir-12, BCP, and Alq 3 are placed in five tantalum resistance heating boats, respectively. It was attached to the (first vacuum chamber).
更に、タンタル製抵抗加熱ボートにフッ化リチウムを、タングステン製抵抗加熱ボートにアルミニウムをそれぞれ入れ、真空蒸着装置の第2真空槽に取り付けた。 Further, lithium fluoride was placed in a resistance heating boat made of tantalum, and aluminum was placed in a resistance heating boat made of tungsten, and attached to the second vacuum tank of the vacuum evaporation apparatus.
まず、第1の真空槽を4×10-4Paまで減圧した後、α−NPDの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒〜0.2nm/秒で透明支持基板に膜厚25nmの厚さになるように蒸着し、正孔注入/輸送層を設けた。First, after reducing the pressure in the first vacuum tank to 4 × 10 −4 Pa, the heating boat containing α-NPD is energized and heated, and transparent at a deposition rate of 0.1 nm / second to 0.2 nm / second. It vapor-deposited so that it might become a film thickness of 25 nm on the support substrate, and provided the positive hole injection / transport layer.
さらに、CBPの入った前記加熱ボートとIr−12の入ったボートをそれぞれ独立に通電して発光ホストであるCBPと発光ドーパントであるIr−12の蒸着速度が100:7になるように調節し膜厚30nmの厚さになるように蒸着し、発光層を設けた。 Further, the heating boat containing CBP and the boat containing Ir-12 are energized independently to adjust the deposition rate of CBP as a light emitting host and Ir-12 as a light emitting dopant to 100: 7. A light emitting layer was provided by vapor deposition so as to have a thickness of 30 nm.
ついで、BCPの入った前記加熱ボートに通電して加熱し、蒸着速度0.1m/秒〜0.2nm/秒で厚さ10nmの正孔阻止層を設けた。さらに、Alq3の入った前記加熱ボートを通電して加熱し、蒸着速度0.1nm/秒〜0.2nm/秒で膜厚40nmの電子輸送層を設けた。Then, the heating boat containing BCP was energized and heated to provide a 10 nm thick hole blocking layer at a deposition rate of 0.1 m / sec to 0.2 nm / sec. Further, the heating boat containing Alq 3 was heated by energization to provide an electron transport layer having a film thickness of 40 nm at a deposition rate of 0.1 nm / second to 0.2 nm / second.
次に、前記の如く電子輸送層まで製膜した素子を真空のまま第2真空槽に移した後、電子輸送層の上にステンレス鋼製の長方形穴あきマスクが配置されるように装置外部からリモートコントロールして設置した。 Next, after the element formed up to the electron transport layer as described above is transferred to the second vacuum chamber in a vacuum state, a stainless steel rectangular perforated mask is disposed on the electron transport layer from the outside of the apparatus. Installed with remote control.
第2真空槽を2×10-4Paまで減圧した後、フッ化リチウム入りのボートに通電して蒸着速度0.01nm/秒〜0.02nm/秒で膜厚0.5nmの陰極バッファー層を設け、次いでアルミニウムの入ったボートに通電して蒸着速度1nm/秒〜2nm/秒で膜厚150nmの陰極をつけた。さらにこの有機EL素子を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスで置換したグローブボックス)へ移し、図5に示したような内部を窒素で置換した封止構造にして、有機EL素子OLED1−1を作製した。After reducing the pressure in the second vacuum chamber to 2 × 10 −4 Pa, a cathode buffer layer having a film thickness of 0.5 nm was formed at a deposition rate of 0.01 nm / second to 0.02 nm / second by energizing a boat containing lithium fluoride. Then, a boat containing aluminum was energized to attach a cathode having a film thickness of 150 nm at a deposition rate of 1 nm / second to 2 nm / second. Further, the organic EL element was transferred to a glove box under nitrogen atmosphere (a glove box substituted with high-purity nitrogen gas with a purity of 99.999% or more) without being brought into contact with the atmosphere, and the interior as shown in FIG. An organic EL element OLED1-1 was produced with a substituted sealing structure.
なお、捕水剤である酸化バリウム105は、アルドリッチ社製の高純度酸化バリウム粉末を、粘着剤付きのフッ素樹脂系半透過膜(ミクロテックス S−NTF8031Q 日東電工製)でガラス製封止缶104に貼り付けたものを予め準備して使用した。封止缶と有機EL素子の接着には紫外線硬化型接着剤107を用い、紫外線ランプを照射することで両者を接着し封止素子を作製した。
In addition,
図5において101は透明電極を設けたガラス基板、102が前記正孔注入/輸送層、発光層、正孔阻止層、電子輸送層等からなる有機EL層、103は陰極を示す。 In FIG. 5, 101 is a glass substrate provided with a transparent electrode, 102 is an organic EL layer composed of the hole injection / transport layer, light emitting layer, hole blocking layer, electron transport layer, and the like, and 103 is a cathode.
《有機EL素子OLED1−2〜1−24の作製》
上記の有機EL素子OLED1−1の作製において、表1に記載のように、発光ホスト、発光ドーパント及び正孔阻止材料を、各々変更した以外は同様にして、有機EL素子OLED1−2〜1−24を作製した。<< Production of Organic EL Elements OLED1-2 to 1-24 >>
In preparation of said organic EL element OLED1-1, as described in Table 1, except having changed each of the light emission host, the light emission dopant, and the hole blocking material, it is the same, and organic EL element OLED1-2-1- 24 was produced.
得られた有機EL素子OLED1−1〜1−24について下記のような評価を行った。 The following evaluation was performed about obtained organic EL element OLED1-1 to 1-24.
《外部取り出し量子効率》
有機EL素子OLED1−1〜1−24を室温(約23℃〜25℃)、2.5mA/cm2の定電流条件下による点灯を行い、点灯開始直後の発光輝度(L)[cd/m2]を測定することにより、外部取り出し量子効率(η)を算出した。ここで、発光輝度の測定は、CS−1000(ミノルタ製)を用いた。<< External quantum efficiency >>
The organic EL elements OLED1-1 to 1-24 are turned on at room temperature (about 23 ° C. to 25 ° C.) under a constant current condition of 2.5 mA / cm 2 , and light emission luminance (L) [cd / m immediately after the start of lighting] 2 ] was measured to calculate the external extraction quantum efficiency (η). Here, CS-1000 (manufactured by Minolta) was used for measurement of light emission luminance.
また、外部取り出し量子効率は、有機EL素子OLED1−1を100とした時の相対値で表した。 The external extraction quantum efficiency was expressed as a relative value when the organic EL element OLED1-1 was set to 100.
《発光寿命》
有機EL素子OLED1−1〜1−24を室温下、2.5mA/cm2の定電流条件下による連続点灯を行い、初期輝度の半分の輝度になるのに要する時間(τ1/2)を測定した。また、発光寿命は、有機EL素子OLED1−1を100と設定した時の相対値で表した。<Luminescent life>
At room temperature the organic EL element OLED1-1~1-24, performs continuous lighting by constant current condition of 2.5 mA / cm 2, the time required to becomes half of the initial luminance (τ 1/2) It was measured. Moreover, the light emission lifetime was represented by the relative value when the organic EL element OLED1-1 was set to 100.
得られた結果を表1に示す。 The obtained results are shown in Table 1.
表1から、本発明に係る金属錯体を用いて作製した有機EL素子は比較有機EL素子に比べ、高い発光効率と、発光寿命の長寿命化が達成できることが明らかである。 From Table 1, it is clear that the organic EL device produced using the metal complex according to the present invention can achieve higher luminous efficiency and longer emission lifetime than the comparative organic EL device.
更に、カルボリン誘導体または該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが更に窒素原子で置換されている環構造を有する誘導体を発光層に併用することにより、また、カルボリン誘導体または該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが更に窒素原子で置換されている環構造を有する誘導体を正孔阻止層に使用することにより、更に本発明に記載の効果の向上が見られた。 Furthermore, by using a carboline derivative or a derivative having a ring structure in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is further substituted with a nitrogen atom in the light emitting layer, the carboline derivative Alternatively, a derivative having a ring structure in which at least one of the carbon atoms of the hydrocarbon ring constituting the carboline ring of the carboline derivative is further substituted with a nitrogen atom is used for the hole blocking layer. The improvement of the effect was seen.
実施例2
《有機EL素子OLED2−1の作製》
陽極としてガラス上にITOを150nm成膜した基板(NHテクノグラス社製:NA−45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をiso−プロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。Example 2
<< Production of Organic EL Element OLED2-1 >>
After patterning on a substrate (made by NH Techno Glass Co., Ltd .: NA-45) having a 150 nm ITO film formed on glass as an anode, the transparent support substrate provided with this ITO transparent electrode was ultrasonically cleaned with iso-propyl alcohol. Then, it was dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
この透明支持基板を、市販の真空蒸着装置の基板ホルダーに固定し、一方、5つのタンタル製抵抗加熱ボートに、α−NPD、CBP、Ir−12、BCP、Alq3をそれぞれ入れ、真空蒸着装置(第1真空槽)に取付けた。The transparent support substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, while α-NPD, CBP, Ir-12, BCP, and Alq 3 are placed in five tantalum resistance heating boats, respectively. It was attached to the (first vacuum chamber).
さらに、タンタル製抵抗加熱ボートにフッ化リチウムを、タングステン製抵抗加熱ボートにアルミニウムをそれぞれ入れ、真空蒸着装置の第2真空槽に取り付けた。 Further, lithium fluoride was placed in a resistance heating boat made of tantalum, and aluminum was placed in a resistance heating boat made of tungsten, and attached to the second vacuum tank of the vacuum evaporation apparatus.
まず、第1の真空槽を4×10-4Paまで減圧した後、α−NPDの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒〜0.2nm/秒で透明支持基板に膜厚30nmの厚さになるように蒸着し、正孔注入/輸送層を設けた。First, after reducing the pressure in the first vacuum tank to 4 × 10 −4 Pa, the heating boat containing α-NPD is energized and heated, and transparent at a deposition rate of 0.1 nm / second to 0.2 nm / second. It vapor-deposited so that it might become a film thickness of 30 nm on the support substrate, and provided the positive hole injection / transport layer.
さらに、CBPの入った前記加熱ボートとIr−12の入ったボートをそれぞれ独立に通電して発光ホストであるCBPと発光ドーパントであるIr−12の蒸着速度が100:7になるように調節し膜厚30nmの厚さになるように蒸着し、発光層を設けた。 Further, the heating boat containing CBP and the boat containing Ir-12 are energized independently to adjust the deposition rate of CBP as a light emitting host and Ir-12 as a light emitting dopant to 100: 7. A light emitting layer was provided by vapor deposition so as to have a thickness of 30 nm.
ついで、BCPの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒〜0.2nm/秒で厚さ10nmの正孔阻止層を設けた。さらに、Alq3の入った前記加熱ボートを通電して加熱し、蒸着速度0.1nm/秒〜0.2nm/秒で膜厚30nmの電子輸送層を設けた。Then, the heating boat containing BCP was energized and heated to provide a 10 nm thick hole blocking layer at a deposition rate of 0.1 nm / sec to 0.2 nm / sec. Further, the heating boat containing Alq 3 was heated by energization to provide an electron transport layer having a film thickness of 30 nm at a deposition rate of 0.1 nm / second to 0.2 nm / second.
次に、前記の如く電子輸送層まで製膜した素子を真空のまま第2真空槽に移した後、電子輸送層の上にステンレス鋼製の長方形穴あきマスクが配置されるように装置外部からリモートコントロールして設置した。 Next, after the element formed up to the electron transport layer as described above is transferred to the second vacuum chamber in a vacuum state, a stainless steel rectangular perforated mask is disposed on the electron transport layer from the outside of the apparatus. Installed with remote control.
第2真空槽を2×10-4Paまで減圧した後、フッ化リチウム入りのボートに通電して蒸着速度0.01nm/秒〜0.02nm/秒で膜厚0.5nmの陰極バッファー層を設け、次いでアルミニウムの入ったボートに通電して蒸着速度1〜2nm/秒で膜厚150nmの陰極をつけた。さらにこの有機EL素子を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスで置換したグローブボックス)へ移し、図5に示したような内部を窒素で置換した封止構造にして、有機EL素子OLED1−1を作製した。なお、捕水剤である酸化バリウム105は、アルドリッチ社製の高純度酸化バリウム粉末を、粘着剤付きのフッ素樹脂系半透過膜(ミクロテックス S−NTF8031Q 日東電工製)でガラス製封止缶104に貼り付けたものを予め準備して使用した。封止缶と有機EL素子の接着には紫外線硬化型接着剤107を用い、紫外線ランプを照射することで両者を接着し封止素子を作製した。図5において101は透明電極を設けたガラス基板、102が前記正孔注入/輸送層、発光層、正孔阻止層、電子輸送層等からなる有機EL層、103は陰極を示す。After reducing the pressure in the second vacuum chamber to 2 × 10 −4 Pa, a cathode buffer layer having a film thickness of 0.5 nm was formed at a deposition rate of 0.01 nm / second to 0.02 nm / second by energizing a boat containing lithium fluoride. Next, a boat containing aluminum was energized to attach a cathode having a film thickness of 150 nm at a deposition rate of 1 to 2 nm / second. Further, the organic EL element was transferred to a glove box under nitrogen atmosphere (a glove box substituted with high-purity nitrogen gas with a purity of 99.999% or more) without being brought into contact with the atmosphere, and the interior as shown in FIG. An organic EL element OLED1-1 was produced with a substituted sealing structure. In addition,
《有機EL素子OLED2−2〜2−19の作製》
上記の有機EL素子OLED2−1の作製において、表1に記載のように、発光ホスト、発光ドーパント及び正孔阻止材料を、各々変更した以外は同様にして、有機EL素子OLED2−2〜2−19を作製した。<< Production of Organic EL Elements OLED2-2 to 2-19 >>
In preparation of said organic EL element OLED2-1, as described in Table 1, except having changed each of the light emission host, the light emission dopant, and the hole-blocking material, it is the same, and organic EL element OLED2-2-2- 19 was produced.
得られた有機EL素子OLED2−1〜2−19について、外部取り出し量子効率について実施例1と同様の方法で評価を行った。 About the obtained organic EL element OLED2-1 to 2-19, it evaluated by the method similar to Example 1 about external extraction quantum efficiency.
《発光寿命》
有機EL素子OLED2−1〜2−19を室温下、2.5mA/cm2の定電流条件下による連続点灯を行い、初期輝度の90%の輝度になるのに要する時間(τ1/9)を測定した。尚、外部取り出し量子効率は、有機EL素子OLED2−1を100とした時の相対値、発光寿命は、有機EL素子OLED2−1を100とした時の相対値で表した。<Luminescent life>
At room temperature the organic EL element OLED2-1~2-19, 2.5mA / cm 2 of make continuous lighting by constant current conditions, the time required to become 90% of the initial luminance (τ 1/9) Was measured. The external extraction quantum efficiency was expressed as a relative value when the organic EL element OLED2-1 was 100, and the emission lifetime was expressed as a relative value when the organic EL element OLED2-1 was 100.
得られた結果を表2に示す。 The obtained results are shown in Table 2.
表2から、本発明に係る金属錯体を用いて作製した有機EL素子は比較有機EL素子に比べ、高い発光効率と、発光寿命の長寿命化が達成できることが明らかである。 From Table 2, it is clear that the organic EL element produced using the metal complex according to the present invention can achieve higher luminous efficiency and longer emission lifetime than the comparative organic EL element.
更に、カルボリン誘導体または該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが更に窒素原子で置換されている環構造を有する誘導体を発光層に併用することにより、また、カルボリン誘導体または該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが更に窒素原子で置換されている環構造を有する誘導体を正孔阻止層に使用することにより、更に本発明に記載の効果の向上が見られた。 Furthermore, by using a carboline derivative or a derivative having a ring structure in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is further substituted with a nitrogen atom in the light emitting layer, the carboline derivative Alternatively, a derivative having a ring structure in which at least one of the carbon atoms of the hydrocarbon ring constituting the carboline ring of the carboline derivative is further substituted with a nitrogen atom is used for the hole blocking layer. The improvement of the effect was seen.
実施例3
《有機EL素子OLED3−1の作製》
陽極としてガラス上にITOを150nm成膜した基板(NHテクノグラス社製:NA−45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をiso−プロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。Example 3
<< Preparation of organic EL element OLED3-1 >>
After patterning on a substrate (made by NH Techno Glass Co., Ltd .: NA-45) having a 150 nm ITO film formed on glass as an anode, the transparent support substrate provided with this ITO transparent electrode was ultrasonically cleaned with iso-propyl alcohol. Then, it was dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
この透明支持基板を、市販の真空蒸着装置の基板ホルダーに固定し、一方、5つのタンタル製抵抗加熱ボートに、m−MTDATXA、H1、Ir−12、BCP、Alq3を各々入れ、真空蒸着装置(第1真空槽)に取付けた。The transparent support substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, while m-MTDATXA, H1, Ir-12, BCP, and Alq 3 are placed in five tantalum resistance heating boats, respectively. It was attached to the (first vacuum chamber).
さらに、タンタル製抵抗加熱ボートにフッ化リチウムを、タングステン製抵抗加熱ボートにアルミニウムをそれぞれ入れ、真空蒸着装置の第2真空槽に取り付けた。 Further, lithium fluoride was placed in a resistance heating boat made of tantalum, and aluminum was placed in a resistance heating boat made of tungsten, and attached to the second vacuum tank of the vacuum evaporation apparatus.
まず、第1の真空槽を4×10-4Paまで減圧した後、m−MTDATXAの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒〜0.2nm/秒で透明支持基板に膜厚40nmの厚さになるように蒸着し、正孔注入/輸送層を設けた。First, after reducing the pressure of the first vacuum tank to 4 × 10 −4 Pa, the heating boat containing m-MTDATXA was energized and heated, and transparent at a deposition rate of 0.1 nm / sec to 0.2 nm / sec. It vapor-deposited so that it might become a film thickness of 40 nm on the support substrate, and provided the positive hole injection / transport layer.
さらに、H1の入った前記加熱ボートとIr−12の入ったボートをそれぞれ独立に通電して発光ホストであるH1と発光ドーパントであるIr−12の蒸着速度が100:7になるように調節し膜厚30nmの厚さになるように蒸着し、発光層を設けた。 Further, the heating boat containing H1 and the boat containing Ir-12 are energized independently to adjust the deposition rate of H1 as a light emitting host and Ir-12 as a light emitting dopant to 100: 7. A light emitting layer was provided by vapor deposition so as to have a thickness of 30 nm.
ついで、BCPの入った前記加熱ボートに通電して加熱し、蒸着速度0.1〜0.2nm/秒で厚さ10nmの正孔阻止層を設けた。さらに、Alq3の入った前記加熱ボートを通電して加熱し、蒸着速度0.1nm/秒〜0.2nm/秒で膜厚20nmの電子輸送層を設けた。Subsequently, the heating boat containing BCP was energized and heated to provide a hole blocking layer having a thickness of 10 nm at a deposition rate of 0.1 to 0.2 nm / second. Further, the heating boat containing Alq 3 was heated by energization to provide an electron transport layer having a film thickness of 20 nm at a deposition rate of 0.1 nm / second to 0.2 nm / second.
次に、前記の如く電子輸送層まで製膜した素子を真空のまま第2真空槽に移した後、電子輸送層の上にステンレス鋼製の長方形穴あきマスクが配置されるように装置外部からリモートコントロールして設置した。 Next, after the element formed up to the electron transport layer as described above is transferred to the second vacuum chamber in a vacuum state, a stainless steel rectangular perforated mask is disposed on the electron transport layer from the outside of the apparatus. Installed with remote control.
第2真空槽を2×10-4Paまで減圧した後、フッ化リチウム入りのボートに通電して蒸着速度0.01nm/秒〜0.02nm/秒で膜厚0.5nmの陰極バッファー層を設け、次いでアルミニウムの入ったボートに通電して蒸着速度1nm/秒〜2nm/秒で膜厚150nmの陰極をつけた。さらにこの有機EL素子を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスで置換したグローブボックス)へ移し、図5に示したような内部を窒素で置換した封止構造にして、有機EL素子OLED3−1を作製した。なお、捕水剤である酸化バリウム105は、アルドリッチ社製の高純度酸化バリウム粉末を、粘着剤付きのフッ素樹脂系半透過膜(ミクロテックス S−NTF8031Q 日東電工製)でガラス製封止缶104に貼り付けたものを予め準備して使用した。封止缶と有機EL素子の接着には紫外線硬化型接着剤107を用い、紫外線ランプを照射することで両者を接着し封止素子を作製した。図5において101は透明電極を設けたガラス基板、102が前記正孔注入/輸送層、発光層、正孔阻止層、電子輸送層等からなる有機EL層、103は陰極を示す。After reducing the pressure in the second vacuum chamber to 2 × 10 −4 Pa, a cathode buffer layer having a film thickness of 0.5 nm was formed at a deposition rate of 0.01 nm / second to 0.02 nm / second by energizing a boat containing lithium fluoride. Then, a boat containing aluminum was energized to attach a cathode having a film thickness of 150 nm at a deposition rate of 1 nm / second to 2 nm / second. Further, the organic EL element was transferred to a glove box under nitrogen atmosphere (a glove box substituted with high-purity nitrogen gas with a purity of 99.999% or more) without being brought into contact with the atmosphere, and the interior as shown in FIG. An organic EL element OLED3-1 was produced with a substituted sealing structure. In addition,
《有機EL素子OLED3−2〜3−23の作製》
上記の有機EL素子OLED3−1の作製において、表3に記載のように、発光ホスト、発光ドーパント及び正孔阻止材料を、各々変更した以外は同様にして、有機EL素子OLED3−2〜3−23を作製した。<< Preparation of Organic EL Element OLED3-2-3-23 >>
In the production of the organic EL element OLED3-1, as described in Table 3, the organic EL elements OLED3-2 to 3- 23 was produced.
得られた有機EL素子OLED3−1〜3−23について、外部取り出し量子効率について実施例1と同様の方法で評価を行った。 About the obtained organic EL element OLED3-1 to 3-23, it evaluated by the method similar to Example 1 about external extraction quantum efficiency.
《電圧上昇》
有機EL素子OLED3−1〜3−23を25℃、2.5mA/cm2の定電流条件下による連続点灯を行い、初期輝度の半分の輝度になった時の駆動電圧の、初期度駆動電圧からの上昇分を測定した。《Voltage increase》
The organic EL elements OLED3-1 to 3-23 are continuously lit under a constant current condition of 25 ° C. and 2.5 mA / cm 2 , and the initial drive voltage is the drive voltage when the brightness becomes half the initial brightness. The rise from was measured.
なお、外部取り出し量子効率、電圧上昇は有機EL素子OLED3−1を100とした時の相対値で表した。 Note that the external extraction quantum efficiency and voltage increase are expressed as relative values when the organic EL element OLED3-1 is set to 100.
得られた結果を表3に示す。 The obtained results are shown in Table 3.
表3から、本発明に係る金属錯体を用いて作製した有機EL素子は比較有機EL素子に比べ、高い発光効率と、低い電圧上昇が達成できることが明らかである。 From Table 3, it is clear that the organic EL device produced using the metal complex according to the present invention can achieve higher luminous efficiency and lower voltage increase than the comparative organic EL device.
更に、カルボリン誘導体または該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが更に窒素原子で置換されている環構造を有する誘導体を発光層に併用することにより、また、カルボリン誘導体または該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが更に窒素原子で置換されている環構造を有する誘導体を正孔阻止層に使用することにより、更に本発明に記載の効果の向上が見られた。 Furthermore, by using a carboline derivative or a derivative having a ring structure in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is further substituted with a nitrogen atom in the light emitting layer, the carboline derivative Alternatively, a derivative having a ring structure in which at least one of the carbon atoms of the hydrocarbon ring constituting the carboline ring of the carboline derivative is further substituted with a nitrogen atom is used for the hole blocking layer. The improvement of the effect was seen.
実施例4
《有機EL素子OLED4−1の作製》
実施例3における発光層の作成において、発光ホストであるH1と発光ドーパントであるIr−12の蒸着速度を100:7から、100:4に変更した以外は実施例3と同様にして有機EL素子OLED4−1を作成した。Example 4
<< Preparation of organic EL element OLED4-1 >>
An organic EL device was produced in the same manner as in Example 3 except that the vapor deposition rate of H1 as a light emitting host and Ir-12 as a light emitting dopant was changed from 100: 7 to 100: 4 in the production of the light emitting layer in Example 3. OLED4-1 was created.
《有機EL素子OLED4−2〜4−19の作製》
上記の有機EL素子OLED4−1の作製において、表4に記載のように、発光ホスト、発光ドーパント及び正孔阻止材料を、各々変更した以外は同様にして、有機EL素子OLED4−2〜4−11を作製した。<< Production of Organic EL Elements OLED4-2 to 4-19 >>
In preparation of said organic EL element OLED4-1, as described in Table 4, except having changed each of the light emission host, the light emission dopant, and the hole-blocking material, it is the same, and organic EL element OLED4-2-4-4- 11 was produced.
得られた有機EL素子OLED4−1〜4−19について、下記の評価を行った。 The following evaluation was performed about obtained organic EL element OLED4-1 to 4-19.
《外部取り出し量子効率》
有機EL素子OLED4−1〜4−19を室温(約23℃〜25℃)、2.5mA/cm2の定電流条件下による点灯を行い、点灯開始直後の発光輝度(L)[cd/m2]を測定することにより、外部取り出し量子効率(η)を算出した。ここで、発光輝度の測定は、CS−1000(ミノルタ製)を用いた。また、外部取り出し量子効率は、有機EL素子OLED4−1を100とした時の相対値で表した。<< External quantum efficiency >>
The organic EL elements OLED4-1 to 4-19 are turned on at room temperature (about 23 ° C. to 25 ° C.) under a constant current condition of 2.5 mA / cm 2 , and light emission luminance (L) [cd / m immediately after the start of lighting] 2 ] was measured to calculate the external extraction quantum efficiency (η). Here, CS-1000 (manufactured by Minolta) was used for measurement of light emission luminance. The external extraction quantum efficiency was expressed as a relative value when the organic EL element OLED4-1 was set to 100.
《発光寿命》
有機EL素子OLED4−1〜4−19を室温下、2.5mA/cm2の定電流条件下による連続点灯を行い、初期輝度の半分の輝度になるのに要する時間(τ1/2)を測定した。また、発光寿命は、有機EL素子OLED4−1を100として、相対値で表した。<Luminescent life>
At room temperature the organic EL element OLED4-1~4-19, performs continuous lighting by constant current condition of 2.5 mA / cm 2, the time required to becomes half of the initial luminance (τ 1/2) It was measured. Moreover, the light emission lifetime was represented by the relative value by setting the organic EL element OLED4-1 to 100.
得られた結果を表4に示す。 Table 4 shows the obtained results.
表4から、本発明に係る金属錯体を用いて作製した有機EL素子は比較有機EL素子に比べ、高い発光効率と、発光寿命の長寿命化が達成できることが明らかである。更に、カルボリン誘導体または該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが更に窒素原子で置換されている環構造を有する誘導体を発光層に併用することにより、また、カルボリン誘導体または該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが更に窒素原子で置換されている環構造を有する誘導体を正孔阻止層に使用することにより、更に本発明に記載の効果の向上が見られた。 From Table 4, it is clear that the organic EL device produced using the metal complex according to the present invention can achieve higher luminous efficiency and longer emission lifetime than the comparative organic EL device. Furthermore, by using a carboline derivative or a derivative having a ring structure in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is further substituted with a nitrogen atom in the light emitting layer, the carboline derivative Alternatively, a derivative having a ring structure in which at least one of the carbon atoms of the hydrocarbon ring constituting the carboline ring of the carboline derivative is further substituted with a nitrogen atom is used for the hole blocking layer. The improvement of the effect was seen.
実施例5
《有機EL素子OLED5−1の作製》
陽極としてガラス上にITOを150nm成膜した基板(NHテクノグラス社製:NA−45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をiso−プロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。Example 5
<< Production of Organic EL Element OLED5-1 >>
After patterning on a substrate (made by NH Techno Glass Co., Ltd .: NA-45) having a 150 nm ITO film formed on glass as an anode, the transparent support substrate provided with this ITO transparent electrode was ultrasonically cleaned with iso-propyl alcohol. Then, it was dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
この透明支持基板を、市販の真空蒸着装置の基板ホルダーに固定し、一方、5つのタンタル製抵抗加熱ボートに、m−MTDATXA、H1、Ir−12、BCP、Alq3を各々入れ、真空蒸着装置(第1真空槽)に取付けた。The transparent support substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, while m-MTDATXA, H1, Ir-12, BCP, and Alq 3 are placed in five tantalum resistance heating boats, respectively. It was attached to the (first vacuum chamber).
更に、タンタル製抵抗加熱ボートにフッ化リチウムを、タングステン製抵抗加熱ボートにアルミニウムをそれぞれ入れ、真空蒸着装置の第2真空槽に取り付けた。 Further, lithium fluoride was placed in a resistance heating boat made of tantalum, and aluminum was placed in a resistance heating boat made of tungsten, and attached to the second vacuum tank of the vacuum evaporation apparatus.
まず、第1の真空槽を4×10-4Paまで減圧した後、m−MTDATXAの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒〜0.2nm/秒で透明支持基板に膜厚30nmの厚さになるように蒸着し、正孔注入/輸送層を設けた。First, after reducing the pressure of the first vacuum tank to 4 × 10 −4 Pa, the heating boat containing m-MTDATXA was energized and heated, and transparent at a deposition rate of 0.1 nm / sec to 0.2 nm / sec. It vapor-deposited so that it might become a film thickness of 30 nm on the support substrate, and provided the positive hole injection / transport layer.
さらに、H1の入った前記加熱ボートとIr−12の入ったボートをそれぞれ独立に通電して発光ホストであるH1と発光ドーパントであるIr−12の蒸着速度が100:7になるように調節し膜厚30nmの厚さになるように蒸着し、発光層を設けた。 Further, the heating boat containing H1 and the boat containing Ir-12 are energized independently to adjust the deposition rate of H1 as a light emitting host and Ir-12 as a light emitting dopant to 100: 7. A light emitting layer was provided by vapor deposition so as to have a thickness of 30 nm.
ついで、BCPの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒〜0.2nm/秒で厚さ10nmの正孔阻止層を設けた。更に、Alq3の入った前記加熱ボートを通電して加熱し、蒸着速度0.1nm/秒〜0.2nm/秒で膜厚30nmの電子輸送層を設けた。Then, the heating boat containing BCP was energized and heated to provide a 10 nm thick hole blocking layer at a deposition rate of 0.1 nm / sec to 0.2 nm / sec. Further, the heating boat containing Alq 3 was heated by energizing to provide an electron transport layer having a film thickness of 30 nm at a deposition rate of 0.1 nm / second to 0.2 nm / second.
次に、前記の如く電子輸送層まで製膜した素子を真空のまま第2真空槽に移した後、電子輸送層の上にステンレス鋼製の長方形穴あきマスクが配置されるように装置外部からリモートコントロールして設置した。 Next, after the element formed up to the electron transport layer as described above is transferred to the second vacuum chamber in a vacuum state, a stainless steel rectangular perforated mask is disposed on the electron transport layer from the outside of the apparatus. Installed with remote control.
第2真空槽を2×10-4Paまで減圧した後、フッ化リチウム入りのボートに通電して蒸着速度0.01nm/秒〜0.02nm/秒で膜厚0.5nmの陰極バッファー層を設け、次いでアルミニウムの入ったボートに通電して蒸着速度1nm/秒〜2nm/秒で膜厚150nmの陰極をつけた。さらにこの有機EL素子を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスで置換したグローブボックス)へ移し、図5に示したような内部を窒素で置換した封止構造にして、有機EL素子OLED1−1を作製した。After reducing the pressure in the second vacuum chamber to 2 × 10 −4 Pa, a cathode buffer layer having a film thickness of 0.5 nm was formed at a deposition rate of 0.01 nm / second to 0.02 nm / second by energizing a boat containing lithium fluoride. Then, a boat containing aluminum was energized to attach a cathode having a film thickness of 150 nm at a deposition rate of 1 nm / second to 2 nm / second. Further, the organic EL element was transferred to a glove box under nitrogen atmosphere (a glove box substituted with high-purity nitrogen gas with a purity of 99.999% or more) without being brought into contact with the atmosphere, and the interior as shown in FIG. An organic EL element OLED1-1 was produced with a substituted sealing structure.
尚、捕水剤である酸化バリウム105は、アルドリッチ社製の高純度酸化バリウム粉末を、粘着剤付きのフッ素樹脂系半透過膜(ミクロテックス S−NTF8031Q 日東電工製)でガラス製封止缶104に貼り付けたものを予め準備して使用した。封止缶と有機EL素子の接着には紫外線硬化型接着剤107を用い、紫外線ランプを照射することで両者を接着し封止素子を作製した。図5において101は透明電極を設けたガラス基板、102が前記正孔注入/輸送層、発光層、正孔阻止層、電子輸送層等からなる有機EL層、103は陰極を示す。
In addition,
《有機EL素子OLED5−2〜5−25の作製》
上記の有機EL素子OLED5−1の作製において、表5に記載のように、発光ホスト、発光ドーパント及び正孔阻止材料を、各々変更した以外は同様にして、有機EL素子OLED5−2〜5−25を作製した。<< Production of Organic EL Elements OLED5-2 to 5-25 >>
In preparation of said organic EL element OLED5-1, as described in Table 5, except having changed each of the light emission host, the light emission dopant, and the hole-blocking material, it is the same, and organic EL element OLED5-2-5-5 25 was produced.
得られた有機EL素子OLED5−1〜5−25について、外部取り出し量子効率について実施例1と同様の方法で評価を行った。 About the obtained organic EL element OLED5-1 to 5-25, it evaluated by the method similar to Example 1 about external extraction quantum efficiency.
《発光寿命》
有機EL素子OLED5−1〜5−25を室温下、2.5mA/cm2の定電流条件下による連続点灯を行い、初期輝度の90%の輝度になるのに要する時間(τ1/9)を測定した。なお、外部取り出し量子効率は、有機EL素子OLED5−1を100とした時の相対値、発光寿命は有機EL素子OLED5−1を100とした時の相対値で表した。<Luminescent life>
At room temperature the organic EL element OLED5-1~5-25, 2.5mA / cm 2 of make continuous lighting by constant current conditions, the time required to become 90% of the initial luminance (τ 1/9) Was measured. The external extraction quantum efficiency was expressed as a relative value when the organic EL element OLED5-1 was set to 100, and the emission lifetime was expressed as a relative value when the organic EL element OLED5-1 was set as 100.
得られた結果を表5に示す。 The results obtained are shown in Table 5.
表5から、本発明に係る金属錯体を用いて作製した有機EL素子は比較有機EL素子に比べ、高い発光効率と、発光寿命の長寿命化が達成できることが明らかである。更に、カルボリン誘導体または該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが更に窒素原子で置換されている環構造を有する誘導体を発光層に併用することにより、また、カルボリン誘導体または該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが更に窒素原子で置換されている環構造を有する誘導体を正孔阻止層に使用することにより、更に本発明に記載の効果の向上が見られた。 From Table 5, it is clear that the organic EL device produced using the metal complex according to the present invention can achieve higher luminous efficiency and longer emission lifetime than the comparative organic EL device. Furthermore, by using a carboline derivative or a derivative having a ring structure in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is further substituted with a nitrogen atom in the light emitting layer, the carboline derivative Alternatively, a derivative having a ring structure in which at least one of the carbon atoms of the hydrocarbon ring constituting the carboline ring of the carboline derivative is further substituted with a nitrogen atom is used for the hole blocking layer. The improvement of the effect was seen.
実施例6
《有機EL素子OLED6−1の作製》
実施例3の有機EL素子3−1の作製において、発光層形成時に、発光ホストであるH1と発光ドーパントであるIr−12の蒸着速度を100:7から、100:5に変更した以外は同様にして有機EL素子OLED6−1を作製した。Example 6
<< Production of Organic EL Element OLED6-1 >>
In the production of the organic EL element 3-1 of Example 3, the same thing except that the vapor deposition rate of H1 as the light emitting host and Ir-12 as the light emitting dopant was changed from 100: 7 to 100: 5 at the time of forming the light emitting layer. Thus, an organic EL element OLED6-1 was produced.
《有機EL素子OLED6−2〜6−20の作製》
上記の有機EL素子OLED6−1の作製において、表6に記載のように、発光ホスト、発光ドーパント及び正孔阻止材料を、各々変更した以外は同様にして、有機EL素子OLED6−2〜6−20を作製した。得られた有機EL素子OLED6−1〜6−20について、外部取り出し量子効率について実施例1と同様の方法で評価を行った。<< Production of Organic EL Elements OLED6-2 to 6-20 >>
In preparation of said organic EL element OLED6-1, as described in Table 6, except having changed each of the light emission host, the light emission dopant, and the hole blocking material, it is the same, and organic EL element OLED6-2-6-6 20 was produced. About the obtained organic EL element OLED6-1 to 6-20, it evaluated by the method similar to Example 1 about external extraction quantum efficiency.
《電圧上昇》
有機EL素子OLED6−1〜6−20を25℃、2.5mA/cm2の定電流条件下による連続点灯を行い、初期輝度の半分の輝度になった時の駆動電圧の、初期度駆動電圧からの上昇分を測定した。《Voltage increase》
The organic EL elements OLED6-1 to 6-20 are continuously lit under a constant current condition of 25 ° C. and 2.5 mA / cm 2 , and the initial driving voltage of the driving voltage when the luminance becomes half of the initial luminance. The rise from was measured.
尚、外部取り出し量子効率、電圧上昇は有機EL素子OLED6−1を100とした時の相対値で表した。 The external extraction quantum efficiency and the voltage increase are expressed as relative values when the organic EL element OLED6-1 is 100.
表6から、本発明に係る金属錯体を用いて作製した有機EL素子は比較有機EL素子に比べ、高い発光効率と、低い電圧上昇が達成できることが明らかである。更に、カルボリン誘導体または該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが更に窒素原子で置換されている環構造を有する誘導体を発光層に併用することにより、また、カルボリン誘導体または該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが更に窒素原子で置換されている環構造を有する誘導体を正孔阻止層に使用することにより、更に本発明に記載の効果の向上が見られた。 From Table 6, it is clear that the organic EL device produced using the metal complex according to the present invention can achieve higher luminous efficiency and lower voltage increase than the comparative organic EL device. Furthermore, by using a carboline derivative or a derivative having a ring structure in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is further substituted with a nitrogen atom in the light emitting layer, the carboline derivative Alternatively, a derivative having a ring structure in which at least one of the carbon atoms of the hydrocarbon ring constituting the carboline ring of the carboline derivative is further substituted with a nitrogen atom is used for the hole blocking layer. The improvement of the effect was seen.
実施例7
《フルカラー表示装置の作製》
(青色発光素子の作製)
実施例1の有機EL素子OLED1−7を青色発光素子として用いた。Example 7
<Production of full-color display device>
(Production of blue light emitting element)
The organic EL element OLED1-7 of Example 1 was used as a blue light emitting element.
(緑色発光素子の作製)
Ir−1を緑色発光素子として用いた。(Production of green light emitting element)
Ir-1 was used as a green light emitting element.
(赤色発光素子の作製)
Ir−9を赤色発光素子として用いた。(Production of red light emitting element)
Ir-9 was used as a red light emitting element.
上記で作製した、各々赤色、緑色、青色発光有機EL素子を同一基板上に並置し、図1に記載のような形態を有するアクティブマトリクス方式フルカラー表示装置を作製し、図2には、作製した前記表示装置の表示部Aの模式図のみを示した。即ち、同一基板上に、複数の走査線5及びデータ線6を含む配線部と、並置した複数の画素3(発光の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示せず)。前記複数画素3は、それぞれの発光色に対応した有機EL素子、アクティブ素子であるスイッチングトランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方式で駆動されており、走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。この様に各赤、緑、青の画素を適宜、並置することによって、フルカラー表示装置を作製した。
Each of the red, green, and blue light emitting organic EL elements produced above was juxtaposed on the same substrate to produce an active matrix type full-color display device having the form shown in FIG. 1, and FIG. Only the schematic diagram of the display section A of the display device is shown. That is, a wiring portion including a plurality of
該フルカラー表示装置を駆動することにより、輝度が高く、高耐久性を有し、且つ、鮮明なフルカラー動画表示が得られることが判った。 It has been found that by driving the full-color display device, a clear full-color moving image display having high luminance, high durability, and clearness can be obtained.
実施例8
《フルカラー表示装置の作製》
実施例7の青色発光素子の作製において、有機EL素子OLED1−7を、有機EL素子OLED2−7に変更した以外は同様にしてフルカラー表示装置を作製した。Example 8
<Production of full-color display device>
A full-color display device was produced in the same manner as in the production of the blue light-emitting element of Example 7, except that the organic EL element OLED1-7 was changed to the organic EL element OLED2-7.
該フルカラー表示装置を駆動することにより、輝度が高く、高耐久性を有し、且つ、鮮明なフルカラー動画表示が得られることが判った。 It has been found that by driving the full-color display device, a clear full-color moving image display having high luminance, high durability, and clearness can be obtained.
実施例9
《フルカラー表示装置の作製》
実施例7の青色発光素子の作製において、有機EL素子OLED1−7を、有機EL素子OLED3−4
に変更した以外は同様にしてフルカラー表示装置を作製した。Example 9
<Production of full-color display device>
In the production of the blue light-emitting device of Example 7, the organic EL device OLED1-7 was replaced with the organic EL device OLED3-4.
A full-color display device was produced in the same manner except that it was changed to.
該フルカラー表示装置を駆動することにより、輝度が高く、高耐久性を有し、且つ、鮮明なフルカラー動画表示が得られることが判った。 It has been found that by driving the full-color display device, a clear full-color moving image display having high luminance, high durability, and clearness can be obtained.
実施例10
《フルカラー表示装置の作製》
実施例7の青色発光素子の作製において、有機EL素子OLED1−7を、有機EL素子OLED4−4に変更した以外は同様にしてフルカラー表示装置を作製した。Example 10
<Production of full-color display device>
A full-color display device was produced in the same manner as in the production of the blue light-emitting element of Example 7, except that the organic EL element OLED1-7 was changed to the organic EL element OLED4-4.
該フルカラー表示装置を駆動することにより、輝度が高く、高耐久性を有し、且つ、鮮明なフルカラー動画表示が得られることが判った。 It has been found that by driving the full-color display device, a clear full-color moving image display having high luminance, high durability, and clearness can be obtained.
実施例11
《フルカラー表示装置の作製》
実施例7の青色発光素子の作製において、有機EL素子OLED1−7を、有機EL素子OLED5−4に変更した以外は同様にしてフルカラー表示装置を作製した。Example 11
<Production of full-color display device>
A full-color display device was produced in the same manner as in the production of the blue light-emitting element of Example 7, except that the organic EL element OLED1-7 was changed to the organic EL element OLED5-4.
該フルカラー表示装置を駆動することにより、輝度が高く、高耐久性を有し、且つ、鮮明なフルカラー動画表示が得られることが判った。 It has been found that by driving the full-color display device, a clear full-color moving image display having high luminance, high durability, and clearness can be obtained.
実施例12
《フルカラー表示装置の作製》
実施例7の青色発光素子の作製において、有機EL素子OLED1−7を、有機EL素子OLED6−5に変更した以外は同様にしてフルカラー表示装置を作製した。Example 12
<Production of full-color display device>
A full-color display device was produced in the same manner as in the production of the blue light-emitting element of Example 7, except that the organic EL element OLED1-7 was changed to the organic EL element OLED6-5.
該フルカラー表示装置を駆動することにより、輝度が高く、高耐久性を有し、且つ、鮮明なフルカラー動画表示が得られることが判った。 It has been found that by driving the full-color display device, a clear full-color moving image display having high luminance, high durability, and clearness can be obtained.
実施例13
《白色発光素子および白色照明装置の作製》
実施例1の透明電極基板の電極を20mm×20mmにパターニングし、その上に実施例1と同様に正孔注入/輸送層としてα−NPDを25nmの厚さで製膜し、さらに、CBPの入った前記加熱ボートと本発明化合物1−5の入ったボートおよびIr−9の入ったボートをそれぞれ独立に通電して発光ホストであるCBPと発光ドーパントである本発明化合物1−5およびIr−9の蒸着速度が100:5:0.6になるように調節し膜厚30nmの厚さになるように蒸着し、発光層を設けた。Example 13
<< Preparation of white light emitting element and white lighting device >>
The electrode of the transparent electrode substrate of Example 1 was patterned to 20 mm × 20 mm, and α-NPD was formed as a hole injection / transport layer with a thickness of 25 nm thereon as in Example 1, and further, CBP The heated boat containing, the boat containing the compound 1-5 of the present invention, and the boat containing Ir-9 were energized independently, respectively, CBP as the luminescent host and compounds 1-5 and Ir- of the luminescent dopant as the luminescent dopant. The vapor deposition rate of 9 was adjusted to be 100: 5: 0.6, and vapor deposition was performed so as to have a thickness of 30 nm to provide a light emitting layer.
ついで、BCPを10nm製膜して正孔阻止層を設けた。更に、Alq3を40nmで製膜し電子輸送層を設けた。Next, a hole blocking layer was provided by depositing BCP to a thickness of 10 nm. Further, an Alq 3 film was formed at 40 nm to provide an electron transport layer.
次に、実施例1と同様に、電子注入層の上にステンレス鋼製の透明電極とほぼ同じ形状の正方形穴あきマスクを設置し、陰極バッファー層としてフッ化リチウム0.5nm及び陰極としてアルミニウム150nmを蒸着製膜した。 Next, as in Example 1, a square perforated mask having the same shape as the transparent electrode made of stainless steel was placed on the electron injection layer, lithium fluoride 0.5 nm as the cathode buffer layer and aluminum 150 nm as the cathode. Was deposited.
この素子を実施例1と同様な方法および同様な構造の封止缶を具備させ平面ランプを作製した。図6に平面ランプの模式図を示した。図6(a)に平面模式を図6(b)に断面模式図を示す。 This element was provided with a sealing can having the same method and the same structure as in Example 1 to produce a flat lamp. FIG. 6 shows a schematic diagram of a flat lamp. FIG. 6A shows a schematic plan view, and FIG. 6B shows a schematic cross-sectional view.
この平面ランプに通電したところほぼ白色の光が得られ、照明装置として使用できることがわかった。 When this flat lamp was energized, almost white light was obtained, and it was found that it could be used as a lighting device.
実施例14
《白色発光素子および白色照明装置の作製》
実施例13の白色発光素子の作製において、本発明化合物1−5を2−7に変更した以外は実施例13と同様にして白色照明装置を作製した。Example 14
<< Preparation of white light emitting element and white lighting device >>
A white lighting device was produced in the same manner as in Example 13 except that the compound 1-5 of the present invention was changed to 2-7 in the production of the white light emitting device of Example 13.
この平面ランプに通電したところほぼ白色の光が得られ、照明装置として使用できることがわかった。 When this flat lamp was energized, almost white light was obtained, and it was found that it could be used as a lighting device.
実施例15
《白色発光素子および白色照明装置の作製》
実施例13の白色発光素子の作製において、本発明化合物1−5を3−2に変更した以外は実施例13と同様にして白色照明装置を作製した。Example 15
<< Preparation of white light emitting element and white lighting device >>
A white lighting device was produced in the same manner as in Example 13 except that the compound 1-5 of the present invention was changed to 3-2 in the production of the white light emitting device of Example 13.
この平面ランプに通電したところほぼ白色の光が得られ、照明装置として使用できることがわかった。 When this flat lamp was energized, almost white light was obtained, and it was found that it could be used as a lighting device.
実施例16
《白色発光素子および白色照明装置の作製》
実施例13の白色発光素子の作製において、化合物1−5を4−4に変更した以外は実施例13と同様にして白色照明装置を作製した。Example 16
<< Preparation of white light emitting element and white lighting device >>
A white lighting device was produced in the same manner as in Example 13 except that Compound 1-5 was changed to 4-4 in the production of the white light emitting device of Example 13.
この平面ランプに通電したところほぼ白色の光が得られ、照明装置として使用できることがわかった。 When this flat lamp was energized, almost white light was obtained, and it was found that it could be used as a lighting device.
実施例17
《白色発光素子および白色照明装置の作製》
実施例13の白色発光素子の作製において、化合物1−5を5−1に変更した以外は実施例13と同様にして白色照明装置を作製した。Example 17
<< Preparation of white light emitting element and white lighting device >>
A white lighting device was produced in the same manner as in Example 13 except that Compound 1-5 was changed to 5-1 in the production of the white light emitting device of Example 13.
この平面ランプに通電したところほぼ白色の光が得られ、照明装置として使用できることがわかった。 When this flat lamp was energized, almost white light was obtained, and it was found that it could be used as a lighting device.
実施例18
《白色発光素子および白色照明装置の作製》
実施例13の白色発光素子の作製において、化合物1−5を6−5に変更した以外は実施例13と同様にして白色照明装置を作製した。Example 18
<< Preparation of white light emitting element and white lighting device >>
A white lighting device was produced in the same manner as in Example 13 except that Compound 1-5 was changed to 6-5 in the production of the white light emitting device of Example 13.
この平面ランプに通電したところほぼ白色の光が得られ、照明装置として使用できることがわかった。 When this flat lamp was energized, almost white light was obtained, and it was found that it could be used as a lighting device.
実施例19
《有機EL素子OLED7−1〜7−13の作製》
実施例1において、発光ドーパントをIr−1に変更し、正孔阻止材料を表7に記載のように変更した以外は同様にして、有機EL素子OLED7−1〜7−13を作製した。Example 19
<< Production of Organic EL Elements OLED7-1 to 7-13 >>
Organic EL elements OLED7-1 to 7-13 were produced in the same manner as in Example 1 except that the luminescent dopant was changed to Ir-1 and the hole blocking material was changed as shown in Table 7.
得られた各々の素子の外部取り出し量子効率、発光寿命の測定も実施例1に記載の方法と同様にして行った。 Measurement of the external extraction quantum efficiency and the light emission lifetime of each of the obtained devices was performed in the same manner as in the method described in Example 1.
この時、いずれもOLED7−1の値を100として、各有機EL素子試料の値を相対値で表した。得られた結果を表7に示す。 At this time, the value of OLED7-1 was set to 100, and the value of each organic EL element sample was represented by the relative value. The results obtained are shown in Table 7.
表7から、本発明の有機EL素子材料を正孔阻止材料に用いた有機EL素子は比較素子に比べ、高い発光効率と、発光寿命が得られることがわかった。なお、本発明の素子の発
光色は全て緑色だった。From Table 7, it was found that the organic EL device using the organic EL device material of the present invention as the hole blocking material can obtain higher light emission efficiency and light emission lifetime than the comparative device. The emission color of the element of the present invention was all green.
本発明により、有機EL素子用に有用な有機EL素子材料が得られ、該有機EL素子材料を用いることにより、発光波長が制御され、高い発光効率を示し、且つ、発光寿命の長い有機EL素子、照明装置及び表示装置を提供することができた。 According to the present invention, an organic EL element material useful for an organic EL element is obtained. By using the organic EL element material, an emission wavelength is controlled, high emission efficiency is exhibited, and an emission lifetime is long. An illumination device and a display device can be provided.
Claims (28)
〔式中、Z11は、芳香族炭化水素環または芳香族複素環を形成するのに必要な原子群を表す。R11、R12、R13は、各々水素原子または置換基を表す。M11は、元素周期表における8族〜10族の金属を表す。〕
〔式中、Z21は芳香族炭化水素環または芳香族複素環を形成するのに必要な原子群を表す。R21、R22、R23は、各々水素原子または置換基を表す。M21は、元素周期表における8族〜10族の金属を表す。〕
〔式中、Z31は、芳香族炭化水素環または芳香族複素環を形成するのに必要な原子群を表す。X31、X32、X33は、各々置換基を有してもよい炭素原子または窒素原子を表すが、少なくとも2つは、窒素原子または−N(R3)−(ここで、R3は、水素原子または置換基を表す。)を表す。C31は炭素原子を表す。M31は、元素周期表における8族〜10族の金属を表す。C31とNとの間の結合、NとX33との間の結合、X32とX33との間の結合、X31とX32との間の結合、C31とX31との間の結合は、各々単結合または二重結合を表す。〕
〔式中、Z41は、芳香族複素環を形成するのに必要な原子群を表す。X41、X42は置換基を有してもよい炭素原子または窒素原子を表すが、その少なくとも1つは、窒素原子または−N(R4)−(ここで、R4は、水素原子または置換基を表す。)を表す。M41は、元素周期表における8族〜10族の金属を表す。C41、C42、C43は、各々炭素原子を表す。M41は、元素周期表における8族〜10族の金属を表す。C41とC42との間の結合、C41とX42との間の結合、X41とX42との間の結合、X41とC43との間の結合、C42とC43との間の結合は、単結合または二重結合を表す。〕
〔式中、Z51は、芳香族炭化水素環または芳香族複素環を形成するのに必要な原子群を表す。X51は、酸素原子または硫黄原子を表す。R51、R52は、水素原子または置換基を表す。M51は、元素周期表における8族〜10族の金属を表す。〕
〔式中、Z61は、芳香族炭化水素環または芳香族複素環を形成するのに必要な原子群を表す。X61、X62、X63は、各々置換基を有してもよい炭素原子または窒素原子を表すが、少なくとも1つは窒素原子を表す。M61は、元素周期表における8族〜10族の金属を表す。〕The following general formula (1) or a metal complex having a tautomer of the general formula (1) as a partial structure, the following general formula (2) or a tautomer of the general formula (2) as a partial structure A metal complex having the following general formula (3) or a tautomer of the general formula (3) as a partial structure, a following general formula (4) or a tautomer of the general formula (4) As a partial structure, a metal complex having the following general formula (5) or a tautomer of the general formula (5) as a partial structure, or the following general formula (6) or the general formula (6) An organic electroluminescent device material characterized by being a metal complex having a tautomer as a partial structure.
[Wherein, Z11 represents an atomic group necessary for forming an aromatic hydrocarbon ring or an aromatic heterocyclic ring. R 11 , R 12 and R 13 each represent a hydrogen atom or a substituent. M 11 represents a group 8 to group 10 metal in the periodic table. ]
[In formula, Z21 represents an atomic group required in order to form an aromatic-hydrocarbon ring or an aromatic heterocyclic ring. R 21 , R 22 and R 23 each represents a hydrogen atom or a substituent. M 21 represents a group 8 to group 10 metal in the periodic table. ]
[In formula, Z31 represents an atomic group required in order to form an aromatic-hydrocarbon ring or an aromatic heterocyclic ring. X 31 , X 32 and X 33 each represent a carbon atom or a nitrogen atom which may have a substituent, and at least two are a nitrogen atom or —N (R 3 ) — (where R 3 is Represents a hydrogen atom or a substituent. C 31 represents a carbon atom. M 31 represents a group 8 to group 10 metal in the periodic table. Bond between C 31 and N, bond between N and X 33 , bond between X 32 and X 33 , bond between X 31 and X 32 , between C 31 and X 31 Each of the bonds represents a single bond or a double bond. ]
[In formula, Z41 represents an atomic group required in order to form an aromatic heterocyclic ring. X 41 and X 42 each represent an optionally substituted carbon atom or nitrogen atom, at least one of which is a nitrogen atom or —N (R 4 ) — (where R 4 represents a hydrogen atom or Represents a substituent). M 41 represents a group 8 to group 10 metal in the periodic table. C 41 , C 42 and C 43 each represent a carbon atom. M 41 represents a group 8 to group 10 metal in the periodic table. Bond between C 41 and C 42, bond between C 41 and X 42, coupling between X 41 and X 42, coupling between X 41 and C 43, and C 42 and C 43 The bond between represents a single bond or a double bond. ]
[In the formula, Z51 represents an atomic group necessary for forming an aromatic hydrocarbon ring or an aromatic heterocyclic ring. X 51 represents an oxygen atom or a sulfur atom. R 51 and R 52 represent a hydrogen atom or a substituent. M 51 represents a group 8 to group 10 metal in the periodic table. ]
[Wherein, Z61 represents an atomic group necessary for forming an aromatic hydrocarbon ring or an aromatic heterocyclic ring. X 61 , X 62 and X 63 each represents a carbon atom or a nitrogen atom which may have a substituent, and at least one represents a nitrogen atom. M 61 represents a group 8 to group 10 metal in the periodic table. ]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006514709A JP4894513B2 (en) | 2004-06-17 | 2005-06-09 | ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004179627 | 2004-06-17 | ||
JP2004179627 | 2004-06-17 | ||
PCT/JP2005/010552 WO2005123873A1 (en) | 2004-06-17 | 2005-06-09 | Organic electroluminescent device material, organic electroluminescent device, display and illuminating device |
JP2006514709A JP4894513B2 (en) | 2004-06-17 | 2005-06-09 | ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2005123873A1 true JPWO2005123873A1 (en) | 2008-04-10 |
JP4894513B2 JP4894513B2 (en) | 2012-03-14 |
Family
ID=35509662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006514709A Active JP4894513B2 (en) | 2004-06-17 | 2005-06-09 | ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4894513B2 (en) |
WO (1) | WO2005123873A1 (en) |
Families Citing this family (537)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9070884B2 (en) | 2005-04-13 | 2015-06-30 | Universal Display Corporation | Hybrid OLED having phosphorescent and fluorescent emitters |
US8586204B2 (en) | 2007-12-28 | 2013-11-19 | Universal Display Corporation | Phosphorescent emitters and host materials with improved stability |
US8007927B2 (en) | 2007-12-28 | 2011-08-30 | Universal Display Corporation | Dibenzothiophene-containing materials in phosphorescent light emitting diodes |
JP5076900B2 (en) * | 2005-09-06 | 2012-11-21 | コニカミノルタホールディングス株式会社 | Organic electroluminescence element, display device and lighting device |
JP4893627B2 (en) * | 2005-10-31 | 2012-03-07 | コニカミノルタホールディングス株式会社 | Organic electroluminescence element, display device and lighting device |
JP4972938B2 (en) * | 2006-01-12 | 2012-07-11 | コニカミノルタホールディングス株式会社 | ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE |
JP4932267B2 (en) * | 2006-02-01 | 2012-05-16 | 昭和電工株式会社 | Polymer light-emitting material, organic electroluminescence element, and display device |
CN103254240B (en) | 2006-02-10 | 2016-06-22 | 通用显示公司 | The compound comprising Phosphorescent metal complexes and the OLED comprising described compound |
WO2007097149A1 (en) * | 2006-02-20 | 2007-08-30 | Konica Minolta Holdings, Inc. | Organic electroluminescence element, white light emitting element, display device and illuminating device |
EP1998387B1 (en) * | 2006-03-17 | 2015-04-22 | Konica Minolta Holdings, Inc. | Organic electroluminescent device, display and illuminating device |
EP2557138B1 (en) * | 2006-03-23 | 2016-08-10 | Konica Minolta Holdings, Inc. | Organic electroluminescent device, display and illuminating device |
JP5644050B2 (en) * | 2006-09-20 | 2014-12-24 | コニカミノルタ株式会社 | Organic electroluminescence element material |
JP5556014B2 (en) * | 2006-09-20 | 2014-07-23 | コニカミノルタ株式会社 | Organic electroluminescence device |
JP5245105B2 (en) * | 2006-10-19 | 2013-07-24 | コニカミノルタ株式会社 | ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE |
JP2008147426A (en) * | 2006-12-11 | 2008-06-26 | Idemitsu Kosan Co Ltd | Organic electroluminescence element |
TWI481089B (en) | 2006-12-28 | 2015-04-11 | Universal Display Corp | Long lifetime phosphorescent organic light emitting device (oled) structures |
US9130177B2 (en) | 2011-01-13 | 2015-09-08 | Universal Display Corporation | 5-substituted 2 phenylquinoline complexes materials for light emitting diode |
US20130032785A1 (en) | 2011-08-01 | 2013-02-07 | Universal Display Corporation | Materials for organic light emitting diode |
EP2465912B1 (en) | 2007-03-08 | 2017-04-19 | Universal Display Corporation | Phosphorescent materials |
KR101630883B1 (en) | 2007-08-08 | 2016-06-15 | 유니버셜 디스플레이 코포레이션 | Benzo-fused thiophene or benzo-fused furan compounds comprising a triphenylene group |
JP5722036B2 (en) | 2007-08-08 | 2015-05-20 | ユニバーサル ディスプレイ コーポレイション | Single triphenylene chromophore in phosphorescent light-emitting diodes |
JP5553758B2 (en) | 2007-10-02 | 2014-07-16 | ビーエーエスエフ ソシエタス・ヨーロピア | Use of acridine derivatives as matrix materials and / or electron blockers in OLEDs |
WO2009073245A1 (en) | 2007-12-06 | 2009-06-11 | Universal Display Corporation | Light-emitting organometallic complexes |
US8221905B2 (en) | 2007-12-28 | 2012-07-17 | Universal Display Corporation | Carbazole-containing materials in phosphorescent light emitting diodes |
US8040053B2 (en) | 2008-02-09 | 2011-10-18 | Universal Display Corporation | Organic light emitting device architecture for reducing the number of organic materials |
KR101656793B1 (en) | 2008-06-10 | 2016-09-12 | 유디씨 아일랜드 리미티드 | - novel transition metal complexes and use thereof in organic light-emitting diodes - |
US8410270B2 (en) | 2008-06-10 | 2013-04-02 | Basf Se | Transition metal complexes and use thereof in organic light-emitting diodes V |
WO2009153276A1 (en) | 2008-06-20 | 2009-12-23 | Basf Se | Cyclic phosphazene compounds and use thereof in organic light emitting diodes |
EP2313362B1 (en) | 2008-06-30 | 2014-11-26 | Universal Display Corporation | Hole transport materials containing triphenylene |
WO2010027583A1 (en) | 2008-09-03 | 2010-03-11 | Universal Display Corporation | Phosphorescent materials |
CN102203977B (en) | 2008-09-04 | 2014-06-04 | 通用显示公司 | White phosphorescent organic light emitting devices |
TWI555734B (en) | 2008-09-16 | 2016-11-01 | 環球展覽公司 | Phosphorescent materials |
WO2010036765A1 (en) | 2008-09-25 | 2010-04-01 | Universal Display Corporation | Organoselenium materials and their uses in organic light emitting devices |
US8053770B2 (en) | 2008-10-14 | 2011-11-08 | Universal Display Corporation | Emissive layer patterning for OLED |
KR101919207B1 (en) | 2008-11-11 | 2018-11-15 | 유니버셜 디스플레이 코포레이션 | Phosphorescent emitters |
KR101932823B1 (en) | 2008-12-12 | 2018-12-27 | 유니버셜 디스플레이 코포레이션 | Improved oled stability via doped hole transport layer |
US8815415B2 (en) | 2008-12-12 | 2014-08-26 | Universal Display Corporation | Blue emitter with high efficiency based on imidazo[1,2-f] phenanthridine iridium complexes |
US9067947B2 (en) | 2009-01-16 | 2015-06-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11910700B2 (en) | 2009-03-23 | 2024-02-20 | Universal Display Corporation | Heteroleptic iridium complexes as dopants |
US8709615B2 (en) | 2011-07-28 | 2014-04-29 | Universal Display Corporation | Heteroleptic iridium complexes as dopants |
US8722205B2 (en) | 2009-03-23 | 2014-05-13 | Universal Display Corporation | Heteroleptic iridium complex |
JP5878461B2 (en) | 2009-04-06 | 2016-03-08 | ユニバーサル ディスプレイ コーポレイション | Metal complexes containing novel ligand structures |
US8557400B2 (en) | 2009-04-28 | 2013-10-15 | Universal Display Corporation | Iridium complex with methyl-D3 substitution |
TWI541234B (en) | 2009-05-12 | 2016-07-11 | 環球展覽公司 | 2-azatriphenylene materials for organic light emitting diodes |
US8586203B2 (en) | 2009-05-20 | 2013-11-19 | Universal Display Corporation | Metal complexes with boron-nitrogen heterocycle containing ligands |
US8545996B2 (en) | 2009-11-02 | 2013-10-01 | The University Of Southern California | Ion-pairing soft salts based on organometallic complexes and their applications in organic light emitting diodes |
US8580394B2 (en) | 2009-11-19 | 2013-11-12 | Universal Display Corporation | 3-coordinate copper(I)-carbene complexes |
JP5495746B2 (en) | 2009-12-08 | 2014-05-21 | キヤノン株式会社 | Novel iridium complex and organic light emitting device having the same |
US8288187B2 (en) | 2010-01-20 | 2012-10-16 | Universal Display Corporation | Electroluminescent devices for lighting applications |
US9156870B2 (en) | 2010-02-25 | 2015-10-13 | Universal Display Corporation | Phosphorescent emitters |
US9175211B2 (en) | 2010-03-03 | 2015-11-03 | Universal Display Corporation | Phosphorescent materials |
KR101823602B1 (en) | 2010-03-25 | 2018-01-30 | 유니버셜 디스플레이 코포레이션 | Solution processable doped triarylamine hole injection materials |
US9040962B2 (en) | 2010-04-28 | 2015-05-26 | Universal Display Corporation | Depositing premixed materials |
US8968887B2 (en) | 2010-04-28 | 2015-03-03 | Universal Display Corporation | Triphenylene-benzofuran/benzothiophene/benzoselenophene compounds with substituents joining to form fused rings |
US8742657B2 (en) | 2010-06-11 | 2014-06-03 | Universal Display Corporation | Triplet-Triplet annihilation up conversion (TTA-UC) for display and lighting applications |
US8673458B2 (en) | 2010-06-11 | 2014-03-18 | Universal Display Corporation | Delayed fluorescence OLED |
WO2012016074A1 (en) | 2010-07-29 | 2012-02-02 | University Of Southern California | Co-deposition methods for the fabrication of organic optoelectronic devices |
KR101753172B1 (en) | 2010-08-20 | 2017-07-04 | 유니버셜 디스플레이 코포레이션 | Bicarbazole compounds for oleds |
US8932734B2 (en) | 2010-10-08 | 2015-01-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
KR101893624B1 (en) * | 2010-11-26 | 2018-08-30 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device |
US20120138906A1 (en) | 2010-12-07 | 2012-06-07 | The University of Southern California USC Stevens Institute for Innovation | Capture agents for unsaturated metal complexes |
US10008677B2 (en) | 2011-01-13 | 2018-06-26 | Universal Display Corporation | Materials for organic light emitting diode |
US8563737B2 (en) | 2011-02-23 | 2013-10-22 | Universal Display Corporation | Methods of making bis-tridentate carbene complexes of ruthenium and osmium |
US8748011B2 (en) | 2011-02-23 | 2014-06-10 | Universal Display Corporation | Ruthenium carbene complexes for OLED material |
CN111732611B (en) | 2011-02-23 | 2022-08-23 | 通用显示公司 | Novel tetradentate platinum complexes |
US9005772B2 (en) | 2011-02-23 | 2015-04-14 | Universal Display Corporation | Thioazole and oxazole carbene metal complexes as phosphorescent OLED materials |
US8492006B2 (en) | 2011-02-24 | 2013-07-23 | Universal Display Corporation | Germanium-containing red emitter materials for organic light emitting diode |
US8883322B2 (en) | 2011-03-08 | 2014-11-11 | Universal Display Corporation | Pyridyl carbene phosphorescent emitters |
JP5765764B2 (en) * | 2011-03-08 | 2015-08-19 | 国立大学法人 長崎大学 | Metal complex, light emitting element, display device |
CN103430344B (en) | 2011-03-14 | 2016-03-23 | 东丽株式会社 | Light emitting element material and light-emitting component |
US8927308B2 (en) | 2011-05-12 | 2015-01-06 | Universal Display Corporation | Method of forming bus line designs for large-area OLED lighting |
US8432095B2 (en) | 2011-05-11 | 2013-04-30 | Universal Display Corporation | Process for fabricating metal bus lines for OLED lighting panels |
RU2013155190A (en) | 2011-05-12 | 2015-06-20 | Торэй Индастриз, Инк. | MATERIAL FOR A LIGHT-RADIATING DEVICE AND A LIGHT-RADIATING DEVICE |
US9212197B2 (en) | 2011-05-19 | 2015-12-15 | Universal Display Corporation | Phosphorescent heteroleptic phenylbenzimidazole dopants |
US8795850B2 (en) | 2011-05-19 | 2014-08-05 | Universal Display Corporation | Phosphorescent heteroleptic phenylbenzimidazole dopants and new synthetic methodology |
US8748012B2 (en) | 2011-05-25 | 2014-06-10 | Universal Display Corporation | Host materials for OLED |
US10079349B2 (en) | 2011-05-27 | 2018-09-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10158089B2 (en) | 2011-05-27 | 2018-12-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
JP2013010752A (en) | 2011-06-03 | 2013-01-17 | Semiconductor Energy Lab Co Ltd | Organometallic complex, organic light-emitting element, light-emitting device, electronic equipment and lighting system |
CN106588998B (en) | 2011-06-08 | 2020-07-17 | 环球展览公司 | Heteroleptic iridium carbene complex and light-emitting device using same |
US8659036B2 (en) | 2011-06-17 | 2014-02-25 | Universal Display Corporation | Fine tuning of emission spectra by combination of multiple emitter spectra |
US8884316B2 (en) | 2011-06-17 | 2014-11-11 | Universal Display Corporation | Non-common capping layer on an organic device |
WO2013009708A1 (en) | 2011-07-14 | 2013-01-17 | Universal Display Corporation | Inorganic hosts in oleds |
US9397310B2 (en) | 2011-07-14 | 2016-07-19 | Universal Display Corporation | Organice electroluminescent materials and devices |
US9023420B2 (en) | 2011-07-14 | 2015-05-05 | Universal Display Corporation | Composite organic/inorganic layer for organic light-emitting devices |
US9783564B2 (en) | 2011-07-25 | 2017-10-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US8926119B2 (en) | 2011-08-04 | 2015-01-06 | Universal Display Corporation | Extendable light source with variable light emitting area |
US9493698B2 (en) | 2011-08-31 | 2016-11-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US8652656B2 (en) | 2011-11-14 | 2014-02-18 | Universal Display Corporation | Triphenylene silane hosts |
US9193745B2 (en) | 2011-11-15 | 2015-11-24 | Universal Display Corporation | Heteroleptic iridium complex |
US9217004B2 (en) | 2011-11-21 | 2015-12-22 | Universal Display Corporation | Organic light emitting materials |
US9512355B2 (en) | 2011-12-09 | 2016-12-06 | Universal Display Corporation | Organic light emitting materials |
US20130146875A1 (en) | 2011-12-13 | 2013-06-13 | Universal Display Corporation | Split electrode for organic devices |
US9461254B2 (en) | 2012-01-03 | 2016-10-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US8987451B2 (en) | 2012-01-03 | 2015-03-24 | Universal Display Corporation | Synthesis of cyclometallated platinum(II) complexes |
US9163174B2 (en) | 2012-01-04 | 2015-10-20 | Universal Display Corporation | Highly efficient phosphorescent materials |
KR102012047B1 (en) | 2012-01-06 | 2019-08-19 | 유니버셜 디스플레이 코포레이션 | Highly efficient phosphorescent materials |
US8969592B2 (en) | 2012-01-10 | 2015-03-03 | Universal Display Corporation | Heterocyclic host materials |
US10211413B2 (en) | 2012-01-17 | 2019-02-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
JP5978843B2 (en) | 2012-02-02 | 2016-08-24 | コニカミノルタ株式会社 | Iridium complex compound, organic electroluminescence device material, organic electroluminescence device, lighting device and display device |
US9118017B2 (en) | 2012-02-27 | 2015-08-25 | Universal Display Corporation | Host compounds for red phosphorescent OLEDs |
US9054323B2 (en) | 2012-03-15 | 2015-06-09 | Universal Display Corporation | Secondary hole transporting layer with diarylamino-phenyl-carbazole compounds |
US9386657B2 (en) | 2012-03-15 | 2016-07-05 | Universal Display Corporation | Organic Electroluminescent materials and devices |
US9184399B2 (en) | 2012-05-04 | 2015-11-10 | Universal Display Corporation | Asymmetric hosts with triaryl silane side chains |
US9773985B2 (en) | 2012-05-21 | 2017-09-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9670404B2 (en) | 2012-06-06 | 2017-06-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9502672B2 (en) | 2012-06-21 | 2016-11-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9725476B2 (en) | 2012-07-09 | 2017-08-08 | Universal Display Corporation | Silylated metal complexes |
US9231218B2 (en) | 2012-07-10 | 2016-01-05 | Universal Display Corporation | Phosphorescent emitters containing dibenzo[1,4]azaborinine structure |
US9540329B2 (en) | 2012-07-19 | 2017-01-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9059412B2 (en) | 2012-07-19 | 2015-06-16 | Universal Display Corporation | Transition metal complexes containing substituted imidazole carbene as ligands and their application in OLEDs |
US9663544B2 (en) | 2012-07-25 | 2017-05-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
KR102095764B1 (en) | 2012-07-25 | 2020-04-02 | 도레이 카부시키가이샤 | Light emitting element material and light emitting element |
US9318710B2 (en) | 2012-07-30 | 2016-04-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
WO2014030666A1 (en) | 2012-08-24 | 2014-02-27 | コニカミノルタ株式会社 | Transparent electrode, electronic device, and method for manufacturing transparent electrode |
US9978958B2 (en) | 2012-08-24 | 2018-05-22 | Universal Display Corporation | Phosphorescent emitters with phenylimidazole ligands |
US8952362B2 (en) | 2012-08-31 | 2015-02-10 | The Regents Of The University Of Michigan | High efficiency and brightness fluorescent organic light emitting diode by triplet-triplet fusion |
US10957870B2 (en) | 2012-09-07 | 2021-03-23 | Universal Display Corporation | Organic light emitting device |
US9287513B2 (en) | 2012-09-24 | 2016-03-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9312505B2 (en) | 2012-09-25 | 2016-04-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9252363B2 (en) | 2012-10-04 | 2016-02-02 | Universal Display Corporation | Aryloxyalkylcarboxylate solvent compositions for inkjet printing of organic layers |
US8692241B1 (en) | 2012-11-08 | 2014-04-08 | Universal Display Corporation | Transition metal complexes containing triazole and tetrazole carbene ligands |
US8946697B1 (en) | 2012-11-09 | 2015-02-03 | Universal Display Corporation | Iridium complexes with aza-benzo fused ligands |
US9748500B2 (en) | 2015-01-15 | 2017-08-29 | Universal Display Corporation | Organic light emitting materials |
US9634264B2 (en) | 2012-11-09 | 2017-04-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9685617B2 (en) | 2012-11-09 | 2017-06-20 | Universal Display Corporation | Organic electronuminescent materials and devices |
US10069090B2 (en) | 2012-11-20 | 2018-09-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9190623B2 (en) | 2012-11-20 | 2015-11-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9512136B2 (en) | 2012-11-26 | 2016-12-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9166175B2 (en) | 2012-11-27 | 2015-10-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9196860B2 (en) | 2012-12-04 | 2015-11-24 | Universal Display Corporation | Compounds for triplet-triplet annihilation upconversion |
US8716484B1 (en) | 2012-12-05 | 2014-05-06 | Universal Display Corporation | Hole transporting materials with twisted aryl groups |
US9209411B2 (en) | 2012-12-07 | 2015-12-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9653691B2 (en) | 2012-12-12 | 2017-05-16 | Universal Display Corporation | Phosphorescence-sensitizing fluorescence material system |
KR20140080606A (en) | 2012-12-12 | 2014-07-01 | 삼성전자주식회사 | Organometallic complexes, organic electroluminescence device using the same and display |
US10400163B2 (en) | 2013-02-08 | 2019-09-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10367154B2 (en) | 2013-02-21 | 2019-07-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US8927749B2 (en) | 2013-03-07 | 2015-01-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
WO2014138912A1 (en) * | 2013-03-13 | 2014-09-18 | Queen's University At Kingston | Luminescent compounds and methods of using same |
US9419225B2 (en) | 2013-03-14 | 2016-08-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9997712B2 (en) | 2013-03-27 | 2018-06-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP2983222A4 (en) | 2013-03-29 | 2016-09-28 | Konica Minolta Inc | Material for organic electroluminescent elements, organic electroluminescent element, display device and lighting device |
JP6314599B2 (en) | 2013-03-29 | 2018-04-25 | コニカミノルタ株式会社 | COMPOUND FOR ORGANIC ELECTROLUMINESCENCE, ORGANIC ELECTROLUMINESCENCE ELEMENT, LIGHTING DEVICE AND DISPLAY DEVICE HAVING THE SAME |
JP6285538B2 (en) * | 2013-04-29 | 2018-02-28 | ユー・ディー・シー アイルランド リミテッド | Transition metal complexes with carbene ligands and their use in OLEDs |
US9537106B2 (en) | 2013-05-09 | 2017-01-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9735373B2 (en) | 2013-06-10 | 2017-08-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9673401B2 (en) | 2013-06-28 | 2017-06-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10199581B2 (en) | 2013-07-01 | 2019-02-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10121975B2 (en) | 2013-07-03 | 2018-11-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9761807B2 (en) | 2013-07-15 | 2017-09-12 | Universal Display Corporation | Organic light emitting diode materials |
US9324949B2 (en) | 2013-07-16 | 2016-04-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9553274B2 (en) | 2013-07-16 | 2017-01-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9224958B2 (en) | 2013-07-19 | 2015-12-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20150028290A1 (en) | 2013-07-25 | 2015-01-29 | Universal Display Corporation | Heteroleptic osmium complex and method of making the same |
US10074806B2 (en) | 2013-08-20 | 2018-09-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9831437B2 (en) | 2013-08-20 | 2017-11-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9932359B2 (en) | 2013-08-30 | 2018-04-03 | University Of Southern California | Organic electroluminescent materials and devices |
US10199582B2 (en) | 2013-09-03 | 2019-02-05 | University Of Southern California | Organic electroluminescent materials and devices |
US9735378B2 (en) | 2013-09-09 | 2017-08-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9748503B2 (en) | 2013-09-13 | 2017-08-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10003034B2 (en) | 2013-09-30 | 2018-06-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9831447B2 (en) | 2013-10-08 | 2017-11-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9293712B2 (en) | 2013-10-11 | 2016-03-22 | Universal Display Corporation | Disubstituted pyrene compounds with amino group containing ortho aryl group and devices containing the same |
US9853229B2 (en) | 2013-10-23 | 2017-12-26 | University Of Southern California | Organic electroluminescent materials and devices |
US20150115250A1 (en) | 2013-10-29 | 2015-04-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9865824B2 (en) | 2013-11-07 | 2018-01-09 | Industrial Technology Research Institute | Organometallic compound, organic light-emitting device, and lighting device employing the same |
US9306179B2 (en) | 2013-11-08 | 2016-04-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9647218B2 (en) | 2013-11-14 | 2017-05-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9905784B2 (en) | 2013-11-15 | 2018-02-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10056565B2 (en) | 2013-11-20 | 2018-08-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
KR102153039B1 (en) | 2013-11-28 | 2020-09-07 | 삼성전자주식회사 | Carbazole-based compound and organic light emitting diode including the same |
US10644251B2 (en) | 2013-12-04 | 2020-05-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9876173B2 (en) | 2013-12-09 | 2018-01-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10355227B2 (en) | 2013-12-16 | 2019-07-16 | Universal Display Corporation | Metal complex for phosphorescent OLED |
US9847496B2 (en) | 2013-12-23 | 2017-12-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10135008B2 (en) | 2014-01-07 | 2018-11-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
KR102153043B1 (en) | 2014-01-07 | 2020-09-07 | 삼성전자주식회사 | Organometallic compound and organic light emitting device including the same |
US9978961B2 (en) | 2014-01-08 | 2018-05-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9755159B2 (en) | 2014-01-23 | 2017-09-05 | Universal Display Corporation | Organic materials for OLEDs |
US9935277B2 (en) | 2014-01-30 | 2018-04-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9590194B2 (en) | 2014-02-14 | 2017-03-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10003033B2 (en) | 2014-02-18 | 2018-06-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9847497B2 (en) | 2014-02-18 | 2017-12-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10707423B2 (en) | 2014-02-21 | 2020-07-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9502656B2 (en) | 2014-02-24 | 2016-11-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9647217B2 (en) | 2014-02-24 | 2017-05-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10403825B2 (en) | 2014-02-27 | 2019-09-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9673407B2 (en) | 2014-02-28 | 2017-06-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9181270B2 (en) | 2014-02-28 | 2015-11-10 | Universal Display Corporation | Method of making sulfide compounds |
US9590195B2 (en) | 2014-02-28 | 2017-03-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9190620B2 (en) | 2014-03-01 | 2015-11-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9397309B2 (en) | 2014-03-13 | 2016-07-19 | Universal Display Corporation | Organic electroluminescent devices |
US10208026B2 (en) | 2014-03-18 | 2019-02-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9929353B2 (en) | 2014-04-02 | 2018-03-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9691993B2 (en) | 2014-04-09 | 2017-06-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10008679B2 (en) | 2014-04-14 | 2018-06-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9847498B2 (en) | 2014-04-14 | 2017-12-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10256427B2 (en) | 2014-04-15 | 2019-04-09 | Universal Display Corporation | Efficient organic electroluminescent devices |
US9450198B2 (en) | 2014-04-15 | 2016-09-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9741941B2 (en) | 2014-04-29 | 2017-08-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10457699B2 (en) | 2014-05-02 | 2019-10-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10403830B2 (en) | 2014-05-08 | 2019-09-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
WO2015171627A1 (en) | 2014-05-08 | 2015-11-12 | Universal Display Corporation | Stabilized imidazophenanthridine materials |
US10301338B2 (en) | 2014-05-08 | 2019-05-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10636983B2 (en) | 2014-05-08 | 2020-04-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9997716B2 (en) | 2014-05-27 | 2018-06-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10461260B2 (en) | 2014-06-03 | 2019-10-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9911931B2 (en) | 2014-06-26 | 2018-03-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10297762B2 (en) | 2014-07-09 | 2019-05-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10566546B2 (en) | 2014-07-14 | 2020-02-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9929357B2 (en) | 2014-07-22 | 2018-03-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11108000B2 (en) | 2014-08-07 | 2021-08-31 | Unniversal Display Corporation | Organic electroluminescent materials and devices |
US10411200B2 (en) | 2014-08-07 | 2019-09-10 | Universal Display Corporation | Electroluminescent (2-phenylpyridine)iridium complexes and devices |
US10043987B2 (en) | 2014-09-29 | 2018-08-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10135007B2 (en) | 2014-09-29 | 2018-11-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10749113B2 (en) | 2014-09-29 | 2020-08-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10361375B2 (en) | 2014-10-06 | 2019-07-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9397302B2 (en) | 2014-10-08 | 2016-07-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10854826B2 (en) | 2014-10-08 | 2020-12-01 | Universal Display Corporation | Organic electroluminescent compounds, compositions and devices |
US10950803B2 (en) | 2014-10-13 | 2021-03-16 | Universal Display Corporation | Compounds and uses in devices |
US9484541B2 (en) | 2014-10-20 | 2016-11-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10868261B2 (en) | 2014-11-10 | 2020-12-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10411201B2 (en) | 2014-11-12 | 2019-09-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10038151B2 (en) | 2014-11-12 | 2018-07-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9882151B2 (en) | 2014-11-14 | 2018-01-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9871212B2 (en) | 2014-11-14 | 2018-01-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9761814B2 (en) | 2014-11-18 | 2017-09-12 | Universal Display Corporation | Organic light-emitting materials and devices |
US9444075B2 (en) | 2014-11-26 | 2016-09-13 | Universal Display Corporation | Emissive display with photo-switchable polarization |
US9450195B2 (en) | 2014-12-17 | 2016-09-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10636978B2 (en) | 2014-12-30 | 2020-04-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10253252B2 (en) | 2014-12-30 | 2019-04-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9312499B1 (en) | 2015-01-05 | 2016-04-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9406892B2 (en) | 2015-01-07 | 2016-08-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10418569B2 (en) | 2015-01-25 | 2019-09-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9711730B2 (en) | 2015-01-25 | 2017-07-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10644247B2 (en) | 2015-02-06 | 2020-05-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10418562B2 (en) | 2015-02-06 | 2019-09-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10355222B2 (en) | 2015-02-06 | 2019-07-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10177316B2 (en) | 2015-02-09 | 2019-01-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10144867B2 (en) | 2015-02-13 | 2018-12-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
JP5831654B1 (en) | 2015-02-13 | 2015-12-09 | コニカミノルタ株式会社 | Aromatic heterocycle derivative, organic electroluminescence device using the same, illumination device and display device |
US10680183B2 (en) | 2015-02-15 | 2020-06-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9929361B2 (en) | 2015-02-16 | 2018-03-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10600966B2 (en) | 2015-02-27 | 2020-03-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11056657B2 (en) | 2015-02-27 | 2021-07-06 | University Display Corporation | Organic electroluminescent materials and devices |
US10686143B2 (en) | 2015-03-05 | 2020-06-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10270046B2 (en) | 2015-03-06 | 2019-04-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9780316B2 (en) | 2015-03-16 | 2017-10-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9911928B2 (en) | 2015-03-19 | 2018-03-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9871214B2 (en) | 2015-03-23 | 2018-01-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10529931B2 (en) | 2015-03-24 | 2020-01-07 | Universal Display Corporation | Organic Electroluminescent materials and devices |
US10297770B2 (en) | 2015-03-27 | 2019-05-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20160293854A1 (en) | 2015-04-06 | 2016-10-06 | Universal Display Corporation | Organic Electroluminescent Materials and Devices |
US11818949B2 (en) | 2015-04-06 | 2023-11-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11495749B2 (en) | 2015-04-06 | 2022-11-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10777749B2 (en) | 2015-05-07 | 2020-09-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10403826B2 (en) | 2015-05-07 | 2019-09-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9478758B1 (en) | 2015-05-08 | 2016-10-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9859510B2 (en) | 2015-05-15 | 2018-01-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10109799B2 (en) | 2015-05-21 | 2018-10-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10256411B2 (en) | 2015-05-21 | 2019-04-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10033004B2 (en) | 2015-06-01 | 2018-07-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10418568B2 (en) | 2015-06-01 | 2019-09-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11925102B2 (en) | 2015-06-04 | 2024-03-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10818853B2 (en) | 2015-06-04 | 2020-10-27 | University Of Southern California | Organic electroluminescent materials and devices |
US10825997B2 (en) | 2015-06-25 | 2020-11-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10873036B2 (en) | 2015-07-07 | 2020-12-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9978956B2 (en) | 2015-07-15 | 2018-05-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11127905B2 (en) | 2015-07-29 | 2021-09-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11018309B2 (en) | 2015-08-03 | 2021-05-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11522140B2 (en) | 2015-08-17 | 2022-12-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10522769B2 (en) | 2015-08-18 | 2019-12-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10181564B2 (en) | 2015-08-26 | 2019-01-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10672996B2 (en) | 2015-09-03 | 2020-06-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11706972B2 (en) | 2015-09-08 | 2023-07-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11302872B2 (en) | 2015-09-09 | 2022-04-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
JP6112166B2 (en) * | 2015-09-14 | 2017-04-12 | コニカミノルタ株式会社 | Organic electroluminescence element, display device and lighting device |
US10770664B2 (en) | 2015-09-21 | 2020-09-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20170092880A1 (en) | 2015-09-25 | 2017-03-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10593892B2 (en) | 2015-10-01 | 2020-03-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10847728B2 (en) | 2015-10-01 | 2020-11-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10991895B2 (en) | 2015-10-06 | 2021-04-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10177318B2 (en) | 2015-10-29 | 2019-01-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10388892B2 (en) | 2015-10-29 | 2019-08-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10388893B2 (en) | 2015-10-29 | 2019-08-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10998507B2 (en) | 2015-11-23 | 2021-05-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10476010B2 (en) | 2015-11-30 | 2019-11-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
CN105524114A (en) * | 2015-12-24 | 2016-04-27 | 石家庄诚志永华显示材料有限公司 | Series of deep blue metal iridium phosphorescence OLED materials |
US10957861B2 (en) | 2015-12-29 | 2021-03-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11024808B2 (en) | 2015-12-29 | 2021-06-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10135006B2 (en) | 2016-01-04 | 2018-11-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
JP6788314B2 (en) | 2016-01-06 | 2020-11-25 | コニカミノルタ株式会社 | Organic electroluminescence element, manufacturing method of organic electroluminescence element, display device and lighting device |
US10707427B2 (en) | 2016-02-09 | 2020-07-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10457864B2 (en) | 2016-02-09 | 2019-10-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10600967B2 (en) | 2016-02-18 | 2020-03-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11094891B2 (en) | 2016-03-16 | 2021-08-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10276809B2 (en) | 2016-04-05 | 2019-04-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10236456B2 (en) | 2016-04-11 | 2019-03-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10566552B2 (en) | 2016-04-13 | 2020-02-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11228003B2 (en) | 2016-04-22 | 2022-01-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11228002B2 (en) | 2016-04-22 | 2022-01-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11081647B2 (en) | 2016-04-22 | 2021-08-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US20170324049A1 (en) | 2016-05-05 | 2017-11-09 | Universal Display Corporation | Organic Electroluminescent Materials and Devices |
US10840458B2 (en) | 2016-05-25 | 2020-11-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10468609B2 (en) | 2016-06-02 | 2019-11-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10686140B2 (en) | 2016-06-20 | 2020-06-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11482683B2 (en) | 2016-06-20 | 2022-10-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10727423B2 (en) | 2016-06-20 | 2020-07-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10862054B2 (en) | 2016-06-20 | 2020-12-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10672997B2 (en) | 2016-06-20 | 2020-06-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10651403B2 (en) | 2016-06-20 | 2020-05-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10957866B2 (en) | 2016-06-30 | 2021-03-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9929360B2 (en) | 2016-07-08 | 2018-03-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10680184B2 (en) | 2016-07-11 | 2020-06-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10153443B2 (en) | 2016-07-19 | 2018-12-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10720587B2 (en) | 2016-07-19 | 2020-07-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10205105B2 (en) | 2016-08-15 | 2019-02-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10608186B2 (en) | 2016-09-14 | 2020-03-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10505127B2 (en) | 2016-09-19 | 2019-12-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10680187B2 (en) | 2016-09-23 | 2020-06-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11081658B2 (en) | 2016-10-03 | 2021-08-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11183642B2 (en) | 2016-10-03 | 2021-11-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11127906B2 (en) | 2016-10-03 | 2021-09-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11196010B2 (en) | 2016-10-03 | 2021-12-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11189804B2 (en) | 2016-10-03 | 2021-11-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11011709B2 (en) | 2016-10-07 | 2021-05-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11239432B2 (en) | 2016-10-14 | 2022-02-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10608185B2 (en) | 2016-10-17 | 2020-03-31 | Univeral Display Corporation | Organic electroluminescent materials and devices |
US10236458B2 (en) | 2016-10-24 | 2019-03-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10340464B2 (en) | 2016-11-10 | 2019-07-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10680188B2 (en) | 2016-11-11 | 2020-06-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10897016B2 (en) | 2016-11-14 | 2021-01-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10964893B2 (en) | 2016-11-17 | 2021-03-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10662196B2 (en) | 2016-11-17 | 2020-05-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10833276B2 (en) | 2016-11-21 | 2020-11-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10153445B2 (en) | 2016-11-21 | 2018-12-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11555048B2 (en) | 2016-12-01 | 2023-01-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11545636B2 (en) | 2016-12-15 | 2023-01-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10490753B2 (en) | 2016-12-15 | 2019-11-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11548905B2 (en) | 2016-12-15 | 2023-01-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10811618B2 (en) | 2016-12-19 | 2020-10-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11152579B2 (en) | 2016-12-28 | 2021-10-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11780865B2 (en) | 2017-01-09 | 2023-10-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11201298B2 (en) | 2017-01-09 | 2021-12-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10804475B2 (en) | 2017-01-11 | 2020-10-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11545637B2 (en) | 2017-01-13 | 2023-01-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10629820B2 (en) | 2017-01-18 | 2020-04-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11053268B2 (en) | 2017-01-20 | 2021-07-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10964904B2 (en) | 2017-01-20 | 2021-03-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11765968B2 (en) | 2017-01-23 | 2023-09-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11050028B2 (en) | 2017-01-24 | 2021-06-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12089486B2 (en) | 2017-02-08 | 2024-09-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10978647B2 (en) | 2017-02-15 | 2021-04-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10822361B2 (en) | 2017-02-22 | 2020-11-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3372611B1 (en) | 2017-03-08 | 2020-06-24 | Samsung Electronics Co., Ltd. | Organometallic compound, composition containing the organometallic compound, and organic light-emitting device including the organometallic compound |
US10745431B2 (en) | 2017-03-08 | 2020-08-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10741780B2 (en) | 2017-03-10 | 2020-08-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10672998B2 (en) | 2017-03-23 | 2020-06-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10910577B2 (en) | 2017-03-28 | 2021-02-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10873037B2 (en) | 2017-03-28 | 2020-12-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10844085B2 (en) | 2017-03-29 | 2020-11-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11158820B2 (en) | 2017-03-29 | 2021-10-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11056658B2 (en) | 2017-03-29 | 2021-07-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10862046B2 (en) | 2017-03-30 | 2020-12-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11276829B2 (en) | 2017-03-31 | 2022-03-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11139443B2 (en) | 2017-03-31 | 2021-10-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11038117B2 (en) | 2017-04-11 | 2021-06-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10777754B2 (en) | 2017-04-11 | 2020-09-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11084838B2 (en) | 2017-04-21 | 2021-08-10 | Universal Display Corporation | Organic electroluminescent materials and device |
US10975113B2 (en) | 2017-04-21 | 2021-04-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11101434B2 (en) | 2017-04-21 | 2021-08-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10910570B2 (en) | 2017-04-28 | 2021-02-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11038137B2 (en) | 2017-04-28 | 2021-06-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11117897B2 (en) | 2017-05-01 | 2021-09-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10941170B2 (en) | 2017-05-03 | 2021-03-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11201299B2 (en) | 2017-05-04 | 2021-12-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10862055B2 (en) | 2017-05-05 | 2020-12-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10870668B2 (en) | 2017-05-05 | 2020-12-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10930864B2 (en) | 2017-05-10 | 2021-02-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10944060B2 (en) | 2017-05-11 | 2021-03-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10822362B2 (en) | 2017-05-11 | 2020-11-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10944062B2 (en) | 2017-05-18 | 2021-03-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10934293B2 (en) | 2017-05-18 | 2021-03-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11038115B2 (en) | 2017-05-18 | 2021-06-15 | Universal Display Corporation | Organic electroluminescent materials and device |
US10790455B2 (en) | 2017-05-18 | 2020-09-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10840459B2 (en) | 2017-05-18 | 2020-11-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10930862B2 (en) | 2017-06-01 | 2021-02-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11678565B2 (en) | 2017-06-23 | 2023-06-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11495757B2 (en) | 2017-06-23 | 2022-11-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11758804B2 (en) | 2017-06-23 | 2023-09-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10968226B2 (en) | 2017-06-23 | 2021-04-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11802136B2 (en) | 2017-06-23 | 2023-10-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11725022B2 (en) | 2017-06-23 | 2023-08-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11608321B2 (en) | 2017-06-23 | 2023-03-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11174259B2 (en) | 2017-06-23 | 2021-11-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11832510B2 (en) | 2017-06-23 | 2023-11-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12098157B2 (en) | 2017-06-23 | 2024-09-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11814403B2 (en) | 2017-06-23 | 2023-11-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11552261B2 (en) | 2017-06-23 | 2023-01-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11469382B2 (en) | 2017-07-12 | 2022-10-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11968883B2 (en) | 2017-07-26 | 2024-04-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11239433B2 (en) | 2017-07-26 | 2022-02-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11765970B2 (en) | 2017-07-26 | 2023-09-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11917843B2 (en) | 2017-07-26 | 2024-02-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11322691B2 (en) | 2017-07-26 | 2022-05-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11228010B2 (en) | 2017-07-26 | 2022-01-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11744141B2 (en) | 2017-08-09 | 2023-08-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11508913B2 (en) | 2017-08-10 | 2022-11-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11349083B2 (en) | 2017-08-10 | 2022-05-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11744142B2 (en) | 2017-08-10 | 2023-08-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11910699B2 (en) | 2017-08-10 | 2024-02-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
KR102504132B1 (en) * | 2017-08-21 | 2023-02-28 | 삼성디스플레이 주식회사 | Cyclometallic compound, organic light emitting device comprising the same and emitting apparatus comprising the organic light emitting device |
US11723269B2 (en) | 2017-08-22 | 2023-08-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11462697B2 (en) | 2017-08-22 | 2022-10-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11437591B2 (en) | 2017-08-24 | 2022-09-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11605791B2 (en) | 2017-09-01 | 2023-03-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11696492B2 (en) | 2017-09-07 | 2023-07-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11444249B2 (en) | 2017-09-07 | 2022-09-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11424420B2 (en) | 2017-09-07 | 2022-08-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10608188B2 (en) | 2017-09-11 | 2020-03-31 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11778897B2 (en) | 2017-09-20 | 2023-10-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
CN107722060A (en) * | 2017-09-30 | 2018-02-23 | 南京邮电大学 | A kind of fluorenyl tetrazole complex of iridium and its preparation method and application |
US11183646B2 (en) | 2017-11-07 | 2021-11-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11214587B2 (en) | 2017-11-07 | 2022-01-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11910702B2 (en) | 2017-11-07 | 2024-02-20 | Universal Display Corporation | Organic electroluminescent devices |
US11168103B2 (en) | 2017-11-17 | 2021-11-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11825735B2 (en) | 2017-11-28 | 2023-11-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11937503B2 (en) | 2017-11-30 | 2024-03-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12075690B2 (en) | 2017-12-14 | 2024-08-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11233205B2 (en) | 2017-12-14 | 2022-01-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10971687B2 (en) | 2017-12-14 | 2021-04-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11233204B2 (en) | 2017-12-14 | 2022-01-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11081659B2 (en) | 2018-01-10 | 2021-08-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11700765B2 (en) | 2018-01-10 | 2023-07-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11271177B2 (en) | 2018-01-11 | 2022-03-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11515493B2 (en) | 2018-01-11 | 2022-11-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11542289B2 (en) | 2018-01-26 | 2023-01-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11845764B2 (en) | 2018-01-26 | 2023-12-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11367840B2 (en) | 2018-01-26 | 2022-06-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12029055B2 (en) | 2018-01-30 | 2024-07-02 | The University Of Southern California | OLED with hybrid emissive layer |
US11239434B2 (en) | 2018-02-09 | 2022-02-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11957050B2 (en) | 2018-02-09 | 2024-04-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11180519B2 (en) | 2018-02-09 | 2021-11-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11342509B2 (en) | 2018-02-09 | 2022-05-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11279722B2 (en) | 2018-03-12 | 2022-03-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11142538B2 (en) | 2018-03-12 | 2021-10-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11165028B2 (en) | 2018-03-12 | 2021-11-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11217757B2 (en) | 2018-03-12 | 2022-01-04 | Universal Display Corporation | Host materials for electroluminescent devices |
US11557733B2 (en) | 2018-03-12 | 2023-01-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11390639B2 (en) | 2018-04-13 | 2022-07-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11882759B2 (en) | 2018-04-13 | 2024-01-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11616203B2 (en) | 2018-04-17 | 2023-03-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11342513B2 (en) | 2018-05-04 | 2022-05-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11753427B2 (en) | 2018-05-04 | 2023-09-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11515494B2 (en) | 2018-05-04 | 2022-11-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11793073B2 (en) | 2018-05-06 | 2023-10-17 | Universal Display Corporation | Host materials for electroluminescent devices |
US11459349B2 (en) | 2018-05-25 | 2022-10-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11450822B2 (en) | 2018-05-25 | 2022-09-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11716900B2 (en) | 2018-05-30 | 2023-08-01 | Universal Display Corporation | Host materials for electroluminescent devices |
US11404653B2 (en) | 2018-06-04 | 2022-08-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11925103B2 (en) | 2018-06-05 | 2024-03-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11339182B2 (en) | 2018-06-07 | 2022-05-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11228004B2 (en) | 2018-06-22 | 2022-01-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11261207B2 (en) | 2018-06-25 | 2022-03-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11753425B2 (en) | 2018-07-11 | 2023-09-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11233203B2 (en) | 2018-09-06 | 2022-01-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11485706B2 (en) | 2018-09-11 | 2022-11-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11718634B2 (en) | 2018-09-14 | 2023-08-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11903305B2 (en) | 2018-09-24 | 2024-02-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11495752B2 (en) | 2018-10-08 | 2022-11-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11469383B2 (en) | 2018-10-08 | 2022-10-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11476430B2 (en) | 2018-10-15 | 2022-10-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11515482B2 (en) | 2018-10-23 | 2022-11-29 | Universal Display Corporation | Deep HOMO (highest occupied molecular orbital) emitter device structures |
US11469384B2 (en) | 2018-11-02 | 2022-10-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11825736B2 (en) | 2018-11-19 | 2023-11-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11963441B2 (en) | 2018-11-26 | 2024-04-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11672176B2 (en) | 2018-11-28 | 2023-06-06 | Universal Display Corporation | Host materials for electroluminescent devices |
US11690285B2 (en) | 2018-11-28 | 2023-06-27 | Universal Display Corporation | Electroluminescent devices |
US11716899B2 (en) | 2018-11-28 | 2023-08-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11672165B2 (en) | 2018-11-28 | 2023-06-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11889708B2 (en) | 2019-11-14 | 2024-01-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11515489B2 (en) | 2018-11-28 | 2022-11-29 | Universal Display Corporation | Host materials for electroluminescent devices |
US11623936B2 (en) | 2018-12-11 | 2023-04-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11834459B2 (en) | 2018-12-12 | 2023-12-05 | Universal Display Corporation | Host materials for electroluminescent devices |
US11737349B2 (en) | 2018-12-12 | 2023-08-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11780829B2 (en) | 2019-01-30 | 2023-10-10 | The University Of Southern California | Organic electroluminescent materials and devices |
US11812624B2 (en) | 2019-01-30 | 2023-11-07 | The University Of Southern California | Organic electroluminescent materials and devices |
KR20200095395A (en) | 2019-01-31 | 2020-08-10 | 삼성전자주식회사 | Organometallic compound and organic light emitting device including the same |
US11325932B2 (en) | 2019-02-08 | 2022-05-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12137605B2 (en) | 2019-02-08 | 2024-11-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11370809B2 (en) | 2019-02-08 | 2022-06-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11773320B2 (en) | 2019-02-21 | 2023-10-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11758807B2 (en) | 2019-02-22 | 2023-09-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11871653B2 (en) | 2019-02-22 | 2024-01-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11512093B2 (en) | 2019-03-04 | 2022-11-29 | Universal Display Corporation | Compound used for organic light emitting device (OLED), consumer product and formulation |
US11739081B2 (en) | 2019-03-11 | 2023-08-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11569480B2 (en) | 2019-03-12 | 2023-01-31 | Universal Display Corporation | Plasmonic OLEDs and vertical dipole emitters |
US11637261B2 (en) | 2019-03-12 | 2023-04-25 | Universal Display Corporation | Nanopatch antenna outcoupling structure for use in OLEDs |
US11963438B2 (en) | 2019-03-26 | 2024-04-16 | The University Of Southern California | Organic electroluminescent materials and devices |
US12122793B2 (en) | 2019-03-27 | 2024-10-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11639363B2 (en) | 2019-04-22 | 2023-05-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12075691B2 (en) | 2019-04-30 | 2024-08-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11613550B2 (en) | 2019-04-30 | 2023-03-28 | Universal Display Corporation | Organic electroluminescent materials and devices comprising benzimidazole-containing metal complexes |
US11495756B2 (en) | 2019-05-07 | 2022-11-08 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11827651B2 (en) | 2019-05-13 | 2023-11-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12103942B2 (en) | 2019-05-13 | 2024-10-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11634445B2 (en) | 2019-05-21 | 2023-04-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12010859B2 (en) | 2019-05-24 | 2024-06-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11647667B2 (en) | 2019-06-14 | 2023-05-09 | Universal Display Corporation | Organic electroluminescent compounds and organic light emitting devices using the same |
US12077550B2 (en) | 2019-07-02 | 2024-09-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11920070B2 (en) | 2019-07-12 | 2024-03-05 | The University Of Southern California | Luminescent janus-type, two-coordinated metal complexes |
US11926638B2 (en) | 2019-07-22 | 2024-03-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11685754B2 (en) | 2019-07-22 | 2023-06-27 | Universal Display Corporation | Heteroleptic organic electroluminescent materials |
US11708355B2 (en) | 2019-08-01 | 2023-07-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11985888B2 (en) | 2019-08-12 | 2024-05-14 | The Regents Of The University Of Michigan | Organic electroluminescent device |
US11374181B2 (en) | 2019-08-14 | 2022-06-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11930699B2 (en) | 2019-08-15 | 2024-03-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11925105B2 (en) | 2019-08-26 | 2024-03-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11937494B2 (en) | 2019-08-28 | 2024-03-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11600787B2 (en) | 2019-08-30 | 2023-03-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11820783B2 (en) | 2019-09-06 | 2023-11-21 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11999886B2 (en) | 2019-09-26 | 2024-06-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11864458B2 (en) | 2019-10-08 | 2024-01-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11950493B2 (en) | 2019-10-15 | 2024-04-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11697653B2 (en) | 2019-10-21 | 2023-07-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11919914B2 (en) | 2019-10-25 | 2024-03-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11765965B2 (en) | 2019-10-30 | 2023-09-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11778895B2 (en) | 2020-01-13 | 2023-10-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11917900B2 (en) | 2020-01-28 | 2024-02-27 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11932660B2 (en) | 2020-01-29 | 2024-03-19 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12084465B2 (en) | 2020-02-24 | 2024-09-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12018035B2 (en) | 2020-03-23 | 2024-06-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12129269B2 (en) | 2020-04-13 | 2024-10-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11970508B2 (en) | 2020-04-22 | 2024-04-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12035613B2 (en) | 2020-05-26 | 2024-07-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12065451B2 (en) | 2020-08-19 | 2024-08-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
US12137606B2 (en) | 2020-10-20 | 2024-11-05 | Universal Display Corporation | Organic electroluminescent materials and devices |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001052867A (en) * | 1999-08-05 | 2001-02-23 | Toyota Motor Corp | Organic el element and its manufacture |
JP2001160488A (en) * | 1999-12-01 | 2001-06-12 | Konica Corp | Organic electroluminescent element |
JP3929690B2 (en) * | 1999-12-27 | 2007-06-13 | 富士フイルム株式会社 | Light emitting device material, light emitting device and novel iridium complex comprising orthometalated iridium complex |
JP4460743B2 (en) * | 2000-09-29 | 2010-05-12 | 富士フイルム株式会社 | Method for producing iridium complex or tautomer thereof |
JPWO2004034751A1 (en) * | 2002-10-09 | 2006-02-09 | 出光興産株式会社 | Organic electroluminescence device |
GB0311234D0 (en) * | 2003-05-16 | 2003-06-18 | Isis Innovation | Organic phosphorescent material and organic optoelectronic device |
JP4198654B2 (en) * | 2003-08-07 | 2008-12-17 | 三星エスディアイ株式会社 | Iridium compound and organic electroluminescence device employing the same |
-
2005
- 2005-06-09 JP JP2006514709A patent/JP4894513B2/en active Active
- 2005-06-09 WO PCT/JP2005/010552 patent/WO2005123873A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP4894513B2 (en) | 2012-03-14 |
WO2005123873A1 (en) | 2005-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4894513B2 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE | |
JP5076900B2 (en) | Organic electroluminescence element, display device and lighting device | |
JP4962613B2 (en) | Organic electroluminescence element, display device and lighting device | |
JP5151481B2 (en) | Organic electroluminescence element, display device and lighting device | |
JP4858169B2 (en) | Organic electroluminescence device | |
JP5403105B2 (en) | Organic electroluminescence element material and organic electroluminescence element | |
JP4952247B2 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE | |
JP5454610B2 (en) | White organic electroluminescence element, image display element, and illumination device | |
JP5076888B2 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE | |
JPWO2005097940A1 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE | |
JP5040077B2 (en) | Organic electroluminescence device | |
WO2006103874A1 (en) | Organic electroluminescent device material, organic electroluminescent device, display and illuminating device | |
WO2007004380A1 (en) | Organic electroluminescent element material, organic electroluminescent element, display device, and lighting equipment | |
WO2007023659A1 (en) | Organic electroluminescence device material, organic electroluminescence device, display device, and lighting device | |
JPWO2006129471A1 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT MANUFACTURING METHOD, LIGHTING DEVICE, AND DISPLAY DEVICE | |
JP2005314663A (en) | Organic electroluminescent element material, organic electroluminescent element, display device and illuminating apparatus | |
JP4935001B2 (en) | Organic electroluminescence element material | |
JP5104981B2 (en) | Organic electroluminescence element, display device and lighting device | |
JP4600287B2 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE AND DISPLAY DEVICE | |
JP4967284B2 (en) | Organic electroluminescence element, display device and lighting device | |
JP4904727B2 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE | |
JP2005078996A (en) | Organic electroluminescent element and display device | |
JP2006093279A (en) | Organic electroluminescence element, display and lighting device | |
JP5760941B2 (en) | Organic electroluminescence element, display device and lighting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080423 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110818 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110927 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111129 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111212 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4894513 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150106 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |