JPS6394149A - System for measuring concentration of electrolyte - Google Patents
System for measuring concentration of electrolyteInfo
- Publication number
- JPS6394149A JPS6394149A JP61237832A JP23783286A JPS6394149A JP S6394149 A JPS6394149 A JP S6394149A JP 61237832 A JP61237832 A JP 61237832A JP 23783286 A JP23783286 A JP 23783286A JP S6394149 A JPS6394149 A JP S6394149A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- measured
- reaction tube
- sample liquid
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003792 electrolyte Substances 0.000 title claims description 16
- 239000007788 liquid Substances 0.000 claims abstract description 95
- 238000005259 measurement Methods 0.000 claims abstract description 50
- 238000007599 discharging Methods 0.000 claims abstract description 6
- 239000012482 calibration solution Substances 0.000 claims description 23
- 239000000243 solution Substances 0.000 claims description 2
- 210000002700 urine Anatomy 0.000 claims description 2
- 239000013060 biological fluid Substances 0.000 claims 1
- 239000008280 blood Substances 0.000 claims 1
- 210000004369 blood Anatomy 0.000 claims 1
- 230000005856 abnormality Effects 0.000 abstract description 5
- 230000000593 degrading effect Effects 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 56
- 150000002500 ions Chemical class 0.000 description 20
- 239000012530 fluid Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 239000003085 diluting agent Substances 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000012488 sample solution Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- -1 CI- Chemical class 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000010339 medical test Methods 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Automatic Analysis And Handling Materials Therefor (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、例えば、医療検査の分野で用いられる生化学
自動分析装置における電解質濃度測定システムの改良に
関するものである。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an improvement of an electrolyte concentration measurement system in an automatic biochemical analyzer used, for example, in the field of medical testing.
(従来の技術)
医療診断に際しては、自動分析装置を使用する各種の検
査か行なわれるか、生体に関する電解質濃度の測定、例
えば、血清・尿等の体液中に含まれるNa’″ ・に3
・CI−等の各イオンのイオン活量な測定する場合に
は、一般に、イオン選択性電極(以下、単にイオン電極
という)を利用する測定方法が用いられる。(Prior Art) In medical diagnosis, various tests are performed using automatic analyzers, and measurements of electrolyte concentrations in living organisms, for example, Na'''-3 contained in body fluids such as serum and urine.
- When measuring the ionic activity of each ion such as CI-, a measurement method using an ion-selective electrode (hereinafter simply referred to as an ion electrode) is generally used.
この場合、イオン電極には、被測定液(以下、サンプル
液という)の濃度変化か大きいとその応答性か悪化する
という性質かあるため、前記の各イオンを測定対象とす
るような高精密度の分析装置の場合には、サンプル液濃
度の「バラツキ」がJllll定結形響を及ぼさないよ
うにするための工夫、即ち、測定対象であるサンプル液
に類似した性質を有する校正用溶液(以下、単に校正液
という)を用意し、サンプル液測定の都度、毎回校正液
を測定するという工夫かなされる。In this case, since the ion electrode has the property that its response deteriorates when the concentration change of the liquid to be measured (hereinafter referred to as sample liquid) is large, it is necessary to use a high-precision electrode that measures each of the ions mentioned above. In the case of analytical equipment, measures have been taken to prevent "variations" in sample liquid concentration from having a negative effect on the concentration of the sample liquid. , simply referred to as a calibration solution), and measure the calibration solution each time a sample liquid is measured.
(発明が解決しようとする問題点)
一方、この種の測定作業に際しては、微量のサンプル液
を有効に利用するため、サンプル液を所定倍率に希釈し
て測定するということが一般に行なわれるか、この場合
、サンプル液の不足や供給容器からの空吸い現象(フィ
ブリンによりノズルが詰まった時等)か生じると、所定
の希釈倍率か得られなくなってイオン電極の応答性の悪
化を招く。そして、このような事fflに立ち至ると、
希釈比異常となったサンプル液のみならず、その後に続
くサンプル液の測定結果にも重大な影響を与えるという
問題を惹き起こすことになる。(Problems to be Solved by the Invention) On the other hand, in this type of measurement work, in order to effectively utilize a small amount of sample liquid, it is common practice to dilute the sample liquid to a predetermined ratio before measurement. In this case, if there is a shortage of sample liquid or a phenomenon of empty suction from the supply container (such as when the nozzle is clogged with fibrin), it becomes impossible to obtain a predetermined dilution ratio, leading to deterioration in the responsiveness of the ion electrode. And when things like this come to ffl,
This causes a problem in that not only the sample liquid with an abnormal dilution ratio but also the measurement results of subsequent sample liquids are seriously affected.
本発明は、この事情に鑑みてなされたもので、測定に供
すべきサンプル液の量に異常か生じた場合てあっても、
精度を悪化させることなく測定操作を続行し得る、新規
な電解質濃度測定システムを提供することを目的とする
。The present invention was made in view of this situation, and even if an abnormality occurs in the amount of sample liquid to be subjected to measurement,
It is an object of the present invention to provide a novel electrolyte concentration measurement system that allows measurement operations to be continued without deteriorating accuracy.
[発明の構成]
(問題点を解決するための手段)
この目的を達成するための本発明の構成は、校正用溶液
と被測定液とを各々の反応管内に吐出すると共に、これ
ら反応管内の両液を順次にイオン選択性電極部位に導入
して、電解質濃度を測定する電解質濃度測定システムに
おいて、前記被測定液をその供給容器から吸引する際に
、測定に供すべき被測定液の量が所定値に達しないこと
を検知して、被測定液用反応管に校正用溶液を吐出する
ようになしたことにある。[Structure of the Invention] (Means for Solving the Problems) The structure of the present invention for achieving this object is to discharge a calibration solution and a liquid to be measured into each reaction tube, and to In an electrolyte concentration measurement system that measures electrolyte concentration by sequentially introducing both solutions into an ion-selective electrode site, when the sample liquid is drawn from its supply container, the amount of sample liquid to be subjected to measurement is The purpose is to detect that the predetermined value has not been reached and to discharge the calibration solution into the reaction tube for the liquid to be measured.
(作 用)
この構成に基く本発明の作用は、測定に供すべきサンプ
ル液の量に異常が生じた場合、その右釈比異常を起した
サンプル液の吐出を停止し、代りに、所定倍率に希釈さ
れた校正液をサンプル液用の反応管に吐出することによ
り、II■定操作を続行するようになしたことにある。(Function) The function of the present invention based on this configuration is that when an abnormality occurs in the amount of sample liquid to be subjected to measurement, the discharging of the sample liquid that has caused the right rotation ratio abnormality is stopped, and instead, a predetermined magnification is By discharging the diluted calibration solution into the reaction tube for the sample solution, the second constant operation is continued.
(実施例)
以下、図示の一実施例に基いて本発明を詳述する。図面
は本発明に係る電解質濃度測定システムを適用した自動
分析装置の概略構成図であり、図中、lは恒温槽、2は
校正液用に用意された反応管、3はサンプル液を分注さ
れる反応管で、これら2個の反応管2及び3は、その進
行方向に対して校正液用反応管2か前方に位置するよう
に、前後に一対に配置され、−組の反応骨組を構成する
。4はこの一対の反応骨組2・3を複数組保持して恒温
槽l内を搬送する搬送ラインて、適宜の搬送機構により
、恒温槽l内の所定無限軌道経路を図示矢印(イ)方向
へと移動し得るように構成されるか、その移動距離(移
動時間)は、一対の反応骨組2・3内の校正液及びサン
プル液の温度か、恒温槽1内の流体りとほぼ同一の温度
になるまでの時間に基づいて設定される。(Example) Hereinafter, the present invention will be described in detail based on an example shown in the drawings. The drawing is a schematic configuration diagram of an automatic analyzer to which the electrolyte concentration measurement system according to the present invention is applied. These two reaction tubes 2 and 3 are arranged in a pair in front and behind so that the reaction tube 2 for calibration solution is located in front of the reaction tube 2 for the calibration solution in the direction of movement. Configure. 4 is a conveyance line that holds a plurality of pairs of reaction frameworks 2 and 3 and conveys them inside the thermostatic chamber 1, and by means of an appropriate conveyance mechanism, a predetermined endless trajectory path inside the thermostatic chamber 1 is carried in the direction of the arrow (A) shown in the figure. The moving distance (moving time) is the temperature of the calibration solution and sample solution in the pair of reaction frames 2 and 3, or approximately the same temperature as the fluid in the thermostatic chamber 1. is set based on the time until
5は該恒温J61の周囲所定個所に設けられた校正液用
の吐出ノズルで、予め、所定倍率に希釈された校正液を
前記校正液用反応管2に対して吐出する。6は該校正液
吐出ノズル5と隣接した位ごに設置されたサンプル液吐
出ノズルて、測定に供すべきサンプル液をその供給容器
(図示せず)から吸入する位n(ロ)と、前記反応管3
内へそれを吐出する位数(ハ)との間を往復動し得るよ
うに、適宜の手段により構成される。7は該サンプル液
吐出ノズル6の吐出位置(ハ)に並設された希釈液吐出
ノズルて、正常の測定操作の際には、これら両ノズル6
及び7からサンプル液と希釈液とか同時または順次にサ
ンプル液反応管3に対して吐出される。Reference numeral 5 denotes a calibration liquid discharge nozzle provided at a predetermined location around the constant temperature J61, and discharges a calibration liquid diluted in advance to a predetermined ratio into the calibration liquid reaction tube 2. Reference numeral 6 denotes a sample liquid discharge nozzle installed adjacent to the calibration liquid discharge nozzle 5, which sucks the sample liquid to be subjected to measurement from its supply container (not shown); tube 3
It is constructed by appropriate means so as to be able to reciprocate between the order (c) and the order (c) from which it is discharged. Reference numeral 7 denotes a diluent discharge nozzle arranged in parallel with the discharge position (c) of the sample liquid discharge nozzle 6, and during normal measurement operations, both of these nozzles 6
and 7, the sample liquid and diluent are discharged to the sample liquid reaction tube 3 simultaneously or sequentially.
8は適宜の構成より成るイオン電極て、その内部には測
定部8aを有し、その下端には、該測定部8aに校正液
及びサンプル液を順次に吸入するための吸入管8bを具
備する。そして、このイオン電極8は、その測定時には
電極保持部9中に保持され、少なくともその吸入管8b
は、図示なき電極昇降機構により前記連結反応管2・3
に対して上下動可濠に構成される。尚、この吸入管8b
を、前後に配置された反応管2・3の間の距離たけ、前
記搬送ライン4の移動軌道上を移動し得るように構成す
ることも出来る。Reference numeral 8 denotes an ion electrode having an appropriate configuration, which has a measuring section 8a inside thereof, and a suction pipe 8b at its lower end for sequentially sucking a calibration solution and a sample liquid into the measuring section 8a. . The ion electrode 8 is held in the electrode holding part 9 at the time of measurement, and at least the suction tube 8b
The connecting reaction tubes 2 and 3 are connected by an electrode lifting mechanism (not shown).
It is constructed with a moat that can be moved up and down. In addition, this suction pipe 8b
can also be configured to be able to move on the movement trajectory of the transport line 4 by the distance between the reaction tubes 2 and 3 arranged in front and behind.
10は適宜の導管を介して前記イオン電極8に連通ずる
電磁弁、11はこの電磁弁10を介してイオン電極8及
び装置外に連絡する吸引ポンプ、12は前記イオン電極
8に接続されているプリアンプ、13はA/Dコンバー
タ、14は該自動分析装置全体の制御を司るCPU、1
5は前記恒温槽lの両端領域と電極保持部9とを連通ず
るための配管、16はこの配管15に接続された循環ポ
ンプて、恒温槽l内の流体りを強制的に電極保持部9内
に導き且つ循環させて、恒温槽l内の流体りと電極保持
部9内の流体とを常に同一温度になるように保持する。10 is a solenoid valve that communicates with the ion electrode 8 through a suitable conduit; 11 is a suction pump that communicates with the ion electrode 8 and the outside of the device through the solenoid valve 10; and 12 is connected to the ion electrode 8. 1 is a preamplifier; 13 is an A/D converter; 14 is a CPU that controls the entire automatic analyzer;
5 is a pipe for communicating the electrode holding part 9 with both end regions of the thermostatic oven l, and 16 is a circulation pump connected to this pipe 15 to force the fluid in the thermostatic oven l to the electrode holding part 9. The fluid in the constant temperature bath l and the fluid in the electrode holding part 9 are kept at the same temperature at all times.
尚、恒温槽l内から電極保持部9内に至る流路内は、熱
容量の大きな流体、例えば水等をもって満たしてとくも
のとする。Note that the flow path from the inside of the constant temperature bath 1 to the inside of the electrode holding part 9 is filled with a fluid having a large heat capacity, such as water.
21は適宜の供給管22によって前記サンプル液吐出ノ
ズル6に接続する供給ポンプ、23は該供給管22の適
宜の周囲個所に設置された圧力センサて、測定に供すべ
きサンプル液を前記供給容器(図示せず)からサンプル
液吐出ノズル6内に吸引する際に、供給管22における
単位時間当りの液圧変化値によりその吸引量を検知して
、その検知信号を前記制御cpu””e伝達するように
構成される。21 is a supply pump connected to the sample liquid discharge nozzle 6 through an appropriate supply pipe 22; 23 is a pressure sensor installed at an appropriate location around the supply pipe 22; the sample liquid to be measured is transferred to the supply container ( When the sample liquid is sucked into the sample liquid discharge nozzle 6 from the sample liquid (not shown), the suction amount is detected based on the liquid pressure change value per unit time in the supply pipe 22, and the detection signal is transmitted to the control CPU. It is configured as follows.
次に、この構成より成る自動分析装置を使用した電解質
濃度の測定方法を説明する。Next, a method for measuring electrolyte concentration using the automatic analyzer having this configuration will be explained.
[正常な測定の場合]
測定操作の開始時においては、搬送ライン4に保持され
た一組の反応骨組2・3は、それぞれ校正液吐出ノズル
5の位置とサンプル液吐出ノズル6の吐出位置(ハ)と
に位置し、サンプル液吐出ノズル6自身は、前記吸入位
置(ロ)において供給容器(図示せず)に相対している
。[In case of normal measurement] At the start of the measurement operation, the set of reaction skeletons 2 and 3 held in the transport line 4 are positioned at the position of the calibration liquid discharge nozzle 5 and the discharge position of the sample liquid discharge nozzle 6, respectively. The sample liquid discharge nozzle 6 itself faces the supply container (not shown) at the suction position (b).
この状態において、先ず、予め測定目的に合せて所定倍
率に希釈された校正液か、その吐出ノズル5から校正液
用反応管2内へと吐出される。次いて、吸入位21(ロ
)において、測定に供すべき量のサンプル液が、その供
給容器からサンプル液吐出ノズル6内に吸引される。そ
して、吸引されたサンプル液の量が所定値に達している
ことな前記圧力センサ23か検知した場合には、サンプ
ル液吐出ノズル6がその吸入位置(ロ)から吐出位置(
ハ)へと移動し、且つ、サンプル液用反応管3内へとそ
のサンプル液を吐出する。しかる後、希釈液吐出ノズル
7から反応管3内に順次または同■νに希釈液か吐出し
て、サンプル液を所定の倍率に希釈する。In this state, first, a calibration solution that has been diluted in advance to a predetermined ratio according to the purpose of measurement is discharged from the discharge nozzle 5 into the reaction tube 2 for calibration solution. Next, at the suction position 21 (b), an amount of sample liquid to be subjected to measurement is sucked into the sample liquid discharge nozzle 6 from the supply container. When the pressure sensor 23 detects that the amount of sample liquid sucked has reached a predetermined value, the sample liquid discharge nozzle 6 moves from its suction position (b) to its discharge position (
Then, the sample liquid is discharged into the sample liquid reaction tube 3. Thereafter, the diluent is discharged from the diluent discharge nozzle 7 into the reaction tube 3 sequentially or in the same number of times to dilute the sample liquid to a predetermined ratio.
このような吐出操作の読了した一組の反応骨組2・3は
、搬送ライン4の移動につれて、恒温槽1内の定められ
た経路を所定の時間をかけて矢印(イ)方向へと移動し
、その校正液用反応管2かイオン電極8の吸入管8bの
位置に到達した時点て停止する。この時、電極昇降機構
(図示せず)の作動によりイオン電極8の吸入管8bか
校正液用反応管2内に下降し、且つ、殆ど同時に電磁弁
10及び吸引ポンプ11か所定の吸引操作を行なって、
反応管2内の校正液をイオン電極8の測定部8a内に吸
引する。而して、この吸引された校正液は、該測定部8
aにおいてそれ自体公知の方法によってその起電力を測
定それる。そして、測定済みの校正液は、一度、吸引ポ
ンプ11内へと吸引され、電磁弁10の排出状態への切
換えの後に、今度は吸引ポンプ11の押動作用によって
装置外へと排出される。The set of reaction skeletons 2 and 3 that have undergone such a discharge operation move in the direction of arrow (a) along a predetermined path within the thermostatic chamber 1 over a predetermined period of time as the transport line 4 moves. When the calibration solution reaction tube 2 reaches the position of the suction tube 8b of the ion electrode 8, it stops. At this time, the suction tube 8b of the ion electrode 8 is lowered into the calibration liquid reaction tube 2 by the operation of the electrode lifting mechanism (not shown), and the electromagnetic valve 10 and the suction pump 11 are almost simultaneously operated in a predetermined suction operation. Do it,
The calibration solution in the reaction tube 2 is sucked into the measurement part 8a of the ion electrode 8. Then, this aspirated calibration solution is transferred to the measuring section 8.
At step a, the electromotive force is measured by a method known per se. The measured calibration liquid is once sucked into the suction pump 11, and after the solenoid valve 10 is switched to the discharge state, it is then discharged out of the apparatus by the pushing operation of the suction pump 11.
この校正液に係る起電力測定の過程か終了した後、搬送
ライン4か僅かに移動(或いは、吸入管8bか前述の距
離だけ移動)して、サンプル液用反応管3をイオン電極
8の吸入管8bの位置に設定する。そして、前述の校正
液の場合と同様な操作により、イオン電極8の測定部8
a内に吸引されたサンプル液は、該測定部8aにおいて
その起電力か測定される。即ち、吸入管8bか再び下降
してサンプル液用反応管3内のサンプル液を吸入し、所
定の起電力測定の後に測定済みのサンプル液を装置外に
排出する。After the process of measuring the electromotive force related to the calibration solution is completed, the transfer line 4 is moved slightly (or the suction pipe 8b is moved by the distance described above), and the sample liquid reaction tube 3 is connected to the suction of the ion electrode 8. Set at the position of tube 8b. Then, by the same operation as in the case of the above-mentioned calibration solution, the measuring part 8 of the ion electrode 8
The electromotive force of the sample liquid sucked into the measuring section 8a is measured. That is, the suction pipe 8b descends again to suck in the sample liquid in the sample liquid reaction tube 3, and after measuring a predetermined electromotive force, the measured sample liquid is discharged to the outside of the apparatus.
この場合、サンプル液と校正液との、それぞれの吐出操
作時からイオン電極8の測定部8aに至るまての通過経
路が同一になるため、従来のような通過経路の相違に起
因する測定誤差、例えば、蒸発による両液の濃縮度の相
違に基く°測定誤差等を生じさせ難くする。また、測定
部8a内にある時の校正液及びサンプル液は、その測定
過程の間中、電極保持部9内に保持されることになるが
、この電極保持部9内の流体は、配管15及びli’l
環ポンプ16を介して恒温槽l内の流体と連通している
ため、その温度が恒温槽lの流体りの温度とほぼ同一に
保たれる。従って、前記校正液とサンプル液との測定過
程の間には、従来のような温度の相違に起因する測定誤
差も殆ど発生することがない。In this case, the passage paths of the sample liquid and the calibration liquid from the respective discharge operations to the measurement part 8a of the ion electrode 8 are the same, so measurement errors caused by differences in the passage paths as in the conventional case are avoided. For example, it is difficult to cause a degree measurement error due to a difference in the degree of concentration of both liquids due to evaporation. Further, the calibration liquid and sample liquid in the measurement section 8a will be held in the electrode holding section 9 throughout the measurement process, but the fluid in this electrode holding section 9 will be kept in the pipe 15. and li'l
Since it is in communication with the fluid in the constant temperature bath l via the ring pump 16, its temperature is maintained approximately the same as the temperature of the fluid in the constant temperature bath l. Therefore, during the measurement process of the calibration liquid and the sample liquid, almost no measurement error occurs due to a difference in temperature as in the conventional method.
さて、このような同等な温度雰囲気内で測定された校正
液とサンプル液とに係る測定出力は、それぞれプリアン
プ12・A/Dコンバータ13を介してCPU14に伝
送され、該CPU14において、サンプル液に係る起電
力測定値から校正液起電カイめを減算するという所定の
悩算処理を施された後、その実起電力値から対象とする
イオンの含有量を算出し、それを、図示なき適宜の出力
装置、例えば、プリンタまたは陰極線管等に出力して、
電解質濃度の測定結果を表示する。Now, the measurement outputs related to the calibration liquid and the sample liquid measured in such an equivalent temperature atmosphere are respectively transmitted to the CPU 14 via the preamplifier 12 and the A/D converter 13, and in the CPU 14, the measurement outputs are transmitted to the sample liquid. After performing a predetermined calculation process of subtracting the electromotive force of the calibration solution from the electromotive force measurement value, the content of the target ion is calculated from the actual electromotive force value, and it is calculated using an appropriate method (not shown). Output to an output device, such as a printer or cathode ray tube,
Displays electrolyte concentration measurement results.
一方、測定済みのサンプル液は、前述の校正液の場合と
同様に、吸引ポンプ11の押動作用によって装置外へと
排出されるか、この−組の反応管412・3内の校正液
及びサンプル液に対する一連の測定作業が完了した後に
は、分析装ごは再び次の組の反応骨組に対する測定作業
に移り、順次、この測定サイクルを繰返すことによって
、大量サンプルの自動分析を行なう。On the other hand, the measured sample liquid is either discharged out of the apparatus by the pushing action of the suction pump 11, as in the case of the calibration liquid described above, or the calibration liquid in this set of reaction tubes 412. After completing a series of measurement operations for the sample liquid, the analyzer moves on to measurement operations for the next set of reaction frameworks, and by sequentially repeating this measurement cycle, automatic analysis of a large amount of samples is performed.
[吸引されたサンプル液の量が所定値よりも少ない場合
]
前記吸入量は(ロ)において、前記供給容器からサンプ
ル液吐出ノズル6内に吸引されるサンプル液の量が所定
値に満たない場合には、前記圧力センサ23がそれを検
知して、吸引量異常の信号を制御CPU 14に伝達す
る。[When the amount of sample liquid sucked is less than a predetermined value] In (b), when the amount of sample liquid sucked from the supply container into the sample liquid discharge nozzle 6 is less than the predetermined value. In this case, the pressure sensor 23 detects this and transmits a signal of the abnormal suction amount to the control CPU 14.
この信号を受取ったcpu l 4は、先ず、サンプル
液吐出ノズル6の吸入位置(ロ)から吐出位置(ハ)へ
の移動を強制的に停止せしめ、且つ、この状態において
搬送ライン4を僅かに移動させて、サンプル液用反応管
3を校正液吐出ノズル5の位着へと設定するように制御
し、更に、この吐出ノズル5からサンプル液用反応管3
内へ前記校正液を吐出せしめるように1分析装置全体を
制御する。そのため、前記イオン電極8の測定部8aて
は、校正液用反応管2内の校正液とサンプル液用反応管
3内の校正液との起電力を続けて測定することになる。Upon receiving this signal, the CPU 4 first forcibly stops the movement of the sample liquid discharge nozzle 6 from the suction position (B) to the discharge position (C), and in this state, slightly rotates the transport line 4. The reaction tube 3 for sample liquid is controlled to be set at the position of the calibration liquid discharge nozzle 5, and further, the reaction tube 3 for sample liquid is controlled to be moved from this discharge nozzle 5.
1. The entire analyzer is controlled so as to discharge the calibration liquid into the analyzer. Therefore, the measuring section 8a of the ion electrode 8 continuously measures the electromotive force between the calibration solution in the calibration solution reaction tube 2 and the calibration solution in the sample solution reaction tube 3.
しかし乍ら、両者間の測定値には本来的にレベル差か存
在しないので、このような測定操作か中間に入っても、
後続する他の反応骨組2及び3に係る校正液とサンプル
液との測定結果には、何等の悪影響も与えない。However, since there is essentially no level difference between the measured values between the two, even if such a measurement operation is in between,
There is no adverse effect on the measurement results of the calibration solutions and sample solutions for the other subsequent reaction frameworks 2 and 3.
そして、圧力センサ23が正常なサンプル液吸入量の信
号を制御CPU14に伝達した時点で、分析装置は元の
正常状態に復帰するか、その他の測定操作については、
前述の正常な測定の場合と同様である。Then, when the pressure sensor 23 transmits a signal indicating the normal sample liquid suction amount to the control CPU 14, the analyzer returns to its original normal state, or other measurement operations are performed.
This is similar to the normal measurement described above.
以上一実施例について説明したか、本発明はこれに限定
されるものではなく、その要旨を変更せざる範囲内て1
種々に変形実施することか可1七である9例えば、図示
例では一対の反応骨組の配はを前後方向としたか、左右
に並べて配置することも可能である。また、校正液の希
釈については、校正液専用の希釈液吐出ノズルを設けて
、サンプル液の希釈操作時に同時に希釈するようにして
もよい。Although one embodiment has been described above, the present invention is not limited thereto, and only one embodiment is described without changing the gist of the invention.
For example, in the illustrated example, the pair of reaction skeletons may be arranged in the front-rear direction, or they may be arranged side by side. Further, regarding the dilution of the calibration liquid, a dilution liquid discharge nozzle exclusively for the calibration liquid may be provided so that the sample liquid is diluted at the same time as the sample liquid is diluted.
[発明の効果]
以上述べた通り本発明を用いる時は、測定に供すべきサ
ンプル液の量に異常が生じた場合であっても、精度を悪
化させることなく測定操作を続行し得る電解質濃度測定
システムを提供することが可1@どなる。[Effects of the Invention] As described above, when using the present invention, even if an abnormality occurs in the amount of sample liquid to be subjected to measurement, the electrolyte concentration measurement can be performed without deteriorating the accuracy and the measurement operation can be continued. It is possible to provide a system 1@Dan.
図面は、本発明に係る電解質濃度測定システムを適用し
た自動分析装置の概略構成図である。The drawing is a schematic configuration diagram of an automatic analyzer to which the electrolyte concentration measurement system according to the present invention is applied.
Claims (3)
すると共に、これら反応管内の両液を順次にイオン選択
性電極部位に導入して、電解質濃度を測定する電解質濃
度測定システムにおいて、前記被測定液をその供給容器
から吸引する際に、測定に供すべき被測定液の量が所定
値に達しないことを検知して、被測定液用反応管に校正
用溶液を吐出する如く構成したことを特徴とする電解質
濃度測定システム。(1) In an electrolyte concentration measurement system that measures the electrolyte concentration by discharging a calibration solution and a liquid to be measured into each reaction tube, and sequentially introducing both solutions in the reaction tubes into an ion-selective electrode site. When the liquid to be measured is sucked from the supply container, it is detected that the amount of the liquid to be measured does not reach a predetermined value, and a calibration solution is discharged into the reaction tube for the liquid to be measured. An electrolyte concentration measurement system characterized by comprising:
行方向に対して前後に配置された一対の反応管である特
許請求の範囲第1項に記載の電解質濃度測定システム。(2) The electrolyte concentration measurement system according to claim 1, wherein each of the reaction tubes is a pair of reaction tubes arranged one behind the other with respect to the traveling direction of the reaction tube transport line.
許請求の範囲第1項または第2項に記載の電解質濃度測
定システム。(3) The electrolyte concentration measuring system according to claim 1 or 2, wherein the liquid to be measured is a biological fluid such as blood or urine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61237832A JPS6394149A (en) | 1986-10-08 | 1986-10-08 | System for measuring concentration of electrolyte |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61237832A JPS6394149A (en) | 1986-10-08 | 1986-10-08 | System for measuring concentration of electrolyte |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6394149A true JPS6394149A (en) | 1988-04-25 |
Family
ID=17021065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61237832A Pending JPS6394149A (en) | 1986-10-08 | 1986-10-08 | System for measuring concentration of electrolyte |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6394149A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02179477A (en) * | 1988-12-29 | 1990-07-12 | Shimadzu Corp | Biochemical automatic analyzer |
WO1994006020A1 (en) * | 1992-09-02 | 1994-03-17 | Aloka Co., Ltd. | Leakage detection method in automatic pipetting apparatus |
WO1995006878A1 (en) * | 1993-08-31 | 1995-03-09 | Aloka Co., Ltd. | Pipetting apparatus equipped with closure detection function |
-
1986
- 1986-10-08 JP JP61237832A patent/JPS6394149A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02179477A (en) * | 1988-12-29 | 1990-07-12 | Shimadzu Corp | Biochemical automatic analyzer |
WO1994006020A1 (en) * | 1992-09-02 | 1994-03-17 | Aloka Co., Ltd. | Leakage detection method in automatic pipetting apparatus |
WO1995006878A1 (en) * | 1993-08-31 | 1995-03-09 | Aloka Co., Ltd. | Pipetting apparatus equipped with closure detection function |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0098550B1 (en) | Method and apparatus for conducting flow analysis | |
WO2006132211A1 (en) | Automatic analyzing instrument | |
EP2612154B1 (en) | Pressure monitoring of whole blood aspirations to determine completeness of whole blood mixing | |
KR20010076249A (en) | Failure detection in automated clinical analyzers | |
US11226328B2 (en) | Method of detecting the presence or absence of a clot in a liquid sample analyzer | |
CN110869769B (en) | Test suite, test method and dispensing device | |
JP6126387B2 (en) | Electrolyte analyzer with double tube structure sample suction nozzle | |
JPH03100455A (en) | Electrolyte analyzing apparatus | |
US20060275906A1 (en) | Method for ascertaining interferents in small liquid samples in an automated clinical analyzer | |
CN112986485B (en) | Titration apparatus and titration method | |
JPS6394149A (en) | System for measuring concentration of electrolyte | |
JPS62294959A (en) | Measurement of ion activity | |
JP2783449B2 (en) | Analyzer line control system | |
JP2867670B2 (en) | Automatic chemical analysis method and apparatus | |
JP3206999B2 (en) | Method for detecting sample dilution error and apparatus for detecting sample dilution error using the same | |
JP4082815B2 (en) | Sample processing equipment | |
JPS6391550A (en) | System for measuring concentration of electrolyte | |
JP2592837B2 (en) | Automatic chemical analyzer | |
CN116087542A (en) | Sample analyzer and sample detection method | |
JPH04204378A (en) | Immune reaction automatic analyzer | |
JP3540418B2 (en) | Automatic analyzer | |
JPS61200473A (en) | Method for analyzing flow of liquid specimen | |
JPS5840698B2 (en) | Ion concentration analysis method | |
JPH0526144B2 (en) | ||
JPH11248666A (en) | Electrolyte concentration analyzing apparatus |