[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6386824A - Method for recovering valuable metal from manganese nodule or cobalt crust by separation - Google Patents

Method for recovering valuable metal from manganese nodule or cobalt crust by separation

Info

Publication number
JPS6386824A
JPS6386824A JP61229509A JP22950986A JPS6386824A JP S6386824 A JPS6386824 A JP S6386824A JP 61229509 A JP61229509 A JP 61229509A JP 22950986 A JP22950986 A JP 22950986A JP S6386824 A JPS6386824 A JP S6386824A
Authority
JP
Japan
Prior art keywords
valuable components
eluate
filtrate
cobalt
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61229509A
Other languages
Japanese (ja)
Other versions
JPH086150B2 (en
Inventor
Yujiro Fujii
藤井 雄二郎
Tadahito Mizota
溝田 忠人
Yoshimi Kono
河野 好美
Akira Seki
明 関
Sukeyoshi Narita
成田 祐喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
Kawatetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawatetsu Mining Co Ltd filed Critical Kawatetsu Mining Co Ltd
Priority to JP22950986A priority Critical patent/JPH086150B2/en
Publication of JPS6386824A publication Critical patent/JPS6386824A/en
Publication of JPH086150B2 publication Critical patent/JPH086150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To recover valuable components in high yield without causing environmental pollution, by treating ores with a sulfurous acid solution to eluate valuable components and then by subjecting the eluate to oxidation, etc., so as to separate Fe and Mn and also to leave Cu, Ni, Co, etc., in the filtrate. CONSTITUTION:The ores of manganese nodule and cobalt crust are crushed, which is agitated in a sulfurous acid solution of >=0.01mol/l H2SO4 concentration to eluate valuable components. The residue of dissolution is separated, and air is blown into the eluate to oxidize Fe<2+> into Fe<3> and further Fe(OH)3 is precipitated in an acidic region to undergo separation by filtration. Subsequently, ammonium carbonate is added to the above eluate and further ammonium salt, etc., are added so as to carry out air oxidation, which is allowed to stand to undergo precipitation of Mn in the form of MnCO3. This precipitate is separated and valuable components such as Cu, Ni, Co, etc., are left in the filtrate. In this way, the valuable components can be recovered in a yield as high as >=about 90% by a simple equipment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は深海底マンガンノジュールまたはコバルトクラ
ストから、銅、ニッケル、コバルト等の有価金属を回収
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for recovering valuable metals such as copper, nickel, and cobalt from deep-sea manganese nodules or cobalt crusts.

〔従来の技術〕[Conventional technology]

マンガンノジュールやコバルトクラストからCu、 N
i、 Coなどの有価金属を分離回収する方法は種々試
みられており、例えばマンガンノジュールからこれらを
回収する方法としては次の方法が知られているが、未だ
工業化されるに到っていない。
Cu, N from manganese nodules and cobalt crust
Various methods have been tried to separate and recover valuable metals such as i and Co. For example, the following method is known as a method for recovering these from manganese nodules, but it has not yet been industrialized.

例えば(1)iイオンの存在下でCOガスによって湿式
還元浸出を行いMnをMnCO3として除き、CLI 
+ N I +Coを回収する方法。
For example, (1) perform wet reduction leaching with CO gas in the presence of i ions to remove Mn as MnCO3, and CLI
+N I +Method of recovering Co.

(2)245℃、35atmの高温、高圧下で30%硫
酸によってCu、Ni、Coを浸出する方法。
(2) A method of leaching Cu, Ni, and Co with 30% sulfuric acid at a high temperature and pressure of 245° C. and 35 atm.

<3)500”cで)IIガスを作用させて還元後、水
又はHC7!溶?&で浸出する方法。
<3) Method of reducing with II gas (at 500"c) and then leaching with water or HC7! solution?&.

!41625〜1000℃でコークス、COガスの存在
下で予備加熱還元し、さらに1425°CでCu。
! Coke was preheated and reduced in the presence of CO gas at 41625-1000°C, and Cu was further heated at 1425°C.

Ni、 CoをFe合金とし、Mn、Feを酸化させス
ラグとして除去する。次に、石膏とコークスを加えCu
Ni and Co are made into an Fe alloy, and Mn and Fe are oxidized and removed as slag. Next, add gypsum and coke and Cu
.

Ni、Coを硫化物マントに変え、110℃、5%H2
SO,で浸出する方法 (5)亜硫酸液で浸出させた後、F e + M nを
(NH4)zCo、で沈澱させ濾過分離し、濾液は従来
の溶媒抽出や電気分解の湿式製錬で各金属を分離回収す
る方法。
Change Ni and Co to sulfide cloak, 110℃, 5%H2
Method of leaching with SO (5) After leaching with sulfite solution, Fe + Mn is precipitated with (NH4)zCo and separated by filtration, and the filtrate is leached using conventional solvent extraction or electrolysis hydrometallurgy. A method of separating and recovering metals.

などがあげられる。etc. can be mentioned.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

(1)の方法はKennecott Cuprion 
Processと言われ常温、常圧反応で環境への影響
は少ないがC。
Method (1) is based on Kennecott Cuprion.
It is called Process and has little impact on the environment as it reacts at room temperature and pressure.

の収率は極めて低い。The yield is extremely low.

しかも有害な一酸化炭素を使用するため、環境衛生上の
問題があり、コストの面でも割高となる。
Moreover, since it uses harmful carbon monoxide, it poses environmental health problems and is relatively expensive.

また、(2)の高温・高圧・硫酸浸出法は硫酸のリサイ
クルが困難であるばかりでな(、反応容器の耐蝕性が問
題となる。
Furthermore, in the high temperature, high pressure, sulfuric acid leaching method (2), not only is it difficult to recycle the sulfuric acid (but also the corrosion resistance of the reaction vessel is a problem).

さらに(3)の高温下111!ガス還元−水又はHCl
による浸出法はほとんどの有価金属成分を浸出させるこ
とができるとは言うものの、HClの回収が困難であっ
て(2)の方法と同様反応容器の耐蝕性の点でも問題が
ある。
Furthermore, (3) 111 under high temperature! Gas reduction - water or HCl
Although the leaching method is capable of leaching most of the valuable metal components, it is difficult to recover HCl and, like method (2), there are also problems in terms of corrosion resistance of the reaction vessel.

(4)の乾式製錬・硫酸浸出法は、Mnの回収廃棄を市
況に応じて選択でき、既設のNi製錬設備が活用できる
が、原料の加熱乾燥に莫大なエネルギーを必要とする問
題点がある。
(4) Pyrometallurgical smelting/sulfuric acid leaching method allows Mn recovery and disposal to be selected depending on market conditions, and existing Ni smelting equipment can be used, but the problem is that it requires a huge amount of energy to heat and dry the raw material. There is.

(5)の亜硫酸浸出法は、常温、常圧で行なえる利点が
あるが、濾液中からMnを沈澱1分離、除去する際に、
Coが共沈し、Coの回収率が70%と低くなる問題点
がある。
The sulfite leaching method (5) has the advantage of being able to be carried out at room temperature and pressure, but when precipitating and removing Mn from the filtrate,
There is a problem that Co precipitates and the recovery rate of Co becomes as low as 70%.

文献:溝田忠人、藤井雄二部、河野好美日本鉱業会春季
大会講演要旨集 P347〜348 1985 このように、従来方法は高温・高圧その他反応条件が厳
しかったり、エネルギー消費が大であったりし、かつ特
に共通する欠点は、Coの収率がいずれも50〜70%
と低い点である。
Literature: Tadato Mizota, Yujibu Fujii, Yoshimi Kono, Abstracts of the Japan Mining Society Spring Conference, P347-348 1985 As described above, conventional methods require severe reaction conditions such as high temperature and pressure, and consume a large amount of energy. A particularly common drawback is that the Co yield is 50 to 70% in all cases.
This is a low point.

本発明の目的はこれらの従来法の問題点をすべて解決し
、低コストでしかも環境汚染を生せず、有価金属を高収
率で回収できる方法を提供するにある。
The object of the present invention is to solve all of the problems of these conventional methods and to provide a method that is low cost, does not cause environmental pollution, and can recover valuable metals at a high yield.

〔問題点を解決するための具体的手段〕本発明は、亜硫
酸液を用いて有価成分、特にCo、 Cu、 Niが9
0%以上の収率で回収できる方法である。
[Specific means for solving the problem] The present invention uses a sulfurous acid solution to dissolve valuable components, especially Co, Cu, and Ni.
This method allows recovery with a yield of 0% or more.

まず粉砕した原鉱は、常温常圧下でHgSO4濃度0.
01io1/ 1以上の亜硫酸溶液中で攪拌する。
First, the crushed raw ore is processed at room temperature and pressure with a HgSO4 concentration of 0.
Stir in a sulfite solution of 01io1/1 or more.

本発明において亜硫酸液は、HgSO4濃度0.01m
ol/f以上のものが用いられ、粉砕原鉱はこの中で少
なくとも1分以上撹拌される。亜硫酸液と原鉱との重量
比は、有価成分の含有量によって異なるが、MO2+l
(□SO:l −M”+SO4”−+ flZo(M 
:金属イオン)の反応に見合う当量以上のlI□SO1
であればよい。また亜硫酸液の液量と原鉱重量との比は
機械的に撹拌できればよく特に制約はない。
In the present invention, the sulfite solution has a HgSO4 concentration of 0.01 m
ol/f or more is used, and the crushed raw ore is stirred in this for at least 1 minute. The weight ratio of sulfite liquid and raw ore varies depending on the content of valuable components, but MO2 + l
(□SO:l −M”+SO4”−+ flZo(M
: metal ion)
That's fine. Further, the ratio between the amount of the sulfite solution and the weight of the raw ore is not particularly limited as long as it can be mechanically stirred.

温度は常温、圧力も常圧で行うことができ、反応装置等
に特別の配慮を払う必要はない。
The reaction can be carried out at room temperature and pressure, and there is no need to pay special attention to the reaction equipment.

亜硫酸液で浸出され、遠心分離、フィルタープレスなど
で、固液分離された濾液には、Go、 Ni。
The filtrate, which has been leached with sulfite solution and separated into solid and liquid by centrifugation, filter press, etc., contains Go and Ni.

Cuなどの有価成分をはじめFe、Mnの金属イオンが
含まれる。
It contains valuable components such as Cu as well as metal ions such as Fe and Mn.

得た濾液に空気を吹き込みFe2+をFe3+に全部酸
化させ、酸性領域でFe (OH) 3の沈澱を生成さ
せ濾過分離させる。
Air is blown into the obtained filtrate to completely oxidize Fe2+ to Fe3+, and a precipitate of Fe(OH)3 is generated in an acidic region and separated by filtration.

酸化した酸性領域で沈澱させる理由は、アルカリ側での
Fe (OB) 3の沈澱にCo、 Ni、 Cu等の
有価成分が共沈し、回収率の向上を不可能ならしめるた
めである。
The reason for precipitating in the oxidized acidic region is that valuable components such as Co, Ni, and Cu are co-precipitated with the precipitation of Fe (OB) 3 on the alkaline side, making it impossible to improve the recovery rate.

そのためFe”+を酸化しFe”にして酸性側で沈澱を
生成しなければならない。
Therefore, Fe"+ must be oxidized to Fe" to form a precipitate on the acidic side.

酸化にあっては、0□、03.空気いずれも酸素を含む
気体を吸込むことによって行える。
For oxidation, 0□, 03. Air can be done by inhaling a gas containing oxygen.

次に鉄の除去された濾液に炭酸アンモニウムを加える。Ammonium carbonate is then added to the iron-free filtrate.

これは、MnをMnC01として沈に2させ、Cu、 
Ni、およびCoをアンミン錯体とするためである。
This causes Mn to precipitate as MnC01, Cu,
This is to make Ni and Co into an ammine complex.

Cu、 NiおよびCoのアンミン錯体をさらに安定化
するためには、特にCoのアンミン錯体を安定化するた
めには、亜硫酸アンモニウム、硫酸アンモニラム、など
のアンモニウム塩を加えるか、または、アンモニウム水
を加える。
To further stabilize the ammine complexes of Cu, Ni and Co, in particular to stabilize the ammine complex of Co, add ammonium salts such as ammonium sulfite, ammonium sulfate, or add ammonium water. .

上記の添加剤を加え、酸化雰囲気で撹拌を行いMnCO
3を生成、沈澱させ静置し、はとんどのMn分を濾過分
離させる。
Add the above additives and stir in an oxidizing atmosphere to obtain MnCO
3 is produced, precipitated and allowed to stand, and most of the Mn components are separated by filtration.

酸化雰囲気で攪拌する理由は、Coのアミン錯体である
(Co(N)I−) b〕”を酸化することによ、より
安定な(Co(NHt)J ”にするためである。
The reason for stirring in an oxidizing atmosphere is to oxidize the amine complex of Co (Co(N)I-) b]'' to make it more stable (Co(NHt)J'').

安定度定数が(co(Nos)b) 3”では、log
 K=133゜(Co(NHt)b) ”  では、l
ogK=25.8となり2価の場合は安定度が低く操作
中に分解しやすいことからMnを沈澱させる際、安定な
コバルトアミン錯体にしておくため、積極的に(Co(
NH4)6) ”に酸化させた方がよい。
When the stability constant is (co(Nos)b) 3”, log
K=133°(Co(NHt)b)”, then l
ogK = 25.8, and if it is divalent, it has low stability and is easily decomposed during operation.
It is better to oxidize to NH4)6).

なお、(Co(NH4)b) ”から(Co(NHt)
J ”に酸化する・にあたって酸化還元電位を調べると
、(Co(NH4)h) ”+ e−= (Co(NH
t)b ”Eo=0.06Vとなり(Co(NH4,)
6) ”の酸化還元電位が極めて低いことがわかる。
In addition, from (Co(NH4)b)'' to (Co(NHt)
When examining the redox potential for oxidation to J'', we find that (Co(NH4)h)
t)b ”Eo=0.06V (Co(NH4,)
6) It can be seen that the redox potential of `` is extremely low.

この電位程度なら容易に酸化することが可能であるので
、空気吹き込み、あるいは大気中での振とうや強い攪拌
で十分である。さらにこの操作における静置の理由は、
MnからMnCO3の反応が非常に遅いために、十分M
nCO5が沈澱熟成できるようにするためである。
Since it is possible to easily oxidize at this potential level, blowing air, shaking in the atmosphere, or strong stirring is sufficient. Furthermore, the reason for standing still in this operation is
Since the reaction from Mn to MnCO3 is very slow, sufficient Mn
This is to enable nCO5 to undergo precipitation ripening.

また加温して沈澱生成を促進することが可能である。It is also possible to promote precipitation formation by heating.

このようにすることによりFe、 Mnを含まずCo。By doing this, Co does not contain Fe or Mn.

Cu、 Niを90%以上の回収率で溶液中に回収でき
る。
Cu and Ni can be recovered into the solution with a recovery rate of 90% or more.

なお、Mnを分離回収しない場合には、Fe、 Mnの
同時分離方法も考えられる。
Note that if Mn is not separated and recovered, a method for simultaneously separating Fe and Mn may also be considered.

この方法は、原鉱を亜硫酸液で浸出後、浸出液中に溶解
したCo、 Cu、 Ni、 Fe、 Mnと浸出残渣
を濾過分離し、その濾液を空気酸化によりFp 2゛を
Feff+に酸化し、その溶液にアンモニア水、炭酸ア
ンモニウム等で有価成分を錯体化しMn分をMnC01
にし沈澱させ、同時にpHを上げることによりFe(O
H):+の沈澱とMnC0zの沈澱を一諸に沈澱分離す
る方法である。
This method involves leaching the raw ore with a sulfite solution, then filtering and separating the Co, Cu, Ni, Fe, and Mn dissolved in the leaching solution and the leaching residue, and oxidizing the filtrate with air to oxidize Fp 2゛ to Feff+. Complex valuable components in the solution with ammonia water, ammonium carbonate, etc. to reduce the Mn content to MnC01.
Fe(O
H): This is a method in which the + precipitate and the MnC0z precipitate are precipitated and separated at the same time.

また、細砕酸液浸出残渣、FeおよびMnを有価成分と
一括分離する方法、つまり細砕酸液浸出残渣を除去せず
有価成分を含む溶液に含まれているFe2+をFe3+
とし、次にMn分をMnC0,に生成、同時にpHを上
げてFe (OH) 3を沈澱させて有価成分と分離を
行うと、沈澱物にを傷成分がCo 19.3%、 Cu
9.8%、Ni 5.8%と残るが、有価成分を溶液中
に回収することができる。
In addition, there is a method in which the pulverized acid solution leaching residue, Fe and Mn are separated from the valuable components at once, that is, the Fe2+ contained in the solution containing the valuable components is removed from the Fe3+ without removing the pulverized acid solution leaching residue.
Next, the Mn content was converted to MnC0, and at the same time the pH was raised to precipitate Fe (OH) 3 and separate it from valuable components.
9.8% and 5.8% Ni remain, but valuable components can be recovered into solution.

MnおよびFeの原鉱品位が高いので、上記のいずれの
方法によってもCo、 CuおよびNiの前液中には、
Cu、 Niと同程度のMnと微量のFeが残る。
Since the raw ore grade of Mn and Fe is high, Co, Cu and Ni preliquids contain
Mn and a trace amount of Fe remain in the same amount as Cu and Ni.

これらをさらに分離する方法としてこの前液中にMnC
O3との共沈効果の期待できる共沈剤を添加することも
可能である。
As a method to further separate these, MnC is added to this preliquid.
It is also possible to add a coprecipitant that can be expected to have a coprecipitation effect with O3.

この場合の共沈剤はCaC1,である。The coprecipitant in this case is CaCl.

Fe、 Mnと有価成分の分離は、次の反応に見合うだ
けの(NHt)zcOiとCaC(12を添加し、1時
間以上沈澱熟成させ濾過分離する。
To separate Fe, Mn and valuable components, (NHt)zcOi and CaC (12) are added in an amount suitable for the next reaction, and the mixture is precipitated and aged for over 1 hour, followed by filtration separation.

Mn”+CaC12+ 2 (NH4)zc(h =M
nCO3L+ CaCO3↓+2NHnCj2 + 2
N)Is ’ Fe、 Mnは、CaCO3の沈澱に効
率よく共沈し、前液中のFe、 Mn?震度を著しく低
下せしめる。
Mn”+CaC12+ 2 (NH4)zc(h = M
nCO3L+ CaCO3↓+2NHnCj2 + 2
N)Is' Fe, Mn are efficiently co-precipitated with the CaCO3 precipitate, and Fe, Mn? Significantly reduces seismic intensity.

以上のように、Fe、 Mnを同時に分離する方法もあ
るが、Fe、 Mnをそれぞれ個別的に有効に利用し−
ル1gにH2303914度0.2mo177!の亜硫
酸水を100ml入れ、25℃で1時間振とうして有価
成分の浸出を行なった。
As mentioned above, there is a method to separate Fe and Mn at the same time, but it is also possible to effectively utilize Fe and Mn individually.
H2303914 degrees 0.2mo177 in 1g! 100 ml of sulfurous acid water was added thereto, and the mixture was shaken at 25° C. for 1 hour to leach out valuable components.

浸出後、遠心分離機で固液分離を行なった。°濾液には
Cu、 Ni、 Co、 Mn、 Feイオンが存在す
る。残渣には原鉱に含まれるFe分の26.7%が残っ
た。
After leaching, solid-liquid separation was performed using a centrifuge. °Cu, Ni, Co, Mn, and Fe ions are present in the filtrate. The residue contained 26.7% of the Fe contained in the raw ore.

次に濾液に空気を500 m ff/min、2.5時
間吹き込み酸化させた。空気酸化させた濾液に濃度0.
5mol/βのNa、COt 3 m lを入れ、pi
tを4.04として1時間空気酸化させた。
Next, air was blown into the filtrate at 500 mff/min for 2.5 hours to oxidize it. The air oxidized filtrate has a concentration of 0.
Add 5 mol/β Na, COt 3 ml, pi
Air oxidation was performed for 1 hour at t of 4.04.

これにより、FeはFe (OH) 3 として沈≦2
した。このFe (OH) :l沈澱物を含む液を遠心
分離機にかけ、この水酸化沈澱物を分離した。
As a result, Fe is precipitated as Fe (OH) 3 ≦2
did. The liquid containing the Fe(OH):l precipitate was centrifuged to separate the hydroxylated precipitate.

除鉄した濾液に、(NH4)2CO3を5g入れ、濃度
28%の5H401115m pを入れた。
5 g of (NH4)2CO3 and 5H401115mp with a concentration of 28% were added to the iron-removed filtrate.

さらに、(NHa) zsQa  5 grを濾液に入
れ、100r、p、m  1.5時間で振とうした。
Furthermore, (NHa) zsQa 5 gr was added to the filtrate and shaken at 100 r, p, m for 1.5 hours.

振とう後溶液は2日間静置させ、1nを沈澱分離した。After shaking, the solution was allowed to stand for 2 days, and 1N was separated by precipitation.

最終濾液で、Cu、 Ni、 Coの回収率は、それぞ
れ94.0%、 94.2%、 94.4%であった。
In the final filtrate, the recoveries of Cu, Ni, and Co were 94.0%, 94.2%, and 94.4%, respectively.

結果をまとめて表2に示す。The results are summarized in Table 2.

表1 原料マンガンノジュールの品位(wt%)表2 
処理結果 (合計回収分) 〔発明の効果〕 亜硫酸水浸出によって常・品、常圧下で浸出できるので
設備も簡単であり、環境汚染の問題もな(、実施上極め
て有利であるのみならず、有価金属時ニCo、 Ni、
 Cu等を90%以上という高い収率でしかもMn、 
Feの存在の少ない状態で分離回収することができる。
Table 1 Quality of raw manganese nodules (wt%) Table 2
Treatment results (total recovered amount) [Effects of the invention] Sulfurous acid water leaching allows leaching under normal pressure, so the equipment is simple and there is no problem of environmental pollution (not only is it extremely advantageous in terms of implementation, but Valuable metals: Co, Ni,
With a high yield of over 90% of Cu, etc., Mn,
Separation and recovery can be performed in a state where the presence of Fe is small.

Claims (1)

【特許請求の範囲】[Claims] マンガンノジュールまたは、コバルトクラストの原鉱か
ら有価成分を分離するにあたり、マンガンノジュールま
たは、コバルトクラストの原鉱をH_2SO_3濃度0
.01mol/l以上の亜硫酸液中で有価成分を溶出せ
しめ溶解残渣と溶出液を濾過分離し、次いでその溶出液
に酸化性気体を吹き込み、Fe^2^+をFe^3^+
に酸化させ、酸性領域内でFe(OH)_3の水酸化物
を沈澱させ、鉄分を分離させ、鉄分を除去した濾液に炭
酸アンモニウムを加え、さらに、アンモニウム塩、また
はアンモニア水を加えて、空気酸化後、静置し、マンガ
ンをMnCO_3の沈澱物として分離し、銅、ニッケル
、コバルト等の有価成分を湿式製錬用に濾液中に残すこ
とを特徴とするマンガンノジュールまたはコバルトクラ
ストから有価金属を分離回収する方法。
In separating valuable components from manganese nodules or cobalt crust raw ore, the manganese nodule or cobalt crust raw ore is heated to 0 H_2SO_3 concentration.
.. Valuable components are eluted in a sulfite solution of 01 mol/l or more, the dissolved residue and the eluate are separated by filtration, and then an oxidizing gas is blown into the eluate to convert Fe^2^+ to Fe^3^+
The hydroxide of Fe(OH)_3 is precipitated in an acidic region, the iron content is separated, ammonium carbonate is added to the filtrate from which the iron content has been removed, ammonium salt or aqueous ammonia is added, and air Valuable metals are removed from manganese nodules or cobalt crusts by leaving to stand after oxidation, separating manganese as a precipitate of MnCO_3, and leaving valuable components such as copper, nickel, and cobalt in the filtrate for hydrometallurgy. How to separate and collect.
JP22950986A 1986-09-30 1986-09-30 Method for separating and recovering valuable metals from manganese nodules or cobalt crusts Expired - Fee Related JPH086150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22950986A JPH086150B2 (en) 1986-09-30 1986-09-30 Method for separating and recovering valuable metals from manganese nodules or cobalt crusts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22950986A JPH086150B2 (en) 1986-09-30 1986-09-30 Method for separating and recovering valuable metals from manganese nodules or cobalt crusts

Publications (2)

Publication Number Publication Date
JPS6386824A true JPS6386824A (en) 1988-04-18
JPH086150B2 JPH086150B2 (en) 1996-01-24

Family

ID=16893289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22950986A Expired - Fee Related JPH086150B2 (en) 1986-09-30 1986-09-30 Method for separating and recovering valuable metals from manganese nodules or cobalt crusts

Country Status (1)

Country Link
JP (1) JPH086150B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009009825A1 (en) * 2007-07-13 2009-01-22 Metaleach Limited Method for ammoniacal leaching
WO2011014930A1 (en) * 2009-08-07 2011-02-10 Metaleach Limited Method for leaching cobalt from oxidised cobalt ores
CN114207160A (en) * 2019-08-09 2022-03-18 尤米科尔公司 Method for recovering metals from oxidized ores

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101514837B1 (en) * 2014-11-06 2015-04-28 한국지질자원연구원 The preparation method of sulfides using oxide flux from deep ocean manganese nodules

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009009825A1 (en) * 2007-07-13 2009-01-22 Metaleach Limited Method for ammoniacal leaching
CN102649997A (en) * 2007-07-13 2012-08-29 梅塔里奇有限公司 Method for ammoniacal leaching
US8388729B2 (en) 2007-07-13 2013-03-05 Metaleach Limited Method for ammoniacal leaching
WO2011014930A1 (en) * 2009-08-07 2011-02-10 Metaleach Limited Method for leaching cobalt from oxidised cobalt ores
AU2010254596B2 (en) * 2009-08-07 2012-04-19 Metaleach Limited Method for leaching cobalt from oxidised cobalt ores
US8486355B2 (en) 2009-08-07 2013-07-16 Metaleach Limited Method for leaching cobalt from oxidised cobalt ores
CN114207160A (en) * 2019-08-09 2022-03-18 尤米科尔公司 Method for recovering metals from oxidized ores
CN114207160B (en) * 2019-08-09 2023-10-31 尤米科尔公司 Method for recovering metals from oxidized ores

Also Published As

Publication number Publication date
JPH086150B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
Zhang et al. Manganese metallurgy review. Part I: Leaching of ores/secondary materials and recovery of electrolytic/chemical manganese dioxide
US4097271A (en) Hydrometallurgical process for recovering copper and other metal values from metal sulphides
US4162294A (en) Process for working up nonferrous metal hydroxide sludge waste
US3652264A (en) Recovery of zinc values from zinc plant residue
US3880651A (en) Chlorine leaching of non-ferrous metal values with ammoniacal solutions
US2822263A (en) Method of extracting copper values from copper bearing mineral sulphides
US4828809A (en) Separation of nickel from copper in autoclave
CA1206339A (en) Recovery of cobalt and nickel from sulphidic material
CA2162820A1 (en) Recovery of manganese from leach solutions
US4778520A (en) Process for leaching zinc from partially desulfurized zinc concentrates by sulfuric acid
US3767762A (en) Recovery and separation of nickel and cobalt from reduced laterite nickel ore
JP4962078B2 (en) Nickel sulfide chlorine leaching method
US4127639A (en) Process for recovering silver from residues containing silver and lead
JP3411320B2 (en) Zinc smelting method
JP3197288B2 (en) Simultaneous wet treatment of zinc concentrate and zinc leaching residue
US3959097A (en) Selenium rejection during acid leaching of matte
JP4439804B2 (en) Cobalt recovery method
US3440155A (en) Extraction and recovery of metals from ores,concentrates and residues
JPS6386824A (en) Method for recovering valuable metal from manganese nodule or cobalt crust by separation
US4085188A (en) Reduction leaching of raw sea nodules with sulfides
US4384940A (en) Chlorine leaching of nickel-cobalt-iron sulphides
CN112359212B (en) Method for recovering cobalt, copper and iron from cobalt slag
CN113881857A (en) Method for treating cobalt-containing solution produced in wet zinc smelting cadmium recovery process
CA1077725A (en) Process for obtaining metal values by leaching raw sea nodules
US1111874A (en) Process for the treatment of copper ores and the recovery of their values.

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees