JPWO2004077592A1 - アルカリ電池用封口ガスケットおよび密閉型アルカリ電池 - Google Patents
アルカリ電池用封口ガスケットおよび密閉型アルカリ電池 Download PDFInfo
- Publication number
- JPWO2004077592A1 JPWO2004077592A1 JP2005502876A JP2005502876A JPWO2004077592A1 JP WO2004077592 A1 JPWO2004077592 A1 JP WO2004077592A1 JP 2005502876 A JP2005502876 A JP 2005502876A JP 2005502876 A JP2005502876 A JP 2005502876A JP WO2004077592 A1 JPWO2004077592 A1 JP WO2004077592A1
- Authority
- JP
- Japan
- Prior art keywords
- sealing gasket
- resin
- battery
- gasket
- thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007789 sealing Methods 0.000 title claims abstract description 62
- 229920005989 resin Polymers 0.000 claims abstract description 58
- 239000011347 resin Substances 0.000 claims abstract description 58
- 238000005192 partition Methods 0.000 claims abstract description 25
- 230000002093 peripheral effect Effects 0.000 claims abstract description 15
- 238000010248 power generation Methods 0.000 claims abstract description 12
- 238000012856 packing Methods 0.000 claims abstract description 10
- 229910052751 metal Inorganic materials 0.000 claims abstract description 7
- 239000002184 metal Substances 0.000 claims abstract description 7
- 239000004743 Polypropylene Substances 0.000 claims description 12
- -1 polypropylene Polymers 0.000 claims description 5
- 229920001155 polypropylene Polymers 0.000 claims description 5
- 239000007789 gas Substances 0.000 description 38
- 238000012360 testing method Methods 0.000 description 17
- 239000000463 material Substances 0.000 description 8
- 230000003139 buffering effect Effects 0.000 description 5
- 238000007600 charging Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000004880 explosion Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- 238000010277 constant-current charging Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/30—Arrangements for facilitating escape of gases
- H01M50/342—Non-re-sealable arrangements
- H01M50/3425—Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/04—Cells with aqueous electrolyte
- H01M6/06—Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
- H01M6/08—Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with cup-shaped electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/147—Lids or covers
- H01M50/166—Lids or covers characterised by the methods of assembling casings with lids
- H01M50/167—Lids or covers characterised by the methods of assembling casings with lids by crimping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/147—Lids or covers
- H01M50/166—Lids or covers characterised by the methods of assembling casings with lids
- H01M50/171—Lids or covers characterised by the methods of assembling casings with lids using adhesives or sealing agents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/183—Sealing members
- H01M50/184—Sealing members characterised by their shape or structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/183—Sealing members
- H01M50/186—Sealing members characterised by the disposition of the sealing members
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/183—Sealing members
- H01M50/19—Sealing members characterised by the material
- H01M50/193—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/183—Sealing members
- H01M50/19—Sealing members characterised by the material
- H01M50/198—Sealing members characterised by the material characterised by physical properties, e.g. adhesiveness or hardness
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/15—Sheet, web, or layer weakened to permit separation through thickness
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/21—Circular sheet or circular blank
- Y10T428/215—Seal, gasket, or packing
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Gas Exhaust Devices For Batteries (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Abstract
発電要素20が収納されて正極端子を兼ねる金属製電池缶11の開口部と負極端子32の間に被挟圧状態で介在して上記開口部を気密封止する周縁パッキング部36と、上記負極端子の裏側空間部と上記発電要素の収納空間部の間を隔離する隔壁部37とを有し、その隔壁部には、上記収納空間部のガス圧上昇により先行破断して安全弁機能をなす薄肉部38が溝状に形成された樹脂製のアルカリ電池用封口ガスケット33において、上記薄肉部38の溝方向がガスケットの樹脂配向と同じ方向であるとともに、上記ガスケットを形成する樹脂のアイゾット衝撃値が20〜60J/m(温度23±2℃,相対湿度50±5%)の範囲である。
Description
この発明はアルカリ電池用封口ガスケットおよび密閉型アルカリ電池に関し、特に、防爆機能を備えたアルカリ乾電池に適用して有効な技術に関する。
AMなどの型名で通称されているアルカリ乾電池は、正極端子を兼ねる金属製電池缶に発電要素を収納するとともに、その電池缶の開口部を負極端子と樹脂製封口ガスケットで密封入して構成される。封口ガスケットは周縁パッキング部と隔壁部を有する。周縁パッキング部は、電池缶の開口部と負極端子の間に被挟圧状態で介在することにより、その電池缶の開口部を気密封止する。隔壁部は、負極端子の裏側空間部と発電要素の収納空間部の間を隔離する。この隔壁部に薄肉部を溝状に形成するとともに、その薄肉部を上記収納空間部のガス圧上昇により先行破断させるようにすれば、そのガス圧上昇による電池の破裂を防止する安全弁機能を形成することができる。これにより、防爆型の密閉型アルカリ電池を構成することができる(たとえば、特開平7−105925、特開2002−251987)。
上記封口ガスケットは、アルカリ乾電池の高密閉性を長期に亘って確保するために、耐アルカリ性に加えて、柔軟性と耐衝撃性が共に優れていることが好ましいとされている。このため、ガスケットの材料にはオレフィン系樹脂が採用されている。中でもポリプロピレン(以下,PP)樹脂は、成形性にも優れた有用な材料とされている。しかし、耐衝撃性に関してはやや難点があり、これを解決するために、結晶化度を高めたPP樹脂やゴム系樹脂を添加したPP樹脂が用いられてきた。
封口ガスケットに用いる樹脂の耐衝撃性は、JIS−K7110−1984の測定法によるアイゾット衝撃値(アイゾット衝撃試験値)で評価される。一般に硬い材料は脆く、柔らかい材料はねばい。このような材料の靱性を評価する指標として、樹脂(プラスチック)の場合はアイゾット衝撃値がよく使用される。
アイゾット衝撃値は被試験材料(樹脂)が吸収した衝撃エネルギーの大きさであって、脆い材料では小さく、ねばい材料では大きくなる。
アルカリ乾電池の高密閉性を長期に亘って確保するためには、柔軟で衝撃吸収能力にすぐれた樹脂すなわちアイゾット衝撃値の高い柔軟な樹脂が望ましい。このため、従来のアルカリ電池用封口ガスケットには、たとえば特開昭63−166140に記載のように、そのアイゾット衝撃値を80以上に高めたPP樹脂を用いていた。
上記封口ガスケットは、アルカリ乾電池の高密閉性を長期に亘って確保するために、耐アルカリ性に加えて、柔軟性と耐衝撃性が共に優れていることが好ましいとされている。このため、ガスケットの材料にはオレフィン系樹脂が採用されている。中でもポリプロピレン(以下,PP)樹脂は、成形性にも優れた有用な材料とされている。しかし、耐衝撃性に関してはやや難点があり、これを解決するために、結晶化度を高めたPP樹脂やゴム系樹脂を添加したPP樹脂が用いられてきた。
封口ガスケットに用いる樹脂の耐衝撃性は、JIS−K7110−1984の測定法によるアイゾット衝撃値(アイゾット衝撃試験値)で評価される。一般に硬い材料は脆く、柔らかい材料はねばい。このような材料の靱性を評価する指標として、樹脂(プラスチック)の場合はアイゾット衝撃値がよく使用される。
アイゾット衝撃値は被試験材料(樹脂)が吸収した衝撃エネルギーの大きさであって、脆い材料では小さく、ねばい材料では大きくなる。
アルカリ乾電池の高密閉性を長期に亘って確保するためには、柔軟で衝撃吸収能力にすぐれた樹脂すなわちアイゾット衝撃値の高い柔軟な樹脂が望ましい。このため、従来のアルカリ電池用封口ガスケットには、たとえば特開昭63−166140に記載のように、そのアイゾット衝撃値を80以上に高めたPP樹脂を用いていた。
しかしながら、上述した従来の技術には、次のような問題のあることが本発明者によりあきらかとされた。
すなわち、薄肉部による安全弁機能を備えた封口ガスケットは、その薄肉部が電池内部のガス圧上昇によって破断することにより、安全弁機能が作動する。高耐衝撃性(アイゾット衝撃値が80以上)の樹脂を用いた従来の安全弁機能付き封口ガスケットは、電池内部の急激な圧力上昇に対する安全弁機能の作動性は良好であるが、電池内部の圧力が徐々に高まる場合は、樹脂のクリープ現象が伴うため、安全弁機能が確実に作動しない場合がある。つまり、安全弁機能の作動性が悪く、電池破裂の危険性が高くなる、という問題を生じることが判明した。
この場合のクリープとは樹脂(プラスチック)に特有の性質であって、一定の力が長時間加わることにより変形量が徐々に増大していく現象を言う。金型成形された樹脂は、成形時に金型に注入した樹脂の流れ方向に分子配向するが、上記薄肉部のクリープ現象はその配向方向にて大きく現れる。このため、薄肉部は、配向方向に沿って破断するように形成するとよく、このためにはその薄肉部を配向方向と同じ方向の溝により形成するとよい。しかし、この場合でも、その薄肉部を所定のガス圧で確実に破断させるためには、樹脂を脆い状態にする必要がある。つまり、アイゾット衝撃値を低くする必要が生じる。
しかし、アイゾット衝撃値が低い脆い樹脂を使用すると、封口ガスケット本来の機能とくに周縁パッキング部での封止機能が低下して、電池の高密閉性を長期に亘って維持することができなくなるという背反が生じる。封口ガスケットは、その周縁パッキング部が電池缶の開口部と負極端子間に被挟圧状態で介在することによりその電池缶内を気密封止するが、この封止機能の良否には樹脂の柔軟性が大きく関係する。このため、その封口ガスケットに良好な封止機能を求めるならば、その材料となる樹脂は柔軟性を持たなければならず、少なくともアイゾット衝撃値が80〜100の高耐衝撃性樹脂(PP)でなければならないとされていた。
一方、上記安全弁機能の方に着目すると、上述した高耐衝撃性はその安全弁機能の作動性には必ずしも有益ではなく、むしろ、その作動性を阻害することが判明した。つまり、アルカリ電池用封口ガスケットにおいては、電池の高密閉性を長期に亘って維持するための封止機能と、電池の破裂を確実に予防するための安全弁機能との間に背反する要素があった。しかし、このことに関して従来は、とくに問題とはされていなかった。これは、安全弁機能の作動試験を行うときに、電池内部のガス圧を急激に増大させていたためと考えられる。アルカリ乾電池の場合、電池に充電電流を強制的に流すことにより、その電池内部に反応ガスを発生させて安全弁機能の試験を行うことができるが、その試験を効率よく行うためには、大きな充電電流を流してガス発生速度を速めればよい。こうしてガス圧を急激に増大させれば、試験を短時間に効率良く行うことができる。だが、これだと、ガス圧が徐々に上昇していった場合の作動性は調べることができない。
ここで、本発明者は、上記安全弁機能の作動状況がガス圧の上昇状況により大きく異なり、ガス圧が急上昇する場合は作動性が良好であっても、ガス圧が徐々に増加する場合は作動性が悪くなることを知得した。すなわち、上述した従来のアルカリ電池用封口ガスケットには、電池の高密閉性を長期に亘って維持するための封止機能と、電池内部のガス圧が徐々に上昇した場合の安全弁機能の作動性とが両立しないという問題のあることが判明した。
この発明は以上のような問題に鑑みてなされたもので、その目的は、密閉型アルカリ電池の破裂を防止するための安全弁機能を、電池内部のガス圧が徐々に上昇した場合でも確実に作動させるとともに、その電池の高気密性を長期に亘って維持させることができるアルカリ電池用封口ガスケットを提供することにある。また、その封口ガスケットを用いることにより、防爆機能と耐漏液性が共にすぐれた密閉型アルカリ電池を提供することにある。
すなわち、薄肉部による安全弁機能を備えた封口ガスケットは、その薄肉部が電池内部のガス圧上昇によって破断することにより、安全弁機能が作動する。高耐衝撃性(アイゾット衝撃値が80以上)の樹脂を用いた従来の安全弁機能付き封口ガスケットは、電池内部の急激な圧力上昇に対する安全弁機能の作動性は良好であるが、電池内部の圧力が徐々に高まる場合は、樹脂のクリープ現象が伴うため、安全弁機能が確実に作動しない場合がある。つまり、安全弁機能の作動性が悪く、電池破裂の危険性が高くなる、という問題を生じることが判明した。
この場合のクリープとは樹脂(プラスチック)に特有の性質であって、一定の力が長時間加わることにより変形量が徐々に増大していく現象を言う。金型成形された樹脂は、成形時に金型に注入した樹脂の流れ方向に分子配向するが、上記薄肉部のクリープ現象はその配向方向にて大きく現れる。このため、薄肉部は、配向方向に沿って破断するように形成するとよく、このためにはその薄肉部を配向方向と同じ方向の溝により形成するとよい。しかし、この場合でも、その薄肉部を所定のガス圧で確実に破断させるためには、樹脂を脆い状態にする必要がある。つまり、アイゾット衝撃値を低くする必要が生じる。
しかし、アイゾット衝撃値が低い脆い樹脂を使用すると、封口ガスケット本来の機能とくに周縁パッキング部での封止機能が低下して、電池の高密閉性を長期に亘って維持することができなくなるという背反が生じる。封口ガスケットは、その周縁パッキング部が電池缶の開口部と負極端子間に被挟圧状態で介在することによりその電池缶内を気密封止するが、この封止機能の良否には樹脂の柔軟性が大きく関係する。このため、その封口ガスケットに良好な封止機能を求めるならば、その材料となる樹脂は柔軟性を持たなければならず、少なくともアイゾット衝撃値が80〜100の高耐衝撃性樹脂(PP)でなければならないとされていた。
一方、上記安全弁機能の方に着目すると、上述した高耐衝撃性はその安全弁機能の作動性には必ずしも有益ではなく、むしろ、その作動性を阻害することが判明した。つまり、アルカリ電池用封口ガスケットにおいては、電池の高密閉性を長期に亘って維持するための封止機能と、電池の破裂を確実に予防するための安全弁機能との間に背反する要素があった。しかし、このことに関して従来は、とくに問題とはされていなかった。これは、安全弁機能の作動試験を行うときに、電池内部のガス圧を急激に増大させていたためと考えられる。アルカリ乾電池の場合、電池に充電電流を強制的に流すことにより、その電池内部に反応ガスを発生させて安全弁機能の試験を行うことができるが、その試験を効率よく行うためには、大きな充電電流を流してガス発生速度を速めればよい。こうしてガス圧を急激に増大させれば、試験を短時間に効率良く行うことができる。だが、これだと、ガス圧が徐々に上昇していった場合の作動性は調べることができない。
ここで、本発明者は、上記安全弁機能の作動状況がガス圧の上昇状況により大きく異なり、ガス圧が急上昇する場合は作動性が良好であっても、ガス圧が徐々に増加する場合は作動性が悪くなることを知得した。すなわち、上述した従来のアルカリ電池用封口ガスケットには、電池の高密閉性を長期に亘って維持するための封止機能と、電池内部のガス圧が徐々に上昇した場合の安全弁機能の作動性とが両立しないという問題のあることが判明した。
この発明は以上のような問題に鑑みてなされたもので、その目的は、密閉型アルカリ電池の破裂を防止するための安全弁機能を、電池内部のガス圧が徐々に上昇した場合でも確実に作動させるとともに、その電池の高気密性を長期に亘って維持させることができるアルカリ電池用封口ガスケットを提供することにある。また、その封口ガスケットを用いることにより、防爆機能と耐漏液性が共にすぐれた密閉型アルカリ電池を提供することにある。
本発明による手段は、発電要素が収納されて正極端子を兼ねる金属製電池缶の開口部と負極端子の間に被挟圧状態で介在して上記開口部を気密封止する周縁パッキング部と、上記負極端子の裏側空間部と上記発電要素の収納空間部の間を隔離する隔壁部とを有し、その隔壁部には、上記収納空間部のガス圧上昇により先行破断して安全弁機能をなす薄肉部が溝状に形成された樹脂製のアルカリ電池用封口ガスケットにおいて、上記薄肉部の溝方向がガスケットの樹脂配向と同じ方向であるとともに、上記ガスケットを形成する樹脂のアイゾット衝撃値が20〜60J/m(温度23±2℃,相対湿度50±5%)の範囲であることを特徴とする。
上記手段により、密閉型アルカリ電池の破裂を防止するための安全弁機能を、電池内部のガス圧が徐々に上昇した場合でも確実に作動させるとともに、その電池の高気密性を長期に亘って維持させることが可能なアルカリ電池用封口ガスケットを提供することができる。また、その封口ガスケットを用いることにより、防爆機能と耐漏液性が共にすぐれた密閉型アルカリ電池を提供することができる。
上記手段において、前記隔壁部に断面凹状の応力緩衝部を少なくとも1ヶ所以上設け、この応力緩衝部上に前記薄肉部を設けることが好ましい。
更に好ましくは、前記隔壁部の肉厚を0.3〜0.8mmで、前記薄肉部の肉厚を0.1〜0.4mmとすることである。
また、好ましくは、前記隔壁部の中央から前記負極端子までの再接近位置の間隔を1.0〜3.0mmとすることである。
前記ガスケットを形成する樹脂としてはポリプロピレンを主体とすることが好ましい。
上記手段により、密閉型アルカリ電池の破裂を防止するための安全弁機能を、電池内部のガス圧が徐々に上昇した場合でも確実に作動させるとともに、その電池の高気密性を長期に亘って維持させることが可能なアルカリ電池用封口ガスケットを提供することができる。また、その封口ガスケットを用いることにより、防爆機能と耐漏液性が共にすぐれた密閉型アルカリ電池を提供することができる。
上記手段において、前記隔壁部に断面凹状の応力緩衝部を少なくとも1ヶ所以上設け、この応力緩衝部上に前記薄肉部を設けることが好ましい。
更に好ましくは、前記隔壁部の肉厚を0.3〜0.8mmで、前記薄肉部の肉厚を0.1〜0.4mmとすることである。
また、好ましくは、前記隔壁部の中央から前記負極端子までの再接近位置の間隔を1.0〜3.0mmとすることである。
前記ガスケットを形成する樹脂としてはポリプロピレンを主体とすることが好ましい。
第1図は本発明の一実施形態に係るアルカリ電池用封口ガスケットを用いた密閉型アルカリ電池の要部を拡大して示す断面図である。
第2図は第1図の封口ガスケットを用いた密閉型アルカリ電池の一実施形態を示す断面図である。
発明を実施するための好適な形態
まず、図2に示す電池10は、AMの型名で呼ばれているアルカリ乾電池であって、有底筒状の金属製電池缶11内に発電要素20が収納されるとともに、その電池缶11の開口部が封口体30で密閉封口されている。
電池缶11は、ニッケルメッキされた薄鋼鈑あるいはニッケル−鉄合金などの金属薄板をプレス加工して形成されたものであって、正極端子を兼ねる。発電要素20は、二酸化マンガン等を含む正極活物質を所定形状(筒状)に成形固化した正極合剤21、アルカリ電解液を含浸させたセパレータ22、負極ゲル23により構成される。負極ゲル23中には棒状の負極集電体31が挿入されている。
封口体30は、集電体31、皿状の金属製負極端子32、樹脂製の電気絶縁性封口ガスケット33をあらかじめ一体化した集合部品であって、電池缶11の開口部に挿入された後、その開口部をかしめることにより電池缶11を気密封口する。このとき、ガスケット33は、電池缶11の開口部と負極端子32の周縁部間に被挟圧状態で介在するとともに、負極端子32の裏側空間部と上記発電要素20の収納空間部の間を隔離することにより、電池缶11内を気密封止する。
さらに、そのガスケット33は、発電要素20が収納された電池缶11内の圧力上昇により先行破断して電池10の破裂を防止する安全弁の機能を有する。電池10内で異常発生したガスは、そのガスケット33の先行破断より、負極端子32の周縁部付近に形成されたガス抜き通路(小孔)から外部へ抜けるようになっている。
図1は、上記電池10に使用されている封口ガスケット33の断面図を示す。同図に示す封口ガスケット33は、中央ボス部34、周縁パッキング部36、および中間の隔壁部37を一体に有する金型成形製品であって、PP(ポリプロピレン)を主体とする樹脂により形成されている。中央ボス部34には上記集電体31が圧密状態で貫通する孔35を有する。周縁パッキング部36は、電池缶11の開口部と負極端子32の間に被挟圧状態で介在することにより、その電池缶11の開口部を気密封止する。
中間の隔壁部37は、上記負極端子32の裏側空間部と上記発電要素20の収納空間部の間を隔離する。この隔壁部37には電池缶11の開口部を負極端子32及び封口ガスケット33に対してかしめるときに封口ガスケットの内周方向に加えられるストレスを緩和するために外周側と中央部の2ヶ所に応力緩衝部A、Bが設けられている。外周側の応力緩衝部Aの角度θ1、即ち周縁パッキング部36に連接する垂直部と中央部の応力緩衝部Bに連接する傾斜した隔壁部との間の角度θ1、は電池の種類によって異なるが30°〜70°の範囲に形成することが好ましい。一方、中央部の応力緩衝部Bは緩衝部Aに溜まったストレスを緩衝するために設けられるもので、その角度θ2は120°〜170°とすることが好ましい。
この隔壁部37に薄肉部38が形成されている。この薄肉部38は溝状に形成されている。つまり、隔壁部37に形成された溝の底がその薄肉部38を形成する。好ましくは、隔壁部の肉厚は0.3〜0.8mmとし、薄肉部38は電池の内圧の3〜6MPaで破断するように肉厚を0.1〜0.4mmとすることである。この隔壁部この薄肉部38の溝方向は、ガスケット33の樹脂配向(破線矢印)と同じ方向に形成されている。この場合、そのガスケット33は、金型成形時の樹脂注入口いわゆるゲートが中央ボス部34の下端(図面上で下端)にある。このゲートから注入された樹脂が金型内で図中の破線方向に流れて上記ガスケット33が形成されている。その成形時の樹脂の流れ方向に樹脂が配向されている。
上記薄肉部38は、電池10内のガス発生による内圧すなわち上記収納空間部のガス圧が上昇したときに先行破断して、そのガス圧を逃がす安全弁として機能する。即ち、電池内部でガスが発生すると、これによって生じたガス圧は隔壁部37を負極端子側に膨らませるように作用する。この時、緩衝部Bは隔壁部37の中央に位置しているため変位量が最大となる。ガス圧が急激に上昇したときには緩衝部Bの薄肉部38はこれに迅速に応答して破断し、薄肉部38が負極端子の角部40に接触することはない。しかしながら、電池内部のガス圧が徐々に上昇する場合には緩衝部Bも徐々に膨らみ、緩衝部Bと負極端子の角部40との距離dが小さいと薄肉部38が破断する前に緩衝部Bが負極端子の角部40に接触することも生じうる。このような接触が角部40の全周に亘って発生すると、安全弁としての薄肉部38の破断は困難となり、最悪の場合には電池の破裂に至る。このような現象を回避する方法としては、緩衝部Bと負極端子の角部40との距離dを大きくすることであるが、この距離を大きくすることは電池内部の容積の減少に繋がり、放電容量の低下をきたす。これは、特にLR3のように容積の少ないものでは影響が大きい。本発明の実施例では、後述するようなアイゾット衝撃値の樹脂を使用することにより、上記の緩衝部Bと負極端子の角部40との距離dを1.3〜3.0mmの範囲、好適には1.0〜2.5mmの範囲とすることができる。
安全弁機能だけに着目するならば、ガスケット33に用いる樹脂はアイゾット衝撃値が80〜100J/mの高耐衝撃性のものがよいが、そうすると、前述したように、ガス圧が徐々に増大したときに、薄肉部38のクリープ変形により、安全弁機能が確実に作動しなくなってしまう。
そこで、この実施形態の封口ガスケット33では、従来から使われていたものとは異なり、アイゾット衝撃値が20〜60J/m(温度23±2℃,相対湿度50±5%)となるように調製されたPP樹脂を使用している。すなわち、本発明者は、上記封口ガスケット33の樹脂として、アイゾット衝撃値が20〜60J/mの樹脂を用いることにより、ガス圧が徐々に増大した場合でも安全弁機能を確実に作動させることができるとともに、長期に亘る密閉性も確実に維持できる最適状態が得られることを知得した。これにより、密閉型アルカリ電池の破裂を防止する安全弁機能の作動をガス圧の上昇状況に左右されることなく確実にするとともに、その電池の高気密性を長期に亘って維持させることが可能になった。そして、この封口ガスケット33を用いることにより、防爆機能と耐漏液性が共にすぐれた密閉型アルカリ電池10を得ることができた。
以下、本発明の実施例を具体的に示す。◎
第2図は第1図の封口ガスケットを用いた密閉型アルカリ電池の一実施形態を示す断面図である。
発明を実施するための好適な形態
まず、図2に示す電池10は、AMの型名で呼ばれているアルカリ乾電池であって、有底筒状の金属製電池缶11内に発電要素20が収納されるとともに、その電池缶11の開口部が封口体30で密閉封口されている。
電池缶11は、ニッケルメッキされた薄鋼鈑あるいはニッケル−鉄合金などの金属薄板をプレス加工して形成されたものであって、正極端子を兼ねる。発電要素20は、二酸化マンガン等を含む正極活物質を所定形状(筒状)に成形固化した正極合剤21、アルカリ電解液を含浸させたセパレータ22、負極ゲル23により構成される。負極ゲル23中には棒状の負極集電体31が挿入されている。
封口体30は、集電体31、皿状の金属製負極端子32、樹脂製の電気絶縁性封口ガスケット33をあらかじめ一体化した集合部品であって、電池缶11の開口部に挿入された後、その開口部をかしめることにより電池缶11を気密封口する。このとき、ガスケット33は、電池缶11の開口部と負極端子32の周縁部間に被挟圧状態で介在するとともに、負極端子32の裏側空間部と上記発電要素20の収納空間部の間を隔離することにより、電池缶11内を気密封止する。
さらに、そのガスケット33は、発電要素20が収納された電池缶11内の圧力上昇により先行破断して電池10の破裂を防止する安全弁の機能を有する。電池10内で異常発生したガスは、そのガスケット33の先行破断より、負極端子32の周縁部付近に形成されたガス抜き通路(小孔)から外部へ抜けるようになっている。
図1は、上記電池10に使用されている封口ガスケット33の断面図を示す。同図に示す封口ガスケット33は、中央ボス部34、周縁パッキング部36、および中間の隔壁部37を一体に有する金型成形製品であって、PP(ポリプロピレン)を主体とする樹脂により形成されている。中央ボス部34には上記集電体31が圧密状態で貫通する孔35を有する。周縁パッキング部36は、電池缶11の開口部と負極端子32の間に被挟圧状態で介在することにより、その電池缶11の開口部を気密封止する。
中間の隔壁部37は、上記負極端子32の裏側空間部と上記発電要素20の収納空間部の間を隔離する。この隔壁部37には電池缶11の開口部を負極端子32及び封口ガスケット33に対してかしめるときに封口ガスケットの内周方向に加えられるストレスを緩和するために外周側と中央部の2ヶ所に応力緩衝部A、Bが設けられている。外周側の応力緩衝部Aの角度θ1、即ち周縁パッキング部36に連接する垂直部と中央部の応力緩衝部Bに連接する傾斜した隔壁部との間の角度θ1、は電池の種類によって異なるが30°〜70°の範囲に形成することが好ましい。一方、中央部の応力緩衝部Bは緩衝部Aに溜まったストレスを緩衝するために設けられるもので、その角度θ2は120°〜170°とすることが好ましい。
この隔壁部37に薄肉部38が形成されている。この薄肉部38は溝状に形成されている。つまり、隔壁部37に形成された溝の底がその薄肉部38を形成する。好ましくは、隔壁部の肉厚は0.3〜0.8mmとし、薄肉部38は電池の内圧の3〜6MPaで破断するように肉厚を0.1〜0.4mmとすることである。この隔壁部この薄肉部38の溝方向は、ガスケット33の樹脂配向(破線矢印)と同じ方向に形成されている。この場合、そのガスケット33は、金型成形時の樹脂注入口いわゆるゲートが中央ボス部34の下端(図面上で下端)にある。このゲートから注入された樹脂が金型内で図中の破線方向に流れて上記ガスケット33が形成されている。その成形時の樹脂の流れ方向に樹脂が配向されている。
上記薄肉部38は、電池10内のガス発生による内圧すなわち上記収納空間部のガス圧が上昇したときに先行破断して、そのガス圧を逃がす安全弁として機能する。即ち、電池内部でガスが発生すると、これによって生じたガス圧は隔壁部37を負極端子側に膨らませるように作用する。この時、緩衝部Bは隔壁部37の中央に位置しているため変位量が最大となる。ガス圧が急激に上昇したときには緩衝部Bの薄肉部38はこれに迅速に応答して破断し、薄肉部38が負極端子の角部40に接触することはない。しかしながら、電池内部のガス圧が徐々に上昇する場合には緩衝部Bも徐々に膨らみ、緩衝部Bと負極端子の角部40との距離dが小さいと薄肉部38が破断する前に緩衝部Bが負極端子の角部40に接触することも生じうる。このような接触が角部40の全周に亘って発生すると、安全弁としての薄肉部38の破断は困難となり、最悪の場合には電池の破裂に至る。このような現象を回避する方法としては、緩衝部Bと負極端子の角部40との距離dを大きくすることであるが、この距離を大きくすることは電池内部の容積の減少に繋がり、放電容量の低下をきたす。これは、特にLR3のように容積の少ないものでは影響が大きい。本発明の実施例では、後述するようなアイゾット衝撃値の樹脂を使用することにより、上記の緩衝部Bと負極端子の角部40との距離dを1.3〜3.0mmの範囲、好適には1.0〜2.5mmの範囲とすることができる。
安全弁機能だけに着目するならば、ガスケット33に用いる樹脂はアイゾット衝撃値が80〜100J/mの高耐衝撃性のものがよいが、そうすると、前述したように、ガス圧が徐々に増大したときに、薄肉部38のクリープ変形により、安全弁機能が確実に作動しなくなってしまう。
そこで、この実施形態の封口ガスケット33では、従来から使われていたものとは異なり、アイゾット衝撃値が20〜60J/m(温度23±2℃,相対湿度50±5%)となるように調製されたPP樹脂を使用している。すなわち、本発明者は、上記封口ガスケット33の樹脂として、アイゾット衝撃値が20〜60J/mの樹脂を用いることにより、ガス圧が徐々に増大した場合でも安全弁機能を確実に作動させることができるとともに、長期に亘る密閉性も確実に維持できる最適状態が得られることを知得した。これにより、密閉型アルカリ電池の破裂を防止する安全弁機能の作動をガス圧の上昇状況に左右されることなく確実にするとともに、その電池の高気密性を長期に亘って維持させることが可能になった。そして、この封口ガスケット33を用いることにより、防爆機能と耐漏液性が共にすぐれた密閉型アルカリ電池10を得ることができた。
以下、本発明の実施例を具体的に示す。◎
アイゾット衝撃値が10〜18J/m(温度23±2℃,相対湿度50±5%、以下同じ)のポリプロピレン樹脂、同じく20〜30J/mの樹脂、40〜60J/mの樹脂、63〜80J/mの樹脂、85〜120J/mの樹脂を用い、各樹脂ごとにそれぞれ同一形状の封口ガスケットを試験数(10個)ずつ作製した。そして、各ガスケットごとに試験電池(LR6型アルカリ乾電池)を作製して評価試験を行った。隔壁部の肉厚は0.4mmで薄肉部の肉厚は0.2mmとした。
試験は、20℃/40℃/60℃の各温度条件下でそれぞれ40mAの定電流充電を行い、薄肉部による安全弁の作動状況(作動数/試験数)とガスケットの変形状況(変形数/試験数)を観測した。定電流充電は電池内部で反応ガスを意図的に発生させるためであって、ここでは、そのガス発生を比較的ゆっくり行わせるために電流値を40mAとした。これにより、ガス圧が徐々に増大したときの安全弁機能の作動状況を調べる試験を行った。この試験の結果を表1に示す。
上記表1によれば、アイゾット衝撃値が10〜18J/mの樹脂を用いた封口ガスケット(標本群No.1)では、全ての試験標本にて薄肉部の破断による安全弁機能が作動し、未作動はなかった。また、上記表1には載せていないが、電池の膨らみもまったく認められなかった。しかし、これは、安全弁の作動圧が低過ぎたことによる。つまり、薄肉部が脆くて破断しやすく、電池内のガス圧がまだ十分に上昇しない許容範囲内であっても、安全弁が過敏に作動してしまったことによる。これだと、正常な使用状態でも安全弁の誤作動による漏液の発生が懸念される。また、ガスケットに柔軟性がなく、長期に亘って高密閉性を維持することを要求される密閉型アルカリ電池には適さない。
アイゾット衝撃値が63〜120J/mの樹脂を用いた封口ガスケット(標本群No.4と5)では、安全弁機能が未作動な試験標本が多かったとともに、電池の膨らみが目立った。これは、ガス圧が許容範囲をかなり超えても、薄肉部が破断せず、安全弁機能が確実に作動しなかったことを示す。ガス圧が徐々に上昇したため、クリープによるガスケット(とくに薄肉部)の変形が多いことも確認された。
アイゾット衝撃値が20〜60J/mの樹脂を用いた封口ガスケット(標本群No.2と3)では、安全弁機能の未作動はなく、電池の膨らみは若干認められた程度であった。これは、薄肉部の破断による安全弁機能が確実に作動したとともに、その安全弁の作動圧が適性であったことを示す。クリープによるガスケット(薄肉部)の変形はわずかであって、少なくとも安全弁機能の作動にはほとんど影響していないことが確認された。また、アルカリ電池の密閉性も良好で、長期に亘って高密閉性を十分に維持できることが、別途行った耐漏液性の加速試験によっても確認できた。
以上のように、アイゾット衝撃値が20〜60J/mの樹脂を用いた封口ガスケットは、密閉型アルカリ電池の破裂を防止するための安全弁機能を、電池内部のガス圧が徐々に上昇した場合でも確実に作動させことができるとともに、その電池の高気密性を長期に亘って維持させることができることが判明した。
試験は、20℃/40℃/60℃の各温度条件下でそれぞれ40mAの定電流充電を行い、薄肉部による安全弁の作動状況(作動数/試験数)とガスケットの変形状況(変形数/試験数)を観測した。定電流充電は電池内部で反応ガスを意図的に発生させるためであって、ここでは、そのガス発生を比較的ゆっくり行わせるために電流値を40mAとした。これにより、ガス圧が徐々に増大したときの安全弁機能の作動状況を調べる試験を行った。この試験の結果を表1に示す。
アイゾット衝撃値が63〜120J/mの樹脂を用いた封口ガスケット(標本群No.4と5)では、安全弁機能が未作動な試験標本が多かったとともに、電池の膨らみが目立った。これは、ガス圧が許容範囲をかなり超えても、薄肉部が破断せず、安全弁機能が確実に作動しなかったことを示す。ガス圧が徐々に上昇したため、クリープによるガスケット(とくに薄肉部)の変形が多いことも確認された。
アイゾット衝撃値が20〜60J/mの樹脂を用いた封口ガスケット(標本群No.2と3)では、安全弁機能の未作動はなく、電池の膨らみは若干認められた程度であった。これは、薄肉部の破断による安全弁機能が確実に作動したとともに、その安全弁の作動圧が適性であったことを示す。クリープによるガスケット(薄肉部)の変形はわずかであって、少なくとも安全弁機能の作動にはほとんど影響していないことが確認された。また、アルカリ電池の密閉性も良好で、長期に亘って高密閉性を十分に維持できることが、別途行った耐漏液性の加速試験によっても確認できた。
以上のように、アイゾット衝撃値が20〜60J/mの樹脂を用いた封口ガスケットは、密閉型アルカリ電池の破裂を防止するための安全弁機能を、電池内部のガス圧が徐々に上昇した場合でも確実に作動させことができるとともに、その電池の高気密性を長期に亘って維持させることができることが判明した。
薄肉部38の溝方向を樹脂の配向方向(破線矢印の流れ方向)に対して直角に形成した封口ガスケットを試作し、実施例1と同様の評価試験を行った。この場合、薄肉部38の破断方向にて樹脂の剛性が高く、かつ樹脂の伸びを伴うため、安全弁機能を確実に作動させることができなかった。その作動を確実にするためには樹脂を脆くする必要があった。しかし、その樹脂の脆さだと、封口ガスケットの封止機能が低下して、長期に亘る高密閉性を得られないことが判明した。このことから、本発明は、薄肉部の溝方向がガスケットの樹脂配向と同じ方向の場合に有効であることがわかる。
実施例1と同じに作製した封口ガスケット(標本群No.1〜5)を使用し、80mAおよび150mAの充電電流でそれぞれ同様の評価試験を行った。この場合、充電電流が大きいため、電池内の反応ガスは比較的高速で発生するが、薄肉部は上記実施例1の場合とほぼ同じガス圧で破断して所定の安全弁機能をなすことが確認された。すなわち、電池内部のガス圧が徐々に上昇しても、急激に増大しても、いずれの場合も、安全弁機能は適正な作動圧力で動作することができた。
本発明によれば、密閉型アルカリ電池の破裂を防止するための安全弁機能を、電池内部のガス圧が徐々に上昇した場合でも確実に作動させことができるとともに、その電池の高気密性を長期に亘って維持させることが可能なアルカリ電池用封口ガスケットを提供することできる。また、その封口ガスケットを用いることにより、防爆機能と耐漏液性が共にすぐれた密閉型アルカリ電池を提供することができる。
Claims (6)
- 発電要素が収納されて正極端子を兼ねる金属製電池缶の開口部と負極端子の間に被挟圧状態で介在して上記開口部を気密封止する周縁パッキング部と、上記負極端子の裏側空間部と上記発電要素の収納空間部の間を隔離する隔壁部とを有し、その隔壁部には、上記収納空間部のガス圧上昇により先行破断して安全弁機能をなす薄肉部が溝状に形成された樹脂製のアルカリ電池用封口ガスケットにおいて、上記薄肉部の溝方向がガスケットの樹脂配向と同じ方向であるとともに、上記ガスケットを形成する樹脂のアイゾット衝撃値が20〜60J/m(温度23±2℃,相対湿度50±5%)の範囲であることを特徴とするアルカリ電池用封口ガスケット。
- 前記隔壁部に断面凹状の応力緩衝部を少なくとも1ヶ所以上設け、該応力緩衝部上に前記薄肉部を設けてなることを特徴とする請求の範囲第1項記載のアルカリ電池用封口ガスケット。
- 前記隔壁部の肉厚が0.3〜0.8mmで、前記薄肉部の肉厚が0.1〜0.4mmであることを特徴とする請求項1または2記載のアルカリ電池用封口ガスケット。
- 前記隔壁部の中央から前記負極端子までの再接近位置の間隔が1.0〜3.0mmであることを特徴とする請求項3記載のアルカリ電池用封口ガスケット。
- 前記ガスケットを形成する樹脂がポリプロピレンを主体とすることを特徴とする請求項1または2記載のアルカリ電池用封口ガスケット。
- 請求項1または2に記載の樹脂製封口ガスケットを用いたことを特徴とする密閉型アルカリ乾電池。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003047161 | 2003-02-25 | ||
JP2003047161 | 2003-02-25 | ||
PCT/JP2004/002103 WO2004077592A1 (ja) | 2003-02-25 | 2004-02-24 | アルカリ電池用封口ガスケットおよび密閉型アルカリ電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2004077592A1 true JPWO2004077592A1 (ja) | 2006-06-08 |
Family
ID=32923259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005502876A Pending JPWO2004077592A1 (ja) | 2003-02-25 | 2004-02-24 | アルカリ電池用封口ガスケットおよび密閉型アルカリ電池 |
Country Status (3)
Country | Link |
---|---|
US (1) | US7144656B2 (ja) |
JP (1) | JPWO2004077592A1 (ja) |
WO (1) | WO2004077592A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006326762A (ja) * | 2005-05-26 | 2006-12-07 | Fuji Xerox Co Ltd | 円筒状基体表面処理方法および円筒状基体表面処理装置 |
JP2007048730A (ja) * | 2005-07-15 | 2007-02-22 | Matsushita Electric Ind Co Ltd | アルカリ乾電池 |
GB0714477D0 (en) * | 2007-07-25 | 2007-09-05 | Seetru Ltd | A static rig for the determination of safety valve parameters |
KR102275779B1 (ko) * | 2017-11-17 | 2021-07-13 | 주식회사 엘지에너지솔루션 | 이차전지 |
CN115699384A (zh) | 2020-05-22 | 2023-02-03 | 杜拉塞尔美国经营公司 | 用于电池单元的密封组件 |
WO2024053213A1 (ja) * | 2022-09-07 | 2024-03-14 | パナソニックIpマネジメント株式会社 | アルカリ乾電池 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57107558A (en) * | 1980-12-24 | 1982-07-05 | Fuji Elelctrochem Co Ltd | Seal gasket for explosion-proof battery |
JPS61133552A (ja) * | 1984-12-03 | 1986-06-20 | Fuji Elelctrochem Co Ltd | 防爆形電池用封口ガスケツト |
JPH02201865A (ja) * | 1989-01-31 | 1990-08-10 | Fuji Elelctrochem Co Ltd | 防爆型電池用封口ガスケット |
JPH09120805A (ja) * | 1995-10-25 | 1997-05-06 | Fuji Elelctrochem Co Ltd | アルカリ電池 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56132765A (en) * | 1980-03-19 | 1981-10-17 | Matsushita Electric Ind Co Ltd | Manufacture of sealing body for battery |
JPS63166140A (ja) | 1986-12-26 | 1988-07-09 | Sanyo Electric Co Ltd | 密閉型電池 |
JPH07105925A (ja) | 1993-10-07 | 1995-04-21 | Matsushita Electric Ind Co Ltd | 筒型アルカリ電池 |
JP2002251987A (ja) | 2000-12-22 | 2002-09-06 | Fdk Corp | 密閉型電池の安全弁 |
-
2004
- 2004-02-24 WO PCT/JP2004/002103 patent/WO2004077592A1/ja active Application Filing
- 2004-02-24 JP JP2005502876A patent/JPWO2004077592A1/ja active Pending
-
2005
- 2005-08-25 US US11/211,364 patent/US7144656B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57107558A (en) * | 1980-12-24 | 1982-07-05 | Fuji Elelctrochem Co Ltd | Seal gasket for explosion-proof battery |
JPS61133552A (ja) * | 1984-12-03 | 1986-06-20 | Fuji Elelctrochem Co Ltd | 防爆形電池用封口ガスケツト |
JPH02201865A (ja) * | 1989-01-31 | 1990-08-10 | Fuji Elelctrochem Co Ltd | 防爆型電池用封口ガスケット |
JPH09120805A (ja) * | 1995-10-25 | 1997-05-06 | Fuji Elelctrochem Co Ltd | アルカリ電池 |
Also Published As
Publication number | Publication date |
---|---|
US7144656B2 (en) | 2006-12-05 |
US20060024576A1 (en) | 2006-02-02 |
WO2004077592A1 (ja) | 2004-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7745038B2 (en) | Alkaline dry battery and sealing gasket therefor | |
CN110429214B (zh) | 二次电池的盖组件及二次电池 | |
CA1131303A (en) | Pressure vent for a sealed primary cell | |
US5227261A (en) | Cylindrical electrochemical cells with a diaphragm seal | |
JP4615215B2 (ja) | 電気化学的電池のエンドキャップ組立体 | |
JP5876794B2 (ja) | 二次電池用ケース及び二次電池 | |
JPWO2004077592A1 (ja) | アルカリ電池用封口ガスケットおよび密閉型アルカリ電池 | |
JP3619634B2 (ja) | 安全弁を備える密閉型蓄電池 | |
JP4080131B2 (ja) | マンガン乾電池 | |
JP4166938B2 (ja) | ガリヴァーニ電池用スナップスルーガスケット | |
KR20070030686A (ko) | 밀폐 각형 전지 | |
JP5514632B2 (ja) | 筒型電池用封口ガスケット、および筒型電池 | |
JPH09115498A (ja) | 密閉型蓄電池 | |
JP5818004B2 (ja) | 密閉型電気化学デバイス用封口板 | |
JP3527548B2 (ja) | 二次電池用安全装置および安全装置付き非水電解質二次電池 | |
JP5990064B2 (ja) | 二次電池用ケース及び二次電池 | |
JP2008108603A (ja) | 筒形アルカリ電池 | |
JP4195803B2 (ja) | アルカリ電池 | |
JP2006128010A (ja) | 密閉電池 | |
JP2009016079A (ja) | 筒型電池の封口構造、およびアルカリ電池 | |
JP5114004B2 (ja) | 筒形電池 | |
WO2024004892A1 (ja) | 蓄電デバイス | |
JPH11283600A (ja) | 密閉電池 | |
JP2007180052A (ja) | アルカリ乾電池 | |
JPS6224903B2 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A625 | Written request for application examination (by other person) |
Free format text: JAPANESE INTERMEDIATE CODE: A625 Effective date: 20060531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091027 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091225 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100420 |